

Veterans Administration Medical Center Martinsburg, West Virginia

Building 405B Renovations

Specifications - Divisions 00 - 31

VA Project No.:	613-13-115
SUBMISSION AND DATE:	100% Construction Documents Submission May 31, 2013 Revised 9/19/2019 Revised 3/11/2019

SUBMIT TO: VAMC Martinsburg 510 Butler Ave. Bldg. 308B Martinsburg, WV 25405

CONTACT PERSON: Sam Powell 304.263.0811, Extension 4175 Samuel.Powell@va.gov

ARCHITECT OKKS Studios, Inc. 2 Wisconsin Circle, Suite 820 Chevy Chase, MD 20815 MECHANICAL/ELECTRICAL/PLUMBING ENGINEER Henry Adams, LLC 400 Baltimore Avenue, Suite 400 Baltimore, MD 21204 STRUCTURAL ENGINEER Woods Peacock Engineering Consultants 5250 Cherokee Avenue, Suite 420 Alexandria, VA 22312

PROPERTY OF US GOVERNMENT - FOR OFFICIAL USE ONLY DO NOT REMOVE THIS NOTICE PROPERLY DESTROY DOCUMENTS WHEN NO LONGER NEEDED 301.718.0080 www.okksstudios.com 410.296.6500 www.henryadams.com 703.658.4400 www.woodspeacock.com

PROPERTY OF US GOVERNMENT - FOR OFFICIAL USE ONLY DO NOT REMOVE THIS NOTICE PROPERLY DESTROY DOCUMENTS WHEN NO LONGER NEEDED

TABLE OF CONTENTS Section 00 01 10

DIVISION 00 - SPECIAL SECTIONS

- 00 01 10 Table of Contents
- 00 01 15 List of Drawing Sheets

DIVISION 01 - GENERAL REQUIREMENTS

- 01 00 00 General Requirements
- 01 33 23 Shop Drawings, Product Data, and Samples
- 01 35 26 Safety Requirements
- 01 35 26 Safety Requirements Attachment A Fall Protection
- 01 42 19 Reference Standards
- 01 45 29 Testing Laboratory Services
- 01 57 19 Temporary Environmental Controls
- 01 58 16 Temporary Interior Signage
- 01 74 19 Construction Waste Management
- 01 81 13 Sustainable Construction Requirements

DIVISION 02 - EXISTING CONDITIONS

- 02 41 00 Demolition
- 02 82 11 Traditional Asbestos Abatement
- 02 82 13.19 Asbestos Floor Tile and Mastic Abatement

DIVISION 03 - CONCRETE

03 30 00 Cast-in-Place Concrete

DIVISION 04 - MASONRY

04 20 00 Unit Masonry

DIVISION 05 - METALS

- 05 40 00 Cold-Formed Metal Framing
- 05 50 00 Metal Fabrications

DIVISION 06 - WOOD, PLASTICS AND COMPOSITES

- 06 10 00 Rough Carpentry
- 06 16 63 Cementitious Sheathing

06 20 00 Finish Carpentry

DIVISION 07 - THERMAL AND MOISTURE PROTECTION

- 07 21 1307 Thermal Insulation
- 07 21 13.1 Submittal Close Cell Spray Foam
- 07 41 13 Metal Roof Panels
- 07 60 00 Flashing and Sheet Metal
- 07 72 00 Roof Accessories Snow Guards
- 07 84 00 Firestopping
- 07 92 00 Joint Sealants

DIVISION 08 - OPENINGS

08 11 13 Hollow Metal Doors and Fram	08 11 13	L DOULS and Flame	Metar	TIOTTOW
--------------------------------------	----------	-------------------	-------	---------

- 08 14 00 Interior Wood Doors
- 08 31 13 Access Doors and Frames
- 08 51 13 Aluminum Windows
- 08 62 50 Tubular Daylighting
- 08 71 00 Door Hardware
- 08 80 00 Glazing
- 08 90 00 Louvers and Vents

DIVISION 09 - FINISHES

- 09 06 00 Schedule for Finishes
- 09 22 16 Non-Structural Metal Framing
- 09 29 00 Gypsum Board
- 09 30 13 Ceramic/Porcelain Tiling
- 09 51 00 Acoustical Ceilings
- 09 65 13 Resilient Base and Accessories
- 09 65 19 Resilient Tile Flooring
- 09 68 00 Carpeting
- 09 91 00 Painting

DIVISION 10 - SPECIALTIES

- 10 14 00 Signage
- 10 14 00.1 Signage Attachment 1 Exterior
- 10 14 00.2 Signage Attachment 2 Interior
- 10 28 00 Toilet, Bath, and Laundry Accessories
- 10 44 13 Fire Extinguisher Cabinets

DIVISION 11 - EQUIPMENT

11 31 00 Residential Appliances

DIVISION 12 - FURNISHINGS (NOT USED)

DIVISION 13 - SPECIAL CONSTRUCTION - NOT USED

DIVISION 14- CONVEYING EQUIPEMENT

14 42 00 Wheelchair Lifts

DIVISION 21- FIRE SUPPRESSION

- 21 05 11 Common Work Results for Fire Suppression
- 21 13 16 Dry-Pipe Sprinkler Systems

DIVISION 22 - PLUMBING

- 22 05 11 Common Work Results for Plumbing
- 22 05 12 General Motor Requirements for Plumbing Equipment
- 22 05 19 Meters and Gages for Plumbing Piping
- 22 05 23 General-Duty Valves for Plumbing Piping
- 22 07 11 Plumbing Insulation
- 22 11 00 Facility Water Distribution
- 22 11 23 Domestic Water Pumps
- 22 13 00 Facility Sanitary and Vent Piping
- 22 33 00 Electric Domestic Water Heaters
- 22 40 00 Plumbing Fixtures

DIVISION 23 - HEATING, VENTILATING, AND AIR CONDITIONING (HVAC)

- 23 05 11 Common Work Results for HVAC
- 23 05 12 General Motor Requirements for HVAC and Steam Generation Equipment
- 23 05 41 Noise and Vibration Control for HVAC Piping and Equipment
- 23 05 93 Testing, Adjusting, and Balancing for HVAC
- 23 07 11 HVAC and Boiler Plant Insulation
- 23 09 23 Direct-Digital Control System for HVAC
- 23 21 13 Hydronic Piping
- 23 21 23 Hydronic Pumps
- 23 22 13 Steam and Condensate Heating Piping
- 23 23 00 Refrigerant Piping
- 23 31 00 HVAC Ducts and Casings
- 23 34 00 HVAC Fans
- 23 37 00 Air Outlets and Inlets
- 23 40 00 HVAC Air Cleaning
- 23 70 10 Variable Refrigerant Systems
- 23 84 00 Humidity Control Equipment

DIVISION 25 - INTEGRATED AUTOMATION (NOT USED)

DIVISION 26 - ELECTRICAL

- 26 05 11 Requirements for Electrical Installations
- 26 05 19 Low-Voltage Electrical Power Conductors and Cables (600
- Volts and Below)
- 26 05 26 Grounding and Bonding for Electrical Systems
- 26 05 33 Raceway and Boxes for Electrical Systems
- 26 09 23 Lighting Controls
- 26 24 16 Panelboards
- 26 27 26 Wiring Devices
- 26 29 11 Motor Controllers
- 26 29 21 Enclosed Switches and Circuit Breakers
- 26 51 00 Interior Lighting

DIVISION 27 - COMMUNICATIONS

- 27 05 11 Requirements for Communications Installations
- 27 05 26 Grounding and Bonding for Communications Systems
- 27 05 33 Raceways and Boxes for Communications Systems

DIVISION 28 - ELECTRONIC SAFETY AND SECURITY

28 31 00 Fire Detection and Alarm

DIVISION 31 - EARTHWORK

- 31 20 11 Earthwork
- 32 05 23 Cement and Concrete for Exterior Improvements
 - DIVISION 32 EXTERIOR IMPROVEMENTS (NOT USED)
 - DIVISION 33 UTILITIES (NOT USED)
 - DIVISION 34 TRANSPORTATION (NOT USED)
 - DIVISION 48 ELECTRICAL POWER GENERATION (NOT USED)

SECTION 00 01 15 LIST OF DRAWING SHEETS

The drawings listed below accompanying this specification form a part of the contract.

Drawing No.

Title

GENERAL

G001	COVER SHEET
G002	BUILDING & GENERAL INFORMATION
C500	SIDEWALK, ASPHALT WALKWAY, CURB & ACCESS RAMP DETAILS

STRUCTURAL

SIRUCIUR	КL
S001	STRUCTURAL NOTES
S101	FOUNDATION PLAN
S102	FIRST FLOOR FRAMING PLAN
S103	ROOF FRAMING PLAN
S501	SECTIONS AND DETAILS
S502	SECTIONS AND DETAILS
S503	PORCH SECTIONS AND DETAILS

ARCHITECTURAL

AD100	FIRST FLOOR - DEMOLITION PLAN
AE500	TYPICAL DETAILS STANDING SEAM METAL ROOFING ON WOOD DECK
A100	FIRST FLOOR - NEW WORK PLAN
A150	ROOF PLAN
A200	FIRST FLOOR - REFLECTED CEILING PLAN
A300	EXTERIOR ELEVATIONS & BUILDING SECTIONS
A301	EXTERIOR ELEVATIONS & BUILDING SECTIONS
A400	ENLARGED PORCH & LIFT PLANS AND SECTIONS
A500	INTERIOR ELEVATIONS
A510	MILLWORK DETAILS
A600	DETAILS, PARTITION TYPES, DOOR & WINDOW SCHEDULE
AI100	FIRST FLOOR - FINISH PLAN

FIRE PROTECTION

FP101	FIRE	PROTECTION	-	DEMOLITION
FP102	FIRE	PROTECTION	_	NEW WORK

MECHANICAL

MH001	MECHANICAL	COVER SHEET
MH101	MECHANICAL	DEMOLITION
MH102	MECHANICAL	NEW WORK
MH103	DELETED	
MH104	DELETED	

MH105	DELETED
MH201	MECHANICAL SCHEDULES
MH301	MECHANICAL DETAILS
MH401	AUTOMATIC CONTROLS

PLUMBING

PL101	PLUMBING	DEMOLITION
PL102	PLUMBING	NEW WORK
PL201	PLUMBING	RISERS
PL301	PLUMBING	DETAILS
PL401	PLUMBING	SCHEDULES

ELECTRICAL

ELECTRICAL	COVER SHEET
ELECTRICAL	DEMOLITION
ELECTRICAL	NEW WORK - LIGHTING
ELECTRICAL	NEW WORK - POWER AND COMMUNICATIONS
ELECTRICAL	NEW WORK - ROOF PLAN
ELECTRICAL	SCHEDULES
	LECTRICAL LECTRICAL LECTRICAL LECTRICAL

- - - END - - -

SECTION 01 00 00 GENERAL REQUIREMENTS TABLE OF CONTENTS

PART 1 - GENERAL	1
1.1 SAFETY REQUIREMENTS	1
1.2 GENERAL INTENTION	1
1.3 STATEMENT OF BID ITEM(S)	1
1.4 SPECIFICATIONS AND DRAWINGS FOR CONTRACTOR	2
1.5 CONSTRUCTION SECURITY REQUIREMENTS	2
1.6 OPERATIONS AND STORAGE AREAS	6
1.7 ALTERATIONS	10
1.8 DISPOSAL AND RETENTION	
1.9 PROTECTION OF EXISTING VEGETATION, STRUCTURES, EQUIPMENT, UTILITIES, AN IMPROVEMENTS	
1.10 RESTORATION	14
1.11 PHYSICAL DATA	14
1.12 PROFESSIONAL SURVEYING SERVICES	15
1.13 LAYOUT OF WORK	15
1.14 AS-BUILT DRAWINGS	15
1.16 USE OF ROADWAYS	21
1.17 COR'S FIELD OFFICE (NOT USED)	21
1.18 TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT	21
1.21 TEMPORARY TOILETS	22
1.22 AVAILABILITY AND USE OF UTILITY SERVICES	23
1.23 NEW TELEPHONE EQUIPMENT	24
1.24 TESTS	24
1.25 INSTRUCTIONS	25
1.27 DAILY LOGS	27
1.28 CONSTRUCTION SIGN	27
1.29 SAFETY SIGN	

VAMC Martinsburg Renovate Building 405B for a HOPTEL	March 15, 2022
Martinsburg, WV 25405	653-13-115
1.30 PHOTOGRAPHIC DOCUMENTATION	
1.31 FINAL ELEVATION DIGITAL IMAGES (NOT USED)	
1.32 TUBERCULOSIS TESTING	
1.33 ELECTRONIC SUBMITTAL PROCEDURES	
1.34 GENERAL ORDER OF PROCEDURE:	
1.35 SMOKE-FREE CAMPUS	
1.36 EXISTING AND NEW SPRINKLER SYSTEMS	

SECTION 01 00 00 GENERAL REQUIREMENTS

PART 1 - GENERAL

1.1 SAFETY REQUIREMENTS

Refer to section 01 35 26, SAFETY REQUIREMENTS for safety and infection control requirements.

1.2 GENERAL INTENTION

- A. Contractor shall completely prepare site for building operations, including demolition and removal of existing structures, and furnish labor and materials and perform work for Martinsburg VA Medical Center as required by drawings and specifications.
- B. Contracting Offices of Department of Veterans Affairs, Martinsburg, as Architect-Engineers, will render certain technical services during construction. Such services shall be considered as advisory to the Government and shall not be construed as expressing or implying a contractual act of the Government without affirmations by Contracting Officer or his duly authorized representative.
- C. All employees of general contractor and subcontractors + shall comply with VA security management program and obtain permission of the VA police, be identified by project and employer, and restricted from unauthorized access.
 - 1. Prior to commencing work, general contractor shall provide proof that an OSHA certified "competent person"-(CP) (29CFR 1926.20(b) (2)) will maintain a presence at the work site whenever the general or subcontractors are present. Competent Person: "One who is capable of identifying existing and predictable hazards in the surroundings and working conditions which are unsanitary, hazardous or dangerous to employees, and who has the authorization to take prompt corrective measures to eliminate them." (29CFR 1926.32(f))

1.3 STATEMENT OF BID ITEM(S)

A. ITEM I, GENERAL CONSTRUCTION: (Base Bid): Furnish all labor, tools, materials, equipment, and supervision to renovate Building 405B at the VA Medical Center, 510 Butler Avenue, Martinsburg, WV 25405 in accordance with the drawings and specifications. Work includes, but is not limited to, general construction, alterations, interior and exterior demolition, hazardous material abatement, gypsum board, metal stud walls, finishes, painting, HVAC, plumbing, fire alarm and protection, controls, electrical work, data and telecommunications systems, new standing seam painted metal roofing, porch replacement, concrete sidewalks, and installation of a wheelchair lift.

- B.Alternates described below are deductive alternates. Base bid shall include all work described in or reasonably inferable from the Bidding Documents.
- C.ALTERNATE NO.1: Delete painting of existing exterior grates, trim, fasciae, underside of existing exterior soffit, and other items on the north and south elevations. Price shall be all work of the base bid except Alternate No. 1.
- D.ALTERNATE NO. 2: Delete replacement of existing gutters and downspouts. Price shall be all work of the base bid except Alternate Nos. 1, 2.
- E.ALTERNATE NO. 3: Remove tubular day lighting devices and controls and replace with LED downlights. Price shall be all work of the base bid except Alternate Nos. 1, 2, 3.

F.,

1.4 SPECIFICATIONS AND DRAWINGS FOR CONTRACTOR

A. Specifications and drawings will be made available electronically. Drawings and contract documents may be obtained from the website where the solicitation is posted. Additional copies will be at Contractor's expense.

1.5 CONSTRUCTION SECURITY REQUIREMENTS

- A. Security Plan:
 - The security plan defines both physical and administrative security procedures that will remain effective for the entire duration of the project.
 - The General Contractor is responsible for assuring that all subcontractors working on the project and their employees also comply with these regulations.
- B. Security Procedures:
 - General Contractor's employees shall not enter the project site without appropriate badge. They may also be subject to inspection of their personal effects when entering or leaving the project site.
 - 2. Before starting work the General Contractor shall give one week's notice to the Contracting Officer so that security escort arrangements can be provided for the employees. This notice is

separate from any notices required for utility shutdown described later in this section.

- 3. No photography of VA premises is allowed without written permission of the Contracting Officer.
- 4. VA reserves the right to closedown or shut down the project site and order General Contractor's employees off the premises in the event of a national emergency. The General Contractor may return to the site only with the written approval of the Contracting Officer.
- 5. Contractors must obtain ID badges in accordance with Medical Center Memorandum (MCM) 05-04 Personnel Suitability and Security Procedures. They may also be subject to inspection of their personal effects when entering or leaving the project site.

Step 1: (Upon notice of award)

Contractor will complete Contract Security Services Request (Form #1), listing all employees that will be performing work under the contract. Contract Security Verification Request Supplemental (Form #1b) may be filled out and attached if Form #1 does not provide enough space. Once completed, this form shall be submitted to the VHA Service Center (VSC) Personnel Security Office via password protected or encrypted email to VSCSecurity@va.gov or faxed to (216)447-8020.

Step 2: (Upon notice of award, same time as Step 1) Within five business days of Contractor receiving Notice of Award, each contract employee listed on Form #1 must take the Contractor/Employee Fingerprinting request (Form #2) and two forms of ID to their nearest VA facility to have their fingerprints submitted and the bottom portion of Form #2 completed by the fingerprinting official. Fingerprint appointments should be made through the COR or the local VA facility. Completed SAC forms shall be faxed or mailed directly to the VSC Personnel Security Office the same day the contractor employee is fingerprinted.

VHA Service Center (VSC) 6100 Oak Tree Blvd #500 Independence, OH 44131 Fax: (216)447-8025 VSCSecurity@va.gov Contractor shall inform the COR/CO when fingerprinting has been completed for each contract employee.

Step 3: (As soon as possible)

Each individual working on the contract or the contractor POC shall complete the VHA Service Center PIV Sponsorship (Form #3) for each employee, in its entirety, and return to VSC Security Office as soon as possible, either via fax, encrypted email or password protected documents. Upon receipt of this form and final results of fingerprinting confirmation, the VHA Security Service Center will send an email notification to the Contractor's POC and the CO authorizing contract employees to proceed with obtaining their required non-PIV security badge. Upon receipt of this confirmation, notify COR so they may schedule an appointment for PIV badging. Only the individual whose name appears on the badge can pick up that badge from the badging office.

- 5. For working outside the "regular hours" as defined in the contract, The General Contractor shall give 3 days notice to the Contracting Officer so that security arrangements can be provided for the employees. This notice is separate from any notices required for utility shutdown described later in this section.
- 6. Contractor is solely responsible for keeping the job site secure at all times, even during working hours. The job site shall be secured in such a manner to prohibit patients, staff and unauthorized personnel from entering the work site.
- 7. No photography of VA premises is allowed without written permission of the Contracting Officer.
- 8. VA reserves the right to close down or shut down the project site and order General Contractor's employees off the premises in the event of a national emergency. The General Contractor may return to the site only with the written approval of the Contracting Officer.
- C. Guards: (Not Used)
- D. Key Control:
 - The General Contractor shall provide duplicate keys and lock combinations to the COR for the purpose of security inspections of

every area of project including tool boxes and parked machines and take any emergency action.

- The General Contractor shall turn over all permanent lock cylinders to the VA locksmith for permanent installation. See Section 08 71 00, DOOR HARDWARE and coordinate.
- E. Document Control:
 - Before starting any work, the General Contractor/Sub Contractors shall submit an electronic security memorandum describing the approach to following goals and maintaining confidentiality of "sensitive information".
 - 2. The General Contractor is responsible for safekeeping of all drawings, project manual and other project information. This information shall be shared only with those with a specific need to accomplish the project.
 - 3. Certain documents, sketches, videos or photographs and drawings may be marked "Law Enforcement Sensitive" or "Sensitive Unclassified". Secure such information in separate containers and limit the access to only those who will need it for the project. Return the information to the Contracting Officer upon request.
 - These security documents shall not be removed or transmitted from the project site without the written approval of Contracting Officer.
 - 5. All paper waste or electronic media such as CDs and external hard drives shall be shredded and destroyed in a manner acceptable to the VA.
 - 6. Notify Contracting Officer and Site Security Officer immediately when there is a loss or compromise of "sensitive information".
 - All electronic information shall be stored in specified location following VA standards and procedures using an Engineering Document Management Software (EDMS).
 - Security, access and maintenance of all project drawings, both scanned and electronic shall be performed and tracked through the EDMS system.
 - "Sensitive information" including drawings and other documents may be attached to e-mail provided all VA encryption procedures are followed.
- F. Motor Vehicle Restrictions:

- Vehicle authorization request shall be required for any vehicle entering the site and such request shall be submitted 24 hours before the date and time of access. Access shall be restricted to picking up and dropping off materials and supplies.
- 2. Separate permits shall be issued for General Contractor and its employees for parking in designated areas only.

1.6 OPERATIONS AND STORAGE AREAS

- A. The Contractor shall confine all operations (including storage of materials) on Government premises to areas authorized or approved by the Contracting Officer. The Contractor shall hold and save the Government, its officers and agents, free and harmless from liability of any nature occasioned by the Contractor's performance.
- B. Temporary buildings (e.g., storage sheds, shops, offices) and utilities may be erected by the Contractor only with the approval of the Contracting Officer and shall be built with labor and materials furnished by the Contractor without expense to the Government. The temporary buildings and utilities shall remain the property of the Contractor and shall be removed by the Contractor at its expense upon completion of the work. With the written consent of the Contracting Officer, the buildings and utilities may be abandoned and need not be removed.
- C. The Contractor shall, under regulations prescribed by the Contracting Officer, use only established roadways, or use temporary roadways constructed by the Contractor when and as authorized by the Contracting Officer. When materials are transported in prosecuting the work, vehicles shall not be loaded beyond the loading capacity recommended by the manufacturer of the vehicle or prescribed by any Federal, State, or local law or regulation. When it is necessary to cross curbs or sidewalks, the Contractor shall protect them from damage. The Contractor shall repair or pay for the repair of any damaged curbs, sidewalks, or roads.
- D. Working space and space available for storing materials shall be as determined by the COR.
- E. Workmen are subject to rules of Medical Center applicable to their conduct.
- F. Execute work in such a manner as to interfere as little as possible with work being done by others. Keep roads clear of construction

materials, debris, standing construction equipment and vehicles at all times.

- G. Execute work so as to interfere as little as possible with normal functioning of Medical Center as a whole, including operations of utility services, fire protection systems and any existing equipment, and with work being done by others. Use of equipment and tools that transmit vibrations and noises through the building structure, are not permitted in buildings that are occupied, during construction, jointly by patients or medical personnel, and Contractor's personnel, except as permitted by COR where required by limited working space.
 - 1. Do not store materials and equipment in other than assigned areas.
 - Schedule delivery of materials and equipment to immediate construction working areas within buildings in use by Department of Veterans Affairs in quantities sufficient for not more than two work days. Provide unobstructed access to Medical Center areas required to remain in operation.
 - 3. Where access by Medical Center personnel to vacated portions of buildings is not required, storage of Contractor's materials and equipment will be permitted subject to fire and safety requirements.
- H. Utilities Services:
 - 1. Where necessary to cut existing pipes, electrical wires, conduits, cables, etc., of utility services, or of fire protection systems or communications systems (except telephone), they shall be cut and capped at suitable places where shown; or, in absence of such indication, where directed by COR. All such actions shall be coordinated with the COR or Utility Company involved:
- I. Construction Fence:
 - Before construction operations begin, Contractor shall provide a chain link construction fence, 2.1m (seven feet) minimum height, around the construction area indicated on the drawings.
 - Provide gates as required for access with necessary hardware, including hasps and padlocks.
 - 3. If the fence is terminated or interrupted by a structure, it shall be fastened or otherwise installed so that the fence is just as secure at termination points as the remainder of the fence and the padlocked gate(s).

- 4. Fasten fence fabric to terminal posts with tension bands and to line posts and top and bottom rails with tie wires spaced at maximum 375mm (15 inches). Bottom of fences shall extend to 25mm (one inch) above grade.
- 5. Remove the fence when directed by COR.
- J. When a building is turned over to Contractor, Contractor shall accept entire responsibility including upkeep and maintenance therefore.

Contractor shall maintain a minimum temperature of 4 degrees C (40 degrees F) at all times, except as otherwise specified.
 Contractor shall maintain in operating condition existing fire protection and alarm equipment. In connection with fire alarm equipment, Contractor shall make arrangements for pre-inspection of site with Fire Department or Company (Department of Veterans Affairs or municipal) whichever will be required to respond to an alarm from Contractor's employee or watchman.

- K. Utilities Services:
 - Maintain existing utility services for Medical Center at all times. Provide temporary facilities, labor, materials, equipment, connections, and utilities to assure uninterrupted services.
 Where necessary to cut existing water, steam, gases, sewer or air pipes, or conduits, wires, cables, etc. of utility services or of fire protection systems and communications systems (including telephone), they shall be cut and capped at suitable places where shown; or, in absence of such indication, where directed by COR.
 - 2. No utility service such as water, gas, steam, sewers or electricity, or fire protection systems and communications systems may be interrupted without prior approval of COR [Chief of Facilities Management]. Electrical work shall be accomplished with all affected circuits or equipment de-energized. When an electrical outage cannot be accomplished, work on any energized circuits or equipment shall not commence without a detailed work plan, the Medical Center Director's prior knowledge and written approval. Refer to specification Sections 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, 27 05 00 COMMON WORK RESULTS REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS and 28 05 11, REQUIREMENTS FOR ELECTRONIC SAFETY AND SECURITY INSTALLATIONS for additional requirements.

- 3. Contractor shall submit a request to interrupt any such services to COR, in writing, 7 days in advance of proposed interruption. Request shall state reason, date, exact time of, and approximate duration of such interruption.
- 4. Contractor will be advised (in writing) of approval of request, or of which other date and/or time such interruption will cause least inconvenience to operations of Medical Center. Interruption time approved by Medical Center may occur at other than Contractor's normal working hours.
- 5. Major interruptions of any system must be requested, in writing, at least 15 calendar days prior to the desired time and shall be performed as directed by the COR.
- In case of a contract construction emergency, service will be interrupted on approval of COR. Such approval will be confirmed in writing as soon as practical.
- 7. Whenever it is required that a connection fee be paid to a public utility provider for new permanent service to the construction project, for such items as water, sewer, electricity, gas or steam, payment of such fee shall be the responsibility of the Government and not the Contractor.
- L. Abandoned Lines:
 - All service lines such as wires, cables, conduits, ducts, pipes and the like, and their hangers or supports, which are to be abandoned but are not required to be entirely removed, shall be sealed, capped or plugged.
 - 2. The lines shall not be capped in finished areas, but shall be removed and sealed, capped or plugged in ceilings, within furred spaces, in unfinished areas, or within walls or partitions; so that they are completely behind the finished surfaces.
- M. To minimize interference of construction activities with flow of Medical Center traffic, comply with the following:
 - Keep roads, walks and entrances to grounds, to parking and to occupied areas of buildings clear of construction materials, debris and standing construction equipment and vehicles. Wherever excavation for new utility lines cross existing roads, at least one lane must be open to traffic at all times (routing plan must be approved by COR and/or the Police Department).

- Method and scheduling of required cutting, altering and removal of existing roads, walks, and entrances must be approved by the COR.
- N. Coordinate the work for this contract with other construction operations as directed by COR. This includes the scheduling of traffic and the use of roadways, as specified in Article, USE OF ROADWAYS.
- O. No materials or supplies shall be delivered to any of the employee loading docks. If they get delivered to any of the docks, they can be sent away with no responsibility to the VA. These items shall only be delivered to the contractor's staging and lay-down area such as a job site trailer. The contractor must be available to accept delivery. VA staff absolutely will not sign for contractor's supplies and materials.
- P. Contractor shall hold weekly construction meetings on-site at a location to be determined by the COR. Contractor shall provide computer generated minutes of all meetings and shall distribute minutes to all participants within two (2) working days after said meeting. Electronic submission of minutes is required in addition to one hard copy to the COR.
- Q. Daily logs shall be electronically submitted on a daily basis to the COR for all construction personnel, all materials brought on-site that day, work performed on that day, the weather for the day including temperature, precipitation (form and amounts) sunny, cloudy, windy or calm as well as any contacts made that day. Sample log may be provided, if requested, in electronic format to the contractor for his distribution and use.

1.7 ALTERATIONS

- A. Survey: Before any work is started, the Contractor shall make a thorough survey with the COR and a representative of VA Supply Service, of building 405B in which alterations occur and areas which are anticipated routes of access, and furnish a report, signed by both, to the Contracting Officer. This report shall list by rooms and spaces:
 - Existing condition and types of resilient flooring, doors, windows, walls and other surfaces not required to be altered throughout affected areas.
 - 2. Existence and conditions of items such as plumbing fixtures and accessories, electrical fixtures, equipment, venetian blinds,

shades, etc., required by drawings to be either reused or relocated, or both.

- 3. Shall note any discrepancies between drawings and existing conditions at site.
- 4. Shall designate areas for working space, materials storage and routes of access to areas within buildings where alterations occur and which have been agreed upon by Contractor and COR.
- B. Any items required by drawings to be either reused or relocated or both, found during this survey to be nonexistent, or in opinion of COR to be in such condition that their use is impossible or impractical, shall be furnished and/or replaced by Contractor with new items in accordance with specifications which will be furnished by Government. Provided the contract work is changed by reason of this subparagraph B, the contract will be modified accordingly, under provisions of clause entitled "DIFFERING SITE CONDITIONS" (FAR 52.236-2) and "CHANGES" (FAR 52.243-4 and VAAR 852.236-88).
- C. Re-Survey: Thirty days before expected partial or final inspection date, the Contractor and COR together shall make a thorough re-survey of the areas of buildings involved. They shall furnish a report on conditions then existing, of resilient flooring, doors, windows, walls and other surfaces as compared with conditions of same as noted in first condition survey report:
 - Re-survey report shall also list any damage caused by Contractor to such flooring and other surfaces, despite protection measures; and, will form basis for determining extent of repair work required of Contractor to restore damage caused by Contractor's workmen in executing work of this contract.
- D. Protection: Provide the following protective measures:
 - Wherever existing roof surfaces are disturbed they shall be protected against water infiltration. In case of leaks, they shall be repaired immediately upon discovery.
 - Temporary protection against damage for portions of existing structures and grounds where work is to be done, materials handled and equipment moved and/or relocated.
 - 3. Protection of interior of existing structures at all times, from damage, dust and weather inclemency. Wherever work is performed, floor surfaces that are to remain in place shall be adequately

protected prior to starting work, and this protection shall be maintained intact until all work in the area is completed.

1.8 DISPOSAL AND RETENTION

A. Materials and equipment accruing from work removed and from demolition of buildings or structures, or parts thereof, shall be disposed of: 1. Copies of the following listed CFR titles may be obtained from the Government Printing Office: 40 CFR 261.....Identification and Listing of Hazardous Waste 40 CFR 262.....Standards Applicable to Generators of Hazardous Waste 40 CFR 263.....Standards Applicable to Transporters of Hazardous Waste 40 CFR 761.....PCB Manufacturing, Processing, Distribution in Commerce, and use Prohibitions 49 CFR 172......Hazardous Material tables and Hazardous Material Communications Regulations 49 CFR 173.....Shippers - General Requirements for Shipments and Packaging 49 CRR 173.....Subpart A General 49 CFR 173.....Subpart B Preparation of Hazardous Material for Transportation 49 CFR 173.....Subpart J Other Regulated Material; Definitions and Preparation TSCA.....Compliance Program Policy Nos. 6-PCB-6 and 6-PCB-7

1.9 PROTECTION OF EXISTING VEGETATION, STRUCTURES, EQUIPMENT, UTILITIES, AND IMPROVEMENTS

A. The Contractor shall preserve and protect all structures, equipment, and vegetation (such as trees, shrubs, and grass) on or adjacent to the work site, which are not to be removed, and which do not unreasonably interfere with the work required under this contract. The Contractor shall only remove trees when specifically authorized to do so, and shall avoid damaging vegetation that will remain in place. If any limbs or branches of trees are broken during contract performance, or by the careless operation of equipment, or by workmen, the Contractor shall

trim those limbs or branches with a clean cut and paint the cut with a tree-pruning compound as directed by the Contracting Officer.

B. The Contractor shall protect from damage all existing improvements and utilities at or near the work site and on adjacent property of a third party, the locations of which are made known to or should be known by the Contractor. The Contractor shall repair any damage to those facilities, including those that are the property of a third party, resulting from failure to comply with the requirements of this contract or failure to exercise reasonable care in performing the work. If the Contractor fails or refuses to repair the damage promptly, the Contracting Officer may have the necessary work performed and charge the cost to the Contractor.

(FAR 52.236-9)

- C. Refer to Section 01 57 19, TEMPORARY ENVIRONMENTAL CONTROLS, for additional requirements on protecting vegetation, soils and the environment. Refer to Articles, "Alterations", "Restoration", and "Operations and Storage Areas" for additional instructions concerning repair of damage to structures and site improvements.
- D. Refer to FAR clause 52.236-7, "Permits and Responsibilities," which is included in General Conditions. A National Pollutant Discharge Elimination System (NPDES) permit is required for this project. The Contractor is considered an "operator" under the permit and has extensive responsibility for compliance with permit requirements. VA will make the permit application available at the (appropriate medical center) office. The apparent low bidder, contractor and affected subcontractors shall furnish all information and certifications that are required to comply with the permit process and permit requirements. Many of the permit requirements will be satisfied by completing construction as shown and specified. Some requirements involve the Contractor is responsible for employing best management practices. The affected activities often include, but are not limited to the following:
 - Designating areas for equipment maintenance and repair;
 - Providing waste receptacles at convenient locations and provide regular collection of wastes;

- Locating equipment wash down areas on site, and provide appropriate control of wash-waters;
- Providing protected storage areas for chemicals, paints, solvents, fertilizers, and other potentially toxic materials; and
- Providing adequately maintained sanitary facilities.

1.10 RESTORATION

- A. Remove, cut, alter, replace, patch and repair existing work as necessary to install new work. Except as otherwise shown or specified, do not cut, alter or remove any structural work, and do not disturb any ducts, plumbing, steam, gas, or electric work without approval of the COR. Existing work to be altered or extended and that is found to be defective in any way, shall be reported to the COR before it is disturbed. Materials and workmanship used in restoring work shall conform in type and quality to that of original existing construction, except as otherwise shown or specified.
- B. Upon completion of contract, deliver work complete and undamaged. Existing work (walls, ceilings, partitions, floors, mechanical and electrical work, lawns, paving, roads, walks, etc.) disturbed or removed as a result of performing required new work, shall be patched, repaired, reinstalled, or replaced with new work, and refinished and left in as good condition as existed before commencing work.
- C. At Contractor's own expense, Contractor shall immediately restore to service and repair any damage caused by Contractor's workmen to existing piping and conduits, wires, cables, etc., of utility services or of fire protection systems and communications systems (including telephone) which are indicated on drawings and which are not scheduled for discontinuance or abandonment.
- D. Expense of repairs to such utilities and systems not shown on drawings or locations of which are unknown will be covered by adjustment to contract time and price in accordance with clause entitled "CHANGES" (FAR 52.243-4 and VAAR 852.236-88) and "DIFFERING SITE CONDITIONS" (FAR 52.236-2).

1.11 PHYSICAL DATA

A. Data and information furnished or referred to below is for the Contractor's information. The Government shall not be responsible for any interpretation of or conclusion drawn from the data or information by the Contractor.

 The indications of physical conditions on the drawings and in the specifications are the result of site investigations by Apogee Consulting Group.

(FAR 52.236-4)

1.12 PROFESSIONAL SURVEYING SERVICES

A. A registered professional land surveyor or registered civil engineer whose services are retained and paid for by the Contractor shall perform services specified herein and in other specification sections. The Contractor shall certify that the land surveyor or civil engineer is not one who is a regular employee of the Contractor, and that the land surveyor or civil engineer has no financial interest in this contract.

1.13 LAYOUT OF WORK

A. The Contractor shall lay out the work from Government established base lines and bench marks, indicated on the drawings, and shall be responsible for all measurements in connection with the layout. The Contractor shall furnish, at Contractor's own expense, all stakes, templates, platforms, equipment, tools, materials, and labor required to lay out any part of the work. The Contractor shall be responsible for executing the work to the lines and grades that may be established or indicated by the Contracting Officer. The Contractor shall also be responsible for maintaining and preserving all stakes and other marks established by the Contracting Officer until authorized to remove them. If such marks are destroyed by the Contractor or through Contractor's negligence before their removal is authorized, the Contracting Officer may replace them and deduct the expense of the replacement from any amounts due or to become due to the Contractor.

(FAR 52.236-17)

1.14 AS-BUILT DRAWINGS

- A. The contractor shall maintain two full size sets of as-built drawings which will be kept current during construction of the project, to include all contract changes, modifications and clarifications.
- B. All variations shall be shown in the same general detail as used in the contract drawings. To ensure compliance, as-built drawings shall be made available for the COR's review, as often as requested.
- C. Contractor shall deliver two approved completed sets of as-built drawings in the electronic version (scanned PDF) to the COR within 15

calendar days after each completed phase and after the acceptance of the project by the COR.

D. Paragraphs A, B, & C shall also apply to all shop drawings.

1.15 WARRANTY MANAGEMENT

- A. Warranty Management Plan: Develop a warranty management plan which contains information relevant to FAR 52.246-21 Warranty of Construction at least 30 days before the planned pre-warranty conference, submit four sets of the warranty management plan. Include within the warranty management plan all required actions and documents to assure that the Government receives all warranties to which it is entitled. The plan must be in narrative form and contain sufficient detail to render it suitable for use by future maintenance and repair personnel, whether tradesman, or of engineering background, not necessarily familiar with this contract. The term "status" as indicated below must include due date and whether item has been submitted or was approved. Warranty information made available during the construction phase must be submitted to the Contracting Officer for approval prior to each monthly invoice for payment. Assemble approved information in a binder and turn over to the Government upon acceptance of the work. The construction warranty period will begin on the date of the project acceptance and continue for the product warranty period. A joint 4 month and 9 month warranty inspection will be conducted, measured from time of acceptance, by the Contactor and the Contracting Officer. Include in the warranty management plan, but not limited to, the following:
 - Roles and responsibilities of all personnel associated with the warranty process, including points of contact and telephone numbers within the company of the Contractor, subcontractors, manufacturers or suppliers involved.
 - 2. Furnish with each warranty the name, address and telephone number of each of the guarantor's representatives nearest project location.
 - 3. Listing and status of delivery of all Certificates of Warranty for extended warranty items, to include roofs, HVAC balancing, pumps, motors, transformers and for all commissioned systems such as fire protection and alarm systems, sprinkler systems and lightning protection systems, etc.
 - 4. A list for each warranted equipment item, feature of construction or system indicating:

VAMC Martinsburg Renovate Building 405B for a HOPTEL Martinsburg, WV 25405

- a. Name of item.
- b. Model and serial numbers.
- c. Location where installed.
- d. Name and phone numbers of manufacturers and suppliers.
- e. Name and phone numbers of manufacturers or suppliers.
- f. Names, addresses and phone numbers of sources of spare parts.
- g. Warranties and terms of warranty. Include one-year overall warranty of construction, including the starting date of warranty of construction. Items which have extended warranties must be indicated with separate warranty expiration dates.
- h. Starting point and duration of warranty period.
- i. Summary of maintenance procedures required to continue the warranty in force.
- j. Cross-reference to specific pertinent Operation and Maintenance manuals.
- k. Organizations, names and phone numbers of persons to call for warranty service.
- Typical response time and repair time expected for various warranted equipment.
- 5. The plans for attendance at the 4 and 9-month post construction warranty inspections conducted by the government.
- Procedure and status of tagging of all equipment covered by extended warranties.
- Copies of instructions to be posted near selected pieces of equipment where operation is critical for warranty and/or safety reasons.
- Performance & Payment Bonds: The Performance & Payment Bonds must remain effective throughout the construction period.
 - In the event the Contractor fails to commence and diligently pursue any construction warranty work required, the Contracting Officer will have the work performed by others, and after completion of the work, will charge the remaining construction warranty funds of expenses incurred by the Government while performing the work, including, but not limited to administrative expenses.
 - 2. In the event sufficient funds are not available to cover the construction warranty work performed by the Government at the

```
653-13-115
```

contractor's expenses, the Contracting Officer will have the right to recoup expenses from the bonding company.

- 3. Following oral or written notification of required construction warranty repair work, the Contractor shall respond in a timely manner. Written verification will follow oral instructions. Failure to respond will be cause for the Contracting Officer to proceed against the Contractor.
- Pre-Warranty Conference: Prior to contract completion, and at a time designated by the Contracting Officer, the Contractor shall meet with the Contracting Officer to develop a mutual understanding with respect to the requirements of this section. Communication procedures for Contractor notification of construction warranty defects, priorities with respect to the type of defect, reasonable time required for Contractor response, and other details deemed necessary by the Contracting Officer for the execution of the construction warranty will be established/ reviewed at this meeting. In connection with these requirements and at the time of the Contractor's quality control completion inspection, furnish the name, telephone number and address of a licensed and bonded company which is authorized to initiate and pursue construction warranty work action on behalf of the Contractor. This point of contract will be located within the local service area of the warranted construction, be continuously available and be responsive to Government inquiry on warranty work action and status. This requirement does not relieve the Contractor of any of its

responsibilities in conjunction with other portions of this provision. Contractor's Response to Construction Warranty Service Requirements: Following oral or written notification by the Contracting Officer, the

Contractor shall respond to construction warranty service requirements in accordance with the "Construction Warranty Service Priority List" and the three categories of priorities listed below. Submit a report on any warranty item that has been repaired during the warranty period. Include within the report the cause of the problem, date reported, corrective action taken, and when the repair was completed. If the Contractor does not perform the construction warranty within the timeframe specified, the Government will perform the work and back charge the construction warranty payment item established.

- First Priority Code 1. Perform onsite inspection to evaluate situation, and determine course of action within 4 hours, initiate work within 6 hours and work continuously to completion or relief.
- Second Priority Code 2. Perform onsite inspection to evaluate situation, and determine course of action within 8 hours, initiate work within 24 hours and work continuously to completion or relief.
- 3. Third Priority Code 3. All other work to be initiated within 3 work days and work continuously to completion or relief.
- 4. The "Construction Warranty Service Priority List" is as follows:
 - a) Code 1-Life Safety Systems
 - 1) Fire suppression systems.
 - 2) Fire alarm system(s).
 - b) Code 1-Air Conditioning Systems
 - Air conditioning leak in part of the building, if causing damage.
 - 2) Air conditioning system not cooling properly.
 - c) Code 1 Doors
 - Overhead doors not operational, causing a security, fire or safety problem.

Interior, exterior personnel doors or hardware, not functioning properly, causing security, fire or safety problem.

- d) Code 3-Doors
 - 1) Overhead doors not operational.
 - Interior/exterior personnel doors or hardware not functioning properly.
- e) Code 1-Electrical
 - Power failure (entire area or any building operational after 1600 hours).
 - 2) Security lights.
 - 3) Smoke detectors.
- f) Code 2-Electrical
 - Power failure (no power to a room or part of building). Receptacle and lights not operational (in a room or part of building).
- g) Code 3-Electrical
 - 1) Exterior lights not operational.
- h) Code 1-Gas

VAMC Martinsburg Renovate Building 405B for a HOPTEL Martinsburg, WV 25405

1) Leaks and pipeline breaks.

i) <u>Code 1-Heat</u>

1) Power failure affecting heat.

j) <u>Code 1-Plumbing</u>

1) Hot water heater failure.

Leaking water supply pipes

- k) Code 2-Plumbing
 - 1) Flush valves not operating properly
 - 2) Fixture drain, supply line or any water pipe leaking.
 - 3) Toilet leaking at base.
- 1) Code 3- Plumbing
 - 1) Leaky faucets.
- m) Code 3-Interior
 - 1) Floors damaged.
 - 2) Paint chipping or peeling.
 - 3) Casework damaged.
- n) Code 2-Water (Exterior)

1) No water to facility.

o) Code 2-Water (Hot)

1) No hot water in portion of building listed.

- p) Code 3
 - 1) All work not listed above.

Warranty Tags: At the time of installation, tag each warranted item with a durable, oil and water-resistant tag approved by the Contracting Officer. Attach each tag with a copper wire and spray with a silicone waterproof coating. Also submit tworecord copies of the warranty tags showing the layout and design. The date of acceptance and the QC signature must remain blank until the project is accepted for beneficial occupancy. Show the following information on the tag.

Warranty Tags	
Type of product/material	
Model number	
Serial number	
Contract number	
Warranty period from/to	
Inspector's signature	

Warranty Tags
Construction Contractor
Address
Telephone number
Warranty Contact
Address
Telephone number
Warranty response time priority code

1.16 USE OF ROADWAYS

- A. For hauling, use only established public roads and roads on Medical Center property and, when authorized by the COR, such temporary roads which are necessary in the performance of contract work. Temporary roads shall be constructed and restoration performed by the Contractor at Contractor's expense. When necessary to cross curbing, sidewalks, or similar construction, they must be protected by well-constructed bridges.
- B. When new permanent roads are to be a part of this contract, Contractor may construct them immediately for use to facilitate building operations. These roads may be used by all who have business thereon within zone of building operations.
- C. When certain buildings (or parts of certain buildings) are required to be completed in advance of general date of completion, all roads leading thereto must be completed and available for use at time set for completion of such buildings or parts thereof.
- 1.17 COR'S FIELD OFFICE (NOT USED)

1.18 TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT

- A. Use of new installed mechanical and electrical equipment to provide heat, ventilation, plumbing, light and power will be permitted subject written approval and to compliance with the following provisions:
 - Permission to use each unit or system must be given by COR. If the equipment is not installed and maintained in accordance with the written agreement and following provisions, the COR will withdraw permission for use of the equipment.
 - Electrical installations used by the equipment shall be completed in accordance with the drawings and specifications to prevent damage to the equipment and the electrical systems, i.e.

transformers, relays, circuit breakers, fuses, conductors, motor controllers and their overload elements shall be properly sized, coordinated and adjusted. Installation of temporary electrical equipment or devices shall be in accordance with NFPA 70, National Electrical Code, (2017 Edition), Article 590, Temporary Installations. Voltage supplied to each item of equipment shall be verified to be correct and it shall be determined that motors are not overloaded. The electrical equipment shall be thoroughly cleaned before using it and again immediately before final inspection including HEPA vacuum cleaning and wiping clean interior and exterior surfaces.

- Units shall be properly lubricated, balanced, and aligned.
 Vibrations must be eliminated.
- Automatic temperature control systems for preheat coils shall function properly and all safety controls shall function to prevent coil freeze-up damage.
- 5. The air filtering system utilized shall be that which is designed for the system when complete, and all filter elements shall be replaced at completion of construction and prior to testing and balancing of system.
- 6. All components of heat production and distribution system, metering equipment, condensate returns, and other auxiliary facilities used in temporary service shall be cleaned prior to use; maintained to prevent corrosion internally and externally during use; and cleaned, maintained and inspected prior to acceptance by the Government.
- B. Prior to final inspection, the equipment or parts used which show wear and tear beyond normal, shall be replaced with identical replacements, at no additional cost to the Government.
- C. This paragraph shall not reduce the requirements of the mechanical and electrical specifications sections.
- D. Any damage to the equipment or excessive wear due to prolonged use will be repaired replaced by the contractor at the contractor's expense.

1.21 TEMPORARY TOILETS

A. Provide where directed, (for use of all Contractor's workmen) ample temporary sanitary toilet accommodations with suitable sewer and water connections; or, when approved by COR, provide suitable dry closets

where directed. Keep such places clean and free from flies and all connections and appliances connected therewith are to be removed prior to completion of contract, and premises left perfectly clean.

B. Contractor may have for use of Contractor's workmen, such toilet accommodations as may be assigned to Contractor by Medical Center. Contractor shall keep such places clean and be responsible for any damage done thereto by Contractor's workmen. Failure to maintain satisfactory condition in toilets will deprive Contractor of the privilege to use such toilets.

1.22 AVAILABILITY AND USE OF UTILITY SERVICES

- A. The Government shall make all reasonably required amounts of utilities available to the Contractor from existing outlets and supplies, as specified in the contract. The amount to be paid by the Contractor for chargeable electrical services shall be the prevailing rates charged to the Government. The Contractor shall carefully conserve any utilities furnished without charge.
- B. The Contractor, at Contractor's expense and in a workmanlike manner, in compliance with code and satisfactory to the Contracting Officer, shall install and maintain all necessary temporary connections and distribution lines, and all meters required to measure the amount of electricity used for the purpose of determining charges. Before final acceptance of the work by the Government, the Contractor shall remove all the temporary connections, distribution lines, meters, and associated paraphernalia and repair restore the infrastructure as required.
- C. Contractor shall install meters at Contractor's expense and furnish the Medical Center a monthly record of the Contractor's usage of electricity as hereinafter specified.
- D. Heat: Furnish temporary heat necessary to prevent injury to work and materials through dampness and cold. Use of open salamanders or any temporary heating devices which may be fire hazards or may smoke and damage finished work, will not be permitted. Maintain minimum temperatures as specified for various materials:
 - 1. Obtain heat by connecting to Medical Center heating distribution system.

a.Steam is available at no cost to Contractor.

VAMC Martinsburg Renovate Building 405B for a HOPTEL Martinsburg, WV 25405

653-13-115

- E. Electricity (for Construction and Testing): Furnish all temporary electric services.
 - Obtain electricity by connecting to the Medical Center electrical distribution system at location determined by COR. The Contractor shall meter and pay for electricity required for electric cranes and hoisting devices, electrical welding devices and any electrical heating devices providing temporary heat. Electricity for all other uses is available at no cost to the Contractor.
- F. Water (for Construction and Testing): Furnish temporary water service.
 - Obtain water by connecting to the Medical Center water distribution system at location determined by COR. Provide reduced pressure backflow preventer at each connection. Water is available at no cost to the Contractor.
 - Maintain connections, pipe, fittings and fixtures and conserve water-use so none is wasted. Failure to stop leakage or other wastes will be cause for revocation (at COR's discretion) of use of water from Medical Center's system.
- G. Steam: Furnish steam system for testing required in various sections of specifications.
 - Obtain steam for testing by connecting to the Medical Center steam distribution system. Steam is available at no cost to the Contractor.
 - Maintain connections, pipe, fittings and fixtures and conserve steam-use so none is wasted. Failure to stop leakage or other waste will be cause for revocation (at COR's discretion), of use of steam from the Medical Center's system.

1.23 NEW TELEPHONE EQUIPMENT

The contractor shall coordinate with the work of installation of telephone equipment by others. This work shall be completed before the building is turned over to VA.

1.24 TESTS

A. As per specification section 23 05 93 the contractor shall provide a written testing and commissioningcomplete with component level, equipment level, sub-system level and system level breakdowns. The plan will provide a schedule and a written sequence of what will be tested, how and what the expected outcome will be. This document will be submitted for approval prior to commencing work. The contractor

shall document the results of the approved plan and submit for approval with the as built documentation.

- B. Pre-test mechanical and electrical equipment and systems and make corrections required for proper operation of such systems before requesting final tests. Final test will not be conducted unless pre-tested.
- C. Conduct final tests required in various sections of specifications in presence of an authorized representative of the Contracting Officer. Contractor shall furnish all labor, materials, equipment, instruments, and forms, to conduct and record such tests.
- D. Mechanical and electrical systems shall be balanced, controlled and coordinated. A system is defined as the entire complex which must be coordinated to work together during normal operation to produce results for which the system is designed. For example, air conditioning supply air is only one part of entire system which provides comfort conditions for a building. Other related components are return air, exhaust air, steam, chilled water, refrigerant, hot water, controls and electricity, etc. Another example of a complex which involves several components of different disciplines is a boiler installation. Efficient and acceptable boiler operation depends upon the coordination and proper operation of fuel, combustion air, controls, steam, feedwater, condensate and other related components.
- E. All related components as defined above shall be functioning when any system component is tested. Tests shall be completed within a reasonably short period of time during which operating and environmental conditions remain reasonably constant and are typical of the design conditions.
- F. Individual test result of any component, where required, will only be accepted when submitted with the test results of related components and of the entire system.

1.25 INSTRUCTIONS

- A. Contractor shall furnish Maintenance and Operating manuals (hard copies and electronic) and verbal instructions when required by the various sections of the specifications and as hereinafter specified.
- B. Manuals: Maintenance and operating manuals (four hard copies and four electronic copies each) for each separate piece of equipment shall be delivered to the COR coincidental with the delivery of the equipment to

the job site. Maintenance and operating manuals shall be bound, at least in ring binders, with labeled section dividers to identify specific items of equipment. Manuals shall be complete, detailed guides for the maintenance and operation of equipment. They shall include complete information necessary for starting, adjusting, maintaining in continuous operation for long periods of time and dismantling and reassembling of the complete units and sub-assembly components. Manuals shall include an index covering all component parts clearly cross-referenced to diagrams and illustrations. Illustrations shall include "exploded" views showing and identifying each separate item. Emphasis shall be placed on the use of special tools and instruments. The function of each piece of equipment, component, accessory and control shall be clearly and thoroughly explained. All necessary precautions for the operation of the equipment and the reason for each precaution shall be clearly set forth. Manuals must reference the exact model, style and size of the piece of equipment and system being furnished. Manuals referencing equipment similar to but of a different model, style, and size than that furnished will not be accepted.

C. Instructions: Contractor shall provide qualified, factory-trained manufacturers' representatives to give detailed training instructions to assigned Department of Veterans Affairs personnel in the operation and complete maintenance for each piece of equipment. All such training will be at the job site. These requirements are more specifically detailed in the various technical sections. Instructions for different items of equipment that are component parts of a complete system shall be given in an integrated, progressive manner. All instructors for every piece of component equipment in a system shall be available until instructions for all items included in the system have been completed. This is to assure proper instruction in the operation of inter-related systems. All instruction periods shall be at such times as scheduled by the COR and shall be considered concluded only when the COR is satisfied in regard to complete and thorough coverage. The contractor shall submit a course outline with associated material to the COR for review and approval prior to scheduling training to ensure the subject matter covers the expectations of the VA and the contractual requirements. The Department of Veterans Affairs reserves the right to request the removal of, and substitution for, any instructor who, in

the opinion of the COR, does not demonstrate sufficient qualifications in accordance with requirements for instructors above.

1.27 DAILY LOGS

A. Daily logs/reports shall be electronically submitted on a daily basis to the COR for all construction personnel, all materials brought on-site that day, work performed on that day, the weather for the day including temperature, precipitation (form and amounts) sunny, cloudy, windy or calm as well as any contacts made that day. Include in the log/report representative and documentary photos of work performed that day. Include all work prior to it being concealed or covered. Sample log/report may be provided, if requested, in electronic format to the contractor for his distribution and use. Daily log photo documentation is to be in conjunction with, but as a substitute for, the photo professional services Multivista.

1.28 CONSTRUCTION SIGN

- A. Provide a Construction Sign where directed by the COR. All wood members shall be of framing lumber. Cover sign frame with 0.7 mm (24 gage) galvanized sheet steel nailed securely around edges and on all bearings. Provide three 100 by 100 mm (4 inch by 4 inch) posts (or equivalent round posts) set 1200 mm (four feet) into ground. Set bottom of sign level at 900 mm (three feet) above ground and secure to posts with through bolts. Make posts full height of sign. Brace posts with 50 x 100 mm (two by four inch) material as directed.
- B. Paint all surfaces of sign and posts two coats of white gloss paint. Border and letters shall be of black gloss paint, except project title which shall be blue gloss paint.
- C. Maintain sign and remove it when directed by the COR.
- D. Detail Drawing of construction sign showing required legend and other characteristics of sign is shown on the drawings.

1.29 SAFETY SIGN

- A. Provide a Safety Sign where directed by COR. Face of sign shall be 19 mm (3/4 inch) thick exterior grade plywood. Provide two 100 mm by 100 mm (four by four inch) posts extending full height of sign and 900 mm (three feet) into ground. Set bottom of sign level at 1200 mm (four feet) above ground.
- B. Paint all surfaces of Safety Sign and posts with one prime coat and two coats of white gloss paint. Letters and design shall be painted with gloss paint of colors noted.
- C. Maintain sign and remove it when directed by COR.

- D. Detail Drawing Number 45 of safety sign showing required legend and other characteristics of sign is // attached hereto and is made a part of this specification. // shown on the drawings. //
- E. Post the number of accident-free days on a daily basis.

1.30 PHOTOGRAPHIC DOCUMENTATION

- A. During the construction period through completion, provide comprehensive photographic documentation of construction process progressively and at selected milestones. High definition video documentation of selected dynamic events will be required. Documentation shall be inclusive of electronic indexing, navigation, hosting, storage and remote access, as applicable, throughout construction. The Contractor shall support security of information and technological requirements related to the documentation. The commercial photographer or the subcontractor used for this work shall meet the following qualifications:
 - Demonstrable minimum experience of five (5) years in operation providing documentation and advanced indexing/navigation systems including a representative portfolio of construction projects of similar type, size, duration and complexity as the Project.
 - Proficiency in the execution of digital photography, videography and web camera systems' configuration, including use and knowledge of associated equipment.
 - 3. In-house programming division for customizable documentation solutions required.
 - 4. At least TEN (10) references.
 - 5. Demonstrable ability and current capacity for both data and personnel to service and conform to this specification on multiple projects, simultaneously, in this area. Contractor must have a local office within 80 miles of the Project site and be able to respond to site visit requests with qualified personnel within FOUR (4) hours of notice
- B. Documentation platform and delivery method:
 - 1. Photographic Documentation:
 - a. Documentation indexing and navigation system will utilize actual construction drawings (project plans) or equivalent as the basis for an interactive on-line interface.
 - b. For all photographic documentation referenced herein, indexing

and navigation must be organized by both time (date-stamped) and location throughout the Project.

- c. Access interface will include multiple active projects per user, if applicable.
- d. Access interface will provide recent documentation activity summaries per project. Direct access to project plans and shoots will be possible from summary display.
- e. Access interface will provide a map view that pinpoints the physical location of each project accessible by the user. Direct access to project plans and shoots will be possible from the map view.
- Documentation activity can be queried by date range via activity searches.
- g. Documentation will combine indexing and navigation system with inspection-grade high-resolution digital photography performed by Contractor, designed to capture actual conditions throughout construction and at critical milestones.
- h. Contractor documentation will be accessible on-line within 24 hours after each shoot, through the use of an Internet connection.
- Documentation will allow for multiple-user access, simultaneously, on-line.
- j. Access shall adhere to industry standards for information security and protection of data.
- k. Multi-tiered access levels shall be achievable through use of individual passwords, if applicable. Users of a sufficient tier will be able to identify other authorized users on each project
- Online interface will provide a summary view of the documentation within a project by project plan and by shoot. Direct access to project plans and shoots will be possible from each project summary view.
- m. Online interface will allow users to upload Client's own digital photographic images to the documentation indexing and navigation system.
 - i. Users will be able to link images to the project floor plans for customized location-based indexing.

VAMC Martinsburg Renovate Building 405B for a HOPTEL Martinsburg, WV 25405

- ii. The acting user will be able define permissions and access to uploaded images. Access, per image, can be set to either (1) the acting user only, (2) all project users or a (3) subset of project users.
- n. Online interface will allow users to upload files to the documentation indexing and navigation system. Supported file formats will include, at minimum, PDF, Microsoft Word documents, and Microsoft Excel spreadsheets, Microsoft PowerPoint presentations, JPEG, PNG. GIF, MPEG and Folders.
 - iii. Users will be able to link files to the project floor plans for customized location-based indexing.
 - iv. The acting user will be able define permissions and access to uploaded files. Access, per file, can be set to either (1) the acting user only, (2) all project users or a (3) subset of project users.
- Online interface will provide a repository where users can upload and store digital photographic images and other files for the Project, separate from the construction drawings.
- p. Online interface will allow users to comment (privately or publicly) on images, shoots and projects.
 - v. Through integrated reporting functionality, users can generate custom reports per image or on a collection of images ("image reports"), including their associated comments. Image reports are exportable in PDF format or as a standalone hyperlink.
 - vi. All image reports will identify the time, date and location
 of each image, and will include associated comments that
 can be archived indefinitely.
 - vii. The administrator user will be able to restrict commenting functions. Commenting permissions, per user, can be set to either (1) read/write, (2) read only or (3) no read/no write permissions.
- q. Online interface will allow users to create customizable tags that can be utilized with the integrated reporting functionality to generate issue-specific image reports.
 - viii. These reports must be made available through PDF export and a standalone link.

- 653-13-115
- ix. All image reports will identify the time, date and location of each image, and will include associated comments that can be archived indefinitely.
- r. Online interface will allow users to mark-up images using integrated annotation functionality.
- s. Online interface will allow users to sort specific sets of images into custom albums.
 - x. Users will be able to select one or more images to create new custom albums.
 - xi. Users will be able to add images to their existing custom albums.
 - xii. Custom albums can contain a combination of Contractor and Client images.
- t. Online interface will support batch actions by allowing users to multi-select images and other files for viewing, exporting and saving.
- u. Online interface will allow users to tag images as "Favorites".Users will be able to view all of their "Favorite" images from a centralized location.
- 1. Video documentation:
 - a. Video documentation must be recorded in no less than 1920 x 1080p HD video format with 16:9 Aspect Ratio. Documentation will be delivered as a Permanent Record in the format(s) described in Part 1.31 §J of this specification.
 - b. Documentation will be integrated with the Permanent Record of the digital photographic documentation for the Project.
 - c. All on-site training requirements will be videotaped.
 - d. Three copies of each training event will be provided on DVD disks. The disks will be marked with the project number, project name, type of training, and date of training.
- C. Photographic documentation elements:
 - Each digital image shall be taken with a professional grade camera with minimum size of 6 megapixels (MP) capable of producing 200x250mm (8 x 10 inch) prints with a minimum of 2272 x 1704 pixels and 400x500mm (16 x 20 inch) prints with a minimum 2592 x 1944 pixels.

VAMC Martinsburg Renovate Building 405B for a HOPTEL Martinsburg, WV 25405

653-13-115

- 2. Indexing and navigation system shall utilize actual AUTOCAD construction drawings, making such drawings interactive on an online interface. For all documentation referenced herein, indexing and navigation must be organized by both time (datestamped) and location throughout the project.
- 3. Documentation shall combine indexing and navigation system with inspection-grade digital photography designed to capture actual conditions throughout construction and at critical milestones. Documentation shall be accessible on-line through use of an internet connection. Documentation shall allow for secure multiple-user access, simultaneously, on-line.
- 4. Before construction, the building pad, adjacent streets, roadways, parkways, driveways, curbs, sidewalks, landscaping, adjacent utilities and adjacent structures surrounding the building pad and site shall be documented. Overlapping photographic techniques shall be used to ensure maximum coverage. Indexing and navigation accomplished through interactive architectural drawings. Integrated commenting and tagging will allow for indication and isolation of issues on the interactive plan and for report generation including, per report, issue image, index number, date and depiction of issue location on the floor plan or site plan. If site work or pad preparation is extensive, this documentation may be required immediately before construction and at several pre-determined intervals before building work commences.
- 5. Construction progress for all trades shall be tracked at predetermined intervals, but not less than once every thirty (30) calendar days ("Progressions"). Progression documentation shall track both the exterior and interior construction of the building. Exterior Progressions shall track 360 degrees around the site and each building. Interior Progressions shall track interior improvements beginning when stud work commences and continuing until Project completion. Indexing and navigation accomplished through interactive architectural drawings. Integrated commenting and tagging will allow for indication and isolation of issues on the interactive plan and for report

generation including, per report, issue image, index number, date and depiction of issue location on the floor plan or site plan.

- 6. As-built condition of pre-slab utilities and site utilities shall be documented prior to pouring slabs, placing concrete and/or backfilling. This process shall include all underground and inslab utilities within the building(s) envelope(s) and utility runs in the immediate vicinity of the building(s) envelope(s). This may also include utilities enclosed in slab-on-deck in multi-story buildings. Overlapping photographic techniques shall be used to ensure maximum coverage. Indexing and navigation accomplished through interactive site utility plans. Integrated commenting and tagging will allow for indication and isolation of issues on the interactive plan and for report generation including, per report, issue image, index number, date and depiction of issue location on the floor plan or site plan.
- 7. As-built conditions of mechanical, electrical, plumbing and all other systems shall be documented post-inspection and preinsulation, sheet rock or dry wall installation or as near to this milestone as is reasonably possible. This process shall include all finished systems located in the walls and ceilings of all buildings at the Project. Overlapping photographic techniques shall be used to ensure maximum coverage. Indexing and navigation accomplished through interactive architectural drawings. Integrated commenting and tagging will allow for indication and isolation of issues on the interactive plan and for report generation including, per report, issue image, index number, date and depiction of issue location on the floor plan or site plan.
- 8. As-built conditions of exterior skin and elevations shall be documented with an increased concentration of digital photographs as directed by the COR in order to capture pre-determined focal points, such as waterproofing, window flashing, radiused steel work, architectural or Exterior Insulation and Finish Systems (EIFS) detailing. Overlapping photographic techniques shall be used to ensure maximum coverage. Indexing and navigation accomplished through interactive elevations or elevation details. Integrated commenting and tagging will allow for indication and

isolation of issues on the interactive plan and for report generation including, per report, issue image, index number, date and depiction of issue location on the floor plan or site plan.

- 9. As-built finished conditions of the interior of each building including floors, ceilings and walls shall be documented at certificate of occupancy or equivalent, or just prior to occupancy, or both, as directed by the COR. Overlapping photographic techniques shall be used to ensure maximum coverage. Indexing and navigation accomplished through interactive architectural drawings. Integrated commenting and tagging will allow for indication and isolation of issues on the interactive plan and for report generation including, per report, issue image, index number, date and depiction of issue location on the floor plan or site plan.
- 10. Miscellaneous events that occur during any Contractor site visit, or events captured by the Department of Veterans Affairs independently, shall be dated, labeled and inserted into a Section in the navigation structure entitled "Slideshows," allowing this information to be stored in the same "place" as the formal scope.
- 11. Customizable project-specific digital photographic documentation of other details or milestones. Indexing and navigation accomplished through interactive architectural plans.
- 12. Four (4) Sets of Regular Interior Progressions that captures each major wall to begin at time of substantial framing, with the final progression occurring at the finished condition of the interior, or as directed by the COR.
- 13. Monthly (29 max) exterior progressions (360 degrees around the project) and slideshows (all elevations and building envelope). The slideshows allow for the inclusion of the Department of Veterans Affairs' pictures, aerial photographs, and timely images which do not fit into any regular monthly photo path.
- 14. Weekly (21 Max) Site Progressions Photographic documentation capturing the project at different stages of construction. These progressions shall capture underground utilities, excavation, grading, backfill, landscaping, and road construction throughout the duration of the project.

- 15. Regular (8 max) interior progressions of all walls of the entire project to begin at time of substantial framed or as directed by the COR through to completion.
- 16. Detailed Site Survey Exact-Built (pre-construction). The preconstruction site survey shall provide coverage of the site and its immediate surrounding area to carefully memorialize preexisting conditions before the project begins.
- 17. Detailed Pre-Slab Exact-Built of all Slabs and Grade only. This shall capture all project slab pours just prior to placing concrete or as directed by the COR.
- 18. Detailed Interior MEP exact-built overlapping photos of the entire building to include documentation of all mechanical, electrical and plumbing systems in every floor, wall and ceiling, to be conducted after rough-ins are complete, just prior to being concealed by concrete, flooring, insulation, drywall, ceilings, or as directed by COR.
- 19. Finished detailed Interior exact-built overlapping photos of all walls, ceilings, and floors to be scheduled by COR prior to occupancy. Includes all walls, ceilings and floors in their postinspection, completed condition are documented in exceptional detail.
- 20. In event a greater or lesser number of images than specified above are required by the COR, adjustment in contract price will be made in accordance with clause entitled "CHANGES" (FAR 52.243-4 and VAAR 852.236-88).
- 21. Documentation to include associated areas not specifically shown to be in the area, i.e. affected mechanical rooms, electrical rooms remote from the work area.
- 22. Up shots: detailed and overlapping photos of MEP systems above ceilings.
- 23. Down shots: primary drain construction.
- 24. Crawl Spaces and Interstitial Spaces: photos to be taken generally near project completion to gather more detailed and overlapping photos of MEP systems.
- 25. General Contractor to communicate clearly/regularly to ensure photo shoots and timing for site visits when areas of concern are clear of stored materials.

- 26. Pre-Demolition Documentation: Similar to Pre-construction documentation. Coverage to include documentation of construction areas prior to demolition.
- 27. Progress Documentation DURING demolition phase of work, prior to start of new construction.
- 28. Minimum number of photos shots during the project or per month on longer projects (over duration of 12 months)
- 29. "Special Shots" to be made clear in kick-off meeting. General Contractor will schedule photo shoots deemed "special" to coincide with regular visits.
- 30. Device Tagging: Directions to the contractor on the extent of device tagging of MEP elements in mechanical rooms. This will be tied to the as-built drawing submission. Coordination with the Contractor will be required in that the Contractor will have to forward information on the approved equipment.
- - Images shall be taken by a commercial photographer and must show distinctly, at as large a scale as possible, all parts of work embraced in the picture.
 - 2. Field personnel to undertake the documentation provided exclusively by the Contractor. Field personnel shall be OSHA certified, if applicable, per the Project-specific safety programs. Coordination with project teams will be accomplished through the COR for the Project. Contractor will also attend OAC or construction team meetings as necessary. Contractor's operations team will provide regular updates regarding the status of the documentation, including completed elements of the documentation, the availability of recent documentation on-line and anticipated future shoot dates. Contractor shall provide all on-line domain/web hosting, security measures, and redundant server back-up of the documentation.
- E. Contractor shall provide technical support related to using the system or service.
- F. Any software required for all indexing, navigation, hosting and remote access furnished by Contractor (excepting web browsers), including user license.

- G. Contractor furnishes technical support related to using the system or service, including site visits when required and/or requested.
- H. Contractor must be able to create off-line or stand-alone (on-site) version of documentation platform required by this specification, if applicable, for high security or sensitive facilities.
- I. Upon completion of the project, final copies of the documentation (the "Permanent Record") will be provided in a digital media format. On-line access terminates upon delivery of the Permanent Record or as agreed between Contractor and the VA. Intellectual property rights associated with the digital media prepared in direct service of the Project shall transfer, along with the media itself, to the VA. Permanent Record shall have Building Information Modeling (BIM) interface capabilities. On-line access terminates upon delivery of the Permanent Record. The VA may make separate arrangements with the photo documentation service to continue the online access to the project documents.
 - Photographic Documentation: The Permanent Record will be provided with the underlying housing software, indexing and navigation system, typically as a DVD. One multiple-user license for use of the underlying housing software, indexing and navigation is included for accessing the digital media.

1.31 FINAL ELEVATION DIGITAL IMAGES (NOT USED)

1.32 TUBERCULOSIS TESTING

A. PPD testing is required for all contracted construction employees assigned to work in these areas during construction projects:

- •4A-107, 4A-132, 4C-124, 4C-125 or 2C-136
- All GI Suite Rooms
- Modifications or removal of duct work or supply exhaust
- Removal or disturbance to HVAC filters

B. Based upon the MVAMC TB risk assessment, this project is considered to potentially pose a TB exposure hazard to contracted construction workers. Pre-project PPD testing is required, and is the responsibility of, the contracted company and its sub-contractors and is to include all contracted employees on this job. Validation of negative PPD testing must be provided within 90 days preceding a worker's assignment to the work site. If a worker's test is PPD positive, validation of follow-up and determination that the worker is free of active TB disease is required, within 90 days preceding assignment to the work site. This information

VAMC Martinsburg Renovate Building 405B for a HOPTEL Martinsburg, WV 25405

653-13-115

must be provided in writing to the Contracting Officer prior to the start date of the project."

1.33 ELECTRONIC SUBMITTAL PROCEDURES

- A. Summary:
 - 1. A/E Design Submissions, Shop drawing and product data submittals shall be transmitted to the Government (PDF) format using a webbased submittal exchange website service designed specifically for transmitting submittals between all construction team members, including designated VA team members for this project. It must be compatible with the service Newforma which it was used for the design submittals for this project. This compatibility should allow the seamless transfer of contract documents and references from the Designer/Architect/MEP. Also, it will enhance the ability to review and compare submittals with contract submission requirements.
 - The intent of electronic submittals is to expedite the construction process by reducing paperwork, improving information flow, and decreasing turnaround time.
 - 3. The electronic submittal process is not intended for color samples, color charts, or physical material samples.

B. Procedures:

- Create submittal log in the submittal by inserting required submittals listed in individual design submission requirements and specification sections.
- Submittal Preparation Contractor may use any or all of the following options:

 a. Subcontractors and Suppliers provide electronic (PDF)
 submittals to Contractor via the submittal exchange website.
 b. Subcontractors and Suppliers provide electronic (PDF)
 submittals to Contractor via email.
 c. Subcontractors and Suppliers provide paper submittals to a scanning service/program which electronically scans and converts to PDF format.
- Printed Submittals: Provide two printed sets of submittals for shop drawings for structural framing in addition to electronic submittals.

- 4. Contractor shall review and apply electronic stamp certifying that the submittal complies with the requirements of the Contract Documents including verification of manufacturer / product, dimensions and coordination of information with other parts of the work.
- 5. Contractor shall transmit each submittal to Architect using the submittal exchange website.
- 6. The Government as well as design Architect/Engineer review comments will be made available on the submittal exchange website for downloading. Contractor will receive email notice of completed review.
- Distribution of reviewed submittals to subcontractors and suppliers is the responsibility of the Contractor.
- Submit paper copies of any reviewed submittals not submitted electronically at project closeout for record purposes.
- C. Costs:
 - Contractor shall include the full cost of the submittal exchange project subscription for the duration of the project in their proposal. This cost is included in the base Contract Amount.
 - The intent is for the submittal exchange service cost to be in lieu of postage or shipping costs typically paid for paper submittals. Service cost is a net cost savings to Contractor because submittals sent electronically do not need to be shipped physically.
 - 3. After award of contract, training shall be provided by the submittal exchange service regarding use of their website and PDF submittals. The costs of the training shall be included in the base contract amount.
 - 4. Internet Service and Equipment Requirements: a. Email address and Internet access at Contractor's main office. b. Adobe Acrobat (<u>www.adobe.com</u>), Bluebeam PDF Revu (<u>www.bluebeam.com</u>), or other similar PDF review software for applying electronic stamps and comments.
 - A particular service may be considered if submitted prior to bid date for pre-approval. Product requirements:

 a. Independently hosted, web-based system for automated tracking, storage, and distribution of contract submittals, Requests For

Information, and other contract related documents. FTP sites, email exchanges, and server-based systems hosted from inside a contractor's office will not be considered are not acceptable. b.Utilize 256-bit SSL encryption and hosted at SAS70 Type II compliant data centers.

c. Minimum five years documented experience of use on comparable commercial construction projects. "Comparable commercial construction projects" shall be defined as documented use on a minimum of five hundred governmental, public-entity, or private sector projects each of \$1 million construction value or greater. d. Minimum five years documented 99.5% website uptime.
e. Unlimited individual user accounts and system access for all project subcontractors, general contractor, owner staff, architect, design consultants, and sub-consultants, with no additional fees for those parties to access the system.
f. Separate locations for owner, architect, design consultant, and sub-consultant review comments with contractors restricted from viewing comments until final review or release by owner or primary design consultant.

g. Full version histories and dates of exchanges automatically tracked and available for viewing, searching, and reporting in a linear log format compatible with AIA G712.

h. Functionality to group submittals as required packages and apply forms and review comments to entire package simultaneously. i. Functionality for integrated online PDF viewing and review, including graphical markups and stamps, for owner, architect, design consultants, sub-consultants, and general contractor without need for additional software purchase.

j. Automatic, configurable email notifications for each project team member for new and reviewed submittals and other items. k. Automatic, configurable email reminders of past due items. l. Customized, automated PDF form generation for submittals, RFIs, and other documents matching standard templates used by owner, design consultants, sub-consultants, and general contractor. Documentation and demonstration of automatic form generation using each entity's templates must be submitted as part of any substitution request.

m. Prior to project start, system vendor shall create submittal log with all required items from project manual or submittal register. Owner or primary design consultant shall have full control over required items list and access to edit, add, or remove items during project.n. System vendor shall provide minimum one-hour live web meeting training sessions to contractors, design consultants, sub-

consultants, and owners staff prior to project start.

o. System vendor shall make available minimum thirty-minute live web meeting training sessions for subcontractors at least twice weekly for the entire duration of the project.p. System vendor shall provide access for owner, design consultants, sub-consultants, general contractor, and subcontractors to live technical support by phone and email

minimum of 7 AM to 6 PM CST on standard business days at no additional cost.

q. Allowance for scanning and printing services provided by local third-party reprographic vendor to assist with obtaining documents electronically and online print ordering.

r. At completion of project closeout, system vendor shall provide minimum of four archival discs that include all documents and tracking logs, or the ability to download this information from the live website in a single complete archive package.

1.34 GENERAL ORDER OF PROCEDURE:

A. The contractor shall execute the contract in order outlined in this paragraph except as otherwise specified in specifications and/or drawings.

- 1. Establish phase of work with COR.
- Complete survey covered in Section 01 00 00, GENERAL REQUIREMENTS.
- 3. Submit Progress Chart.
- 4. Submit Schedule of Costs.
- 5. Prepare and make submittals.
- 6. Begin work.
- 7. Schedule final inspection.
- 8. Complete work.
- 9. Final inspection.
- 10. Completion of punch list.

VAMC Martinsburg Renovate Building 405B for a HOPTEL Martinsburg, WV 25405

11. Final acceptance by VA.

- B. Performance:
 - All work is to be in accordance with VA and Federal Specifications, published trade standards, National Building Codes, National Electric Codes, National Plumbing Codes, National Fire Protection Association Codes and any other specialized codes required by specifications and drawings.
- C. Submittals:
 - The contractor will submit and have approval for all materials to be used on this project within 30calendar days after the contractor receives the notification to proceed.
- D. Notification:
 - 1. All contractors, prime and sub, will notify the project COR and/or the project CO 48 hours in advance of intent to begin work. A 24hour notice should be given after a work stoppage. The job superintendent/foreman shall report to the COR (in person or by phone) at the start of each workday.
- E. Coordination:
 - Contractor to submit a detailed schedule of work to allow the VA to plan and schedule work in same and adjacent areas that is being performed by VAMC personnel.

1.35 SMOKE-FREE CAMPUS

A. Martinsburg VAMC is a smoke-free hospital. This is effected through two smoke-free policies, one for patients, visitors, volunteers, contractors and vendors, which was announced in June, 2019 and the second for employees, which was announced in August, 2019. Together, the two policies ensure a fully smoke-free environment at our health care facility.

B. Both policies apply to cigarettes, cigars, pipes, any other combustion of tobacco and non-Federal Drug Administration (FDA) approved electronic nicotine delivery systems (ENDS), including but not limited to electronic or e-cigarettes, vape pens or e-cigars. Nowhere on campus (including private vehicles) will the use of tobacco products be tolerated by Contractors or staff. The policy covers all tobacco products and smoking materials, including but not limited to cigarettes, e-cigarettes or electronic cigarettes, cigars and/or pipes, matches, lighters, lighter fluid, and any other form of tobacco.

1.36 EXISTING AND NEW SPRINKLER SYSTEMS

A. The extinguishment requirements of the occupancy chapters in NFPA 101®, Life Safety Code®, 2000 Edition, refer to Section 9.7 for automatic sprinkler systems. All automatic sprinkler and standpipe systems must comply with NFPA 25, Standard for Inspection, Testing and Maintenance of Water-Based Fire Protection Systems. Section 2-2.2 states "Sprinkler piping shall not be subjected to external loads by materials either resting on the pipe or hung from the pipe."

B. When using The Joint Commission's 2011 Hospital Accreditation Standards to address this type of deficiency apply LS.02.01.35 Element of Performance 4 "Piping for approved automatic sprinkler systems is not used to support any other item. (For full text and any exceptions refer to NFPA 25-1998: 2-2.2).

- - - E N D - - -

SECTION 01 33 23

SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This specification defines the general requirements and procedures for submittals. A submittal is information submitted for VA review to establish compliance with the contract documents.
- B. Detailed submittal requirements are found in the technical sections of the contract specifications. The Contracting Officer may request submittals in addition to those specified when deemed necessary to adequately describe the work covered in the respective technical specifications at no additional cost to the government.
- C. VA approval of a submittal does not relieve the Contractor of the responsibility for any error which may exist. The Contractor is responsible for fully complying with all contract requirements and the satisfactory construction of all work, including the need to check, confirm, and coordinate the work of all subcontractors for the project. Non-compliant material incorporated in the work will be removed and replaced at the Contractor's expense.

1.2 DEFINITIONS

- A. Preconstruction Submittals: Submittals which are required prior to issuing contract notice to proceed or starting construction. For example, Certificates of insurance; Surety bonds; Site-specific safety plan; Construction progress schedule; Schedule of values; Submittal register; List of proposed subcontractors.
- B. Shop Drawings: Drawings, diagrams, and schedules specifically prepared to illustrate some portion of the work. Drawings prepared by or for the Contractor to show how multiple systems and interdisciplinary work will be integrated and coordinated.
- C. Product Data: Catalog cuts, illustrations, schedules, diagrams, performance charts, instructions, and brochures, which describe and illustrate size, physical appearance, and other characteristics of materials, systems, or equipment for some portion of the work. Samples of warranty language when the contract requires extended product warranties.

- D. Samples: Physical examples of materials, equipment, or workmanship that illustrate functional and aesthetic characteristics of a material or product and establish standards by which the work can be judged. Color samples from the manufacturer's standard line (or custom color samples if specified) to be used in selecting or approving colors for the project. Field samples and mock-ups constructed to establish standards by which the ensuing work can be judged.
- E. Design Data: Calculations, mix designs, analyses, or other data pertaining to a part of work.
- F. Test Reports: Report which includes findings of a test required to be performed by the Contractor on an actual portion of the work. Report which includes finding of a test made at the job site or on sample taken from the job site, on portion of work during or after installation.
- G. Certificates: Document required of Contractor, or of a manufacturer, supplier, installer, or subcontractor through Contractor. The purpose is to document procedures, acceptability of methods, or personnel qualifications for a portion of the work.
- H. Manufacturer's Instructions: Pre-printed material describing installation of a product, system, or material, including special notices and MSDS concerning impedances, hazards, and safety precautions.
- I. Manufacturer's Field Reports: Documentation of the testing and verification actions taken by manufacturer's representative at the job site on a portion of the work, during or after installation, to confirm compliance with manufacturer's standards or instructions. The documentation must indicate whether the material, product, or system has passed or failed the test.
- J. Operation and Maintenance Data: Manufacturer data that is required to operate, maintain, troubleshoot, and repair equipment, including manufacturer's help, parts list, and product line documentation. This data shall be incorporated in an operations and maintenance manual.
- K. Closeout Submittals: Documentation necessary to properly close out a construction contract. For example, Record Drawings and as-built drawings. Also, submittal requirements necessary to properly close out a phase of construction on a multi-phase contract.

1.3 SUBMITTAL REGISTER

A. The submittal register will list items of equipment and materials for which submittals are required by the specifications. This list may not

be all inclusive and additional submittals may be required by the specifications. The Contractor is not relieved from supplying submittals required by the contract documents but which have been omitted from the submittal register.

- B. The submittal register will serve as a scheduling document for submittals and will be used to control submittal actions throughout the contract period.
- C. The Contractor will provide the initial submittal register for approval by the COR in electronic format. Thereafter, the Contractor shall track all submittals by maintaining a complete list, including completion of all data columns, including dates on which submittals are received and returned by the VA.
- D. The Contractor shall update the submittal register as submittal actions occur and maintain the submittal register at the project site until final acceptance of all work by Contracting Officer.
- E. The Contractor shall submit formal monthly updates to the submittal register in electronic format. Each monthly update shall document actual submission and approval dates for each submittal.

1.4 SUBMITTAL SCHEDULING

- A. Submittals are to be scheduled, submitted, reviewed, and approved prior to the acquisition of the material or equipment.
- B. Coordinate scheduling, sequencing, preparing, and processing of submittals with performance of work so that work will not be delayed by submittal processing. Allow time for potential resubmittal.
- C. No delay costs or time extensions will be allowed for time lost in late submittals or resubmittals.
- D. All submittals are required to be approved prior to the start of the specified work activity.

1.5 SUBMITTAL PREPARATION

- A. Each submittal is to be complete and in sufficient detail to allow ready determination of compliance with contract requirements.
- B. Collect required data for each specific material, product, unit of work, or system into a single submittal. Prominently mark choices, options, and portions applicable to the submittal. Partial submittals will not be accepted for expedition of construction effort. Submittal will be returned without review if incomplete.

01 33 23 - 3

- C. If available product data is incomplete, provide Contractor-prepared documentation to supplement product data and satisfy submittal requirements.
- D. All irrelevant or unnecessary data shall be removed from the submittal to facilitate accuracy and timely processing. Submittals that contain the excessive amount of irrelevant or unnecessary data will be returned with review.
- E. Provide a transmittal form for each submittal with the following information:
 - 1. Project title, location and number.
 - 2. Construction contract number.
 - 3. Date of the drawings and revisions.
 - Name, address, and telephone number of subcontractor, supplier, manufacturer, and any other subcontractor associated with the submittal.
 - 5. List paragraph number of the specification section and sheet number of the contract drawings by which the submittal is required.
 - When a resubmission, add alphabetic suffix on submittal description. For example, submittal 18 would become 18A, to indicate resubmission.
 - 7. Product identification and location in project.
- F. The Contractor is responsible for reviewing and certifying that all submittals are in compliance with contract requirements before submitting for VA review. Proposed deviations from the contract requirements are to be clearly identified. All deviations submitted must include a side by side comparison of item being proposed against item specified. Failure to point out deviations will result in the VA requiring removal and replacement of such work at the Contractor's expense.
- G. Stamp, sign, and date each submittal transmittal form indicating action taken.
- H. Stamp used by the Contractor on the submittal transmittal form to certify that the submittal meets contract requirements is to be similar to the following:

	—
CONTRACTOR	
(Firm Name)	
	י ו
Approved	
Approved with corrections as noted on submittal data and/or	
attached sheets(s)	
	י ו
SIGNATURE:	
TITLE:	
DATE:	י
	ا ا

1.6 SUBMITTAL FORMAT AND TRANSMISSION

- A. Provide submittals in electronic format, with the exception of material samples. Use PDF as the electronic format, unless otherwise specified or directed by the Contracting Officer. Shop drawing and product data submittals shall be transmitted to the Government in PDF format using a web-based submittal exchange website service, whenever practical. The electronic submittal process is not intended for color samples, color charts, or physical material samples.
- B. Compile the electronic submittal file as a single, complete document. Name the electronic submittal file specifically according to its contents.
- C. Electronic files must be of sufficient quality that all information is legible. Generate PDF files from original documents so that the text

included in the PDF file is both searchable and can be copied. If documents are scanned, Optical Character Resolution (OCR) routines are required.

- D. E-mail electronic submittal documents smaller than 5MB in size to e-mail addresses as directed by the Contracting Officer.
- E. Provide electronic documents over 5MB through an electronic FTP file sharing system. Confirm that the electronic FTP file sharing system can be accessed from the VA computer network. The Contractor is responsible for setting up, providing, and maintaining the electronic FTP file sharing system for the construction contract period of performance.
- F. Provide hard copies of submittals when requested by the Contracting Officer. Up to 3 additional hard copies of any submittal may be requested at the discretion of the Contracting Officer, at no additional cost to the VA.

1.7 SAMPLES

- A. Submit two sets of physical samples showing range of variation, for each required item.
- B. Where samples are specified for selection of color, finish, pattern, or texture, submit the full set of available choices for the material or product specified.
- C. When color, texture, or pattern is specified by naming a particular manufacturer and style, include one sample of that manufacturer and style, for comparison.
- D. Before submitting samples, the Contractor is to ensure that the materials or equipment will be available in quantities required in the project. No change or substitution will be permitted after a sample has been approved.
- E. The VA reserves the right to disapprove any material or equipment which previously has proven unsatisfactory in service.
- F. Physical samples supplied maybe requested back for use in the project after reviewed and approved.

1.8 OPERATION AND MAINTENANCE DATA

A. Submit data specified for a given item within 30 calendar days after the item is delivered to the contract site.

01 33 23 - 6

B. In the event the Contractor fails to deliver O&M Data within the time limits specified, the Contracting Officer may withhold from progress payments 50 percent of the price of the item with which such O&M Data are applicable.

1.9 TEST REPORTS

SRE may require specific test after work has been installed or completed which could require contractor to repair test area at no additional cost to contract.

1.10 VA REVIEW OF SUBMITTALS AND RFIS

- A. The VA will review all submittals for compliance with the technical requirements of the contract documents. The Architect-Engineer for this project will assist the VA in reviewing all submittals and determining contractual compliance. Review will be only for conformance with the applicable codes, standards and contract requirements.
- B. Period of review for submittals begins when the VA COR receives submittal from the Contractor.
- C. Period of review for each resubmittal is the same as for initial submittal.
- D. VA review period is 15 working days for submittals.
- E. VA review period is 10 working days for RFIs.
- F. The VA will return submittals to the Contractor with the following notations:
 - "Approved": authorizes the Contractor to proceed with the work covered.
 - "Approved as noted": authorizes the Contractor to proceed with the work covered provided the Contractor incorporates the noted comments and makes the noted corrections.
 - 3. "Disapproved, revise and resubmit": indicates noncompliance with the contract requirements or that submittal is incomplete. Resubmit with appropriate changes and corrections. No work shall proceed for this item until resubmittal is approved.
 - 4. "Not reviewed": indicates submittal does not have evidence of being reviewed and approved by Contractor or is not complete. A submittal marked "not reviewed" will be returned with an explanation of the reason it is not reviewed. Resubmit submittals after taking appropriate action.

1.11 APPROVED SUBMITTALS

- A. The VA approval of submittals is not to be construed as a complete check, and indicates only that the general method of construction, materials, detailing, and other information are satisfactory.
- B. VA approval of a submittal does not relieve the Contractor of the responsibility for any error which may exist. The Contractor is responsible for fully complying with all contract requirements and the satisfactory construction of all work, including the need to check, confirm, and coordinate the work of all subcontractors for the project. Non-compliant material incorporated in the work will be removed and replaced at the Contractor's expense.
- C. After submittals have been approved, no resubmittal for the purpose of substituting materials or equipment will be considered unless accompanied by an explanation of why a substitution is necessary.
- D. Retain a copy of all approved submittals at project site, including approved samples.

1.12 WITHHOLDING OF PAYMENT

Payment for materials incorporated in the work will not be made if required approvals have not been obtained.

- - - E N D - - -

SECTION 01 35 26 SAFETY REQUIREMENTS

TABLE OF CONTENTS

1.1	APPLICABLE PUBLICATIONS 2
1.2	DEFINITIONS 3
1.3	REGULATORY REQUIREMENTS 5
1.4	ACCIDENT PREVENTION PLAN (APP) 5
1.5	ACTIVITY HAZARD ANALYSES (AHAs) 11
1.6	PRECONSTRUCTION CONFERENCE 12
1.7	"SITE SAFETY AND HEALTH OFFICER" (SSHO) and "COMPETENT PERSON" (CP) 13 \ensuremath{L}
1.8	TRAINING 14
1.9	INSPECTIONS
1.10	ACCIDENTS, OSHA 300 LOGS, AND MAN-HOURS 16
1.11	PERSONAL PROTECTIVE EQUIPMENT (PPE) 17
1.12	INFECTION CONTROL
1.13	TUBERCULOSIS SCREENING
1.14	FIRE SAFETY
1.15	ELECTRICAL
1.16	FALL PROTECTION
1.17	SCAFFOLDS AND OTHER WORK PLATFORMS
1.18	EXCAVATION AND TRENCHES
1.19	CRANES
1.20	CONTROL OF HAZARDOUS ENERGY (LOCKOUT/TAGOUT)
1.21	CONFINED SPACE ENTRY
1.22	WELDING AND CUTTING
1.23	LADDERS
1.24	FLOOR & WALL OPENINGS

SECTION 01 35 26 SAFETY REQUIREMENTS

1.1 APPLICABLE PUBLICATIONS:

- A. Latest publications listed below form part of this Article to extent referenced. Publications are referenced in text by basic designations only.
- B. American Society of Safety Engineers (ASSE):

A10.1-2011.....Pre-Project & Pre-Task Safety and Health Planning

A10.34-2012.....Protection of the Public on or Adjacent to Construction Sites

- A10.38-2013.....Basic Elements of an Employer's Program to Provide a Safe and Healthful Work Environment American National Standard Construction and Demolition Operations
- C. American Society for Testing and Materials (ASTM):

E84-2013.....Surface Burning Characteristics of Building Materials

D. The Facilities Guidelines Institute (FGI):

FGI Guidelines-2010Guidelines for Design and Construction of Healthcare Facilities

E. National Fire Protection Association (NFPA):

10-2018.....Standard for Portable Fire Extinguishers

30-2018.....Flammable and Combustible Liquids Code

- 51B-2019......Standard for Fire Prevention During Welding, Cutting and Other Hot Work
- 70-2020.....National Electrical Code
- 70B-2019.....Recommended Practice for Electrical Equipment Maintenance

70E-2018Standard for Electrical Safety in the Workplace

99-2018.....Health Care Facilities Code

241-2019.....Standard for Safeguarding Construction, Alteration, and Demolition Operations

F. The Joint Commission (TJC)

TJC ManualComprehensive Accreditation and Certification Manual

G. U.S. Nuclear Regulatory Commission

10 CFR 20Standards for Protection Against Radiation

H. U.S. Occupational Safety and Health Administration (OSHA):

29 CFR 1910Safety and Health Regulations for General Industry

- 29 CFR 1926Safety and Health Regulations for Construction Industry
- I. VHA Directive 2005-007

1.2 DEFINITIONS:

- A. Critical Lift. A lift with the hoisted load exceeding 75% of the crane's maximum capacity; lifts made out of the view of the operator (blind picks); lifts involving two or more cranes; personnel being hoisted; and special hazards such as lifts over occupied facilities, loads lifted close to power-lines, and lifts in high winds or where other adverse environmental conditions exist; and any lift which the crane operator believes is critical.
- B. OSHA "Competent Person" (CP). One who is capable of identifying existing and predictable hazards in the surroundings and working conditions which are unsanitary, hazardous or dangerous to employees, and who has the authorization to take prompt corrective measures to eliminate them (see 29 CFR 1926.32(f)).
- C. "Qualified Person" means one who, by possession of a recognized degree, certificate, or professional standing, or who by extensive knowledge, training and experience, has successfully demonstrated his ability to solve or resolve problems relating to the subject matter, the work, or the project.

- D. High Visibility Accident. Any mishap which may generate publicity or high visibility.
- E. Accident/Incident Criticality Categories:
 - No impact near miss incidents that should be investigated but are not required to be reported to the VA;
 - 2. Minor incident/impact incidents that require first aid or result in minor equipment damage (less than \$5000). These incidents must be investigated but are not required to be reported to the VA;
 - 3. Moderate incident/impact Any work-related injury or illness that results in:
 - a. Days away from work (any time lost after day of injury/illness onset);
 - b. Restricted work;
 - c. Transfer to another job;
 - d. Medical treatment beyond first aid;
 - e. Loss of consciousness;
 - A significant injury or illness diagnosed by a physician or other licensed health care professional, even if it did not result in (1) through (5) above or,
 - 5. Any incident that leads to major equipment damage (greater than \$5000).
- F. These incidents must be investigated and are required to be reported to the VA;
 - 1 Major incident/impact Any mishap that leads to fatalities, hospitalizations, amputations, and losses of an eye as a result of contractors' activities. Or any incident which leads to major property damage (greater than \$20,000) and/or may generate publicity or high visibility. These incidents must be investigated and are required to be reported to the VA as soon as practical, but not later than 2 hours after the incident.

G. Medical Treatment. Treatment administered by a physician or by registered professional personnel under the standing orders of a physician. Medical treatment does not include first aid treatment even through provided by a physician or registered personnel.

1.3 REGULATORY REQUIREMENTS:

A. In addition to the detailed requirements included in the provisions of this contract, comply with 29 CFR 1926, comply with 29 CFR 1910 as incorporated by reference within 29 CFR 1926, comply with ASSE A10.34, and all applicable [federal, state, and local] laws, ordinances, criteria, rules and regulations [____]. Submit matters of interpretation of standards for resolution before starting work. Where the requirements of this specification, applicable laws, criteria, ordinances, regulations, and referenced documents vary, the most stringent requirements govern except with specific approval and acceptance by the or Contracting Officer Representative or Government Designated Authority.

1.4 ACCIDENT PREVENTION PLAN (APP):

- A. The APP (aka Construction Safety & Health Plan) shall interface with the Contractor's overall safety and health program. Include any portions of the Contractor's overall safety and health program referenced in the APP in the applicable APP element and ensure it is site-specific. The Government considers the Prime Contractor to be the "controlling authority" for all worksite safety and health of each subcontractor(s). Contractors are responsible for informing their subcontractors of the safety provisions under the terms of the contract and the penalties for noncompliance, coordinating the work to prevent one craft from interfering with or creating hazardous working conditions for other crafts, and inspecting subcontractor operations to ensure that accident prevention responsibilities are being carried out.
 - a. General
 - 1) Safety plan must be submitted and approved prior to starting any and all work activities.
 - 2)Safety Plan must be "site specific" and include the following:

- a. Preconstruction Submittals
- b. Accident Prevention Plan (APP)
- c. Job Hazard Analysis (JHA)
- d. Crane Critical Lift Plan
- e. Proof of qualification for Crane Operators
- f. West Virginia Crane Operators License
- g. Test Reports
- h. OSHA 10 and 30 Hour Cards
- B. The APP shall be prepared as follows:
 - Written in English by a qualified person who is employed by the Prime Contractor articulating the specific work and hazards pertaining to the contract (model language can be found in ASSE A10.33). Specifically articulating the safety requirements found within these VA contract safety specifications.
 - 2. Address both the Prime Contractors and the subcontractors work operations.
 - 3. State measures to be taken to control hazards associated with materials, services, or equipment provided by suppliers.
 - 4. Address all the elements/sub-elements and in order as follows:
 - a. **SIGNATURE SHEET**. Title, signature, and phone number of the following:
 - Plan preparer (Qualified Person such as corporate safety staff person or contracted Certified Safety Professional with construction safety experience);
 - Plan approver (company/corporate officers authorized to obligate the company);
 - 3) Plan concurrence (e.g., Chief of Operations, Corporate Chief of Safety, Corporate Industrial Hygienist, project manager or superintendent, project safety professional). Provide

concurrence of other applicable corporate and project personnel (Contractor).

- b. BACKGROUND INFORMATION. List the following:
 - 1) Contractor;
 - 2) Contract number;
 - 3) Project name;
 - Brief project description, description of work to be performed, and location; phases of work anticipated (these will require an AHA).
- c. **STATEMENT OF SAFETY AND HEALTH POLICY**. Provide a copy of current corporate/company Safety and Health Policy Statement, detailing commitment to providing a safe and healthful workplace for all employees. The Contractor's written safety program goals, objectives, and accident experience goals for this contract should be provided.
- d. RESPONSIBILITIES AND LINES OF AUTHORITIES. Provide the following:
 - A statement of the employer's ultimate responsibility for the implementation of his SOH program;
 - Identification and accountability of personnel responsible for safety at both corporate and project level. Contracts specifically requiring safety or industrial hygiene personnel shall include a copy of their resumes.
 - 3) The names of Competent and/or Qualified Person(s) and proof of competency/qualification to meet specific OSHA Competent/Qualified Person(s) requirements must be attached.;
 - Requirements that no work shall be performed unless a designated competent person is present on the job site;
 - 5) Requirements for pre-task Activity Hazard Analysis (AHAs);
 - 6) Lines of authority;

- 7) Policies and procedures regarding noncompliance with safety requirements (to include disciplinary actions for violation of safety requirements) should be identified;
- e. SUBCONTRACTORS AND SUPPLIERS. If applicable, provide procedures for coordinating SOH activities with other employers on the job site:
 - 1) Identification of subcontractors and suppliers (if known);
 - 2) Safety responsibilities of subcontractors and suppliers.

f. TRAINING.

- Site-specific SOH orientation training at the time of initial hire or assignment to the project for every employee before working on the project site is required.
- 2) Mandatory training and certifications that are applicable to this project (e.g., explosive actuated tools, crane operator, rigger, crane signal person, fall protection, electrical lockout/NFPA 70E, machine/equipment lockout, confined space, etc...) and any requirements for periodic retraining/recertification are required.
- Procedures for ongoing safety and health training for supervisors and employees shall be established to address changes in site hazards/conditions.
- OSHA 10-hour training is required for all workers on site and the OSHA 30-hour training is required for Trade Competent Persons (CPs)

g. SAFETY AND HEALTH INSPECTIONS.

- Specific assignment of responsibilities for a minimum daily job site safety and health inspection during periods of work activity: Who will conduct (e.g., "Site Safety and Health CP"), proof of inspector's training/qualifications, when inspections will be conducted, procedures for documentation, deficiency tracking system, and follow-up procedures.
- Any external inspections/certifications that may be required (e.g., contracted CSP or CSHT)

- h. ACCIDENT/INCIDENT INVESTIGATION & REPORTING. The Contractor shall conduct mishap investigations of all Moderate and Major as well as all High Visibility Incidents. The APP shall include accident/incident investigation procedure and identify person(s) responsible to provide the following to the Contracting Officer Representative or Government Designated Authority:
 - 1) Exposure data (man-hours worked).
 - 2) Accident investigation reports.
 - 3) Project site injury and illness logs.
- i. PLANS (PROGRAMS, PROCEDURES) REQUIRED. Based on a risk assessment of contracted activities and on mandatory OSHA compliance programs, the Contractor shall address all applicable occupational, patient, and public safety risks in site-specific compliance and accident prevention plans. These Plans shall include but are not be limited to procedures for addressing the risks associates with the following:
 - 1) Emergency response;
 - 2) Contingency for severe weather;
 - 3) Fire Prevention;
 - 4) Medical Support;
 - 5) Posting of emergency telephone numbers;
 - 6) Prevention of alcohol and drug abuse;
 - 7) Site sanitation(housekeeping, drinking water, toilets);
 - 8) Night operations and lighting;
 - 9) Hazard communication program;
 - 10) Welding/Cutting "Hot" work;
 - 11) Electrical Safe Work Practices (Electrical LOTO/NFPA 70E);
 - 12) General Electrical Safety;
 - 13) Hazardous energy control (Machine LOTO);

- 14) Site-Specific Fall Protection & Prevention;
- 15) Excavation/trenching;
- 16) Asbestos abatement;
- 17) Lead abatement;
- 18) Crane Critical lift;
- 19) Respiratory protection;
- 20) Health hazard control program;
- 21) Radiation Safety Program;
- 22) Abrasive blasting;
- 23) Heat/Cold Stress Monitoring;
- 24) Crystalline Silica Monitoring (Assessment);
- 25) Demolition plan (to include engineering survey);
- 26) Formwork and shoring erection and removal;
- 27) PreCast Concrete;
- 28) Public (Mandatory compliance with ANSI/ASSE A10.34-2012).
- C. Submit the APP to the Contracting Officer Representative or Government Designated Authority for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES 15 calendar days prior to the date of the preconstruction conference for acceptance. Work cannot proceed without an accepted APP.
- D. Once accepted by the Contracting Officer Representative or Government Designated Authority, the APP and attachments will be enforced as part of the contract. Disregarding the provisions of this contract or the accepted APP will be cause for stopping of work, at the discretion of the Contracting Officer in accordance with FAR Clause 52.236-13, *Accident Prevention*, until the matter has been rectified.
- E. Once work begins, changes to the accepted APP shall be made with the knowledge and concurrence of the Project Manager, project superintendent, project overall designated OSHA Competent Person,

facility Safety Manager Contracting Officer Representative or Government Designated Authority. Should any severe hazard exposure, i.e. imminent danger, become evident, stop work in the area, secure the area, and develop a plan to remove the exposure and control the hazard. Notify the Contracting Officer within 24 hours of discovery. Eliminate/remove the hazard. In the interim, take all necessary action to restore and maintain safe working conditions in order to safeguard onsite personnel, visitors, the public and the environment.

1.5 ACTIVITY HAZARD ANALYSES (AHAS):

- A. AHAs are also known as Job Hazard Analyses, Job Safety Analyses, and Activity Safety Analyses. Before beginning each work activity involving a type of work presenting hazards not experienced in previous project operations or where a new work crew or sub-contractor is to perform the work, the Contractor(s) performing that work activity shall prepare an AHA (Example electronic AHA forms can be found on the US Army Corps of Engineers web site)
- B. AHAs shall define the activities being performed and identify the work sequences, the specific anticipated hazards, site conditions, equipment, materials, and the control measures to be implemented to eliminate or reduce each hazard to an acceptable level of risk.
- C. Work shall not begin until the AHA for the work activity has been accepted by the Facility Safety Manager and Contracting Officer Representative and discussed with all engaged in the activity, including the Contractor, subcontractor(s), and Government on-site representatives at preparatory and initial control phase meetings.
 - 1. The names of the Competent/Qualified Person(s) required for a particular activity (for example, excavations, scaffolding, fall protection, other activities as specified by OSHA and/or other State and Local agencies) shall be identified and included in the AHA. Certification of their competency/qualification shall be submitted to the Government Designated Authority (GDA) for acceptance prior to the start of that work activity.
 - The AHA shall be reviewed and modified as necessary to address changing site conditions, operations, or change of competent/qualified person(s).

- a. If more than one Competent/Qualified Person is used on the AHA activity, a list of names shall be submitted as an attachment to the AHA. Those listed must be Competent/Qualified for the type of work involved in the AHA and familiar with current site safety issues.
- b. If a new Competent/Qualified Person (not on the original list) is added, the list shall be updated (an administrative action not requiring an updated AHA). The new person shall acknowledge in writing that he or she has reviewed the AHA and is familiar with current site safety issues.
- 3. Submit AHAs to the Facility Safety Manager and Contracting Officer Representative for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES for review at least 15 calendar days prior to the start of each phase. Subsequent AHAs as shall be formatted as amendments to the APP. The analysis should be used during daily inspections to ensure the implementation and effectiveness of the activity's safety and health controls.
- 4. The AHA list will be reviewed periodically (at least monthly) at the Contractor supervisory safety meeting and updated as necessary when procedures, scheduling, or hazards change.
- 5. Develop the activity hazard analyses using the project schedule as the basis for the activities performed. All activities listed on the project schedule will require an AHA. The AHAs will be developed by the contractor, supplier, or subcontractor and provided to the prime contractor for review and approval and then submitted to the Facility Safety Manager and Contracting Officer Representative.

1.6 PRECONSTRUCTION CONFERENCE:

A. Contractor representatives who have a responsibility or significant role in implementation of the accident prevention program, as required by 29 CFR 1926.20(b)(1), on the project shall attend the preconstruction conference to gain a mutual understanding of its implementation. This includes the project superintendent, subcontractor superintendents, and any other assigned safety and health professionals.

- B. Discuss the details of the submitted APP to include incorporated plans, programs, procedures and a listing of anticipated AHAs that will be developed and implemented during the performance of the contract. This list of proposed AHAs will be reviewed at the conference and an agreement will be reached between the Contractor and the Contracting Officer's representative as to which phases will require an analysis. In addition, establish a schedule for the preparation, submittal, review, and acceptance of AHAs to preclude project delays.
- C. Deficiencies in the submitted APP will be brought to the attention of the Contractor within 14 days of submittal, and the Contractor shall revise the plan to correct deficiencies and re-submit it for acceptance. Do not begin work until there is an accepted APP.SPEC WRITER NOTE: If the contract will involve (a) work of a long duration or hazardous nature, or (b) performance within a Government facility that on the advice of VA construction safety representatives involves hazardous operations that might endanger the safety of the public, patients and/or Government personnel or property, the SSHO and Superintendent and/or Quality Control Manager must be separate persons (See Section 1.7(C) for choice).

1.7 "SITE SAFETY AND HEALTH OFFICER" (SSHO) AND "COMPETENT PERSON" (CP):

- A. The Prime Contractor shall designate a minimum of one SSHO at each project site that will be identified as the SSHO to administer the Contractor's safety program and government-accepted Accident Prevention Plan. Each subcontractor shall designate a minimum of one CP in compliance with 29 CFR 1926.20 (b)(2) that will be identified as a CP to administer their individual safety programs.
- B. Further, all specialized Competent Persons for the work crews will be supplied by the respective contractor as required by 29 CFR 1926 (i.e. Asbestos, Electrical, Cranes, & Derricks, Demolition, Fall Protection, Fire Safety/Life Safety, Ladder, Rigging, Scaffolds, and Trenches/Excavations).
- C. These Competent Persons can have collateral duties as the subcontractor's superintendent and/or work crew lead persons as well as fill more than one specialized CP role (i.e. Asbestos, Electrical, Cranes, & Derricks, Demolition, Fall Protection, Fire Safety/Life Safety, Ladder, Rigging, Scaffolds, and Trenches/Excavations).

- D. The SSHO or an equally-qualified Designated Representative/alternate will maintain a presence on the site during construction operations in accordance with FAR Clause 52.236-6: Superintendence by the Contractor. CPs will maintain presence during their construction activities in accordance with above mentioned clause. A listing of the designated SSHO and all known CPs shall be submitted prior to the start of work as part of the APP with the training documentation and/or AHA as listed in Section 1.8 below.
- E. The repeated presence of uncontrolled hazards during a contractor's work operations will result in the designated CP as being deemed incompetent and result in the required removal of the employee in accordance with FAR Clause 52.236-5: Material and Workmanship, Paragraph (c).

1.8 TRAINING:

- A. The designated Prime Contractor SSHO must meet the requirements of all applicable OSHA standards and be capable (through training, experience, and qualifications) of ensuring that the requirements of 29 CFR 1926.16 and other appropriate Federal, State and local requirements are met for the project. As a minimum the SSHO must have completed the OSHA 30-hour Construction Safety class and have five (5) years of construction industry safety experience or three (3) years if he/she possesses a Certified Safety Professional (CSP) or certified Construction Safety and Health Technician (CSHT) certification or have a safety and health degree from an accredited university or college.
- B. All designated CPs shall have completed the OSHA 30-hour Construction Safety course within the past 5 years.
- C. In addition to the OSHA 30 Hour Construction Safety Course, all CPs with high hazard work operations such as operations involving asbestos, electrical, cranes, demolition, work at heights/fall protection, fire safety/life safety, ladder, rigging, scaffolds, and trenches/excavations shall have a specialized formal course in the hazard recognition & control associated with those high hazard work operations. Documented "repeat" deficiencies in the execution of safety requirements will require retaking the requisite formal course.

- D. All other construction workers shall have the OSHA 10-hour Construction Safety Outreach course and any necessary safety training to be able to identify hazards within their work environment.
- E. Submit training records associated with the above training requirements to the Facility Safety Manager and Contracting Officer Representative for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES 15 calendar days prior to the date of the preconstruction conference for acceptance.
- F. Prior to any worker for the contractor or subcontractors beginning work, they shall undergo a safety briefing provided by the SSHO or his/her designated representative. As a minimum, this briefing shall include information on the site-specific hazards, construction limits, VAMC safety guidelines, means of egress, break areas, work hours, locations of restrooms, use of VAMC equipment, emergency procedures, accident reporting etc... Documentation shall be provided to the Resident Engineer that individuals have undergone contractor's safety briefing.
- G. Ongoing safety training will be accomplished in the form of weekly documented safety meeting.

1.9 INSPECTIONS:

- A. The SSHO shall conduct frequent and regular safety inspections (daily) of the site and each of the subcontractors CPs shall conduct frequent and regular safety inspections (daily) of the their work operations as required by 29 CFR 1926.20(b)(2). Each week, the SSHO shall conduct a formal documented inspection of the entire construction areas with the subcontractors' "Trade Safety and Health CPs" present in their work areas. Coordinate with, and report findings and corrective actions weekly to Facility Safety Manager and Contracting Officer Representative.
- B. A Certified Safety Professional (CSP) with specialized knowledge in construction safety or a certified Construction Safety and Health Technician (CSHT) shall randomly conduct a monthly site safety inspection. The CSP or CSHT can be a corporate safety professional or independently contracted. The CSP or CSHT will provide their

certificate number on the required report for verification as necessary.

- 1. Results of the inspection will be documented with tracking of the identified hazards to abatement.
- The Facility Safety Manager and Contracting Officer Representative will be notified immediately prior to start of the inspection and invited to accompany the inspection.
- 3. Identified hazard and controls will be discussed to come to a mutual understanding to ensure abatement and prevent future reoccurrence.
- 4. A report of the inspection findings with status of abatement will be provided to the Facility Safety Manager and Contracting Officer Representative within one week of the onsite inspection.

1.10 ACCIDENTS, OSHA 300 LOGS, AND MAN-HOURS:

- A. The prime contractor shall establish and maintain an accident reporting, recordkeeping, and analysis system to track and analyze all injuries and illnesses, high visibility incidents, and accidental property damage (both government and contractor) that occur on site. Notify the Facility Safety Manager and Contracting Officer Representative as soon as practical, but no more than four hours after any accident meeting the definition of a Moderate or Major incidents, High Visibility Incidents, or any weight handling and hoisting equipment accident. Within notification include contractor name; contract title; type of contract; name of activity, installation or location where accident occurred; date and time of accident; names of personnel injured; extent of property damage, if any; extent of injury, if known, and brief description of accident (to include type of construction equipment used, PPE used, etc.). Preserve the conditions and evidence on the accident site until the Facility Safety Manager and Contracting Officer Representative determine whether a government investigation will be conducted.
- B. Conduct an accident investigation for all Minor, Moderate and Major incidents as defined in paragraph DEFINITIONS, and property damage accidents resulting in at least \$20,000 in damages, to establish the root cause(s) of the accident. Complete the VA Form 2162 (or equivalent), and provide the report to the Facility Safety Manager and

Contracting Officer Representative within 5 calendar days of the accident. The Facility Safety Manager and Contracting Officer Representative will provide copies of any required or special forms.

- C. A summation of all man-hours worked by the contractor and associated sub-contractors for each month will be reported to the Facility Safety Manager and Contracting Officer Representative monthly.
- D. A summation of all Minor, Moderate, and Major incidents experienced on site by the contractor and associated sub-contractors for each month will be provided to the Facility Safety Manager and Contracting Officer Representative monthly. The contractor and associated sub-contractors' OSHA 300 logs will be made available to the Facility Safety Manager and Contracting Officer Representative as requested.

1.11 PERSONAL PROTECTIVE EQUIPMENT (PPE):

- A. PPE is governed in all areas by the nature of the work the employee is performing. For example, specific PPE required for performing work on electrical equipment is identified in NFPA 70E, Standard for Electrical Safety in the Workplace.
- B. Mandatory PPE includes:
 - Hard Hats unless written authorization is given by the Facility Safety Manager and Contracting Officer Representative in circumstances of work operations that have limited potential for falling object hazards such as during finishing work or minor remodeling. With authorization to relax the requirement of hard hats, if a worker becomes exposed to an overhead falling object hazard, then hard hats would be required in accordance with the OSHA regulations.
 - Safety glasses unless written authorization is given by the Facility Safety Manager and Contracting Officer Representative in circumstances of no eye hazards, appropriate safety glasses meeting the ANSI Z.87.1 standard must be worn by each person on site.
 - 3. Appropriate Safety Shoes based on the hazards present, safety shoes meeting the requirements of ASTM F2413-11 shall be worn by each person on site unless written authorization is given by the Facility Safety Manager and or Contracting Officer Representative in circumstances of no foot hazards.

 Hearing protection - Use personal hearing protection at all times in designated noise hazardous areas or when performing noise hazardous tasks.

1.12 INFECTION CONTROL

- A. Infection Control is critical in all medical center facilities. Interior construction activities causing disturbance of existing dust, or creating new dust, must be conducted within ventilation-controlled areas that minimize the flow of airborne particles into patient areas. Exterior construction activities causing disturbance of soil or creates dust in some other manner must be controlled.
- B. An AHA associated with infection control will be performed by VA personnel in accordance with FGI Guidelines (i.e. Infection Control Risk Assessment (ICRA)). The ICRA procedure found on the American Society for Healthcare Engineering (ASHE) website will be utilized. Risk classifications of Class II or lower will require approval by the Facility Safety Manager and Contracting Officer Representative before beginning any construction work. Risk classifications of Class III or higher will require a permit before beginning any construction work. Infection Control permits will be issued by the Facility Safety Manager. The Infection Control Permits will be posted outside the appropriate construction area. More than one permit may be issued for a construction project if the work is located in separate areas requiring separate classes. The primary project scope area for this project is: **Class** [__**II**__}, however, work outside the primary project scope area may vary. The required infection control precautions with each class are as follows:
 - 1. Class I requirements:
 - a. During Construction Work:
 - Notify the Facility Safety Manager and Contracting Officer Representative.
 - Execute work by methods to minimize raising dust from construction operations.
 - Ceiling tiles: Immediately replace a ceiling tiles displaced for visual inspection.

- b. Upon Completion:
 - 1) Clean work area upon completion of task
 - Notify the Facility Safety Manager and Contracting Officer Representative.
- 2. Class II requirements:
 - a. During Construction Work:
 - Notify the Facility Safety Manager and Contracting Officer Representative.
 - Provide active means to prevent airborne dust from dispersing into atmosphere such as wet methods or tool mounted dust collectors where possible.
 - 3) Water mist work surfaces to control dust while cutting.
 - 4) Seal unused doors with duct tape.
 - 5) Block off and seal air vents.
 - Remove or isolate HVAC system in areas where work is being performed.
 - b. Upon Completion:
 - 1) Wipe work surfaces with cleaner/disinfectant.
 - Contain construction waste before transport in tightly covered containers.
 - Wet mop and/or vacuum with HEPA filtered vacuum before leaving work area.
 - 4) Upon completion, restore HVAC system where work was performed
 - 5) Notify the Facility Safety Manager and Contracting Officer Representative.
- 3. Class III requirements:
 - a. During Construction Work:
 - Obtain permit from the Facility Safety Manager and Contracting Officer Representative.

- 2) Remove or Isolate HVAC system in area where work is being done to prevent contamination of duct system.
- 3) Complete all critical barriers i.e. sheetrock, plywood, plastic, to seal area from non-work area or implement control cube method (cart with plastic covering and sealed connection to work site with HEPA vacuum for vacuuming prior to exit) before construction begins. Install construction barriers and ceiling protection carefully, outside of normal work hours.
- 4) Maintain negative air pressure, 0.01 inches of water gauge, within work site utilizing HEPA equipped air filtration units and continuously monitored with a digital display, recording and alarm instrument, which must be calibrated on installation, maintained with periodic calibration and monitored by the contractor.
- 5) Contain construction waste before transport in tightly covered containers.
- Cover transport receptacles or carts. Tape covering unless solid lid.
- b. Upon Completion:
 - Do not remove barriers from work area until completed project is inspected by the Facility Safety Manager and Contracting Officer Representative and thoroughly cleaned by the VA Environmental Services Department.
 - Remove construction barriers and ceiling protection carefully to minimize spreading of dirt and debris associated with construction, outside of normal work hours.
 - 3) Vacuum work area with HEPA filtered vacuums.
 - 4) Wet mop area with cleaner/disinfectant.
 - 5) Upon completion, restore HVAC system where work was performed.
 - Return permit to the Facility Safety Manager and Contracting Officer Representative.
- 4. Class IV requirements:

- a. During Construction Work:
 - Obtain permit from the Facility Safety Manager and Contracting Officer Representative.
 - 2) Isolate HVAC system in area where work is being done to prevent contamination of duct system.
 - 3) Complete all critical barriers i.e. sheetrock, plywood, plastic, to seal area from non-work area or implement control cube method (cart with plastic covering and sealed connection to work site with HEPA vacuum for vacuuming prior to exit) before construction begins. Install construction barriers and ceiling protection carefully, outside of normal work hours.
 - 4) Maintain negative air pressure, 0.01 inches of water gauge, within work site utilizing HEPA equipped air filtration units and continuously monitored with a digital display, recording and alarm instrument, which must be calibrated on installation, maintained with periodic calibration and monitored by the contractor.5) Seal holes, pipes, conduits, and punctures.
 - 6) Construct anteroom and require all personnel to pass through this room so they can be vacuumed using a HEPA vacuum cleaner before leaving work site or they can wear cloth or paper coveralls that are removed each time they leave work site.
 - All personnel entering work site are required to wear shoe covers. Shoe covers must be changed each time the worker exits the work area.
- b. Upon Completion:
 - Do not remove barriers from work area until completed project is inspected by the Facility Safety Manager and Contracting Officer Representative with thorough cleaning by the VA Environmental Services Dept.
 - Remove construction barriers and ceiling protection carefully to minimize spreading of dirt and debris associated with construction, outside of normal work hours.

- Contain construction waste before transport in tightly covered containers.
- 4) Cover transport receptacles or carts. Tape covering unless solid lid.
- 5) Vacuum work area with HEPA filtered vacuums.
- 6) Wet mop area with cleaner/disinfectant.
- 7) Upon completion, restore HVAC system where work was performed.
- Return permit to the Facility Safety Manager and Contracting Officer Representative.
- C. Barriers shall be erected as required based upon classification (Class III & IV requires barriers) and shall be constructed as follows:
 - Class III and IV closed door with masking tape applied over the frame and door is acceptable for projects that can be contained in a single room.
 - Construction, demolition or reconstruction not capable of containment within a single room must have the following barriers erected and made presentable on hospital occupied side:
 - a. Class III & IV (where dust control is the only hazard, and an agreement is reached with the Resident Engineer and Medical Center) Airtight plastic barrier that extends from the floor to ceiling. Seams must be sealed with duct tape to prevent dust and debris from escaping
 - b. Class III & IV Drywall barrier erected with joints covered or sealed to prevent dust and debris from escaping.
 - c. Class III & IV Seal all penetrations in existing barrier airtight
 - d. Class III & IV Barriers at penetration of ceiling envelopes, chases and ceiling spaces to stop movement air and debris
 - e. Class IV only Anteroom or double entrance openings that allow workers to remove protective clothing or vacuum off existing clothing

- f. Class III & IV At elevators shafts or stairways within the field of construction, overlapping flap minimum of two feet wide of polyethylene enclosures for personnel access.
- D. Products and Materials:
 - Sheet Plastic: Fire retardant polystyrene, 6-mil thickness meeting local fire codes
 - 2. Barrier Doors: Self Closing One-hour fire-rated solid core wood in steel frame, painted.
 - 3. Dust proof one-hour fire-rated drywall
 - 4. High Efficiency Particulate Air-Equipped filtration machine rated at 95% capture of 0.3 microns including pollen, mold spores and dust particles. HEPA filters should have ASHRAE 85 or other prefilter to extend the useful life of the HEPA. Provide both primary and secondary filtrations units. Maintenance of equipment and replacement of the HEPA filters and other filters will be in accordance with manufacturer's instructions.
 - 5. Exhaust Hoses: Heavy duty, flexible steel reinforced; Ventilation Blower Hose
 - 6. Adhesive Walk-off Mats: Provide minimum size mats of 24 inches x 36 inches
 - 7. Disinfectant: Hospital-approved disinfectant or equivalent product
 - 8. Portable Ceiling Access Module
- E. Before any construction on site begins, all contractor personnel involved in the construction or renovation activity shall be educated and trained in infection prevention measures established by the medical center.
- F. A dust control program will be established and maintained as part of the contractor's infection preventive measures in accordance with the FGI Guidelines for Design and Construction of Healthcare Facilities. Prior to start of work, prepare a plan detailing project-specific dust protection measures with associated product data, including periodic status reports, and submit to Facility CSC for review for compliance

with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.

- G. Medical center Infection Control personnel will monitor for airborne disease (e.g. aspergillosis) during construction. A baseline of conditions will be established by the medical center prior to the start of work and periodically during the construction stage to determine impact of construction activities on indoor air quality with safe thresholds established.
- H. In general, the following preventive measures shall be adopted during construction to keep down dust and prevent mold.
 - Contractor shall verify that construction exhaust to exterior is not reintroduced to the medical center through intake vents, or building openings. HEPA filtration is required where the exhaust dust may reenter the medical center.
 - 2. Exhaust hoses shall be exhausted so that dust is not reintroduced to the medical center.
 - 3. Adhesive Walk-off/Carpet Walk-off Mats shall be used at all interior transitions from the construction area to occupied medical center area. These mats shall be changed as often as required to maintain clean work areas directly outside construction area at all times.
 - 4. Vacuum and wet mop all transition areas from construction to the occupied medical center at the end of each workday. Vacuum shall utilize HEPA filtration. Maintain surrounding area frequently. Remove debris as it is created. Transport these outside the construction area in containers with tightly fitting lids.
 - 5. The contractor shall not haul debris through patient-care areas without prior approval of the Resident Engineer and the Medical Center. When, approved, debris shall be hauled in enclosed dust proof containers or wrapped in plastic and sealed with duct tape. No sharp objects should be allowed to cut through the plastic. Wipe down the exterior of the containers with a damp rag to remove dust. All equipment, tools, material, etc. transported through occupied areas shall be made free from dust and moisture by vacuuming and wipe down.

- 6. There shall be no standing water during construction. This includes water in equipment drip pans and open containers within the construction areas. All accidental spills must be cleaned up and dried within 12 hours. Remove and dispose of porous materials that remain damp for more than 72 hours.
- At completion, remove construction barriers and ceiling protection carefully, outside of normal work hours. Vacuum and clean all surfaces free of dust after the removal.
- I. Final Cleanup:
 - Upon completion of project, or as work progresses, remove all construction debris from above ceiling, vertical shafts and utility chases that have been part of the construction.
 - Perform HEPA vacuum cleaning of all surfaces in the construction area. This includes walls, ceilings, cabinets, furniture (built-in or free standing), partitions, flooring, etc.
 - 3. All new air ducts shall be cleaned prior to final inspection.

J. Exterior Construction

- Contractor shall verify that dust will not be introduced into the medical center through intake vents, or building openings. HEPA filtration on intake vents is required where dust may be introduced.
- Dust created from disturbance of soil such as from vehicle movement will be wetted with use of a water truck as necessary
- All cutting, drilling, grinding, sanding, or disturbance of materials shall be accomplished with tools equipped with either local exhaust ventilation (i.e. vacuum systems) or wet suppression controls.

1.13 TUBERCULOSIS SCREENING

A. Contractor shall provide written certification that all contract employees assigned to the work site have had a pre-placement tuberculin screening within 90 days prior to assignment to the worksite and been found have negative TB screening reactions. Contractors shall be required to show documentation of negative TB screening reactions for

any additional workers who are added after the 90-day requirement before they will be allowed to work on the work site. NOTE: This can be the Center for Disease Control (CDC) and Prevention and two-step skin testing or a Food and Drug Administration (FDA)-approved blood test.

- Contract employees manifesting positive screening reactions to the tuberculin shall be examined according to current CDC guidelines prior to working on VHA property.
- 2. Subsequently, if the employee is found without evidence of active (infectious) pulmonary TB, a statement documenting examination by a physician shall be on file with the employer (construction contractor), noting that the employee with a positive tuberculin screening test is without evidence of active (infectious) pulmonary TB.
- 3. If the employee is found with evidence of active (infectious) pulmonary TB, the employee shall require treatment with a subsequent statement to the fact on file with the employer before being allowed to return to work on VHA property.

1.14 FIRE SAFETY

- A. Fire Safety Plan: Establish and maintain a site-specific fire protection program in accordance with 29 CFR 1926. Prior to start of work, prepare a plan detailing project-specific fire safety measures, including periodic status reports, and submit to Facility Safety Manager and Contracting Officer Representative for review for compliance with contract requirements in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES. This plan may be an element of the Accident Prevention Plan.
- B. Site and Building Access: Maintain free and unobstructed access to facility emergency services and for fire, police and other emergency response forces in accordance with NFPA 241.
- C. Separate temporary facilities, such as trailers, storage sheds, and dumpsters, from existing buildings and new construction by distances in accordance with NFPA 241. For small facilities with less than 6 m (20 feet) exposing overall length, separate by 3m (10 feet).
- D. Temporary Construction Partitions:

- 1. Install and maintain temporary construction partitions to provide smoke-tight separations between construction areas, the areas that are described in phasing requirements and adjoining areas. Construct partitions of gypsum board or treated plywood (flame spread rating of 25 or less in accordance with ASTM E84) on both sides of fireretardant treated wood or metal steel studs. Extend the partitions through suspended ceilings to floor slab deck or roof. Seal joints and penetrations. At door openings, install Class C, ¾ hour fire/smoke rated doors with self-closing devices.
- 2. Install // one-hour // two-hour // fire-rated // temporary construction partitions as shown on drawings to maintain integrity of existing exit stair enclosures, exit passageways, fire-rated enclosures of hazardous areas, horizontal exits, smoke barriers, vertical shafts and openings enclosures.
- 3. Close openings in smoke barriers and fire-rated construction to maintain fire ratings. Seal penetrations with listed throughpenetration firestop materials in accordance with Section 07 84 00, FIRESTOPPING.
- E. Temporary Heating and Electrical: Install, use and maintain installations in accordance with 29 CFR 1926, NFPA 241 and NFPA 70.
- F. Means of Egress: Do not block exiting for occupied buildings, including paths from exits to roads. Minimize disruptions and coordinate with Facility Safety Manager and Contracting Officer Representative.
- G. Egress Routes for Construction Workers: Maintain free and unobstructed egress. Inspect daily. Report findings and corrective actions weekly to Facility Safety Manager and Contracting Officer Representative.
- H. Fire Extinguishers: Provide and maintain extinguishers in construction areas and temporary storage areas in accordance with 29 CFR 1926, NFPA 241 and NFPA 10.
 - All contractors are to provide their own portable fire extinguishers and maintained in operating condition.

- 2. All fire extinguishers are to be class A, B, and C. Combustibles Class A/ Flammable liquids Class B/ Electrical equipment Class C.
- 3. All extinguishers shall be conspicuously located and inspected when initially placed in service and at 30day intervals. These inspections shall include the following:
 - a. Location of its designated place to be secured off of floor or located so as not to be at risk of damage.
 - b. No obstruction to its access
 - c. Operating instructions on its name plate and legible.
 - d. Safety seals not broken. (once unit is used, must be replaced immediately).
 - e. Pressure gauge reading or indicator in the operable range or green position.
 - f. Ensure extinguisher has a Tag showing inspection dates of day, month, year and initials of inspector.
- Depending on the size of the construction area, minimum travel distance to extinguishers should not exceed 100 feet.
- I. Flammable and Combustible Liquids: Store, dispense and use liquids in accordance with 29 CFR 1926, NFPA 241 and NFPA 30.
- J. Existing Fire Protection: Do not impair automatic sprinklers, smoke and heat detection, and fire alarm systems, except for portions immediately under construction, and temporarily for connections. Provide fire watch for impairments more than 4 hours in a 24-hour period. Request interruptions in accordance with Article, OPERATIONS AND STORAGE AREAS, and coordinate with Facility Safety Manager and Contracting Officer

Representative. All existing or temporary fire protection systems (fire alarms, sprinklers) located in construction areas shall be tested as coordinated with the medical center. Parameters for the testing and results of any tests performed shall be recorded by the medical center and copies provided to the COR.

- M. Smoke Detectors: Prevent accidental operation. Remove temporary covers at end of work operations each day. Coordinate with Facility Safety Manager and Contracting Officer Representative.
- N. Hot Work: Perform and safeguard hot work operations in accordance with NFPA 241 and NFPA 51B. Coordinate with the COR. Obtain permits from the Facility Fire Department at least _2__ hours in advance. Designate contractor's responsible project-site fire prevention program manager to permit hot work. Provide fire watch for 2 hours after completion of welding operation, even if it extends after work hours.
- O. Fire Hazard Prevention and Safety Inspections: Inspect entire construction areas weekly. Coordinate with, and report findings and corrective actions weekly to Facility Fire Department and Contracting Officer Representative.
- P. Smoking: Smoking is prohibited in and adjacent to construction areas inside existing buildings and additions under construction. In separate and detached buildings under construction, smoking is prohibited except in designated smoking rest areas.
- Q. Dispose of waste and debris in accordance with NFPA 241. Remove from buildings daily.
- R. If required, submit documentation to the Facility Safety Office and COR that personnel have been trained in the fire safety aspects of working in areas with impaired structural or compartmentalization features.
- S. If a nail gun or other piece of equipment is to be used that makes a loud or "shot" like sound, notify the COR in advance so he/she can decide if nearby staff or patients need to be notified in advance.

1.15 ELECTRICAL

A. All electrical work shall comply with NFPA 70 (NEC), NFPA 70B, NFPA 70E, 29 CFR Part 1910 Subpart J - General Environmental Controls, 29

CFR Part 1910 Subpart S - Electrical, and 29 CFR 1926 Subpart K in addition to other references required by contract.

- B. All qualified persons performing electrical work under this contract shall be licensed journeyman or master electricians. All apprentice electricians performing under this contract shall be deemed unqualified persons unless they are working under the immediate supervision of a licensed electrician or master electrician.
- C. All electrical work will be accomplished de-energized and in the Electrically Safe Work Condition (refer to NFPA 70E for Work Involving Electrical Hazards, including Exemptions to Work Permit). Any Contractor, subcontractor or temporary worker who fails to fully comply with this requirement is subject to immediate termination in accordance with FAR clause 52.236-5(c). Only in rare circumstance where achieving an electrically safe work condition prior to beginning work would increase or cause additional hazards or is infeasible due to equipment design or operational limitations is energized work permitted. The Facility Safety Manager and Contracting Officer Representative with approval of the Medical Center Director will make the determination if the circumstances would meet the exception outlined above. An AHA and permit specific to energized work activities will be developed, reviewed, and accepted by the VA prior to the start of that activity.
 - Development of a Hazardous Electrical Energy Control Procedure is required prior to de-energization. A single Simple Lockout/Tagout Procedure for multiple work operations can only be used for work involving qualified person(s) de-energizing one set of conductors or circuit part source. Task specific Complex Lockout/Tagout Procedures are required at all other times.
 - 2. Verification of the absence of voltage after de-energization and lockout/tagout is considered "energized electrical work" (live work) under NFPA 70E, and shall only be performed by qualified persons wearing appropriate shock protective (voltage rated) gloves and arc rate personal protective clothing and equipment, using Underwriters Laboratories (UL) tested and appropriately rated contact electrical testing instruments or equipment appropriate for the environment in which they will be used.

- 3. Personal Protective Equipment (PPE) and electrical testing instruments will be readily available for inspection by the Facility Safety Manager and Contracting Officer Representative.
- D. Before beginning any electrical work, an Activity Hazard Analysis (AHA) will be conducted to include Shock Hazard and Arc Flash Hazard analyses (NFPA Tables can be used only as a last alterative and it is strongly suggested a full Arc Flash Hazard Analyses be conducted). Work shall not begin until the AHA for the work activity and permit for energized work has been reviewed and accepted by the Facility Safety Manager and Contracting Officer Representative and discussed with all engaged in the activity, including the Contractor, subcontractor(s), and Government on-site representatives at preparatory and initial control phase meetings.
- E. Ground-fault circuit interrupters. GFCI protection shall be provided where an employee is operating or using cord- and plug-connected tools related to construction activity supplied by 125-volt, 15-, 20-, or 30ampere circuits. Where employees operate or use equipment supplied by greater than 125-volt, 15-, 20-, or 30- ampere circuits, GFCI protection or an assured equipment grounding conductor program shall be implemented in accordance with NFPA 70E - 2015, Chapter 1, Article 110.4(C)(2)..

1.16 FALL PROTECTION

- A. The fall protection (FP) threshold height requirement is 6 ft (1.8 m) for ALL WORK, unless specified differently or the OSHA 29 CFR 1926 requirements are more stringent, to include steel erection activities, systems-engineered activities (prefabricated) metal buildings, residential (wood) construction and scaffolding work.
 - The use of a Safety Monitoring System (SMS) as a fall protection method is prohibited.
 - 2. The use of Controlled Access Zone (CAZ) as a fall protection method is prohibited.
 - 3. A Warning Line System (WLS) may ONLY be used on floors or flat or low-sloped roofs (between 0 - 18.4 degrees or 4:12 slope) and shall be erected around all sides of the work area (See 29 CFR 1926.502(f) for construction of WLS requirements). Working within the WLS does

not require FP. No worker shall be allowed in the area between the roof or floor edge and the WLS without FP. FP is required when working outside the WLS.

4. Fall protection while using a ladder will be governed by the OSHA requirements.

1.17 SCAFFOLDS AND OTHER WORK PLATFORMS

- A. All scaffolds and other work platforms construction activities shall comply with 29 CFR 1926 Subpart L.
- B. The fall protection (FP) threshold height requirement is 6 ft (1.8 m) as stated in Section 1.16.
- C. The following hierarchy and prohibitions shall be followed in selecting appropriate work platforms.
 - Scaffolds, platforms, or temporary floors shall be provided for all work except that can be performed safely from the ground or similar footing.
 - 2. Ladders less than 20 feet may be used as work platforms only when use of small hand tools or handling of light material is involved.
 - 3. Ladder jacks, lean-to, and prop-scaffolds are prohibited.
 - 4. Emergency descent devices shall not be used as working platforms.
- D. Contractors shall use a scaffold tagging system in which all scaffolds are tagged by the Competent Person. Tags shall be color-coded: green indicates the scaffold has been inspected and is safe to use; red indicates the scaffold is unsafe to use. Tags shall be readily visible, made of materials that will withstand the environment in which they are used, be legible and shall include:
 - 1. The Competent Person's name and signature;
 - 2. Dates of initial and last inspections.
- E. Mast Climbing work platforms: When access ladders, including masts designed as ladders, exceed 20 ft (6 m) in height, positive fall protection shall be used.

1.18 EXCAVATION AND TRENCHES

- A. All excavation and trenching work shall comply with 29 CFR 1926 Subpart P. Excavations less than 5 feet in depth require evaluation by the contractor's "Competent Person" (CP) for determination of the necessity of an excavation protective system where kneeing, laying in, or All excavations and trenches 24 inches in depth or greater shall require a written trenching and excavation permit (NOTE - some States and other local jurisdictions require separate state/jurisdiction-issued excavation permits). The permit shall have two sections, one section will be completed prior to digging or drilling and the other will be completed prior to personnel entering the excavations greater than 5 feet in depth. Each section of the permit shall be provided to the Facility Safety Manager and COR prior to proceeding with digging or drilling and prior to proceeding with entering the excavation. After completion of the work and prior to opening a new section of an excavation, the permit shall be closed out and provided to the Facility Safety Manager and COR. The permit shall be maintained onsite and the first section of the permit shall include the following:
 - Estimated start time & stop time2. Specific location and nature of the work.
 - Indication of the contractor's "Competent Person" (CP) in excavation safety with qualifications and signature. Formal course in excavation safety is required by the contractor's CP.
 - Indication of whether soil or concrete removal to an offsite location is necessary.
 - 4. Indication of whether soil samples are required to determined soil contamination.
 - 5. Indication of coordination with local authority (i.e. "One Call") or contractor's effort to determine utility location with search and survey equipment. This would apply to any offsite utilities. Onsite utilities are the property of the Government and maintained by the Government.
 - Indication of review of site drawings for proximity of utilities to digging/drilling.

- C. The second section of the permit for excavations greater than five feet in depth shall include the following:
 - 1. Determination of OSHA classification of soil. Soil samples will be from freshly dug soil with samples taken from different soil type layers as necessary and placed at a safe distance from the excavation by the excavating equipment. A pocket penetronmeter will be utilized in determination of the unconfined compression strength of the soil for comparison against OSHA table (Less than 0.5 Tons/FT2 - Type C, 0.5 Tons/FT2 to 1.5 Tons/FT2 - Type B, greater than 1.5 Tons/FT2 - Type A without condition to reduce to Type B).
 - 2. Indication of selected protective system (sloping/benching, shoring, shielding). When soil classification is identified as "Type A" or "Solid Rock", only shoring or shielding or Professional Engineer designed systems can be used for protection. A Sloping/Benching system may only be used when classifying the soil as Type B or Type C. Refer to Appendix B of 29 CFR 1926, Subpart P for further information on protective systems designs.
 - Indication of the spoil pile being stored at least 2 feet from the edge of the excavation and safe access being provided within 25 feet of the workers.
 - 4. Indication of assessment for a potential toxic, explosive, or oxygen deficient atmosphere where oxygen deficiency (atmospheres containing less than 19.5 percent oxygen) or a hazardous atmosphere exists or could reasonably be expected to exist. Internal combustion engine equipment is not allowed in an excavation without providing force air ventilation to lower the concentration to below OSHA PELs, providing sufficient oxygen levels, and atmospheric testing as necessary to ensure safe levels are maintained.
- D As required by OSHA 29 CFR 1926.651(b)(1), the estimated location of utility installations, such as sewer, telephone, fuel, electric, water lines, or any other underground installations that reasonably may be expected to be encountered during excavation work, shall be determined prior to opening an excavation.
 - The planned dig site will be outlined/marked in white prior to locating the utilities.

- Used of the American Public Works Association Uniform Color Code is required for the marking of the proposed excavation and located utilities.
- 3. For offsite utilities, 811 will be called two business days before digging on all local or State lands and public Right-of Ways.
- 4. Utility Locations
 - a. Prior to digging, the appropriate digging permit must be obtained.
 - b. All underground utilities in the work area must be positively identified by a private utility locating service in addition to any station locating service and coordinated with the station utility department.
 - c. Any markings made during the utility investigation must be maintained throughout the contract.
- 5. Digging will not commence until all known utilities are marked.
- 6. Utility Location Verification
 - a. The Contractor must physically verify underground utility locations by hand digging using wood or fiberglass handled tools when any adjacent construction work is expected to come within three feet of the underground system.
 - b. Digging within 2 feet of a known utility must not be performed by means of mechanical equipment; hand digging shall be used.
 - c. If construction is parallel to an existing utility expose the utility by hand digging every 100 feet if parallel within 5 feet of the excavation.
- E. Excavations will be hand dug or excavated by other similar safe and acceptable means as excavation operations approach within 3 to 5 feet of identified underground utilities. Exploratory bar or other detection equipment will be utilized as necessary to further identify the location of underground utilities.
- F. Excavations greater than 20 feet in depth require a Professional Engineer designed excavation protective system.

1.19 CRANES

A. All crane work shall comply with 29 CFR 1926 Subpart CC.

- B. Prior to operating a crane, the operator must be licensed, qualified or certified to operate the crane. Thus, all the provisions contained with Subpart CC are effective and there is no "Phase In" date.
- C. A detailed lift plan for all lifts shall be submitted to the Facility Safety Manager and COR 14 days prior to the scheduled lift complete with route for truck carrying load, crane load analysis, siting of crane and path of swing and all other elements of a critical lift plan where the lift meets the definition of a critical lift. Critical lifts require a more comprehensive lift plan to minimize the potential of crane failure and/or catastrophic loss. The plan must be reviewed and accepted by the General Contractor before being submitted to the VA for review. The lift will not be allowed to proceed without prior acceptance of this document.
- D. Crane operators shall not carry loads
 - 1. over the general public or VAMC personnel
 - 2. over any occupied building unless
 - a. the top two floors are vacated
 - b. or overhead protection with a design live load of 300 psf is provided

1.20 CONTROL OF HAZARDOUS ENERGY (LOCKOUT/TAGOUT)

A. All installation, maintenance, and servicing of equipment or machinery shall comply with 29 CFR 1910.147 except for specifically referenced operations in 29 CFR 1926 such as concrete & masonry equipment [1926.702(j)], heavy machinery & equipment [1926.600(a)(3)(i)], and process safety management of highly hazardous chemicals (1926.64). Control of hazardous electrical energy during the installation, maintenance, or servicing of electrical equipment shall comply with Section 1.15 to include NFPA 70E and other VA specific requirements discussed in the section.

1.21 CONFINED SPACE ENTRY

A. All confined space entry shall comply with 29 CFR 1926, Subpart AA except for specifically referenced operations in 29 CFR 1926 such as excavations/trenches [1926.651(g)].

- B. A site-specific Confined Space Entry Plan (including permitting process) shall be developed and submitted to the Facility Safety Manager and COR.
- C. Obtain permits from the Facility Fire Department at least __1_ hours in advance.

1.22 WELDING AND CUTTING

As specified in section 1.14, Hot Work: Perform and safeguard hot work operations in accordance with NFPA 241 and NFPA 51B. Coordinate with Facility Safety Manager and COR. Obtain permits from the Facility Fire Department at least __2_ hours in advance. Designate contractor's responsible project-site fire prevention program manager to permit hot work.

1.23 LADDERS

- A. All Ladder use shall comply with 29 CFR 1926 Subpart X.
- B. All portable ladders shall be of sufficient length and shall be placed so that workers will not stretch or assume a hazardous position.
- C. Manufacturer safety labels shall be in place on ladders
- D. Step Ladders shall not be used in the closed position
- E. Top steps or cap of step ladders shall not be used as a step
- F. Portable ladders, used as temporary access, shall extend at least 3 ft (0.9 m) above the upper landing surface.
 - When a 3 ft (0.9-m) extension is not possible, a grasping device (such as a grab rail) shall be provided to assist workers in mounting and dismounting the ladder.
 - In no case shall the length of the ladder be such that ladder deflection under a load would, by itself, cause the ladder to slip from its support.
- G. Ladders shall be inspected for visible defects on a daily basis and after any occurrence that could affect their safe use. Broken or damaged ladders shall be immediately tagged "DO NOT USE," or with similar wording, and withdrawn from service until restored to a condition meeting their original design.

1.24 FLOOR & WALL OPENINGS

- A. All floor and wall openings shall comply with 29 CFR 1926 Subpart M.
- B. Floor and roof holes/openings are any that measure over 2 in (51 mm) in any direction of a walking/working surface which persons may trip or fall into or where objects may fall to the level below. Skylights located in floors or roofs are considered floor or roof hole/openings.
- C. All floor, roof openings or hole into which a person can accidentally walk or fall through shall be guarded either by a railing system with toeboards along all exposed sides or a load-bearing cover. When the cover is not in place, the opening or hole shall be protected by a removable guardrail system or shall be attended when the guarding system has been removed, or other fall protection system.
 - 1. Covers shall be capable of supporting, without failure, at least twice the weight of the worker, equipment and material combined.
 - 2. Covers shall be secured when installed, clearly marked with the word "HOLE", "COVER" or "Danger, Roof Opening-Do Not Remove" or colorcoded or equivalent methods (e.g., red or orange "X"). Workers must be made aware of the meaning for color coding and equivalent methods.
 - 3. Roofing material, such as roofing membrane, insulation or felts, covering or partly covering openings or holes, shall be immediately cut out. No hole or opening shall be left unattended unless covered.
 - Non-load-bearing skylights shall be guarded by a load-bearing skylight screen, cover, or railing system along all exposed sides.
 - 5. Workers are prohibited from standing/walking on skylights.

- - - E N D - - -

FACILITY MANAGEMENT SERVICE No. SH-18 November 2014

FALL PROTECTION STANDARD OPERATING PROCEDURES

- <u>PURPOSE</u>: To ensure employees follow standards outlined within MCM 001S-29 establishing minimum fall protection practices.
- 2. POLICY: It is the policy of FMS to reduce the probability of injuries to employees while working at heights.
- 3. PROCEDURES:
 - A. Training: All employees who may be exposed to fall hazards are required to receive training on how to recognize such hazards, and how to minimize their exposure to them. Employees shall receive training as soon after employment as possible, and before they are required to work in areas where fall hazards exist. All employees will receive Fall Protection Awareness training annually. This training will be developed by the Safety Office with the assistance of the Education Office.

A record of employees who have received training and training dates shall be maintained in LMS by the Safety Office. Training of employees by in-house and outside sources shall include:

- a. Nature of fall hazards employees may be exposed to.
- b. Correct procedures for erecting, maintaining, disassembling and inspecting fall protection systems.
- c. Use and operation of controlled access zone, guardrail, personal fall arrest, safety net, warning line and safety monitoring systems.
- d. Role of each employee in the Safety Monitoring System (if one is used).
- e. Limitations on the use of mechanical equipment during roofing work on low-slope roofs (if applicable).
- f. Correct procedures for equipment and materials handling, and storage and erection of overhead protection.
- g. Role of each employee in alternative Fall Protection Plans (if used).
- h. Requirements of the OSHA Fall Protection Standard, 29 CFR 1926, Subpart M.
- i. VAMC Martinsburg, WV requirements for reporting incidents that cause injury to an employee.

Additional training shall be provided on an annual basis, or as needed when changes are made to fall protection program or standards, or as fall protection equipment is acquired.

B. General Fall Protection Requirements: Persons working heights shall evaluate the need for fall protection before starting the task. Persons working at heights of six feet or greater shall be protected by a Fall Protection System (i.e. standard rail, warning line and safety monitoring system.) If such fall protection systems are infeasible, then a Personal Fall Arrest System must be used.

Tasks which pose a threat of failing onto equipment or machinery shall be protected by a Fall Protection System or a Personal Fall Arrest System regardless of the potential free fall distance.

C. **Personal Fall Protection Systems:** Attachments to this SOP list fall protection and prevention systems, including descriptions of various aerial lifts, scaffolds and other devices on station and the safety considerations that must be followed when using this equipment. FMS will update this listing when new equipment is acquired and when equipment is removed from service. This SOP will be reviewed annually and when new standards are issued by OSHA to ensure it is current.

It will be a mandatory element of reading and understanding, and will be reviewed annually by each employed who is authorized to utilize the equipment as part of their competency documentation.

The following are general requirements which apply to all personal fall arrest equipment.

- a. Personal fall arrest equipment is to be used by trained personnel only.
- b. Persons using personal fall arrest equipment must read and understand all manufacturer instructions.
- c. Personal fall arrest equipment is to be tested as a system. Therefore, mixing equipment from different manufacturers is prohibited.
- d. All personal fall arrest equipment must be visually inspected prior to each use.
- e. Employees are not to alter their personal fall arrest equipment in any way.
- f. Fall arrest equipment is not to be used for hoisting, towing, or any other purpose other than that for which it is designed.
- g. Maximum working load for fall arrest equipment is 310 pounds including the weight of tools and equipment that the wearer is holding.
- D. Tasks and Work Areas Requiring Fall Protection: The FMS Supervisor shall evaluate the worksite(s) to determine the specific type(s) of fall protection to be used in the various situations. Attachments to this SOP list possible tasks and specified fall protection guidelines for each.
- E. Fail Protection Plan: A Fall Protection Plan must be completed for each applicable project to identify exposures for fall hazards. The fall protection plan addresses the use of conventional fall protection at a number of areas on the project, and identifies specific activities that require non-conventional means of fall protection. The plan is designed to convey to employees the hazards and the required actions to be taken to eliminate or mitigate the fall hazards associated with a specific job and to establish safe procedures to prevent falls to lower levels through holes and openings in walking/working surfaces, from working at elevations above the ground or other hazards. A template for Fall Protection Plans is attached. Any changes to the fall protection plan must be approved by the Safety Manager, and Chief, FMS.
- F. **Rescue Plans:** Always consider rescue means prior to working at heights. For example, ensure a scissor lift, ladder or some other means is available for rescue; make sure a clear path is available for rescue operations.
- G. Accident Investigations: In the event of an accident or near miss, the employee shall report the incident to their supervisor. The supervisor is to contact the VAMC Safety Office to conduct an accident evaluation.
- H. Enforcement: Constant awareness of and respect for fall hazards, as well as compliance with all safety rules, are considered conditions of employment with VAMC Martinsburg, WV. The FMS Supervisor or VAMC Safety Office reserves the right to stop work when unsafe working conditions exist.

4. **<u>RESPONSIBILITIES</u>**:

- A. Service Chief, or designee will promote and enforce the measures and procedures identified by the Fall Protection Policy; promote good, safe work practices, with the essential goal of the prevention of accidents and employee injury. This includes the establishment of appropriate safe work procedures and the training of every employee at the time of initial assignment and with refresher training as appropriate.
- B. Safety Office will ensure regulatory compliance and provide training as required.

- C. **Supervisors** ensure their employees use safety procedures required in the performance of their assigned tasks. Ensure proper safety equipment is available for employees.
- D. **Employees** are required to adhere to the established safe work procedures and encouraged to assist in the promotion of the fall protection program.

REFERENCE: 29 CFR 1926, Subpart M 29 CFR 1910 Subpart D 29 CFR 1910 Subpart F 29 CFR 1910 Subpart F, Appendix A and C 29 CFR 1926 Subpart L 29 CFR 1926 Subpart L 29 CFR 1026 Subpart R 29 CFR 1026 Subpart X OSHA - STD 03-11-002 FMS SH- 17 Trenching and Excavation Safety Policy MCM 001S-29 Fall Protection Policy

- 5. <u>RESCISSION</u>: None.
- 6. **DISTRIBUTION:** B
- 7. <u>ATTACHMENT:</u> 1. Template for Fall Protection Plans

flei Chief, FMS

Page 3 of 5

SH-18: Fall Protection Policy

Attachment 1

Job Location:			 	
Date Plan Prepared:	 		 · · · · · ·	
Description of task or	 			
exposure:				
Dates of project:				
Date Plan Modified:	 			
Plan Prepared by (Competent Person /				
Qualified Person): Plan Approved by (Competent Person /	 · · · · ·		 	
Qualified Person: Plan Supervised by	 	<u> </u>	 	
(Competent Person / Qualified Person:				

The plan shall describe, in detail, the specific practices, equipment and methods used to protect workers from failing to lower level. This plan shall be updated as conditions change.

Duties and Responsibilities:

Identify Competent and Qualified Persons for fall protection and their responsibilities and qualifications.

Competent Person on the Job Site:			· _ · _ · _ · _ · _ · _ · · · · ·		
Training Date:					
Responsibilities:					
Qualified Person					
on the Job Site:	- <i>,</i> , , , ,		· · ··· · · ··· · · · · · · · · · · ·	····	
Training Date:	<u> </u>		· · · · · · · · · · · · · · · · · · ·		
Responsibilities:					
Description of the project o	r task to be perfort	ned:			

Anticipated hazards:

Fall hazard prevention and control:

Training requirements on specific equipment and fall protection or fall arrest devices (discuss training on new equipment; when training was conducted on existing equipment – by individual on the job and the date)

First Aid / Rescue plan and procedures:

Design of anchorages/fall arrest and horizontal lifeline systems and individual responsible for certification that the anchorages and lifelines meet structural and performance requirements:

Inspection, maintenance and storage of fall protection equipment (whose responsibility; frequency; written records):

Incident investigation procedures for near misses and incidents:

Evaluation of program effectiveness at completion of task / project with lessons learned:

Inspection and oversight methods to be employed to ensure fall protection, fall arrest, warning lines, and other elements of the fall protection program are properly utilized:

SECTION 01 42 19 REFERENCE STANDARDS

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies the availability and source of references and standards specified in the project manual under paragraphs APPLICABLE PUBLICATIONS and/or shown on the drawings.

1.2 AVAILABILITY OF SPECIFICATIONS LISTED IN THE GSA INDEX OF FEDERAL SPECIFICATIONS, STANDARDS AND COMMERCIAL ITEM DESCRIPTIONS FPMR PART 101-29 (FAR 52.211-1) (AUG 1998)

- A. The GSA Index of Federal Specifications, Standards and Commercial Item Descriptions, FPMR Part 101-29 and copies of specifications, standards, and commercial item descriptions cited in the solicitation may be obtained for a fee by submitting a request to - GSA Federal Supply Service, Specifications Section, Suite 8100, 470 East L'Enfant Plaza, SW, Washington, DC 20407, Telephone (202) 619-8925, Facsimile (202) 619-8978.
- B. If the General Services Administration, Department of Agriculture, or Department of Veterans Affairs issued this solicitation, a single copy of specifications, standards, and commercial item descriptions cited in this solicitation may be obtained free of charge by submitting a request to the addressee in paragraph (a) of this provision. Additional copies will be issued for a fee.

1.3 AVAILABILITY FOR EXAMINATION OF SPECIFICATIONS NOT LISTED IN THE GSA INDEX OF FEDERAL SPECIFICATIONS, STANDARDS AND COMMERCIAL ITEM DESCRIPTIONS (FAR 52.211-4) (JUN 1988)

The specifications and standards cited in this solicitation can be examined at the following location:

DEPARMENT OF VETERANS AFFAIRS Office of Construction & Facilities Management Facilities Quality Service (00CFM1A) 425 Eye Street N.W, (sixth floor) Washington, DC 20001 Telephone Numbers: (202) 632-5249 or (202) 632-5178 Between 9:00 AM - 3:00 PM

1.4 AVAILABILITY OF SPECIFICATIONS NOT LISTED IN THE GSA INDEX OF FEDERAL SPECIFICATIONS, STANDARDS AND COMMERCIAL ITEM DESCRIPTIONS (FAR 52.211-3) (JUN 1988)

The specifications cited in this solicitation may be obtained from the associations or organizations listed below.

- AA Aluminum Association Inc. http://www.aluminum.org
- AABC Associated Air Balance Council http://www.aabchq.com
- AAMA American Architectural Manufacturer's Association http://www.aamanet.org
- AASHTO American Association of State Highway and Transportation Officials http://www.aashto.org
- AATCC American Association of Textile Chemists and Colorists http://www.aatcc.org
- ACGIH American Conference of Governmental Industrial Hygienists http://www.acgih.org
- ACI American Concrete Institute http://www.aci-int.net
- ACPA American Concrete Pipe Association http://www.concrete-pipe.org
- ACPPA American Concrete Pressure Pipe Association http://www.acppa.org
- ADC Air Diffusion Council http://flexibleduct.org
- AGA American Gas Association http://www.aga.org
- AGC Associated General Contractors of America http://www.agc.org
- AGMA American Gear Manufacturers Association, Inc. http://www.agma.org

AH American Hort

https://www.americanhort.org

- AHAM Association of Home Appliance Manufacturers http://www.aham.org
- AIA American Institute of Architects

http://www.aia.org

- AISC American Institute of Steel Construction http://www.aisc.org
- AISI American Iron and Steel Institute http://www.steel.org
- AITC American Institute of Timber Construction https://aitc-glulam.org
- AMCA Air Movement and Control Association, Inc. http://www.amca.org
- ANSI American National Standards Institute, Inc. http://www.ansi.org
- APA The Engineered Wood Association http://www.apawood.org
- ARI Air-Conditioning and Refrigeration Institute http://www.ari.org
- ARPM Association for Rubber Product Manufacturers

https://arpm.com

- ASABE American Society of Agricultural and Biological Engineers https://www.asabe.org
- ASCE American Society of Civil Engineers http://www.asce.org
- ASHRAE American Society of Heating, Refrigerating, and Air-Conditioning Engineers http://www.ashrae.org

- ASME American Society of Mechanical Engineers http://www.asme.org
- ASSE American Society of Sanitary Engineering International http://www.asse-plumbing.org
- ASTM American Society for Testing and Materials International http://www.astm.org
- AWI Architectural Woodwork Institute https://www.awinet.org
- AWS American Welding Society https://www.aws.org
- AWWA American Water Works Association https://www.awwa.org
- BHMA Builders Hardware Manufacturers Association https://www.buildershardware.com
- BIA The Brick Industry Association http://www.gobrick.com
- CAGI Compressed Air and Gas Institute https://www.cagi.org
- CGA Compressed Gas Association, Inc. https://www.cganet.com
- CI The Chlorine Institute, Inc. https://www.chlorineinstitute.org
- CISCA Ceilings and Interior Systems Construction Association https://www.cisca.org
- CISPI Cast Iron Soil Pipe Institute https://www.cispi.org
- CLFMI Chain Link Fence Manufacturers Institute https://www.chainlinkinfo.org
- CPA Composite Panel Association

https://www.compositepanel.org

- CPMB Concrete Plant Manufacturers Bureau https://www.cpmb.org
- CRA California Redwood Association http://www.calredwood.org
- CRSI Concrete Reinforcing Steel Institute https://www.crsi.org
- CTI Cooling Technology Institute https://www.cti.org
- DHA Decorative Hardwoods Association https://www.decorativehardwood.org
- DHI Door and Hardware Institute https://www.dhi.org
- EGSA Electrical Generating Systems Association http://www.egsa.org
- EEI Edison Electric Institute https://www.eei.org
- EPA United States Environmental Protection Agency https://www.epa.gov
- ETL ETL Testing Services http://www.intertek.com
- FAA Federal Aviation Administration https://www.faa.gov
- FCC Federal Communications Commission https://www.fcc.gov
- FPS Forest Products Society http://www.forestprod.org
- GANA Glass Association of North America http://www.glasswebsite.com
- FM Factory Mutual Global Insurance
 https://www.fmglobal.com

- GA Gypsum Association https://gypsum.org
- GSA General Services Administration https://www.gsa.gov
- HI Hydraulic Institute http://www.pumps.org
- ICC International Code Council https://shop.iccsafe.org
- ICEA Insulated Cable Engineers Association https://www.icea.net
- ICAC Institute of Clean Air Companies http://www.icac.com
- IEEE Institute of Electrical and Electronics Engineers
 https://www.ieee.org\
- IGMA Insulating Glass Manufacturers Alliance

https://www.igmaonline.org

- IMSA International Municipal Signal Association http://www.imsasafety.org
- MBMA Metal Building Manufacturers Association https://www.mbma.com
- MSS Manufacturers Standardization Society of the Valve and Fittings Industry

http://msshq.org

- NAAMM National Association of Architectural Metal Manufacturers https://www.naamm.org
- PHCC Plumbing-Heating-Cooling Contractors Association https://www.phccweb.org
- NBS National Bureau of Standards See - NIST
- NBBI The National Board of Boiler and Pressure Vessel Inspectors https://www.nationalboard.org

01 42 19 - 6

NEC	National Electric Code
	See - NFPA National Fire Protection Association
NEMA	National Electrical Manufacturers Association
	https://www.nema.org
NFPA	National Fire Protection Association
	https://www.nfpa.org
NHLA	National Hardwood Lumber Association
	https://www.nhla.com
NIH	National Institute of Health
	https://www.nih.gov
NIST	National Institute of Standards and Technology
	https://www.nist.gov
NELMA	Northeastern Lumber Manufacturers Association, Inc.
	http://www.nelma.org
NPA	National Particleboard Association
	(See CPA, Composite Panel Association)
NSF	National Sanitation Foundation
	http://www.nsf.org
OSHA	Occupational Safety and Health Administration
	Department of Labor
	https://www.osha.gov
PCA	Portland Cement Association
	https://www.cement.org
PCI	Precast Prestressed Concrete Institute
	https://www.pci.org
PPI	Plastics Pipe Institute
	https://www.plasticpipe.org
PEI	Porcelain Enamel Institute
	http://www.porcelainenamel.com
PTI	Post-Tensioning Institute
	http://www.post-tensioning.org

- RFCI Resilient Floor Covering Institute https://www.rfci.com
- RIS Redwood Inspection Service (See Western Wood Products Association)

https://www.wwpa.org

- SCMA Southern Cypress Manufacturers Association http://www.cypressinfo.org
- SDI Steel Door Institute http://www.steeldoor.org
- SJI Steel Joist Institute https://www.steeljoist.org
- SMACNA Sheet Metal & Air-Conditioning Contractors'
 National Association
 https://www.smacna.org
- SSPC The Society for Protective Coatings https://www.sspc.org
- STI Steel Tank Institute https://www.steeltank.com
- SWI Steel Window Institute https://www.steelwindows.com
- TCNA Tile Council of North America

https://www.tcnatile.com

- TEMA Tubular Exchanger Manufacturers Association http://www.tema.org
- TPI Truss Plate Institute https://www.tpinst.org
- UBC The Uniform Building Code (See ICC)
- UL Underwriters' Laboratories Incorporated https://www.ul.com

- ULC Underwriters' Laboratories of Canada
- WCLB West Coast Lumber Inspection Bureau http://www.wclib.org
- WDMA Window and Door Manufacturers Association

https://www.wdma.com

- WRCLA Western Red Cedar Lumber Association https://www.realcedar.com
- WWPA Western Wood Products Association http://www.wwpa.org

- - - E N D - - -

A490SECTION 01 45 29 TESTING LABORATORY SERVICES

PART 1 - GENERAL

1.1 DESCRIPTION:

This section specifies materials testing activities and inspection services required during project construction to be provided by a Testing Laboratory retained by the General Contractor.

1.2 APPLICABLE PUBLICATIONS:

A. The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by the basic designation only.

в.	American Association of	State Highway and Transportation Officials				
	(AASHTO):					
	Т27-11	.Standard Method of Test for Sieve Analysis of				
		Fine and Coarse Aggregates				
	T96-02 (R2006)	.Standard Method of Test for Resistance to				
		Degradation of Small-Size Coarse Aggregate by				
		Abrasion and Impact in the Los Angeles Machine				
	Т99-10	.Standard Method of Test for Moisture-Density				
		Relations of Soils Using a 2.5 Kg (5.5 lb.)				
		Rammer and a 305 mm (12 in.) Drop				
	T104-99 (R2007)	.Standard Method of Test for Soundness of				
		Aggregate by Use of Sodium Sulfate or Magnesium				
		Sulfate				
	T180-10	.Standard Method of Test for Moisture-Density				
		Relations of Soils using a 4.54 kg (10 lb.)				
		Rammer and a 457 mm (18 in.) Drop				
	T191-02(R2006)	.Standard Method of Test for Density of Soil In-				
		Place by the Sand-Cone Method				
	Т310-13	.Standard Method of Test for In-place Density				
		and Moisture Content of Soil and Soil-aggregate				
		by Nuclear Methods (Shallow Depth)				
C.	American Concrete Insti	tute (ACI):				
	506 4R - 94 (R2004)	Guide for the Evaluation of Shotcrete				

	-01-18
D. American Society for Testing and Materials (ASTM):	
A370-12 Standard Test Methods and Definitions for	
Mechanical Testing of Steel Products	
A416/A416M-10Standard Specification for Steel Strand,	
Uncoated Seven-Wire for Prestressed Concre	te
C31/C31M-10Standard Practice for Making and Curing	
Concrete Test Specimens in the Field	
C33/C33M-11aStandard Specification for Concrete Aggreg	ates
C39/C39M-12Standard Test Method for Compressive Stren	gth
of Cylindrical Concrete Specimens	
C109/C109M-11bStandard Test Method for Compressive Stren	gth
of Hydraulic Cement Mortars	
C136-06Standard Test Method for Sieve Analysis of	Fine
and Coarse Aggregates	
C138/C138M-10bStandard Test Method for Density (Unit Wei	ght),
Yield, and Air Content (Gravimetric) of	
Concrete	
C140-12Standard Test Methods for Sampling and Tes	ting
Concrete Masonry Units and Related Units	
C143/C143M-10aStandard Test Method for Slump of Hydrauli	C
Cement Concrete	
C172/C172M-10Standard Practice for Sampling Freshly Mix	ed
Concrete	
C173/C173M-10bStandard Test Method for Air Content of fr	eshly
Mixed Concrete by the Volumetric Method	
C330/C330M-09Standard Specification for Lightweight	
Aggregates for Structural Concrete	
C567/C567M-11Standard Test Method for Density Structura	1
Lightweight Concrete	
C780-11Standard Test Method for Pre-construction	and
Construction Evaluation of Mortars for Pla	in
and Reinforced Unit Masonry	
C1019-11Standard Test Method for Sampling and Test	ing
Grout	
C1064/C1064M-11Standard Test Method for Temperature of Fr	eshly
Mixed Portland Cement Concrete	

C1077-11c	.Standard Practice for Agencies Testing Concrete
	and Concrete Aggregates for Use in Construction
	and Criteria for Testing Agency Evaluation
C1314-11a	.Standard Test Method for Compressive Strength
	of Masonry Prisms
D422-63(2007)	.Standard Test Method for Particle-Size Analysis
	of Soils
D698-07e1	.Standard Test Methods for Laboratory Compaction
	Characteristics of Soil Using Standard Effort
D1140-00(2006)	.Standard Test Methods for Amount of Material in
	Soils Finer than No. 200 Sieve
D1143/D1143M-07e1	.Standard Test Methods for Deep Foundations
,	Under Static Axial Compressive Load
D1188-07e1	.Standard Test Method for Bulk Specific Gravity
22200 070200000000000000000000000000000	and Density of Compacted Bituminous Mixtures
	Using Coated Samples
D1556-07	.Standard Test Method for Density and Unit
22000 0711111111111111111	Weight of Soil in Place by the Sand-Cone Method
D1557-09	.Standard Test Methods for Laboratory Compaction
51007 07	Characteristics of Soil Using Modified Effort
	(56,000ft lbf/ft3 (2,700 KNm/m3))
D2166-06	.Standard Test Method for Unconfined Compressive
22200 000000000000000000000000000000000	Strength of Cohesive Soil
D2167-08)	.Standard Test Method for Density and Unit
22207 00,	Weight of Soil in Place by the Rubber Balloon
	Method
D2216-10	.Standard Test Methods for Laboratory
	Determination of Water (Moisture) Content of
	Soil and Rock by Mass
D2974-07a	.Standard Test Methods for Moisture, Ash, and
<i>22,71</i> 0,41	Organic Matter of Peat and Other Organic Soils
D3666-11	.Standard Specification for Minimum Requirements
25000 11	for Agencies Testing and Inspecting Road and
	Paving Materials
D3740-11	.Standard Practice for Minimum Requirements for
	Agencies Engaged in Testing and/or Inspection
	ingeneration migagea in reporting and, or improction

	11-01-18
	of Soil and Rock as used in Engineering Design
	and Construction
D6938-10	.Standard Test Method for In-Place Density and
	Water Content of Soil and Soil-Aggregate by
	Nuclear Methods (Shallow Depth)
E94-04(2010)	.Standard Guide for Radiographic Examination
E164-08	.Standard Practice for Contact Ultrasonic
	Testing of Weldments
E329-11c	.Standard Specification for Agencies Engaged in
	Construction Inspection, Testing, or Special
	Inspection
E543-09	.Standard Specification for Agencies Performing
	Non-Destructive Testing
E605-93(R2011)	.Standard Test Methods for Thickness and Density
	of Sprayed Fire Resistive Material (SFRM)
	Applied to Structural Members
E709-08	.Standard Guide for Magnetic Particle
	Examination
E1155-96(R2008)	.Determining FF Floor Flatness and FL Floor
	Levelness Numbers
F3125/F3125M-15	.Standard Specification for High Strength
	Structural Bolts, Steel and Alloy Steel, Heat
	Treated, 120 ksi (830 MPa) and 150 ksi (1040
	MPa) Minimum Tensile Strength, Inch and Metric
	Dimensions
American Welding Societ	v (AWS):

E. American Welding Society (AWS):

D1.D1.1M-10.....Structural Welding Code-Steel

1.3 REQUIREMENTS:

A. Accreditation Requirements: Construction materials testing laboratories must be accredited by a laboratory accreditation authority and will be required to submit a copy of the Certificate of Accreditation and Scope of Accreditation. The laboratory's scope of accreditation must include the appropriate ASTM standards (i.e.; E329, C1077, D3666, D3740, A880, E543) listed in the technical sections of the specifications. Laboratories engaged in Hazardous Materials Testing shall meet the requirements of OSHA and EPA. The policy applies to the specific laboratory performing the actual testing, not just the "Corporate Office."

- B. Inspection and Testing: Testing laboratory shall inspect materials and workmanship and perform tests described herein and additional tests requested by COR. When it appears materials furnished, or work performed by Contractor fail to meet construction contract requirements, Testing Laboratory shall direct attention of COR to such failure.
- C. Written Reports: Testing laboratory shall submit test reports to COR, Contractor, unless other arrangements are agreed to in writing by the COR. Submit reports of tests that fail to meet construction contract requirements on colored paper.
- D. Verbal Reports: Give verbal notification to COR immediately of any irregularity.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 EARTHWORK:

- A. General: The Testing Laboratory shall provide qualified personnel, materials, equipment, and transportation as required to perform the services identified/required herein, within the agreed to schedule and/or time frame. The work to be performed shall be as identified herein and shall include but not be limited to the following:
 - 1. Observe fill and subgrades during proof-rolling to evaluate suitability of surface material to receive fill or base course. Provide recommendations to the COR regarding suitability or unsuitability of areas where proof-rolling was observed. Where unsuitable results are observed, witness excavation of unsuitable material and recommend to COR extent of removal and replacement of unsuitable materials and observe proof-rolling of replaced areas until satisfactory results are obtained.
 - 2. Provide observation of fill placement and compaction and field density testing in building areas and provide observation of fill placement and compaction and field density testing in pavement areas to verify that earthwork compaction obtained is in accordance with contract documents.

3. Provide supervised geotechnical technician to inspect excavation, subsurface preparation, and backfill for structural fill.

- B. Testing Compaction:
- Determine maximum density and optimum moisture content for each type of fill, backfill and subgrade material used.
 - 2. Make field density tests in accordance with the primary testing method following ASTM D6938 wherever possible. Field density tests utilizing ASTM D1556, AASHTO T191, or ASTM D2167 shall be utilized on a case by case basis only if there are problems with the validity of the results from the primary method due to specific site field conditions. Should the testing laboratory propose these alternative methods, they should provide satisfactory explanation to the COR before the tests are conducted.
 - a. Building Slab Subgrade: At least one test of subgrade for every 185 m² (2000 square feet) of building slab, but in no case fewer than three tests. In each compacted fill layer, perform one test for every 185 m² (2000 square feet) of overlaying building slab, but in no case fewer than three tests.
 - b. Footing Subgrade: At least one test for each layer of soil on which footings will be placed. Subsequent verification and approval of each footing subgrade may be based on a visual comparison of each subgrade with related tested subgrade when acceptable to COR. In each compacted fill layer below wall footings, perform one field density test for every 30 m (100 feet) of wall. Verify subgrade is level, all loose or disturbed soils have been removed, and correlate actual soil conditions observed with those indicated by test borings.
- C. Fill and Backfill Material Gradation: One test per stockpiled or inplace source material. Gradation of fill and backfill material shall be determined in accordance with ASTM C136.
- D. Testing for Footing Bearing Capacity: Evaluate if suitable bearing capacity material is encountered in footing subgrade.
- E. Testing Materials: Test suitability of on-site and off-site borrow as directed by COR.

- 3.2 FOUNDATION PILES: (NOT USED)
- 3.3 FOUNDATION CAISSONS: (NOT USED)
- 3.4 LANDSCAPING: (NOT USED)
- 3.5 ASPHALT CONCRETE PAVING: (NOT USED)
- 3.6 SITE WORK CONCRETE:

Test site work concrete including materials for concrete as required in Article CONCRETE of this section.

3.7 POST-TENSIONING OF CONCRETE: (NOT USED)

3.8 CONCRETE:

- A. Batch Plant Inspection and Materials Testing:
 - Perform continuous batch plant inspection until concrete quality is established to satisfaction of COR with concurrence of Contracting Officer and perform periodic inspections thereafter as determined by COR.
 - 2. Periodically inspect and test batch proportioning equipment for accuracy and report deficiencies to COR.
 - Sample and test mix ingredients as necessary to insure compliance with specifications.
 - 4. Sample and test aggregates daily and as necessary for moisture content. Test the dry rodded weight of the coarse aggregate whenever a sieve analysis is made, and when it appears there has been a change in the aggregate.
 - 5. Certify, in duplicate, ingredients and proportions and amounts of ingredients in concrete conform to approved trial mixes. When concrete is batched or mixed off immediate building site, certify (by signing, initialing or stamping thereon) on delivery slips (duplicate) that ingredients in truck-load mixes conform to proportions of aggregate weight, cement factor, and water-cement ratio of approved trial mixes.
- B. Field Inspection and Materials Testing:
 - 1. Provide a technician at site of placement at all times to perform concrete sampling and testing.
 - 2. Review the delivery tickets of the ready-mix concrete trucks arriving on-site. Notify the Contractor if the concrete cannot be placed within the specified time limits or if the type of concrete delivered is incorrect. Reject any loads that do not comply with the

Specification requirements. Rejected loads are to be removed from the site at the Contractor's expense. Any rejected concrete that is placed will be subject to removal.

- 3. Take concrete samples at point of placement in accordance with ASTM C172. Mold and cure compression test cylinders in accordance with ASTM C31. Make at least three cylinders for each 40 m³ (50 cubic yards) or less of each concrete type, and at least three cylinders for any one day's pour for each concrete type. After good concrete quality control has been established and maintained as determined by COR make three cylinders for each 80 m³ (100 cubic yards) or less of each concrete type, and at least three cylinders from any one day's pour for each concrete type. Label each cylinders from any one day's pour for each concrete type. Label each cylinder with an identification number. COR may require additional cylinders to be molded and cured under job conditions.
- 4. Perform slump tests in accordance with ASTM C143. Test the first truck each day, and every time test cylinders are made. Test pumped concrete at the hopper and at the discharge end of the hose at the beginning of each day's pumping operations to determine change in slump.
- 5. Determine the air content of concrete per ASTM C173. For concrete required to be air-entrained, test the first truck and every 20 m³ (25 cubic yards) thereafter each day. For concrete not required to be air-entrained, test every 80 m³ (100 cubic yards) at random. For pumped concrete, initially test concrete at both the hopper and the discharge end of the hose to determine change in air content.
- 6. If slump or air content fall outside specified limits, make another test immediately from another portion of same batch.
- 7. Perform unit weight tests in compliance with ASTM C138 for normal weight concrete and ASTM C567 for lightweight concrete. Test the first truck and each time cylinders are made.
- 8. Notify laboratory technician at batch plant of mix irregularities and request materials and proportioning check.
- 9. Verify that specified mixing has been accomplished.
- 10. Environmental Conditions: Determine the temperature per ASTM C1064 for each truckload of concrete during hot weather and cold weather concreting operations:

a. When ambient air temperature falls below 4.4 degrees C (40 degrees F), record maximum and minimum air temperatures in each 24 hour period; record air temperature inside protective enclosure; record minimum temperature of surface of hardened concrete.

- b. When ambient air temperature rises above 29.4 degrees C (85 degrees F), record maximum and minimum air temperature in each 24 hour period; record minimum relative humidity; record maximum wind velocity; record maximum temperature of surface of hardened concrete.
- 11. Inspect the reinforcing steel placement, including bar size, bar spacing, top and bottom concrete cover, proper tie into the chairs, and grade of steel prior to concrete placement. Submit detailed report of observations.
- 12. Observe conveying, placement, and consolidation of concrete for conformance to specifications.
- Observe condition of formed surfaces upon removal of formwork prior to repair of surface defects and observe repair of surface defects.
- 14. Observe curing procedures for conformance with specifications, record dates of concrete placement, start of preliminary curing, start of final curing, end of curing period.
- 15. Observe preparations for placement of concrete:
 - a. Inspect handling, conveying, and placing equipment, inspect vibrating and compaction equipment.
 - b. Inspect preparation of construction, expansion, and isolation joints.
- 16. Observe preparations for protection from hot weather, cold weather, sun, and rain, and preparations for curing.
- 17. Observe concrete mixing:
 - a. Monitor and record amount of water added at project site.
 - b. Observe minimum and maximum mixing times.
- 18. Measure concrete flatwork for levelness and flatness as follows:
 - a. Perform Floor Tolerance Measurements F_F and F_L in accordance with ASTM E1155. Calculate the actual overall F- numbers using the inferior/superior area method.

b. Perform all floor tolerance measurements within 48 hours after slab installation and prior to removal of shoring and formwork.

- c. Provide the Contractor and the COR with the results of all profile tests, including a running tabulation of the overall F_F and F_L values for all slabs installed to date, within 72 hours after each slab installation.
- 19. Other inspections:
 - a. Grouting under base plates.
 - b. Grouting anchor bolts and reinforcing steel in hardened concrete.
- C. Laboratory Tests of Field Samples:
 - Test compression test cylinders for strength in accordance with ASTM C39. For each test series, test one cylinder at 7 days and one cylinder at 28 days. Use remaining cylinder as a spare tested as directed by COR. Compile laboratory test reports as follows: Compressive strength test shall be result of one cylinder, except when one cylinder shows evidence of improper sampling, molding or testing, in which case it shall be discarded and strength of spare cylinder shall be used.
 - 2. Make weight tests of hardened lightweight structural concrete in accordance with ASTM C567.
 - 3. Furnish certified compression test reports (duplicate) to COR. In test report, indicate the following information:
 - a. Cylinder identification number and date cast.
 - b. Specific location at which test samples were taken.
 - c. Type of concrete, slump, and percent air.
 - d. Compressive strength of concrete in MPa (psi).
 - e. Weight of lightweight structural concrete in kg/m³ (pounds per cubic feet).
 - f. Weather conditions during placing.
 - g. Temperature of concrete in each test cylinder when test cylinder was molded.
 - h. Maximum and minimum ambient temperature during placing.
 - i. Ambient temperature when concrete sample in test cylinder was taken.
 - j. Date delivered to laboratory and date tested.

- 3.9 REINFORCEMENT: (NOT USED)
- 3.10 SHOTCRETE: (NOT USED)
- 3.11 PRESTRESSED CONCRETE: (NOT USED)
- 3.12 ARCHITECTURAL PRECAST CONCRETE: (NOT USED)
- 3.13 MASONRY: (NOT USED)
- 3.14 STRUCTURAL STEEL: (NOT USED)
- 3.15 STEEL DECKING: (NOT USED)
- 3.16 SHEAR CONNECTOR STUDS: (NOT USED)
- 3.17 SPRAYED-ON FIREPROOFING: NOT USED)
- 3.18 TYPE OF TEST:
 - A. Technical Personnel:
 - Technicians to perform tests and inspection listed above. Laboratory will be equipped with concrete cylinder storage facilities, compression machine, cube molds, proctor molds, balances, scales, moisture ovens, slump cones, air meter, and all necessary equipment for compaction control.

- - - E N D - - -

SECTION 01 57 19 TEMPORARY ENVIRONMENTAL CONTROLS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the control of environmental pollution and damage that the Contractor must consider for air, water, and land resources. It includes management of visual aesthetics, noise, solid waste, radiant energy, and radioactive materials, as well as other pollutants and resources encountered or generated by the Contractor. The Contractor is obligated to consider specified control measures with the costs included within the various contract items of work.
- B. Environmental pollution and damage is defined as the presence of chemical, physical, or biological elements or agents which:
 - 1. Adversely effect human health or welfare,
 - 2. Unfavorably alter ecological balances of importance to human life,
 - 3. Effect other species of importance to humankind, or;
 - Degrade the utility of the environment for aesthetic, cultural, and historical purposes.

C. Definitions of Pollutants:

- Chemical Waste: Petroleum products, bituminous materials, salts, acids, alkalis, herbicides, pesticides, organic chemicals, and inorganic wastes.
- Debris: Combustible and noncombustible wastes, such as leaves, tree trimmings, ashes, and waste materials resulting from construction or maintenance and repair work.
- 3. Sediment: Soil and other debris that has been eroded and transported by runoff water.
- Solid Waste: Rubbish, debris, garbage, and other discarded solid materials resulting from industrial, commercial, and agricultural operations and from community activities.
- 5. Surface Discharge: The term "Surface Discharge" implies that the water is discharged with possible sheeting action and subsequent soil erosion may occur. Waters that are surface discharged may terminate in drainage ditches, storm sewers, creeks, and/or "water of the United States" and would require a permit to discharge water from the governing agency.

- 6. Rubbish: Combustible and noncombustible wastes such as paper, boxes, glass and crockery, metal and lumber scrap, tin cans, and bones.
- 7. Sanitary Wastes:
 - a. Sewage: Domestic sanitary sewage and human and animal waste.
 - b. Garbage: Refuse and scraps resulting from preparation, cooking, dispensing, and consumption of food.

1.2 QUALITY CONTROL

- A. Establish and maintain quality control for the environmental protection of all items set forth herein.
- B. Record on daily reports any problems in complying with laws, regulations, and ordinances. Note any corrective action taken.

1.3 REFERENCES

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only.
- B. U.S. National Archives and Records Administration (NARA):33 CFR 328.....Definitions

1.4 SUBMITTALS

- A. In accordance with Section, 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, furnish the following:
 - 1. Environmental Protection Plan: After a contract is awarded and prior to the commencement of the work, the Contractor shall meet with the Contracting Officer to discuss the proposed Environmental Protection Plan and to develop mutual understanding relative to details of environmental protection. Not more than 20 days after the meeting, the Contractor shall prepare and submit to the Contracting Officer for approval, a written Environmental Protection Plan.
 - An Environmental Protection Plan shall be prepared for any construction project which will disturb any turf areas or result in an erodible surface being left unstabilized for a period longer than 7 days.
 - 3. The Environmental Protection Plan shall be prepared in accordance with the West Virginia Department of Environmental Quality requirements for a Construction Storm Water Discharge Permit, as outlined in the INSTRUCTIONS TO COMPLETE A SITE REGISTRATION APPLICATION FORM FOR THE WV/NPDES GENERAL PERMIT FOR CONSTRUCTION STORMWATER ACTIVITY (THREE ACRES AND GREATER ONLY). These instructions can be found on the WVDEP website. The link is as

follows:

http://www.dep.wv.gov/WWE/Programs/stormwater/csw/Pages/cswdocs.aspx

- 4. The Environmental Protection Plan shall be submitted for approval prior to initiating any land disturbing activity. The Contracting Officer may waive any of the requirements listed in the WVDEP Instructions referenced above.
- 5. In addition to addressing the erosion and sediment control needs of the site, the Environmental Protection Plan shall also describe how the proposed construction project will satisfy the requirements of the MS-4 permit in effect at the time of construction and the associated Storm Water Management Program Report.
- 6. Measures used to address erosion control and stormwater runoff quality shall be in conformance with the SWMP Report and additionally shall meet the requirements of those listed in the West Virginia Erosion and sedinment Control Best Management Practive Manual (current revision). These instructions can be found on the WVDEP website. The link is as follows: https://apps.dep.wv.gov/dwwm/stormwater/BMP/index.html
- 7. Not withstanding the requirements above, the Environmental protection Plan shall additionally, at a minimum, include the following:
 - a. Name(s) of person(s) within the Contractor's organization who is (are) responsible for ensuring adherence to the Environmental Protection Plan.
 - b. Name(s) and qualifications of person(s) responsible for manifesting hazardous waste to be removed from the site.
 - c. Name(s) and qualifications of person(s) responsible for training the Contractor's environmental protection personnel.
 - d. Description of the Contractor's environmental protection personnel training program.
 - e. A list of Federal, State, and local laws, regulations, and permits concerning environmental protection, pollution control, noise control and abatement that are applicable to the Contractor's proposed operations and the requirements imposed by those laws, regulations, and permits.
 - Methods for protection of features to be preserved within authorized work areas including trees, shrubs, vines, grasses,

ground cover, landscape features, air and water quality, fish and wildlife, soil, historical, and archeological and cultural resources.

- g. Procedures to provide the environmental protection that comply with the applicable laws and regulations. Describe the procedures to correct pollution of the environment due to accident, natural causes, or failure to follow the procedures as described in the Environmental Protection Plan.
- h. Permits, licenses, and the location of the solid waste disposal area.
- i. Drawings showing locations of any proposed temporary excavations or embankments for haul roads, material storage areas, structures, sanitary facilities, and stockpiles of excess or spoil materials. Include as part of an Erosion Control Plan approved by the District Office of the U.S. Soil Conservation Service and the Department of Veterans Affairs.
- j. Environmental Monitoring Plans for the job site including land, water, air, and noise.
- k. Work Area Plan showing the proposed activity in each portion of the area and identifying the areas of limited use or nonuse. Plan should include measures for marking the limits of use areas. This plan may be incorporated within the Erosion Control Plan.
- B. Approval of the Contractor's Environmental Protection Plan will not relieve the Contractor of responsibility for adequate and continued control of pollutants and other environmental protection measures.

1.5 PROTECTION OF ENVIRONMENTAL RESOURCES

- A. Protect environmental resources within the project boundaries and those affected outside the limits of permanent work during the entire period of this contract. Confine activities to areas defined by the specifications and drawings.
- B. Protection of Land Resources: Prior to construction, identify all land resources to be preserved within the work area. Do not remove, cut, deface, injure, or destroy land resources including trees, shrubs, vines, grasses, top soil, and land forms without permission from the Contracting Officer. Do not fasten or attach ropes, cables, or guys to trees for anchorage unless specifically authorized, or where special emergency use is permitted.

- Work Area Limits: Prior to any construction, mark the areas that require work to be performed under this contract. Mark or fence isolated areas within the general work area that are to be saved and protected. Protect monuments, works of art, and markers before construction operations begin. Convey to all personnel the purpose of marking and protecting all necessary objects.
- Protection of Landscape: Protect trees, shrubs, vines, grasses, land forms, and other landscape features shown on the drawings to be preserved by marking, fencing, or using any other approved techniques.
 - a. Box and protect from damage existing trees and shrubs to remain on the construction site.
 - b. Immediately repair all damage to existing trees and shrubs by trimming, cleaning, and painting with antiseptic tree paint.
 - c. Do not store building materials or perform construction activities closer to existing trees or shrubs than the farthest extension of their limbs.
- 3. Reduction of Exposure of Unprotected Erodible Soils: Plan and conduct earthwork to minimize the duration of exposure of unprotected soils. Clear areas in reasonably sized increments only as needed to use. Form earthwork to final grade as shown. Immediately protect side slopes and back slopes upon completion of rough grading.
- Temporary Protection of Disturbed Areas: Construct diversion ditches, benches, and berms to retard and divert runoff from the construction site to protected drainage areas approved under paragraph 208 of the Clean Water Act.
 - a. Sediment Basins: Trap sediment from construction areas in temporary or permanent sediment basins that accommodate the runoff of a local one-year storm. After each storm, pump the basins dry and remove the accumulated sediment. Control overflow/drainage with paved weirs or by vertical overflow pipes, draining from the surface.
 - b. Reuse or conserve the collected topsoil sediment as directed by the Contracting Officer. Topsoil use and requirements are specified in Section 31 20 00, EARTH MOVING.
 - c. Institute effluent quality monitoring programs as required by Federal, State, and local environmental agencies.

- 5. Erosion and Sedimentation Control Devices: The erosion and sediment controls selected and maintained by the Contractor shall be such that water quality standards are not violated as a result of the Contractor's activities. Construct or install all temporary and permanent erosion and sedimentation control features. Maintain temporary erosion and sediment control measures such as berms, dikes, drains, sedimentation basins, grassing, and mulching, until permanent drainage and erosion control facilities are completed and operative.
- 6. Manage borrow areas on Government property to minimize erosion and to prevent sediment from entering nearby water courses or lakes.
- 7. Manage and control spoil areas on Government property to limit spoil to areas as directed by or approved by the Contracting Officer and prevent erosion of soil or sediment from entering nearby water courses or lakes.
- Protect adjacent areas from despoilment by temporary excavations and embankments.
- 9. Handle and dispose of solid wastes in such a manner that will prevent contamination of the environment. Place solid wastes (excluding clearing debris) in containers that are emptied on a regular schedule. Transport all solid waste off Government property and dispose of waste in compliance with Federal, State, and local requirements.
- 10. Store chemical waste away from the work areas in corrosion resistant containers and dispose of waste in accordance with Federal, State, and local regulations.
- 11. Handle discarded materials other than those included in the solid waste category as directed by the Contracting Officer.
- C. Protection of Water Resources: Keep construction activities under surveillance, management, and control to avoid pollution of surface and ground waters and sewer systems. Implement management techniques to control water pollution by the listed construction activities that are included in this contract.
 - Washing and Curing Water: Do not allow wastewater directly derived from construction activities to enter water areas. Collect and place wastewater in retention ponds allowing the suspended material to settle, the pollutants to separate, or the water to evaporate.

01 57 19- 6

- Control movement of materials and equipment at stream crossings during construction to prevent violation of water pollution control standards of the Federal, State, or local government.
- 3. Monitor water areas affected by construction.
- D. Protection of Fish and Wildlife Resources: Keep construction activities under surveillance, management, and control to minimize interference with, disturbance of, or damage to fish and wildlife. Prior to beginning construction operations, list species that require specific attention along with measures for their protection.
- E. Protection of Air Resources: Keep construction activities under surveillance, management, and control to minimize pollution of air resources. Burning is not permitted on the job site. Keep activities, equipment, processes, and work operated or performed, in strict accordance with the State of West Virginia Department of Environmental Protection (DEP) and Federal emission and performance laws and standards. Maintain ambient air quality standards set by the Environmental Protection Agency, for those construction operations and activities specified.
 - Particulates: Control dust particles, aerosols, and gaseous byproducts from all construction activities, processing, and preparation of materials (such as from asphaltic batch plants) at all times, including weekends, holidays, and hours when work is not in progress.
 - 2. Particulates Control: Maintain all excavations, stockpiles, haul roads, permanent and temporary access roads, plant sites, spoil areas, borrow areas, and all other work areas within or outside the project boundaries free from particulates which would cause a hazard or a nuisance. Sprinklering, chemical treatment of an approved type, light bituminous treatment, baghouse, scrubbers, electrostatic precipitators, or other methods are permitted to control particulates in the work area.
 - 3. Hydrocarbons and Carbon Monoxide: Control monoxide emissions from equipment to Federal and State allowable limits.
 - 4. Odors: Control odors of construction activities and prevent obnoxious odors from occurring.
- F. Reduction of Noise: Minimize noise using every action possible. Perform noise-producing work in less sensitive hours of the day or week as

directed by the Contracting Officer. Maintain noise-produced work at or below the decibel levels and within the time periods specified.

 Perform construction activities involving repetitive, high-level impact noise only between 8:00 a.m. and 5:00 p.m unless otherwise permitted by local ordinance or the Contracting Officer. Repetitive impact noise on the property shall not exceed the following dB limitations:

Time Duration of Impact Noise	Sound Level in dB
More than 12 minutes in any hour	70
Less than 30 seconds of any hour	85
Less than three minutes of any hour	80
Less than 12 minutes of any hour	75

- Provide sound-deadening devices on equipment and take noise abatement measures that are necessary to comply with the requirements of this contract, consisting of, but not limited to, the following:
 - a. Maintain maximum permissible construction equipment noise levels
 at 15 m (50 feet) (dBA):

EARTHMOVING		MATERIALS HANDLING	
FRONT LOADERS	75	CONCRETE MIXERS	75
BACKHOES	75	CONCRETE PUMPS	75
DOZERS	75	CRANES	75
TRACTORS	75	DERRICKS IMPACT	75
SCAPERS	80	PILE DRIVERS	95
GRADERS	75	JACK HAMMERS	75
TRUCKS	75	ROCK DRILLS	80
PAVERS, STATIONARY	80	PNEUMATIC TOOLS	80
PUMPS	75	BLASTING	
GENERATORS	75	SAWS	75
COMPRESSORS	75	VIBRATORS	75

- b. Use shields or other physical barriers to restrict noise transmission.
- c. Provide soundproof housings or enclosures for noise-producing machinery.
- d. Use efficient silencers on equipment air intakes.

- e. Use efficient intake and exhaust mufflers on internal combustion engines that are maintained so equipment performs below noise levels specified.
- f. Line hoppers and storage bins with sound deadening material.
- g. Conduct truck loading, unloading, and hauling operations so that noise is kept to a minimum.
- 3. Measure sound level for noise exposure due to the construction at least once every five successive working days while work is being performed above 55 dB(A) noise level. Measure noise exposure at the property line or 15 m (50 feet) from the noise source, whichever is greater. Measure the sound levels on the <u>A</u> weighing network of a General Purpose sound level meter at slow response. To minimize the effect of reflective sound waves at buildings, take measurements at 900 to 1800 mm (three to six feet) in front of any building face. Submit the recorded information to the Contracting Officer noting any problems and the alternatives for mitigating actions.
- G. Restoration of Damaged Property: If any direct or indirect damage is done to public or private property resulting from any act, omission, neglect, or misconduct, the Contractor shall restore the damaged property to a condition equal to that existing before the damage at no additional cost to the Government. Repair, rebuild, or restore property as directed or make good such damage in an acceptable manner.
- H. Final Clean-up: On completion of project and after removal of all debris, rubbish, and temporary construction, Contractor shall leave the construction area in a clean condition satisfactory to the Contracting Officer. Cleaning shall include off the station disposal of all items and materials not required to be salvaged, as well as all debris and rubbish resulting from demolition and new work operations.

- - - E N D - - -

SECTION 01 58 16 TEMPORARY INTERIOR SIGNAGE

PART 1 GENERAL

DESCRIPTION

This section specifies temporary interior signs.

PART 2 PRODUCTS

2.1 TEMPORARY SIGNS

- A. Fabricate from 50 Kg (110 pound) mat finish white paper.
- B. Cut to 100 mm (4-inch) wide by 300 mm (12 inch) long size tag.
- C. Punch 3 mm (1/8-inch) diameter hole centered on 100 mm (4-inch) dimension of tag. Edge of Hole spaced approximately 13 mm (1/2-inch) from one end on tag.
- D. Reinforce hole on both sides with gummed cloth washer or other suitable material capable of preventing tie pulling through paper edge.
- E. Ties: Steel wire 0.3 mm (0.0120-inch) thick, attach to tag with twist tie, leaving 150 mm (6-inch) long free ends.

PART 3 EXECUTION

3.1 INSTALLATION

- A. Install temporary signs attached to room door frame or room doorknob, lever, or pull for doors on corridor openings.
- B. Mark on signs with felt tip marker having approximately 3 mm (1/8inch) wide stroke for clearly legible numbers or letters.
- C. Identify room with numbers as designated on floor plans.
- D. Installation shall be performed by a professional team specializing in interior signage installation with adherence to all ADA and VA codes.
- E. They shall be a member of the International Sign Association (ISA) and have at minimum of three years of experience installing similar interior signage in a healthcare environment as their primary business activity.
- F. Installation shall be performed by the manufacturer or an authorized installer for the system being installed.

3.2 LOCATION

- A. Install on doors that have room, corridor, and space numbers shown.
- B. Doors that do not require signs are as follows:
 - Corridor barrier doors (cross-corridor) in corridor with same number.
 - 2. Folding doors or partitions.

01 58 16 - 1

- 3. Toilet or bathroom doors within and between rooms.
- 4. Communicating doors in partitions between rooms with corridor entrance doors.
- 5. Closet doors within rooms.
- C. Replace missing, damaged, or illegible signs.

- - - E N D - - -

SECTION 01 74 19 CONSTRUCTION WASTE MANAGEMENT

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the requirements for the management of nonhazardous building construction and demolition waste.
- B. Waste disposal in landfills shall be minimized to the greatest extent possible. Of the inevitable waste that is generated, as much of the waste material as economically feasible shall be salvaged, recycled or reused.
- C. Contractor shall use all reasonable means to divert construction and demolition waste from landfills and incinerators, and facilitate their salvage and recycle not limited to the following:
 - 1. Waste Management Plan development and implementation.
 - 2. Techniques to minimize waste generation.
 - 3. Sorting and separating of waste materials.
 - 4. Salvage of existing materials and items for reuse or resale.
 - 5. Recycling of materials that cannot be reused or sold.
- D. At a minimum the following waste categories shall be diverted from landfills:
 - 1. Soil.
 - 2. Inerts (eg, concrete, masonry and asphalt).
 - 3. Clean dimensional wood and palette wood.
 - 4. Green waste (biodegradable landscaping materials).
 - 5. Engineered wood products (plywood, particle board and I-joists, etc).
 - 6. Metal products (eg, steel, wire, beverage containers, copper, etc).
 - 7. Cardboard, paper and packaging.
 - 8. Bitumen roofing materials.
 - 9. Plastics (eg, ABS, PVC).
 - 10. Carpet and/or pad.
 - 11. Gypsum board.
 - 12. Insulation.
 - 13. Paint.
 - 14. Fluorescent lamps.

1.2 RELATED WORK

- A. Section 02 41 00, DEMOLITION.
- B. Section 01 00 00, GENERAL REQUIREMENTS.

- C. Section 01 57 19, TEMPORARY ENVIRONMENTAL CONTROLS.
- D. Lead Paint: Section 02 83 33.13, LEAD BASED PAINT REMOVAL AND DISPOSAL.

1.3 QUALITY ASSURANCE

- A. Contractor shall practice efficient waste management when sizing, cutting and installing building products. Processes shall be employed to ensure the generation of as little waste as possible. Construction /Demolition waste includes products of the following:
 - 1. Excess or unusable construction materials.
 - 2. Packaging used for construction products.
 - 3. Poor planning and/or layout.
 - 4. Construction error.
 - 5. Over ordering.
 - 6. Weather damage.
 - 7. Contamination.
 - 8. Mishandling.
 - 9. Breakage.
- B. Establish and maintain the management of non-hazardous building construction and demolition waste set forth herein. Conduct a site assessment to estimate the types of materials that will be generated by demolition and construction.
- C. Contractor shall develop and implement procedures to recycle construction and demolition waste to a minimum of 50 percent.
- D. Contractor shall be responsible for implementation of any special programs involving rebates or similar incentives related to recycling. Any revenues or savings obtained from salvage or recycling shall accrue to the contractor.
- E. Contractor shall provide all demolition, removal and legal disposal of materials. Contractor shall ensure that facilities used for recycling, reuse and disposal shall be permitted for the intended use to the extent required by local, state, federal regulations. The Whole Building Design Guide website http://www.wbdg.org/tools/cwm.php provides a Construction Waste Management Database that contains information on companies that haul, collect, and process recyclable debris from construction projects.
- F. Contractor shall assign a specific area to facilitate separation of materials for reuse, salvage, recycling, and return. Such areas are to be kept neat and clean and clearly marked in order to avoid contamination or mixing of materials.

09-01-13

- G. Contractor shall provide on-site instructions and supervision of separation, handling, salvaging, recycling, reuse and return methods to be used by all parties during waste generating stages.
- H. Record on daily reports any problems in complying with laws, regulations and ordinances with corrective action taken.

1.4 TERMINOLOGY

- A. Class III Landfill: A landfill that accepts non-hazardous resources such as household, commercial and industrial waste resulting from construction, remodeling, repair and demolition operations.
- B. Clean: Untreated and unpainted; uncontaminated with adhesives, oils, solvents, mastics and like products.
- C. Construction and Demolition Waste: Includes all non-hazardous resources resulting from construction, remodeling, alterations, repair and demolition operations.
- D. Dismantle: The process of parting out a building in such a way as to preserve the usefulness of its materials and components.
- E. Disposal: Acceptance of solid wastes at a legally operating facility for the purpose of land filling (includes Class III landfills and inert fills).
- F. Inert Backfill Site: A location, other than inert fill or other disposal facility, to which inert materials are taken for the purpose of filling an excavation, shoring or other soil engineering operation.
- G. Inert Fill: A facility that can legally accept inert waste, such as asphalt and concrete exclusively for the purpose of disposal.
- H. Inert Solids/Inert Waste: Non-liquid solid resources including, but not limited to, soil and concrete that does not contain hazardous waste or soluble pollutants at concentrations in excess of water-quality objectives established by a regional water board, and does not contain significant quantities of decomposable solid resources.
- I. Mixed Debris: Loads that include commingled recyclable and nonrecyclable materials generated at the construction site.
- J. Mixed Debris Recycling Facility: A solid resource processing facility that accepts loads of mixed construction and demolition debris for the purpose of recovering re-usable and recyclable materials and disposing non-recyclable materials.
- K. Permitted Waste Hauler: A company that holds a valid permit to collect and transport solid wastes from individuals or businesses for the purpose of recycling or disposal.

01 74 19 - 3

- L. Recycling: The process of sorting, cleansing, treating, and reconstituting materials for the purpose of using the altered form in the manufacture of a new product. Recycling does not include burning, incinerating or thermally destroying solid waste.
 - On-site Recycling Materials that are sorted and processed on site for use in an altered state in the work, i.e. concrete crushed for use as a sub-base in paving.
 - Off-site Recycling Materials hauled to a location and used in an altered form in the manufacture of new products.
- M. Recycling Facility: An operation that can legally accept materials for the purpose of processing the materials into an altered form for the manufacture of new products. Depending on the types of materials accepted and operating procedures, a recycling facility may or may not be required to have a solid waste facilities permit or be regulated by the local enforcement agency.
- N. Reuse: Materials that are recovered for use in the same form, on-site or off-site.
- O. Return: To give back reusable items or unused products to vendors for credit.
- P. Salvage: To remove waste materials from the site for resale or re-use by a third party.
- Q. Source-Separated Materials: Materials that are sorted by type at the site for the purpose of reuse and recycling.
- R. Solid Waste: Materials that have been designated as non-recyclable and are discarded for the purposes of disposal.
- S. Transfer Station: A facility that can legally accept solid waste for the purpose of temporarily storing the materials for re-loading onto other trucks and transporting them to a landfill for disposal, or recovering some materials for re-use or recycling.

1.5 SUBMITTALS

- A. In accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES, furnish the following:
- B. Prepare and submit to the Resident Engineer a written demolition debris management plan. The plan shall include, but not be limited to, the following information:
 - 1. Procedures to be used for debris management.
 - 2. Techniques to be used to minimize waste generation.
 - 3. Analysis of the estimated job site waste to be generated:

- a. List of each material and quantity to be salvaged, reused, recycled.
- b. List of each material and quantity proposed to be taken to a landfill.
- 4. Detailed description of the Means/Methods to be used for material handling.
 - a. On site: Material separation, storage, protection where applicable.
 - b. Off site: Transportation means and destination. Include list of materials.
 - Description of materials to be site-separated and self-hauled to designated facilities.
 - Description of mixed materials to be collected by designated waste haulers and removed from the site.
 - c. The names and locations of mixed debris reuse and recycling facilities or sites.
 - d. The names and locations of trash disposal landfill facilities or sites.
 - e. Documentation that the facilities or sites are approved to receive the materials.
- C. Designated Manager responsible for instructing personnel, supervising, documenting and administer over meetings relevant to the Waste Management Plan.
- D. Monthly summary of construction and demolition debris diversion and disposal, quantifying all materials generated at the work site and disposed of or diverted from disposal through recycling.

1.6 APPLICABLE PUBLICATIONS

A Publications listed below form a part of this specification to the extent referenced. Publications are referenced by the basic designation only. In the event that criteria requirements conflict, the most stringent requirements shall be met.

1. U.S. Green Building Council (USGBC): LEED Green Building Rating System for New Construction

2. Green Guide for Health Care (GGHC).

1.7 RECORDS

Maintain records to document the quantity of waste generated; the quantity of waste diverted through sale, reuse, or recycling; and the

quantity of waste disposed by landfill or incineration. Records shall be kept in accordance with the LEED Reference Guide and LEED Template.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. List of each material and quantity to be salvaged, recycled, reused.
- B. List of each material and quantity proposed to be taken to a landfill.
- C. Material tracking data: Receiving parties, dates removed, transportation costs, weight tickets, tipping fees, manifests, invoices, net total costs or savings.

PART 3 - EXECUTION

3.1 COLLECTION

- A. Provide all necessary containers, bins and storage areas to facilitate effective waste management.
- B. Clearly identify containers, bins and storage areas so that recyclable materials are separated from trash and can be transported to respective recycling facility for processing.
- C. Hazardous wastes shall be separated, stored, disposed of according to local, state, federal regulations.

3.2 DISPOSAL

- A. Contractor shall be responsible for transporting and disposing of materials that cannot be delivered to a source-separated or mixed materials recycling facility to a transfer station or disposal facility that can accept the materials in accordance with state and federal regulations.
- B. Construction or demolition materials with no practical reuse or that cannot be salvaged or recycled shall be disposed of at a landfill or incinerator.

3.3 REPORT

- A. With each application for progress payment, submit a summary of construction and demolition debris diversion and disposal including beginning and ending dates of period covered.
- B. Quantify all materials diverted from landfill disposal through salvage or recycling during the period with the receiving parties, dates removed, transportation costs, weight tickets, manifests, invoices. Include the net total costs or savings for each salvaged or recycled material.
- C. Quantify all materials disposed of during the period with the receiving parties, dates removed, transportation costs, weight tickets, tipping

fees, manifests, invoices. Include the net total costs for each disposal.

- - - E N D - - -

SECTION 01 81 13 SUSTAINABLE CONSTRUCTION REQUIREMENTS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This Section describes general requirements and procedures to comply with federal mandates and U.S. Department of Veterans Affairs (VA) policies for sustainable construction.
- B. The Design Professional has selected materials and utilized integrated design processes that achieve the Government's objectives. Contractor is responsible to maintain and support these objectives in developing means and methods for performing work and in proposing product substitutions or changes to specified processes. Obtain approval from Contracting Officer for all changes and substitutions to materials or processes. Proposed changes must meet, or exceed, materials or processes specified.

1.2 RELATED WORK

- A. Section 01 57 19 TEMPORARY ENVIRONMENTAL CONTROLS.
- B. Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.

1.3 DEFINITIONS

- A. Recycled Content: Recycled content of materials is defined according to Federal Trade Commission Guides for the Use of Environmental Marketing Claims (16 CFR Part 260). Recycled content value of a material assembly is determined by weight. Recycled fraction of assembly is multiplied by cost of assembly to determine recycled content value.
 - "Post-Consumer" material is defined as waste material generated by households or by commercial, industrial, and institutional facilities in their role as end users of the product, which can no longer be used for its intended purpose.
 - 2. "Pre-Consumer" material is defined as material diverted from waste stream during the manufacturing process. Excluded is reutilization of materials such as rework, regrind, or scrap generated in a process and capable of being reclaimed within the same process that generated it.
- B. Biobased Products: Biobased products are derived from plants and other renewable agricultural, marine, and forestry materials and provide an alternative to conventional petroleum derived products. Biobased

products include diverse categories such as lubricants, cleaning products, inks, fertilizers, and bioplastics.

- C. Low Pollutant-Emitting Materials: Materials and products which are minimally odorous, irritating, or harmful to comfort and well-being of installers and occupants.
- D. Volatile Organic Compounds (VOC): Chemicals that are emitted as gases from certain solids or liquids. VOCs include a variety of chemicals, some of which may have short- and long-term adverse health effects.

1.4 REFERENCE STANDARDS

- A. Carpet and Rug Institute Green Label Plus program.
- B. U.S. Department of Agriculture BioPreferred program (USDA BioPreferred).
- C. U.S. Environmental Protection Agency Comprehensive Procurement Guidelines (CPG).
- D. U.S. Environmental Protection Agency WaterSense Program (WaterSense).
- E. U.S. Environmental Protection Agency ENERGY STAR Program (ENERGY STAR).
- F. U. S. Department of Energy Federal Energy Management Program (FEMP).
- G. Green Electronic Council EPEAT Program (EPEAT).

1.5 SUBMITTALS

- A. All submittals to be provided by contractor to COR.
- B. Sustainability Action Plan:
 - Submit documentation as required by this section; provide additional copies of typical submittals required under technical sections when sustainable construction requires copies of record submittals.
 - 2. Within 30 days after Preconstruction Meeting provide a narrative plan for complying with requirements stipulated within this section.
 - 3. Sustainability Action Plan must:
 - a. Make reference to sustainable construction submittals defined by this section.
 - b. Address all items listed under PERFORMANCE CRITERIA.
 - c. Indicate individual(s) responsible for implementing the plan.
- C. Low Pollutant-Emitting Materials Tracking Spreadsheet: Within 30 days after Preconstruction Meeting provide a preliminary Low Pollutant-Emitting Materials Tracking Spreadsheet. The Low Pollutant-Emitting Materials Tracking Spreadsheet must be an electronic file and include

all materials on Project in categories described under Low Pollutant-Emitting Materials in 01 81 13.

- D. Construction Indoor Air Quality (IAQ) Management Plan:
 - Not more than 30 days after Preconstruction Meeting provide a Construction IAQ Management Plan as an electronic file including descriptions of the following:
 - a. Instruction procedures for meeting or exceeding minimum requirements of ANSI/SMACNA 008-2008, Chapter 3, including procedures for HVAC Protection, Source Control, Pathway Interruption, Housekeeping, and Scheduling.
 - b. Instruction procedures for protecting absorptive materials stored on-site or installed from moisture damage.
 - c. Schedule of submission of photographs of on-site construction IAQ management measures such as protection of ducts and on-site stored oil installed absorptive materials.
 - d. Instruction procedures if air handlers must be used during construction, including a description of filtration media to be used at each return air grille.
 - e. Instruction procedure for replacing all air-filtration media immediately prior to occupancy after completion of construction, including a description of filtration media to be used at each air handling or air supply unit.
 - f. Instruction procedures and schedule for implementing building flush-out.
- E. Product Submittals:
 - Recycled Content: Submit product data from manufacturer indicating percentages by weight of post-consumer and pre-consumer recycled content for products having recycled content (excluding MEP systems equipment and components).
 - 2. Biobased Content: Submit product data for products to be installed or used which are included in any of the USDA BioPreferred program's product categories. Data to include percentage of biobased content and source of biobased material.
 - 3. Low Pollutant-Emitting Materials: Submit product data confirming compliance with relevant requirements for all materials on Project

in categories described under Low Pollutant-Emitting Materials in 01 81 13.

- For applicable products and equipment, submit product documentation confirming ENERGY STAR label, FEMP certification, WaterSense, and/or EPEAT certification.
- F. Sustainable Construction Progress Reports: Concurrent with each Application for Payment, submit a Sustainable Construction Progress Report to confirm adherence with Sustainability Action Plan.
 - 1. Include narratives of revised strategies for bringing work progress into compliance with plan and product submittal data.
 - Include updated and current Low Pollutant-Emitting Materials Tracking Spreadsheet.
 - 3. Include construction waste tracking, in tons or cubic yards, including waste description, whether diverted or landfilled, hauler, and percent diverted for comingled quantities; and excluding landclearing debris and soil. Provide haul receipts and documentation of diverted percentages for comingled wastes.
- G. Closeout Submittals: Within 14 days after Substantial Completion provide the following:
 - Final version of Low Pollutant-Emitting Materials Tracking Spreadsheet.
 - Manufacturer's cut sheets and product data highlighting the Minimum Efficiency Reporting Value (MERV) for filtration media installed at return air grilles during construction if permanently installed air handling units are used during construction.
 - Manufacturer's cut sheets and product data highlighting the Minimum Efficiency Reporting Value (MERV) for final filtration media in air handling units.
 - 4. Minimum 18 construction photographs including six photographs taken on three different occasions during construction of ANSI/SMACNA 008-2008, Chapter 3 approaches employed, along with a brief description of each approach, documenting implementation of IAQ management measures, such as protection of ducts and on-site stored or installed absorptive materials.
 - 5. Flush-out Documentation:
 - a. Product data for filtration media used during flush-out.

b. Product data for filtration media installed immediately prior to occupancy.

10-01-17

c. Signed statement describing building air flush-out procedures including dates when flush-out was begun and completed and statement that filtration media was replaced after flush-out.

1.6 QUALITY ASSURANCE

- A. Preconstruction Meeting: After award of Contract and prior to commencement of Work, schedule and conduct meeting with COR/Resident Engineer and Architect to discuss the Project Sustainable Action Plan content as it applies to submittals, project delivery, required Construction Indoor Air Quality (IAQ) Management Plan, and other Sustainable Construction Requirements. The purpose of this meeting is to develop a mutual understanding of the Sustainable Construction Requirements and coordination of contractor's management of these requirements with the Contracting Officer and the Construction Quality Manager.
- B. Construction Job Conferences: Status of compliance with Sustainable Construction Requirements of these specifications will be an agenda item at regular job meetings conducted during the course of work at the site.

1.7 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only. Comply with applicable provisions and recommendations of the following, except as otherwise shown or specified.
- B. Green Seal Standard GS-11, Paints, 1st Edition, May 20, 1993.
- C. Green Seal Standard GC-03, Anti-Corrosive Paints, 2nd Edition, January 7, 1997.
- D. Green Seal Standard GC-36, Commercial Adhesives, October 19, 2000.
- E. South Coast Air Quality Management District (SCAQMD) Rule 1113, Architectural Coatings, rules in effect on January 1, 2004.
- F. South Coast Air Quality Management District (SCAQMD) Rule 1168, July 1, 2005 and rule amendment date of January 7, 2005.

G. Sheet Metal and Air Conditioning National Contractors' Association (SMACNA) IAQ Guidelines for Occupied Buildings under Construction, 2nd Edition (ANSI/SMACNA 008-2008), Chapter 3.

10-01-17

- H. California Department of Public Health Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers, Version 1.1, Emission Testing method for California Specification 01350 (CDPH Standard Method V1.1-2010).
- I. Federal Trade Commission Guides for the Use of Environmental Marketing Claims (16 CFR Part 260).
- J. ASHRAE Standard 52.2-2007.

PART 2 - PRODUCTS

- 2.1 PERFORMANCE CRITERIA
- A. Construction waste diversion from landfill disposal must comprise at least 50 percent of total construction waste, excluding land clearing debris and soil. Alternative daily cover (ADC) does not qualify as material diverted from disposal.
- B. Low Pollutant-Emitting Materials:
 - Adhesives, sealants and sealant primers applied on site within the weatherproofing membrane must comply with VOC limits of SCAQMD Rule 1168:
 - a. Flooring Adhesives and Sealants:
 - 1) Indoor carpet adhesives: 50 g/L.
 - 2) Wood Flooring Adhesive: 100 g/L.
 - 3) Rubber Floor Adhesives: 60 g/L.
 - 4) Subfloor Adhesives: 50 g/L.
 - 5) Ceramic Tile Adhesives and Grout: 65 g/L.
 - 6) Cove Base Adhesives: 50 g/L.
 - 7) Multipurpose Construction Adhesives: 70 g/L.
 - 8) Porous Material (Except Wood) Substrate: 50 g/L.
 - 9) Wood Substrate: 30 g/L.
 - 10) Architectural Non-Porous Sealant Primer: 250 g/L.
 - 11) Architectural Porous Sealant Primer: 775 g/L.
 - 12) Other Sealant Primer: 750 g/L.
 - 13) Structural Wood Member Adhesive: 140 g/L.
 - 14) Sheet-Applied Rubber Lining Operations: 850 g/L.

- 15) Top and Trim Adhesive: 250 g/L.
- 16) Architectural Sealant: 250 g/L.
- 17) Other Sealant: 420 g/L.
- b. Non-Flooring Adhesives and Sealants:
 - 1) Drywall and Panel Adhesives: 50 g/L.
 - 2) Multipurpose Construction Adhesives: 70 g/L.
 - 3) Structural Glazing Adhesives: 100 g/L.
 - 4) Metal-to-Metal Substrate Adhesives: 30 g/L.
 - 5) Plastic Foam Substrate Adhesive: 50 g/L.
 - 6) Porous Material (Except Wood) Substrate Adhesive: 50 g/L.
 - 7) Wood Substrate Adhesive: 30 g/L.
 - 8) Fiberglass Substrate Adhesive: 80 g/L.
 - 9) Architectural Non-Porous Sealant Primer: 250 g/L.
 - 10) Architectural Porous Sealant Primer: 775 g/L.
 - 11) Other Sealant Primer: 750 g/L.
 - 12) PVC Welding Adhesives: 510 g/L.
 - 13) CPVC Welding Adhesives: 490 g/L.
 - 14) ABS Welding Adhesives: 325 g/L.
 - 15) Plastic Cement Welding Adhesives: 250 g/L.
 - 16) Adhesive Primer for Plastic: 550 g/L.
 - 17) Contact Adhesive: 80 g/L.
 - 18) Special Purpose Contact Adhesive: 250 g/L.
 - 19) Structural Wood Member Adhesive: 140 g/L.
 - 20) Sheet Applied Rubber Lining Operations: 850 g/L.
 - 21) Top and Trim Adhesive: 250 g/L.
 - 22) Architectural Sealants: 250 g/L.
 - 23) Other Sealants: 420 g/L.
- 2. Aerosol adhesives applied on site within the weatherproofing membrane must comply with the following Green Seal GS-36.
 - Aerosol Adhesive, General-Purpose Mist Spray: 65 percent VOCs by weight.
 - b. Aerosol Adhesive, General-Purpose Web Spray: 55 percent VOCs by weight.
 - c. Special-Purpose Aerosol Adhesive (All Types): 70 percent VOCs by weight.

- 3. Paints and coatings applied on site within the weatherproofing membrane must comply with the following criteria:
 - a. VOC content limits for paints and coatings established in Green Seal Standard GS-11.

- b. VOC content limit for anti-corrosive and anti-rust paints applied to interior ferrous metal substrates of 250 g/L established in Green Seal GC-03.
- c. Clear wood finishes, floor coatings, stains, primers, sealers, and shellacs applied to interior elements must not exceed VOC content limits established in SCAQMD Rule 1113.
- d. Comply with the following VOC content limits:
 - 1) Anti-Corrosive/Antirust Paints: 250 g/L.
 - 2) Clear Wood Finish, Lacquer: 550 g/L.
 - 3) Clear Wood Finish, Sanding Sealer: 350 g/L.
 - 4) Clear Wood Finish, Varnish: 350 g/L.
 - 5) Floor Coating: 100 g/L.
 - 6) Interior Flat Paint, Coating or Primer: 50 g/L.
 - 7) Interior Non-Flat Paint, Coating or Primer: 150 g/L.
 - 8) Sealers and Undercoaters: 200 g/L.
 - 9) Shellac, Clear: 730 g/L.
 - 10) Shellac, Pigmented: 550 g/L.
 - 11) Stain: 250 g/L.
 - 12) Clear Brushing Lacquer: 680 g/L.
 - 13) Concrete Curing Compounds: 350 g/L.
 - 14) Japans/Faux Finishing Coatings: 350 g/L.
 - 15) Magnesite Cement Coatings: 450 g/L.
 - 16) Pigmented Lacquer: 550 g/L.
 - 17) Waterproofing Sealers: 250 g/L.
 - 18) Wood Preservatives: 350 g/L.
 - 19) Low-Solids Coatings: 120 g/L.
- 4. Each non-carpet flooring element installed in building interior which is not inherently non-emitting (stone, ceramic, powder-coated metals, plated or anodized metal, glass, concrete, clay brick, and unfinished or untreated solid wood flooring) must comply with one of the following:

- a. Meet requirements of the FloorScore standard as shown with testing by an independent third-party.
- b. Maximum VOC concentrations specified in CDPH Standard Method V1.1-2010, using office scenario at 14 day time point.
- Composite wood and agrifiber products used within the weatherproofing membrane must contain no added urea-formaldehyde resins.
- Laminating adhesives used to fabricate on-site and shop-applied composite wood and agrifiber assemblies must not contain added ureaformaldehyde.
- C. Recycled Content:
 - Any products being installed or used that are listed on EPA Comprehensive Procurement Guidelines designated product list must meet or exceed the EPA's recycled content recommendations. The EPA Comprehensive Procurement Guidelines categories include:
 - a. Building insulation.
 - b. Cement and concrete.
 - c. Consolidated and reprocessed latex paint.
 - d. Floor tiles.
 - e. Flowable fill.
 - f. Laminated paperboard.
 - g. Modular threshold ramps.
 - h. Nonpressure pipe.
 - i. Patio blocks.
 - j. Roofing materials.
 - k. Shower and restroom dividers/partitions.
 - 1. Structural fiberboard.
 - m. Compost and fertilizer made from recovered organic materials.
 - n. Hydraulic mulch.
 - o. Lawn and garden edging.
 - p. Plastic lumber landscaping timbers and posts.
 - q. Park benches and picnic tables.
- D. Biobased Content:
 - Materials and equipment being installed or used that are listed on the USDA BioPreferred program product category list must meet or exceed USDA's minimum biobased content threshold. Refer to

individual specification sections for detailed requirements applicable to that section.

a. USDA BioPreferred program categories include:

- 1) Adhesive and Mastic Removers.
- 2) Cleaners.
- 3) Composite Panels.
- 4) Corrosion Preventatives.
- 5) Erosion Control Materials.
- 6) Dust Suppressants.
- 7) Fertilizers.
- 8) Floor Cleaners and Protectors.
- 9) Floor Coverings (Non-Carpet).
- 10) Glass Cleaners.
- 11) Hydraulic Fluids.
- 12) Industrial Cleaners.
- 13) Interior Paints and Coatings.
- 14) Mulch and Compost Materials.
- 15) Multipurpose Cleaners.
- 16) Multipurpose Lubricants.
- 17) Packaging Films.
- 18) Paint Removers.
- 19) Plastic Insulating Foam.
- 20) Pneumatic Equipment Lubricants.
- 21) Roof Coatings.
- 22) Wastewater Systems Coatings.
- 23) Water Tank Coatings.
- 24) Wood and Concrete Sealers.
- 25) Wood and Concrete Stains.
- E. Materials, products, and equipment being installed which fall into a category covered by the WaterSense program must be WaterSense-labeled or meet or exceed WaterSense program performance requirements, unless disallowed for infection control reasons.
 - 1. WaterSense categories include:
 - a. Bathroom Faucets
 - b. Commercial Toilets
 - c. Irrigation Controllers

- d. Pre-Rinse Spray Valves
- e. Residential Toilets
- f. Showerheads
- g. Spray Sprinkler Bodies
- F. Materials, products, and equipment being installed which fall into any of the following product categories must be Energy Star-labeled.
 - 1. Applicable Energy Star product categories as of 09/14/2017 include:
 - a. Appliances:
 - 1) Air Purifiers and Cleaners.
 - 2) Clothes Dryers (Residential).
 - 3) Clothes Washers (Commercial & Residential).
 - 4) Dehumidifiers.
 - 5) Dishwashers (Residential).
 - 6) Freezers (Residential).
 - 7) Refrigerators (Residential).
 - b. Electronics and Information Technology:
 - 1) Audio/Video Equipment.
 - 2) Computers.
 - 3) Data Center Storage.
 - 4) Digital Media Player.
 - 5) Enterprise Servers.
 - 6) Imaging Equipment.
 - 7) Monitors.
 - 8) Professional Displays.
 - 9) Set-Top and Cable Boxes.
 - 10) Telephones.
 - 11) Televisions.
 - 12) Uninterruptible Power Supplies.
 - 13) Voice over Internet Protocol (VoIP) Phones.
 - c. Heating and Cooling Equipment:
 - 1) Air-Source Heat Pumps (Residential).
 - 2) Boilers.
 - 3) Ceiling Fans (Residential).
 - 4) Central Air Conditioners (Residential).
 - 5) Ductless Heating and Cooling (Residential).
 - 6) Furnaces (Residential).

- 7) Water Heaters.
- 8) Light Commercial Heating and Cooling Equipment.
- 9) Room Air Conditioners (Residential).
- 10) Ventilation Fans (Residential).
- d. Other:
 - 1) Decorative Light Strings.
 - 2) Electric Vehicle Supply Equipment.
 - 3) Light Bulbs.
 - 4) Light Fixtures.
 - 5) Roof Products.
 - 6) Water Coolers.
 - 7) Windows, Doors, and Skylights.
- G. Materials, products, and equipment being installed which fall into any of the following categories must be FEMP-designated. FEMP-designated product categories as of 09/14/2017 include:
 - 1. Electric Chillers, Air-Cooled (Commercial).
 - 2. Electric Chillers, Water-Cooled (Commercial).
 - 3. Exterior Lighting.
 - 4. Fluorescent Ballasts.
 - 5. Fluorescent Lamps, General Service.
 - 6. Light Emitting Diode (LED) Luminaires.
- H. Electronic products and equipment being installed which fall into any of the following categories shall be EPEAT registered. Electronic products and equipment covered by EPEAT program as of 09/14/2017 include:
 - 1. Computers.
 - 2. Displays.
 - 3. Imaging Equipment.
 - 4. Televisions.

PART 3 - EXECUTION

3.1 FIELD QUALITY CONTROL

- A. Construction Indoor Air Quality Management:
 - During construction, meet or exceed recommended control measures of ANSI/SMACNA 008-2008, Chapter 3.
 - Protect stored on-site and installed absorptive materials from moisture damage.

3. If permanently installed air handlers are used during construction, filtration media with a minimum efficiency reporting value (MERV) of 8 must be used at each return air grille, as determined by ASHRAE Standard 52.2-1999 (with errata but without addenda). Replace all filtration media immediately prior to occupancy.

10-01-17

- 4. Perform building flush-out as follows:
 - a. After construction ends, prior to occupancy and with interior finishes installed, perform a building flush-out by supplying a total volume of 14000 cu. ft. of outdoor air per sq. ft. of floor area while maintaining an internal temperature of at least 60 degrees Fahrenheit and a relative humidity no higher than 60 percent. OR
 - b. If occupancy is desired prior to flush-out completion, the space may be occupied following delivery of a minimum of 3500 cu. ft. of outdoor air per sq. ft. of floor area to the space. Once a space is occupied, it must be ventilated at a minimum rate of 0.30 cfm per sq. ft. of outside air or design minimum outside air rate determined until a total of 14000 cu. ft./sq. ft. of outside air has been delivered to the space. During each day of flush-out period, ventilation must begin a minimum of three hours prior to occupancy and continue during occupancy.
- 5. Provide construction dust control to comply with SCAQMD Rule 403.

----END----

01 81 13 - 13

SECTION 02 41 00 DEMOLITION

PART 1 - GENERAL

1.1 DESCRIPTION:

A. This section specifies demolition and removal of portions of buildings, utilities, other structures and debris from trash dumps shown.

1.2 RELATED WORK:

- A. Safety Requirements: Section 01 35 26 Safety Requirements Article, ACCIDENT PREVENTION PLAN (APP).
- B. Disconnecting utility services prior to demolition: Section 01 00 00, GENERAL REQUIREMENTS.
- C. Reserved items that are to remain the property of the Government: Section 01 00 00, GENERAL REQUIREMENTS.
- D. Asbestos Removal: Section 02 82 11, TRADITIONAL ASBESTOS ABATEMENT.
- E. Asbestos Floor Tile and Mastic Removal: Section 02 82 13.19, ASBESTOS FLOOR TILE AND MASTIC ABATEMENT.
- F. N/A
- G. N/A
- H. Construction Waste Management: Section 017419 CONSTRUCTION WASTE MANAGEMENT.
- I. Infectious Control: Section 01 35 26, SAFETY REQUIREMENTS.

1.3 PROTECTION:

- A. Perform demolition in such manner as to eliminate hazards to persons and property; to minimize interference with use of adjacent areas, utilities and structures or interruption of use of such utilities; and to provide free passage to and from such adjacent areas of structures. Comply with requirements of GENERAL CONDITIONS Article, ACCIDENT PREVENTION.
- B. Provide safeguards, including warning signs, barricades, temporary fences, warning lights, and other similar items that are required for protection of all personnel during demolition and removal operations. Comply with requirements of Section 01 00 00, GENERAL REQUIREMENTS, Article PROTECTION OF EXISTING VEGETATION, STRUCTURES, EQUIPMENT, UTILITIES AND IMPROVEMENTS for additional requirements on protecting vegetation, soils and the environment.
- C. Maintain fences, barricades, lights, and other similar items around exposed excavations until such excavations have been completely filled.

- D. Prevent spread of flying particles and dust. Sprinkle rubbish and debris with water to keep dust to a minimum. Do not use water if it results in hazardous or objectionable condition such as, but not limited to; ice, flooding, or pollution. Vacuum and dust the work area daily.
- E. In addition to previously listed fire and safety rules to be observed in performance of work, include following:
 - 1. No wall or part of wall shall be permitted to fall outwardly from structures.
 - Maintain at least one means of egress from the building being renovated in usable condition. Maintain two means of egress from the public corridor that is connected to the building.
 - 3. Wherever a cutting torch or other equipment that might cause a fire is used, provide and maintain fire extinguishers nearby ready for immediate use. Instruct all possible users in use of fire extinguishers.
 - Keep hydrants clear and accessible at all times. Prohibit debris from accumulating within a radius of 4500 mm (15 feet) of fire hydrants.
- F. Before beginning any demolition work, the Contractor shall survey the site and examine the drawings and specifications to determine the extent of the work. The contractor shall take necessary precautions to avoid damages to existing items to remain in place, to be reused, or to remain the property of the Medical Center; any damaged items shall be repaired or replaced as approved by the Contracting Officer. The Contractor shall coordinate the work of this section with all other work and shall construct and maintain shoring, bracing, and supports as required. The Contractor shall ensure that structural elements are not overloaded and shall be responsible for increasing structural supports or adding new supports as may be required as a result of any cutting, removal, or demolition work performed under this contract. Do not overload structural elements. Provide new supports and reinforcement for existing construction weakened by demolition or removal works. Repairs, reinforcement, or structural replacement must have Contracting Officer's approval.
- G. N/A.
- H. The work shall comply with the requirements of Section 01 35 26, SAFETY REQUIREMENTS for safety and infection control requirements.

PART 3 - EXECUTION

3.1 DEMOLITION:

- A. Demolish and remove construction, including all appurtenances related or connected thereto, as necessary to complete the renovations indicated.
- B. Debris, including brick, concrete, stone, metals and similar materials shall become property of Contractor and shall be disposed of by him daily, off the Medical Center to avoid accumulation at the demolition site. Materials that cannot be removed daily shall be stored in areas specified by the Contracting Officer. Contractor shall dispose debris in compliance with applicable federal, state or local permits, rules and/or regulations.
- C. Remove and legally dispose of all materials, other than earth to remain as part of project work, from any trash dumps shown. Materials removed shall become property of contractor and shall be disposed of in compliance with applicable federal, state or local permits, rules and/or regulations. Materials that are discovered to be hazardous, shall be handled as unforeseen.
- D. Remove existing utilities as indicated or uncovered by work and terminate in a manner conforming to the nationally recognized code covering the specific utility and approved by the Contracting Officer. When Utility lines are encountered that are not indicated on the drawings, the Contracting Officer shall be notified prior to further work in that area.

3.2 CLEAN-UP:

A. On completion of work of this section and after removal of all debris, leave site in clean condition satisfactory to Contracting Officer. Clean-up shall include off the Medical Center disposal of all items and materials not required to remain property of the Government as well as all debris and rubbish resulting from demolition operations.

- - - E N D - - -

SECTION 02 82 11 TRADITIONAL ASBESTOS ABATEMENT

TABLE OF CONTENTS

1.1 SUMMARY OF THE WORK1
1.1.1 CONTRACT DOCUMENTS AND RELATED REQUIREMENTS1
1.1.2 EXTENT OF WORK
1.1.3 RELATED WORK
1.1.4 TASKS
1.1.5 CONTRACTORS USE OF PREMISES
1.2 VARIATIONS IN QUANTITY
1.3 STOP ASBESTOS REMOVAL
1.4 DEFINITIONS
1.4.1 GENERAL
1.4.2 GLOSSARY
1.4.3 REFERENCED STANDARDS ORGANIZATIONS10
1.5 APPLICABLE CODES AND REGULATIONS11
1.5.1 GENERAL APPLICABILITY OF CODES, REGULATIONS, AND STANDARDS11
1.5.2 Asbestos Abatement CONTRACTOR RESPONSIBILITY12
1.5.3 FEDERAL REQUIREMENTS12
1.5.4 STATE REQUIREMENTS
1.5.5 LOCAL REQUIREMENTS12
1.5.6 STANDARDS13
1.5.7 EPA GUIDANCE DOCUMENTS13
1.5.8 NOTICES
1.5.9 PERMITS/LICENSES13
1.5.10 POSTING AND FILING OF REGULATIONS13
1.5.11 VA RESPONSIBILITIES13
1.5.12 EMERGENCY ACTION PLAN AND ARRANGEMENTS14
1.5.13 PRE-CONSTRUCTION MEETING15
1.6 PROJECT COORDINATION15
1.6.1 PERSONNEL
1.7 RESPIRATORY PROTECTION16
1.7.1 GENERAL - RESPIRATORY PROTECTION PROGRAM16
1.7.2 RESPIRATORY PROTECTION PROGRAM COORDINATOR17
1.7.3 SELECTION AND USE OF RESPIRATORS17
1.7.4 MINIMUM RESPIRATORY PROTECTION17

1.7.5 MEDICAL WRITTEN OPINION17	
1.7.6 RESPIRATOR FIT TEST17	
1.7.7 RESPIRATOR FIT CHECK17	
1.7.8 MAINTENANCE AND CARE OF RESPIRATORS17	
1.7.9 SUPPLIED AIR SYSTEMS18	
1.8 WORKER PROTECTION18	
1.8.1 TRAINING OF ABATEMENT PERSONNEL	
1.8.2 MEDICAL EXAMINATIONS18	
1.8.3 REGULATED AREA ENTRY PROCEDURE18	
1.8.4 DECONTAMINATION PROCEDURE18	
1.8.5 REGULATED AREA REQUIREMENTS19	
1.9 DECONTAMINATION FACILITIES19	
1.9.1 DESCRIPTION	
1.9.2 GENERAL REQUIREMENTS	
1.9.3 TEMPORARY FACILITIES TO THE PDF and W/EDF	
1.9.4 PERSONNEL DECONTAMINATION FACILITY (PDF)	
1.9.5 WASTE/EQUIPMENT DECONTAMINATION FACILITY (W/EDF)	
1.9.6 WASTE/EQUIPMENT DECONTAMINATION PROCEDURES	
PART 2 - PRODUCTS, MATERIALS AND EQUIPMENT	
2.1 MATERIALS AND EQUIPMENT23	
2.1.1 GENERAL REQUIREMENTS23	
2.2 MONITORING, INSPECTION AND TESTING24	
2.2.1 GENERAL	
2.2.2 SCOPE OF SERVICES OF THE VPIH/CIH CONSULTANT	
2.2.3 MONITORING, INSPECTION AND TESTING BY CONTRACTOR CPIH/CIH25	
2.3 ASBESTOS hAZARD aBATEMENT pLAN	
2.4 SUBMITTALS	
2.4.1 PRE-START MEETING SUBMITTALS	
2.4.2 SUBMITTALS DURING ABATEMENT	
2.4.3 SUBMITTALS AT COMPLETION OF ABATEMENT	
2.5 ENCAPSULANTS	
2.5.1 TYPES OF ENCAPSULANTS	
2.5.2 PERFORMANCE REQUIREMENTS	
2.5.3 CERTIFICATES OF COMPLIANCE	
PART 3 - EXECUTION	
3.1 REGULATED AREA PREPARATIONS	
3.1.3.1DESIGN	AND LAYC

3.1.3.2	.NEGATIVE	AIR M
3.1.3.3	.PRESSURE	DIFFE
3.1.3.4	.MONITORIN	1G
3.1.3.5	.AUXILIARY	GENER
3.1.3.6	.SUPPLEMEN	JTAL MA
3.1.3.7	.TESTING T	THE SYS
3.1.3.8	.DEMONSTRA	ATION (
3.1.3.9	.USE OF TH	IE NEGA
3.1.3.10 DISMANTLING THE SYSTEM	.35	
3.1.4 CONTAINMENT BARRIERS AND COVERINGS IN THE REGULATED AREA	.35	
3.1.4.1 GENERAL	.35	
3.1.4.2 PREPARATION PRIOR TO SEALING THE REGULATED AREA	.35	
3.1.4.3 CONTROLLING ACCESS TO THE REGULATED AREA	.36	
3.1.4.4 CRITICAL BARRIERS	.36	
3.1.4.5 PRIMARY BARRIERS	.36	
3.1.4.6 SECONDARY BARRIERS	.36	
3.1.4.7 EXTENSION OF THE REGULATED AREA	.36	
3.1.4.8 FIRESTOPPING	.37	
3.1.5 Sanitary facilities	.37	
3.1.6 PERSONAL PROTECTIVE EQUIPMENT	.37	
3.1.7 Pre-cleaning	.37	
3.1.8 PRE-ABATEMENT ACTIVITIES	.38	
3.1.8.1 PRE-ABATEMENT Meeting	.38	
3.1.8.2 PRE-ABATEMENT CONSTRUCTION AND OPERATIONS	.38	
3.1.8.3 PRE-ABATEMENT INSPECTIONS AND PREPARATIONS	.39	
3.2 REMOVAL OF ACM	.40	
3.2.1 WETTING acm	.40	
3.2.2 SECONDARY BARRIER AND WALKWAYS	.40	
3.2.3 WET REMOVAL OF ACM	.40	
3.2.4 WET REMOVAL OF AMOSITE	.41	
3.2.5 REMOVAL OF ACM/DIRT FLOORS AND OTHER SPECIAL PROCEDURES	.42	
3.3 LOCKDOWN ENCAPSULATION	.43	
3.3.1 GENERAL	.43	
3.3.2 DELIVERY AND STORAGE	.43	
3.3.3 WORKER PROTECTION	.43	
3.3.4 ENCAPSULATION OF SCRATCH COAT PLASTER OR PIPING	.43	
3.3.5 SEALING EXPOSED EDGES	.44	

3.4 DISPOSAL OF ACM WASTE MATERIALS
3.4.1 GENERAL
3.4.2 PROCEDURES
3.5 PROJECT DECONTAMINATION
3.5.1 GENERAL
3.5.2 REGULATED AREA CLEARANCE45
3.5.3 WORK DESCRIPTION
3.5.4 PRE-DECONTAMINATION CONDITIONS45
3.5.5 FIRST CLEANING
3.5.6 pre-clearance inspection and testing45
3.5.7 LOCKDOWN ENCAPSULATION OF ABATED SURFACES
3.6 FINAL VISUAL INSPECTION AND AIR CLEARANCE TESTING
3.6.1 GENERAL
3.6.2 FINAL VISUAL INSPECTION46
3.6.3 FINAL AIR CLEARANCE TESTING46
3.6.4 FINAL AIR CLEARANCE PROCEDURES
3.6.5 CLEARANCE SAMPLING USING PCM - LESS THAN 260LF/160SF:47
3.6.8 LABORATORY TESTING OF TEM SAMPLES
3.7 ABATEMENT CLOSEOUT AND CERTIFICATE OF COMPLIANCE
3.7.1 COMPLETION OF ABATEMENT WORK
3.7.2 CERTIFICATE OF COMPLETION BY CONTRACTOR
3.7.3 WORK SHIFTS
3.7.4 RE-INSULATION
ATTACHMENT #1
ATTACHMENT #4

SECTION 02 82 11 CLASS I NEGATIVE PRESSURE ENCLOSURE ASBESTOS ABATEMENT SPECIFICATIONS

- 1. These specifications provide general guidance to personnel given the task of designing and executing a Class I negative pressure enclosure asbestos abatement project. Each abatement is a unique situation and therefore must be tailored for that project. This specification incorporates current regulatory requirements and current best abatement practices, procedures and technology. The Architect/Engineer and/or the Industrial Hygiene consultants may provide additional specification additions or deletions to this specification that, in their professional judgment, will ensure a safe and effective approach to a specific abatement project while maintaining compliance with applicable regulations and VA policy. Any changes must be clearly marked on/attached to this document prior to finalization of the specification so that the changes will be adequately considered in the review process by the VA.
- These specifications are to be used in conjunction with asbestos abatement contractor selection criteria; special instructions package; and general construction provisions.
- 3. Paragraphs that are not preceded by a number code are indented as instructions to the specifications writer and identified by the notation "Spec Writer Notes". These paragraphs must be deleted from the final document.
- 4. Within the text of the specifications, there may be optional procedures which the specification writer could include in the final specification. Procedures which are not chosen must be deleted by the specification writer. Optional text is shown by the notation (//text//).
- 5. A full AHERA survey of the facility would be needed prior to renovation activities, however, if demolition of the facility is planned, a NESHAP survey of the facility would need to be performed.

PART 1 - GENERAL

1.1 SUMMARY OF THE WORK

1.1.1 CONTRACT DOCUMENTS AND RELATED REQUIREMENTS

Drawings, general provisions of the contract, including general and supplementary conditions and other Division 01 specifications, shall apply to the work of this section. The contract documents show the work to be done under the contract and related requirements and conditions

impacting the project. Related requirements and conditions include applicable codes and regulations, notices and permits, existing site conditions and restrictions on use of the site, requirements for partial owner occupancy during the work, coordination with other work and the phasing of the work. In the event the Asbestos Abatement Contractor discovers a conflict in the contract documents and/or requirements or codes, the conflict must be brought to the immediate attention of the Contracting Officer for resolution. Whenever there is a conflict or overlap in the requirements, the most stringent shall apply. Any actions taken by the Contractor without obtaining guidance from the Contracting Officer shall become the sole risk and responsibility of the Asbestos Abatement Contractor. All costs incurred due to such action are also the responsibility of the Asbestos Abatement Contractor.

1.1.2 EXTENT OF WORK

- A. Below is a brief description of the estimated quantities of asbestos containing materials to be abated. These quantities are for informational purposes only and are based on the best information available at the time of the specification preparation. The Contractor shall satisfy himself as the actual quantities to be abated. Nothing in this section may be interpreted as limiting the extent of work otherwise required by this contract and related documents.
- B. Removal, clean-up and disposal of asbestos containing materials (ACM) and asbestos/waste contaminated elements in an appropriate regulated area in quantities indicated on the drawings.

1.1.3 RELATED WORK

```
A. Section 07 84 00, FIRESTOPPING.
B. Section 02 41 00, DEMOLITION.
C. Division 09, FINISHES
D. Division 22, PLUMBING.
E. Section 21 05 11, COMMON WORK RESULTS FOR FIRE SUPPRESSION
F. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
G. Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION.
H. Section 22 05 19, METERS AND GAGES FOR PLUMBING PIPING
I. Section 22 05 23, GENERAL-DUTY VALVES FOR PLUMBING PIPING
K. Section 22 11 00, FACILITY WATER DISTRIBUTION
L. Section 22 13 00, FACILITY SANITARY SEWERAGE
M. Section 22 14 00, FACILITY STORM DRAINAGE.
N. Section 23 21 13, HYDRONIC PIPING.
O. Section 23 22 13, STEAM AND CONDENSATE HEATING PIPING.
P. Section 23 31 00, HVAC DUCTS AND CASINGS
Q. Section 23 37 00, AIR OUTLETS AND INLETS.
```

1.1.4 TASKS

The work tasks are summarized briefly as follows:

- A. Pre-abatement activities including pre-abatement meeting(s), inspection(s), notifications, permits, submittal approvals, regulated area preparations, emergency procedures arrangements, and standard operating procedures for asbestos abatement work.
- B. Abatement activities including removal, encapsulation, clean-up and disposal of ACM waste, recordkeeping, security, monitoring, and inspections.
- C. Cleaning and decontamination activities including final visual inspection, air monitoring and certification of decontamination.

1.1.5 CONTRACTORS USE OF PREMISES

- A. The Contractor and Contractor's personnel shall cooperate fully with the VA representative/consultant to facilitate efficient use of buildings and areas within buildings. The Contractor shall perform the work in accordance with the VA specifications, drawings, phasing plan and in compliance with any/all applicable Federal, State and Local regulations and requirements.
- B. The Contractor shall use the existing facilities in the building strictly within the limits indicated in contract documents as well as the approved VA Design and Construction Procedures. VA Design and Construction Procedures drawings of partially occupied buildings will show the limits of regulated areas; the placement of decontamination facilities; the temporary location of bagged waste ACM; the path of transport to outside the building; and the temporary waste storage area for each building/regulated area. Any variation from the arrangements from shown on drawings shall be secured in writing the VA representative through the pre-abatement plan of action. The following limitations of use shall apply to existing facilities shown on drawings:

1.2 VARIATIONS IN QUANTITY

The quantities and locations of ACM as indicated on the drawings and the extent of work included in this section are estimated which are limited by the physical constraints imposed by occupancy of the buildings and accessibility to ACM. Accordingly, minor variations (+/-5%) in quantities of ACM within the regulated area are considered as having no impact on contract price and time requirements of this contract. Where additional work is required beyond the above variation, the contractor shall provide unit prices for newly discovered ACM and those prices shall be used for additional work required under the contractor.

1.3 STOP ASBESTOS REMOVAL

If the Contracting Officer; their field representative; (the facility Safety Officer/Manager or their designee, or the VA Professional Industrial Hygienist/Certified Industrial Hygienist (VPIH/CIH) presents a verbal **Stop Asbestos Removal Order**, the Contractor/Personnel shall immediately stop all asbestos removal and maintain HEPA filtered negative pressure air flow in the containment and adequately wet any exposed ACM. If a verbal Stop Asbestos Removal Order is issued, the VA shall follow-up with a written order to the Contractor as soon as it is practicable. The Contractor shall not resume any asbestos removal activity until authorized to do so in writing by the VA Contracting Officer. A stop asbestos removal order may be issued at any time the VA Contracting Officer determines abatement conditions/activities are not within VA specification, regulatory requirements or that an imminent hazard exists to human health or the environment. Work stoppage will continue until conditions have been corrected to the satisfaction of the VA. Standby time and costs for corrective actions will be borne by the Contractor, including the VPIH/CIH time. The occurrence of any of the following events shall be reported immediately by the Contractor's competent person to the VA Contracting Office or field representative using the most expeditious means (e.g., verbal or telephonic), followed up with written notification to the Contracting Officer as soon as

practical. The Contractor shall immediately stop asbestos removal/disturbance activities and initiate fiber reduction activities:

- A. Airborne PCM analysis results equal to or greater than 0.01 f/cc outside a regulated area or >0.05 f/cc inside a regulated area;
- B. breach or break in regulated area containment barrier(s);
- C. less than -0.02" WCG pressure in the regulated area;
- D. serious injury/death at the site;
- E. fire/safety emergency at the site;
- F. respiratory protection system failure;
- G. power failure or loss of wetting agent; or
- H. any visible emissions observed outside the regulated area.

1.4 DEFINITIONS

1.4.1 GENERAL

Definitions and explanations here are neither complete nor exclusive of all terms used in the contract documents, but are general for the work to the extent they are not stated more explicitly in another element of the contract documents. Drawings must be recognized as diagrammatic in nature and not completely descriptive of the requirements indicated therein.

1.4.2 GLOSSARY

Abatement - Procedures to control fiber release from asbestoscontaining materials. Includes removal, encapsulation, enclosure, demolition, and renovation activities related to asbestos containing materials (ACM).

Aerosol - Solid or liquid particulate suspended in air.

Adequately wet - Sufficiently mixed or penetrated with liquid to prevent the release of particulates. If visible emissions are observed coming from the ACM, then that material has not been adequately wetted.

Aggressive method - Removal or disturbance of building material by sanding, abrading, grinding, or other method that breaks, crumbles, or disintegrates intact ACM.

Aggressive sampling - EPA AHERA defined clearance sampling method using air moving equipment such as fans and leaf blowers to aggressively disturb and maintain in the air residual fibers after abatement.

AHERA - Asbestos Hazard Emergency Response Act. Asbestos regulations for schools issued in 1987.

Aircell - Pipe or duct insulation made of corrugated cardboard which contains asbestos.

Air monitoring - The process of measuring the fiber content of a known volume of air collected over a specified period of time. The NIOSH 7400 Method, Issue 2 is used to determine the fiber levels in air. For personal samples and clearance air testing using Phase Contrast Microscopy (PCM) analysis. NIOSH Method 7402 can be used when it is necessary to confirm fibers counted by PCM as being asbestos. The AHERA TEM analysis may be used for background, area samples and clearance samples when required by this specification, or at the discretion of the VPIH/CIH as appropriate.

Air sample filter - The filter used to collect fibers which are then counted. The filter is made of mixed cellulose ester membrane for PCM (Phase Contrast Microscopy) and polycarbonate for TEM (Transmission Electron Microscopy) Amended water - Water to which a surfactant (wetting agent) has been added to increase the penetrating ability of the liquid.

Asbestos - Includes chrysotile, amosite, crocidolite, tremolite asbestos, anthophyllite asbestos, actinolite asbestos, and any of these minerals that have been chemically treated or altered. Asbestos also includes PACM, as defined below.

Asbestos Hazard Abatement Plan (AHAP) - Asbestos work procedures required to be submitted by the contractor before work begins.

Asbestos-containing material (ACM) - Any material containing more than one percent of asbestos.

Asbestos contaminated elements (ACE) - Building elements such as ceilings, walls, lights, or ductwork that are contaminated with asbestos.

Asbestos-contaminated soil (ACS) - Soil found in the work area or in adjacent areas such as crawlspaces or pipe tunnels which is contaminated with asbestos-containing material debris and cannot be easily separated from the material.

Asbestos-containing waste (ACW) material - Asbestos-containing material or asbestos contaminated objects requiring disposal.

Asbestos Project Monitor - Some sates require that any person conducting asbestos abatement clearance inspections and clearance air sampling be licensed as an asbestos project monitor.

Asbestos waste decontamination facility - A system consisting of drum/bag washing facilities and a temporary storage area for cleaned containers of asbestos waste. Used as the exit for waste and equipment leaving the regulated area. In an emergency, it may be used to evacuate personnel.

Authorized person - Any person authorized by the VA, the Contractor, or government agency and required by work duties to be present in regulated areas.

Authorized visitor - Any person approved by the VA; the contractor; or any government agency representative having jurisdiction over the regulated area (e.g., OSHA, Federal and State EPA.

Barrier - Any surface the isolates the regulated area and inhibits fiber migration from the regulated area.

Containment Barrier - An airtight barrier consisting of walls, floors, and/or ceilings of sealed plastic sheeting which surrounds and seals the outer perimeter of the regulated area.

Critical Barrier - The barrier responsible for isolating the regulated area from adjacent spaces, typically constructed of plastic sheeting secured in place at openings such as doors, windows, or any other opening into the regulated area.

Primary Barrier - Plastic barriers placed over critical barriers and exposed directly to abatement work.

Secondary Barrier - Any additional plastic barriers used to isolate and provide protection from debris during abatement work.

Breathing zone - The hemisphere forward of the shoulders with a radius of about 150 - 225 mm (6 - 9 inches) from the worker's nose.

Bridging encapsulant - An encapsulant that forms a layer on the surface of the ACM.

Building/facility owner - The legal entity, including a lessee, which exercises control over management and recordkeeping functions relating to a building and/or facility in which asbestos activities take place.

Bulk testing - The collection and analysis of suspect asbestos containing materials.

Certified Industrial Hygienist (CIH) - A person certified in the comprehensive practice of industrial hygiene by the American Board of Industrial Hygiene.

Class I asbestos work - Activities involving the removal of Thermal System Insulation (TSI) and surfacing ACM and Presumed Asbestos Containing Material (PACM).

Class II asbestos work - Activities involving the removal of ACM which is not thermal system insulation or surfacing material. This includes, but is not limited to, the removal of asbestos-containing wallboard, floor tile and sheeting, roofing and siding shingles, and construction mastic.

Clean room/Changing room - An uncontaminated room having facilities for the storage of employee's street clothing and uncontaminated materials and equipment.

Clearance sample - The final air sample taken after all asbestos work has been done and visually inspected. Performed by the VA's professional industrial hygiene consultant/Certified Industrial Hygienist (VPIH/CIH).

Closely resemble - The major workplace conditions which have contributed to the levels of historic asbestos exposure, are no more protective than conditions of the current workplace.

Competent person - In addition to the definition in 29 CFR 1926.32(f), one who is capable of identifying existing asbestos hazards in the workplace and selecting the appropriate control strategy for asbestos exposure, who has the authority to take prompt corrective measures to eliminate them, as specified in 29 CFR 1926.32(f); in addition, for Class I and II work who is specially trained in a training course which meets the criteria of EPA's Model Accreditation Plan (40 CFR 763) for supervisor.

Contractor's Professional Industrial Hygienist (CPIH/CIH) - The asbestos abatement contractor's industrial hygienist. The industrial hygienist must meet the qualification requirements of a PIH and may be a certified industrial hygienist (CIH).

Count - Refers to the fiber count or the average number of fibers greater than five microns in length with a length-to-width (aspect) ratio of at least 3 to 1, per cubic centimeter of air.

Crawlspace - An area which can be found either in or adjacent to the work area. This area has limited access and egress and may contain asbestos materials and/or asbestos contaminated soil.

Decontamination area/unit - An enclosed area adjacent to and connected to the regulated area and consisting of an equipment room, shower room, and clean room, which is used for the decontamination of workers, materials, and equipment that are contaminated with asbestos.

Demolition - The wrecking or taking out of any load-supporting structural member and any related razing, removing, or stripping of asbestos products.

VA Total - means a building or substantial part of the building is completely removed, torn or knocked down, bulldozed, flattened, or razed, including removal of building debris.

Disposal bag - Typically 6 mil thick sift-proof, dustproof, leak-tight container used to package and transport asbestos waste from regulated areas to the approved landfill. Each bag/container must be labeled/marked in accordance with EPA, OSHA and DOT requirements.

Disturbance - Activities that disrupt the matrix of ACM or PACM, crumble or pulverize ACM or PACM, or generate visible debris from ACM or PACM. Disturbance includes cutting away small amounts of ACM or PACM, no greater than the amount that can be contained in one standard sized glove bag or waste bag in order to access a building component. In no event shall the amount of ACM or PACM so disturbed exceed that which can be contained in one glove bag or disposal bag which shall not exceed 60 inches in length or width.

Drum - A rigid, impermeable container made of cardboard fiber, plastic, or metal which can be sealed in order to be sift-proof, dustproof, and leak-tight.

Employee exposure - The exposure to airborne asbestos that would occur if the employee were not wearing respiratory protection equipment.

Encapsulant - A material that surrounds or embeds asbestos fibers in an adhesive matrix and prevents the release of fibers.

Encapsulation - Treating ACM with an encapsulant.

Enclosure - The construction of an air tight, impermeable, permanent barrier around ACM to control the release of asbestos fibers from the material and also eliminate access to the material.

Equipment room - A contaminated room located within the decontamination area that is supplied with impermeable bags or containers for the disposal of contaminated protective clothing and equipment.

Fiber - A particulate form of asbestos, 5 microns or longer, with a length to width (aspect) ratio of at least 3 to 1.

Fibers per cubic centimeter (f/cc) - Abbreviation for fibers per cubic centimeter, used to describe the level of asbestos fibers in air.

Filter - Media used in respirators, vacuums, or other machines to remove particulate from air.

Firestopping - Material used to close the open parts of a structure in order to prevent a fire from spreading.

Friable asbestos containing material - Any material containing more than one (1) percent or asbestos as determined using the method specified in appendix A, Subpart F, 40 CFR 763, section 1, Polarized Light Microscopy, that, when dry, can be crumbled, pulverized, or reduced to powder by hand pressure.

Glovebag - Not more than a 60 x 60 inch impervious plastic bag-like enclosure affixed around an asbestos-containing material, with glove-like appendages through which materials and tools may be handled.

High efficiency particulate air (HEPA) filter - An ASHRAE MERV 17 filter capable of trapping and retaining at least 99.97 percent of all mono-dispersed particles of 0.3 micrometers in diameter.

HEPA vacuum - Vacuum collection equipment equipped with a HEPA filter system capable of collecting and retaining asbestos fibers.

Homogeneous area - An area of surfacing, thermal system insulation or miscellaneous ACM that is uniform in color, texture and date of application.

HVAC - Heating, Ventilation and Air Conditioning

Industrial hygienist (IH) - A professional qualified by education, training, and experience to anticipate, recognize, evaluate and develop controls for occupational health hazards. Meets definition requirements of the American Industrial Hygiene Association (AIHA).

Industrial hygienist technician (IH Technician) - A person working under the direction of an IH or CIH who has special training, experience, certifications and licenses required for the industrial hygiene work assigned. Some states require that an industrial hygienist technician conducting asbestos abatement clearance inspection and clearance air sampling be licensed as an asbestos project monitor.

Intact - The ACM has not crumbled, been pulverized, or otherwise deteriorated so that the asbestos is no longer likely to be bound with its matrix.

Lockdown - Applying encapsulant, after a final visual inspection, on all abated surfaces at the conclusion of ACM removal prior to removal of critical barriers.

National Emission Standards for Hazardous Air Pollutants (NESHAP) - EPA's rule to control emissions of asbestos to the environment (40 CFR part 61, Subpart M).

Negative initial exposure assessment - A demonstration by the employer which complies with the criteria in 29 CFR 1926.1101 (f)(2)(iii), that employee exposure during an operation is expected to be consistently below the PEL.

Negative pressure - Air pressure which is lower than the surrounding area, created by exhausting air from a sealed regulated area through HEPA equipped filtration units. OSHA requires maintaining -0.02" water column gauge inside the negative pressure enclosure.

Negative pressure respirator - A respirator in which the air pressure inside the facepiece is negative during inhalation relative to the air pressure outside the respirator facepiece.

Non-friable ACM - Material that contains more than 1 percent asbestos but cannot be crumbled, pulverized, or reduced to powder by hand pressure.

Organic vapor cartridge - The type of cartridge used on air purifying respirators to remove organic vapor hazardous air contaminants.

Outside air - The air outside buildings and structures, including, but not limited to, the air under a bridge or in an open ferry dock.

Owner/operator - Any person who owns, leases, operates, controls, or supervises the facility being demolished or renovated or any person who owns, leases, operates, controls, or supervises the demolition or renovation operation, or both.

Penetrating encapsulant - Encapsulant that is absorbed into the ACM matrix without leaving a surface layer.

Personal sampling/monitoring - Representative air samples obtained in the breathing zone for one or workers within the regulated area using a filter cassette and a calibrated air sampling pump to determine asbestos exposure.

Permissible exposure limit (PEL) - The level of exposure OSHA allows for an 8 hour time weighted average. For asbestos fibers, the eight (8) hour time weighted average PEL is 0.1 fibers per cubic centimeter (0.1 f/cc) of air and the 30-minute Excursion Limit is 1.0 fibers per cubic centimeter (1 f/cc).

Personal protective equipment (PPE) – equipment designed to protect user from injury and/or specific job hazard. Such equipment may include protective clothing, hard hats, safety glasses, and respirators.

Pipe tunnel - An area, typically located adjacent to mechanical spaces or boiler rooms in which the pipes servicing the heating system in the building are routed to allow the pipes to access heating elements. These areas may contain asbestos pipe insulation, asbestos fittings, or asbestos-contaminated soil.

Polarized light microscopy (PLM) - Light microscopy using dispersion staining techniques and refractive indices to identify and quantify the type(s) of asbestos present in a bulk sample.

Polyethylene sheeting - Strong plastic barrier material 4 to 6 mils thick, semi-transparent, flame retardant per NFPA 241.

Positive/negative fit check - A method of verifying the seal of a facepiece respirator by temporarily occluding the filters and breathing in (inhaling) and then temporarily occluding the exhalation valve and breathing out (exhaling) while checking for inward or outward leakage of the respirator respectively.

Presumed ACM (PACM) - Thermal system insulation, surfacing, and flooring material installed in buildings prior to 1981. If the building

owner has actual knowledge, or should have known through the exercise of due diligence that other materials are ACM, they too must be treated as PACM. The designation of PACM may be rebutted pursuant to 29 CFR 1926.1101 (b).

Professional IH - An IH who meets the definition requirements of AIHA; meets the definition requirements of OSHA as a "Competent Person" at 29 CFR 1926.1101 (b); has completed two specialized EPA approved courses on management and supervision of asbestos abatement projects; has formal training in respiratory protection and waste disposal; and has a minimum of four projects of similar complexity with this project of which at least three projects serving as the supervisory IH. The PIH may be either the VA's PIH (VPIH) or Contractor's PIH (CPIH/CIH).

Project designer - A person who has successfully completed the training requirements for an asbestos abatement project designer as required by 40 CFR 763 Appendix C, Part I; (B)(5).

Assigned protection factor - A value assigned by OSHA/NIOSH to indicate the expected protection provided by each respirator class, when the respirator is properly selected and worn correctly. The number indicates the reduction of exposure level from outside to inside the respirator facepiece.

Qualitative fit test (QLFT) - A fit test using a challenge material that can be sensed by the wearer if leakage in the respirator occurs.

Quantitative fit test (QNFT) - A fit test using a challenge material which is quantified outside and inside the respirator thus allowing the determination of the actual fit factor.

Regulated area - An area established by the employer to demarcate where Class I, II, III asbestos work is conducted, and any adjoining area where debris and waste from such asbestos work may accumulate; and a work area within which airborne concentrations of asbestos exceed, or there is a reasonable possibility they may exceed the PEL.

Regulated ACM (RACM) - Friable ACM; Category I non-friable ACM that has become friable; Category I non-friable ACM that will be or has been subjected to sanding, grinding, cutting, or abrading or; Category II non-friable ACM that has a high probability of becoming or has become crumbled, pulverized, or reduced to powder by the forces expected to act on the material in the course of the demolition or renovation operation.

Removal - All operations where ACM, PACM and/or RACM is taken out or stripped from structures or substrates, including demolition operations.

Renovation - Altering a facility or one or more facility components in any way, including the stripping or removal of asbestos from a facility component which does not involve demolition activity.

Repair - Overhauling, rebuilding, reconstructing, or reconditioning of structures or substrates, including encapsulation or other repair of ACM or PACM attached to structures or substrates.

Shower room - The portion of the PDF where personnel shower before leaving the regulated area.

Supplied air respirator (SAR) - A respiratory protection system that supplies minimum Grade D respirable air per ANSI/Compressed Gas Association Commodity Specification for Air, G-7.1-1989.

Surfacing ACM - A material containing more than 1 percent asbestos that is sprayed, troweled on or otherwise applied to surfaces for acoustical, fireproofing and other purposes.

Surfactant - A chemical added to water to decrease water's surface tension thus making it more penetrating into ACM.

Thermal system ACM - A material containing more than 1 percent asbestos applied to pipes, fittings, boilers, breeching, tanks, ducts, or other structural components to prevent heat loss or gain.

Transmission electron microscopy (TEM) - A microscopy method that can identify and count asbestos fibers.

VA Professional Industrial Hygienist (VPIH/CIH) – The Department of Veterans Affairs Professional Industrial Hygienist must meet the qualifications of a PIH, and may be a Certified Industrial Hygienist (CIH).

VA Representative - The VA official responsible for on-going project work.

Visible emissions - Any emissions, which are visually detectable without the aid of instruments, coming from ACM/PACM/RACM/ACS or ACM waste material.

Waste/Equipment decontamination facility (W/EDF) - The area in which equipment is decontaminated before removal from the regulated area.

Waste generator - Any owner or operator whose act or process produces asbestos-containing waste material.

Waste shipment record - The shipping document, required to be originated and signed by the waste generator, used to track and substantiate the disposition of asbestos-containing waste material.

Wet cleaning - The process of thoroughly eliminating, by wet methods, any asbestos contamination from surfaces or objects.

1.4.3 REFERENCED STANDARDS ORGANIZATIONS

The following acronyms or abbreviations as referenced in contract/specification documents are defined to mean the associated names. Names and addresses may be subject to change.

- A. VA Department of Veterans Affairs 810 Vermont Avenue, NW Washington, DC 20420
- B. AIHA American Industrial Hygiene Association 2700 Prosperity Avenue, Suite 250 Fairfax, VA 22031 703-849-8888
- C. ANSI American National Standards Institute 1430 Broadway New York, NY 10018 212-354-3300
- D. ASTM American Society for Testing and Materials 1916 Race St. Philadelphia, PA 19103 215-299-5400
- E. CFR Code of Federal Regulations Government Printing Office Washington, DC 20420
- F. CGA Compressed Gas Association 1235 Jefferson Davis Highway Arlington, VA 22202 703-979-0900

- G. CS Commercial Standard of the National Institute of Standards and Technology (NIST)
 U. S. Department of Commerce Government Printing Office Washington, DC 20420
- H. EPA Environmental Protection Agency 401 M St., SW Washington, DC 20460 202-382-3949
- I. MIL-STD Military Standards/Standardization Division Office of the Assistant Secretary of Defense Washington, DC 20420
- J. NIST National Institute for Standards and Technology U. S. Department of Commerce Gaithersburg, MD 20234 301-921-1000
- K. NEC National Electrical Code (by NFPA)
- L. NEMA National Electrical Manufacturer's Association 2101 L Street, N.W. Washington, DC 20037
- M. NFPA National Fire Protection Association 1 Batterymarch Park P.O. Box 9101 Quincy, MA 02269-9101 800-344-3555
- N. NIOSH National Institutes for Occupational Safety and Health 4676 Columbia Parkway Cincinnati, OH 45226 513-533-8236
- O. OSHA Occupational Safety and Health Administration U.S. Department of Labor Government Printing Office Washington, DC 20402
- P. UL Underwriters Laboratory 333 Pfingsten Rd. Northbrook, IL 60062 312-272-8800

1.5 APPLICABLE CODES AND REGULATIONS

1.5.1 GENERAL APPLICABILITY OF CODES, REGULATIONS, AND STANDARDS

A. All work under this contract shall be done in strict accordance with all applicable Federal, State, and local regulations, standards and codes governing asbestos abatement, and any other trade work done in conjunction with the abatement. All applicable codes, regulations and standards are adopted into this specification and will have the same force and effect as this specification.

- B. The most recent edition of any relevant regulation, standard, document or code shall be in effect. Where conflict among the requirements or with these specifications exists, the most stringent requirement(s) shall be utilized.
- C. Copies of all standards, regulations, codes and other applicable documents, including this specification and those listed in Section 1.5 shall be available at the worksite in the clean change area of the worker decontamination system.

1.5.2 ASBESTOS ABATEMENT CONTRACTOR RESPONSIBILITY

The Asbestos Abatement Contractor (Contractor) shall assume full responsibility and liability for compliance with all applicable Federal, State and Local regulations related to any and all aspects of the asbestos abatement project. Some of the applicable Federal requirements are listed below. The Contractor is responsible for providing and maintaining training, accreditations, medical exams, medical records, personal protective equipment (PPE) including respiratory protection including respirator fit testing, as required by applicable Federal, State and Local regulations. The Contractor shall hold the VA and VPIH/CIH consultants harmless for any Contractor's failure to comply with any applicable work, packaging, transporting, disposal, safety, health, or environmental requirement on the part of himself, his employees, or his subcontractors. The Contractor will incur all costs of the CPIH/CIH, including all sampling/analytical costs to assure compliance with OSHA/EPA/State requirements related to failure to comply with the regulations applicable to the work.

1.5.3 FEDERAL REQUIREMENTS

Federal requirements which govern of asbestos abatement include, but are not limited to, the following regulations.

- A. Occupational Safety and Health Administration (OSHA)
 - 1. Title 29 CFR 1926.1101 Construction Standard for Asbestos
 - 2. Title 29 CFR 1910 Subpart I Personal Protective Equipment
 - 3. Title 29 CFR 1910.134 Respiratory Protection
 - 4. Title 29 CFR 1926 Construction Industry Standards
 - 5. Title 29 CFR 1910.1020 Access to Employee Exposure and Medical Records
 - 6. Title 29 CFR 1910.1200 Hazard Communication
 - 7. Title 29 CFR 1910 Subpart K Medical and First Aid
- B. Environmental Protection Agency (EPA):
 - 40 CFR 61 Subpart A and M (Revised Subpart B) National Emission Standard for Hazardous Air Pollutants - Asbestos.
 - 2. 40 CFR 763.80 Asbestos Hazard Emergency Response Act (AHERA)
- C. Department of Transportation (DOT)
 Title 49 CFR 100 185 Transportation

1.5.4 STATE REQUIREMENTS

State requirements that apply to the asbestos abatement work, disposal, clearance, etc.

1.5.5 LOCAL REQUIREMENTS

If local requirements are more stringent than federal or state standards, the local standards are to be followed.

1.5.6 STANDARDS

- A. Standards which govern asbestos abatement activities include, but are not limited to, the following:
 - American National Standards Institute (ANSI) Z9.2-79 Fundamentals Governing the Design and Operation of Local Exhaust Systems and ANSI Z88.2 - Practices for Respiratory Protection.
 - 2. Underwriters Laboratories (UL) 586-90 UL Standard for Safety of HEPA Filter Units, 7th Edition.
- B. Standards which govern encapsulation work include, but are not limited to the following:
 - 1. American Society for Testing and Materials (ASTM)
- C. Standards which govern the fire and safety concerns in abatement work include, but are not limited to, the following:
 - 1. National Fire Protection Association (NFPA) 241 Standard for Safeguarding Construction, Alteration, and Demolition Operations.
 - 2. NFPA 701 Standard Methods for Fire Tests for Flame Resistant Textiles and Film.
 - 3. NFPA 101 Life Safety Code

1.5.7 EPA GUIDANCE DOCUMENTS

- A. EPA guidance documents which discuss asbestos abatement work activities are listed below. These documents are made part of this section by reference. EPA publications can be ordered from (800) 424-9065.
- B. Guidance for Controlling ACM in Buildings (Purple Book) EPA 560/5-85-024
- C. Asbestos Waste Management Guidance EPA 530-SW-85-007
- D. A Guide to Respiratory Protection for the Asbestos Abatement Industry EPA-560-OPTS-86-001
- E. Guide to Managing Asbestos in Place (Green Book) TS 799 20T July 1990

1.5.8 NOTICES

- A. State and Local agencies: Send written notification as required by state and local regulations including the local fire department prior to beginning any work on ACM as follows:
- B. Copies of notifications shall be submitted to the VA for the facility's records in the same time frame notification are given to EPA, State, and Local authorities.

1.5.9 PERMITS/LICENSES

A. The contractor shall apply for and have all required permits and licenses to perform asbestos abatement work as required by Federal, State, and Local regulations.

1.5.10 POSTING AND FILING OF REGULATIONS

A. Maintain two (2) copies of applicable federal, state, and local regulations. Post one copy of each in the clean room at the regulated area where workers will have daily access to the regulations and keep another copy in the Contractor's office.

1.5.11 VA RESPONSIBILITIES

Prior to commencement of work:

A. Notify occupants adjacent to regulated areas of project dates and requirements for relocation, if needed. Arrangements must be made prior

to starting work for relocation of desks, files, equipment and personal possessions to avoid unauthorized access into the regulated area. Note: Notification of adjacent personnel is required by OSHA in 29 CFR 1926.1101 (k) to prevent unnecessary or unauthorized access to the regulated area.

B. Submit to the Contractor results of background air sampling; including location of samples, person who collected the samples, equipment utilized, calibration data and method of analysis. During abatement, submit to the Contractor, results of bulk material analysis and air sampling data collected during the course of the abatement. This information shall not release the Contractor from any responsibility for OSHA compliance.

1.5.12 EMERGENCY ACTION PLAN AND ARRANGEMENTS

- A. An Emergency Action Plan shall be developed prior to commencing abatement activities and shall be agreed to by the Contractor and the VA. The Plan shall meet the requirements of 29 CFR 1910.38 (a);(b).
- B. Emergency procedures shall be in written form and prominently posted in the clean room and equipment room of the decontamination unit. Everyone, prior to entering the regulated area, must read and sign these procedures to acknowledge understanding of the regulated area layout, location of emergency exits and emergency procedures.
- C. Emergency planning shall include written notification of police, fire, and emergency medical personnel of planned abatement activities; work schedule; layout of regulated area; and access to the regulated area, particularly barriers that may affect response capabilities.
- D. Emergency planning shall include consideration of fire, explosion, hazardous atmospheres, electrical hazards, slips/trips and falls, confined spaces, and heat stress illness. Written procedures for response to emergency situations shall be developed and employee training in procedures shall be provided.
- E. Employees shall be trained in regulated area/site evacuation procedures in the event of workplace emergencies.
 - 1. For non life-threatening situations employees injured or otherwise incapacitated shall decontaminate following normal procedures with assistance from fellow workers, if necessary, before exiting the regulated area to obtain proper medical treatment.
 - 2. For life-threatening injury or illness, worker decontamination shall take least priority after measures to stabilize the injured worker, remove them from the regulated area, and secure proper medical treatment.
- F. Telephone numbers of any/all emergency response personnel shall be prominently posted in the clean room, along with the location of the nearest telephone.
- G. The Contractor shall provide verification of first aid/CPR training for personnel responsible for providing first aid/CPR. OSHA requires medical assistance within 3-4 minutes of a life-threatening injury/illness. Bloodborne Pathogen training shall also be verified for those personnel required to provide first aid/CPR.
- H. The Emergency Action Plan shall provide for a Contingency Plan in the event that an incident occurs that may require the modification of the standard operating procedures during abatement. Such incidents include, but are not limited to, fire; accident; power failure; negative pressure failure; and supplied air system failure. The Contractor shall detail procedures to be followed in the event of an incident assuring

that asbestos abatement work is stopped and wetting is continued until correction of the problem.

1.5.13 PRE-CONSTRUCTION MEETING

Prior to commencing the work, the Contractor shall meet with the VA Certified Industrial Hygienist (VPCIH) to present and review, as appropriate, the items following this paragraph. The Contractor's Competent Person(s) who will be on-site shall participate in the prestart meeting. The pre-start meeting is to discuss and determine procedures to be used during the project. At this meeting, the Contractor shall provide:

- A. Proof of Contractor licensing.
- B. Proof the Competent Person(s) is trained and accredited and approved for working in this State. Verification of the experience of the Competent Person(s) shall also be presented.
- C. A list of all workers who will participate in the project, including experience and verification of training and accreditation.
- D. A list of and verification of training for all personnel who have current first-aid/CPR training. A minimum of one person per shift must have adequate training.
- E. Current medical written opinions for all personnel working on-site meeting the requirements of 29 CFR 1926.1101 (m).
- F. Current fit-tests for all personnel wearing respirators on-site meeting the requirements of 29 CFR 1926.1101 (h) and Appendix C.
- G. A copy of the Contractor's Asbestos Hazard Abatement Plan. In these procedures, the following information must be detailed, specific for this project.
 - 1. Regulated area preparation procedures;
 - 2. Notification requirements procedure of Contractor as required in 29 CFR 1926.1101 (d);
 - Decontamination area set-up/layout and decontamination procedures for employees;
 - 4. Abatement methods/procedures and equipment to be used;
 - 5. Personal protective equipment to be used;
- H. At this meeting the Contractor shall provide all submittals as required.
- I. Procedures for handling, packaging and disposal of asbestos waste.
- J. Emergency Action Plan and Contingency Plan Procedures.

1.6 PROJECT COORDINATION

The following are the minimum administrative and supervisory personnel necessary for coordination of the work.

1.6.1 PERSONNEL

- A. Administrative and supervisory personnel shall consist of a qualified Competent Person(s) as defined by OSHA in the Construction Standards and the Asbestos Construction Standard; Contractor Professional Industrial Hygienist and Industrial Hygiene Technicians. These employees are the Contractor's representatives responsible for compliance with these specifications and all other applicable requirements.
- B. Non-supervisory personnel shall consist of an adequate number of qualified personnel to meet the schedule requirements of the project. Personnel shall meet required qualifications. Personnel utilized on-site shall be pre-approved by the VA representative. A request for

approval shall be submitted for any person to be employed during the project giving the person's name; social security number; qualifications; accreditation card with color picture; Certificate of Worker's Acknowledgment; and Affidavit of Medical Surveillance and Respiratory Protection and current Respirator Fit Test.

- C. Minimum qualifications for Contractor and assigned personnel are:
 - 1. The Contractor has conducted within the last three (3) years, three (3) projects of similar complexity and dollar value as this project; has not been cited and penalized for serious violations of federal (and state as applicable) EPA and OSHA asbestos regulations in the past three (3) years; has adequate liability/occurrence insurance for asbestos work as required by the state; is licensed in applicable states; has adequate and qualified personnel available to complete the work; has comprehensive standard operating procedures for asbestos work; has adequate materials, equipment and supplies to perform the work.
 - 2. The Competent Person has four (4) years of abatement experience of which two (2) years were as the Competent Person on the project; meets the OSHA definition of a Competent Person; has been the Competent Person on two (2) projects of similar size and complexity as this project within the past three (3) years; has completed EPA AHERA/OSHA/State/Local training requirements/accreditation(s) and refreshers; and has all required OSHA documentation related to medical and respiratory protection.
 - 3. The Contractor Professional Industrial Hygienist/CIH (CPIH/CIH) shall have five (5) years of monitoring experience and supervision of asbestos abatement projects; has participated as senior IH on five (5) abatement projects, three (3) of which are similar in size and complexity as this project; has developed at least one complete standard operating procedure for asbestos abatement; has trained abatement personnel for three (3) years; has specialized EPA AHERA/OSHA training in asbestos abatement management, respiratory protection, waste disposal and asbestos inspection; has completed the NIOSH 582 Course or equivalent, Contractor/Supervisor course; and has appropriate medical/respiratory protection records/documentation.
 - 4. The Abatement Personnel shall have completed the EPA AHERA/OSHA abatement worker course; have training on the standard operating procedures of the Contractor; has one year of asbestos abatement experience within the past three (3) years of similar size and complexity; has applicable medical and respiratory protection documentation; has certificate of training/current refresher and State accreditation/license.

All personnel should be in compliance with OSHA construction safety training as applicable and submit certification.

1.7 RESPIRATORY PROTECTION

1.7.1 GENERAL - RESPIRATORY PROTECTION PROGRAM

The Contractor shall develop and implement a written Respiratory Protection Program (RPP) which is in compliance with the January 8, 1998 OSHA requirements found at 29 CFR 1926.1101 and 29 CFR 1910.Subpart I;134. ANSI Standard Z88.2-1992 provides excellent guidance for developing a respiratory protection program. All respirators used must be NIOSH approved for asbestos abatement activities. The written RPP shall, at a minimum, contain the basic requirements found at 29 CFR 1910.134 (c)(1)(i - ix) - Respiratory Protection Program.

1.7.2 RESPIRATORY PROTECTION PROGRAM COORDINATOR

The Respiratory Protection Program Coordinator (RPPC) must be identified and shall have two (2) years experience coordinating RPP of similar size and complexity. The RPPC must submit a signed statement attesting to the fact that the program meets the above requirements.

1.7.3 SELECTION AND USE OF RESPIRATORS

The procedure for the selection and use of respirators must be submitted to the VA as part of the Contractor's qualifications. The procedure must written clearly enough for workers to understand. A copy of the Respiratory Protection Program must be available in the clean room of the decontamination unit for reference by employees or authorized visitors.

1.7.4 MINIMUM RESPIRATORY PROTECTION

Minimum respiratory protection shall be a full face powered air purifying respirator when fiber levels are maintained consistently at or below 0.5 f/cc. A higher level of respiratory protection may be provided or required, depending on fiber levels. Respirator selection shall meet the requirements of 29 CFR 1926.1101 (h); Table 1, except as indicated in this paragraph. Abatement personnel must have a respirator for their exclusive use.

1.7.5 MEDICAL WRITTEN OPINION

No employee shall be allowed to wear a respirator unless a physician or other licensed health care professional has provided a written determination they are medically qualified to wear the class of respirator to be used on the project while wearing whole body impermeable garments and subjected to heat or cold stress.

1.7.6 RESPIRATOR FIT TEST

All personnel wearing respirators shall have a current qualitative/quantitative fit test which was conducted in accordance with 29 CFR 1910.134 (f) and Appendix A. Quantitative fit tests shall be done for PAPRs which have been put into a motor/blower failure mode.

1.7.7 RESPIRATOR FIT CHECK

The Competent Person shall assure that the positive/negative pressure user seal check is done each time the respirator is donned by an employee. Head coverings must cover respirator head straps. Any situation that prevents an effective facepiece to face seal as evidenced by failure of a user seal check shall preclude that person from wearing a respirator inside the regulated area until resolution of the problem.

1.7.8 MAINTENANCE AND CARE OF RESPIRATORS

The Respiratory Protection Program Coordinator shall submit evidence and documentation showing compliance with 29 CFR 1910.134 (h) Maintenance and Care of Respirators.

1.7.9 SUPPLIED AIR SYSTEMS

If a supplied air system is used, the system shall meet all requirements of 29 CFR 1910.134 and the ANSI/Compressed Gas Association (CGA) Commodity Specification for Air current requirements for Type 1 - Grade D breathing air. Low pressure systems are not allowed to be used on asbestos abatement projects. Supplied Air respirator use shall be in accordance with EPA/NIOSH publication EPA-560-OPTS-86-001 "A Guide to Respiratory Protection for the Asbestos Abatement Industry". The competent person on site will be responsible for the supplied air system to ensure the safety of the worker.

1.8 WORKER PROTECTION

1.8.1 TRAINING OF ABATEMENT PERSONNEL

Prior to beginning any abatement activity, all personnel shall be trained in accordance with OSHA 29 CFR 1926.1101 (k)(9) and any additional State/Local requirements. Training must include, at a minimum, the elements listed at 29 CFR 1926.1101 (k)(9)(viii). Training shall have been conducted by a third party, EPA/State approved trainer meeting the requirements of EPA 40 CFR 763 Appendix C (AHERA MAP). Initial training certificates and current refresher and accreditation proof must be submitted for each person working at the site.

1.8.2 MEDICAL EXAMINATIONS

Medical examinations meeting the requirements of 29 CFR 1926.1101 (m) shall be provided for all personnel working in the regulated area, regardless of exposure levels. A current physician's written opinion as required by 29 CFR 1926.1101 (m)(4) shall be provided for each person and shall include in the medical opinion the person has been evaluated for working in a heat and cold stress environment while wearing personal protective equipment (PPE) and is able to perform the work without risk of material health impairment.

1.8.3 REGULATED AREA ENTRY PROCEDURE

The Competent Person shall ensure that each time workers enter the regulated area; they remove ALL street clothes in the clean room of the decontamination unit and put on new disposable coveralls, head coverings, a clean respirator, and then proceed through the shower room to the equipment room where they put on non-disposable required personal protective equipment.

1.8.4 DECONTAMINATION PROCEDURE

The Competent Person shall require all personnel to adhere to following decontamination procedures whenever they leave the regulated area.

- A. When exiting the regulated area, remove disposable coveralls, and ALL other clothes, disposable head coverings, and foot coverings or boots in the equipment room.
- B. Still wearing the respirator and completely naked, proceed to the shower. Showering is MANDATORY. Care must be taken to follow reasonable procedures in removing the respirator to avoid inhaling asbestos fibers while showering. The following procedure is required as a minimum:
 - 1. Thoroughly wet body including hair and face. If using a PAPR hold blower above head to keep filters dry.
 - 2. With respirator still in place, thoroughly decontaminate body, hair, respirator face piece, and all other parts of the respirator except

the blower and battery pack on a PAPR. Pay particular attention to cleaning the seal between the face and respirator facepiece and under the respirator straps.

- 3. Take a deep breath, hold it and/or exhale slowly, completely wetting hair, face, and respirator. While still holding breath, remove the respirator and hold it away from the face before starting to breathe.
- C. Carefully decontaminate the facepiece of the respirator inside and out. If using a PAPR, shut down using the following sequence: a) first cap inlets to filters; b) turn blower off to keep debris collected on the inlet side of the filter from dislodging and contaminating the outside of the unit; c) thoroughly decontaminate blower and hoses; d) carefully decontaminate battery pack with a wet rag being cautious of getting water in the battery pack thus preventing destruction. (THIS PROCEDURE IS NOT A SUBSTITUTE FOR RESPIRATOR CLEANING!)
- D. Shower and wash body completely with soap and water. Rinse thoroughly.
- E. Rinse shower room walls and floor to drain prior to exiting.
- F. Proceed from shower to clean room; dry off and change into street clothes or into new disposable work clothing.

1.8.5 REGULATED AREA REQUIREMENTS

The Competent Person shall meet all requirements of 29 CFR 1926.1101 (o) and assure that all requirements for regulated areas at 29 CFR 1926.1101 (e) are met. All personnel in the regulated area shall not be allowed to eat, drink, smoke, chew tobacco or gum, apply cosmetics, or in any way interfere with the fit of their respirator.

1.9 DECONTAMINATION FACILITIES

1.9.1 DESCRIPTION

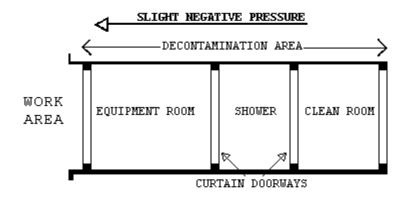
Provide each regulated area with separate personnel decontamination facilities (PDF) and waste/equipment decontamination facilities (W/EDF). Ensure that the PDF are the only means of ingress and egress to the regulated area and that all equipment, bagged waste, and other material exit the regulated area only through the W/EDF.

1.9.2 GENERAL REQUIREMENTS

All personnel entering or exiting a regulated area must go through the PDF and shall follow the requirements at 29 CFR 1926.1101 (j)(1) and these specifications. All waste, equipment and contaminated materials must exit the regulated area through the W/EDF and be decontaminated in accordance with these specifications. Walls and ceilings of the PDF and W/EDF must be constructed of a minimum of 3 layers of 6 mil opaque fire retardant polyethylene sheeting and be securely attached to existing building components and/or an adequate temporary framework. A minimum of 3 layers of 6 mil poly shall also be used to cover the floor under the PDF and W/EDF units. Construct doors so that they overlap and secure to adjacent surfaces. Weight inner doorway sheets with layers of duct tape so that they close quickly after release. Put arrows on sheets so they show direction of travel and overlap. If the building adjacent area is occupied, construct a solid barrier on the occupied side(s) to protect the sheeting and reduce potential for non-authorized personnel entering the regulated area.

1.9.3 TEMPORARY FACILITIES TO THE PDF AND W/EDF

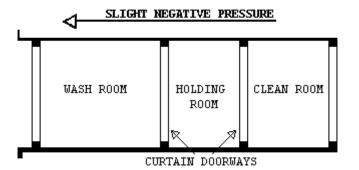
The Competent Person shall provide temporary water service connections to the PDF and W/EDF. Backflow prevention must be provided at the point of connection to the VA system. Water supply must be of adequate pressure and meet requirements of 29 CFR 1910.141(d)(3). Provide adequate temporary overhead electric power with ground fault circuit interruption (GFCI) protection. Provide a sub-panel equipped with GFCI protection for all temporary power in the clean room. Provide adequate lighting to provide a minimum of 50 foot candles in the PDF and W/EDF. Provide temporary heat, if needed, to maintain 70° F throughout the PDF and W/EDF.


1.9.4 PERSONNEL DECONTAMINATION FACILITY (PDF)

The Competent Person shall provide a PDF consisting of shower room which is contiguous to a clean room and equipment room which is connected to the regulated area. The PDF must be sized to accommodate the number of personnel scheduled for the project. The shower room, located in the center of the PDF, shall be fitted with as many portable showers as necessary to insure all employees can complete the entire decontamination procedure within 15 minutes. The PDF shall be constructed of opaque poly for privacy. The PDF shall be constructed to eliminate any parallel routes of egress without showering.

- 1. Clean Room: The clean room must be physically and visually separated from the rest of the building to protect the privacy of personnel changing clothes. The clean room shall be constructed of at least 3 layers of 6 mil opaque fire retardant poly to provide an air tight room. Provide a minimum of 2 - 900 mm (3 foot) wide 6 mil poly opaque fire retardant doorways. One doorway shall be the entry from outside the PDF and the second doorway shall be to the shower room of the PDF. The floor of the clean room shall be maintained in a clean, dry condition. Shower overflow shall not be allowed into the clean room. Provide 1 storage locker per person. A portable fire extinguisher, minimum 10 pounds capacity, Type ABC, shall be provided in accordance with OSHA and NFPA Standard 10. All persons entering the regulated area shall remove all street clothing in the clean room and dress in disposable protective clothing and respiratory protection. Any person entering the clean room does so either from the outside with street clothing on or is coming from the shower room completely naked and thoroughly washed. Females required to enter the regulated area shall be ensured of their privacy throughout the entry/exit process by posting guards at both entry points to the PDF so no male can enter or exit the PDF during her stay in the PDF.
- 2. Shower Room: The Competent Person shall assure that the shower room is a completely water tight compartment to be used for the movement of all personnel from the clean room to the equipment room and for the showering of all personnel going from the equipment room to the clean room. Each shower shall be constructed so water runs down the walls of the shower and into a drip pan. Install a freely draining smooth floor on top of the shower pan. The shower room shall be separated from the rest of the building and from the clean room and equipment room using air tight walls made from at least 3 layers of 6 mil opaque fire retardant poly. The shower shall be equipped with a shower head and controls, hot and cold water, drainage, soap dish and continuous supply of soap, and shall be maintained in a sanitary condition throughout its use. The controls shall be arranged so an

individual can shower without assistance. Provide a flexible hose shower head, hose bibs and all other items shown on Shower Schematic. Waste water will be pumped to a drain after being filtered through a minimum of a 100 micron sock in the shower drain; a 20 micron filter; and a final 5 micron filter. Filters will be changed a minimum of daily or more often as needed. Filter changes must be done in the shower to prevent loss of contaminated water. Hose down all shower surfaces after each shift and clean any debris from the shower pan. Residue is to be disposed of as asbestos waste.


- 3. Equipment Room: The Competent Person shall provide an equipment room which shall be an air tight compartment for the storage of work equipment/tools, reusable personal protective equipment, except for a respirator and for use as a gross decontamination area for personnel exiting the regulated area. The equipment room shall be separated from the regulated area by a minimum 3 foot wide door made with 2 layers of 6 mil opaque fire retardant poly. The equipment room shall be separated from the regulated area, the shower room and the rest of the building by air tight walls and ceiling constructed of a minimum of 3 layers of 6 mil opaque fire retardant poly. Damp wipe all surfaces of the equipment room after each shift change. Provide an additional loose layer of 6 mil fire retardant poly per shift change and remove this layer after each shift. If needed, provide a temporary electrical sub-panel equipped with GFCI in the equipment room to accommodate any equipment required in the regulated area.
- 4. The PDF shall be as follows: Clean room at the entrance followed by a shower room followed by an equipment room leading to the regulated area. Each doorway in the PDF shall be a minimum of 2 layers of 6 mil opaque fire retardant poly.

1.9.5 WASTE/EQUIPMENT DECONTAMINATION FACILITY (W/EDF)

The Competent Person shall provide an W/EDF consisting of a wash room, holding room, and clean room for removal of waste, equipment and contaminated material from the regulated area. Personnel shall not enter or exit the W/EDF except in the event of an emergency. Clean debris and residue in the W/EDF daily. All surfaces in the W/EDF shall be wiped/hosed down after each shift and all debris shall be cleaned from the shower pan. The W/EDF shall consist of the following:

- 1. Wash Down Station: Provide an enclosed shower unit in the regulated area just outside the Wash Room as an equipment bag and container cleaning station.
- 2. Wash Room: Provide a wash room for cleaning of bagged or containerized asbestos containing waste materials passed from the regulated area. Construct the wash room using 50 x 100 mm (2" x 4") wood framing and 3 layers of 6 mil fire retardant poly. Locate the wash room so that packaged materials, after being wiped clean, can be passed to the Holding Room. Doorways in the wash room shall be constructed of 2 layers of 6 mil fire retardant poly.
- 3. Holding Room: Provide a holding room as a drop location for bagged materials passed from the wash room. Construct the holding room using 50 x 100 mm (2" x 4") wood framing and 3 layers of 6 mil fire retardant poly. The holding room shall be located so that bagged material cannot be passed from the wash room to the clean room unless it goes through the holding room. Doorways in the holding room shall be constructed of 2 layers of 6 mil fire retardant poly.
- 4. Clean Room: Provide a clean room to isolate the holding room from the exterior of the regulated area. Construct the clean room using 2 x 4 wood framing and 2 layers of 6 mil fire retardant poly. The clean room shall be located so as to provide access to the holding room from the building exterior. Doorways to the clean room shall be constructed of 2 layers of 6 mil fire retardant poly. When a negative pressure differential system is used, a rigid enclosure separation between the W/EDF clean room and the adjacent areas shall be provided.
- 5. The W/EDF shall be as follows: Wash Room leading to a Holding Room followed by a Clean Room leading to outside the regulated area. See diagram.

1.9.6 WASTE/EQUIPMENT DECONTAMINATION PROCEDURES

At the washdown station in the regulated area, thoroughly wet clean contaminated equipment and/or sealed polyethylene bags and pass into Wash Room after visual inspection. When passing anything into the Wash Room, close all doorways of the W/EDF, other than the doorway between the washdown station and the Wash Room. Keep all outside personnel clear of the W/EDF. Once inside the Wash Room, wet clean the equipment and/or bags. After cleaning and inspection, pass items into the Holding Room. Close all doorways except the doorway between the Holding Room and the Clean Room. Workers from the Clean Room/Exterior shall enter the Holding Room and remove the decontaminated/cleaned equipment/bags for removal and disposal. These personnel will not be required to wear PPE. At no time shall personnel from the clean side be allowed to enter the Wash Room.

PART 2 - PRODUCTS, MATERIALS AND EQUIPMENT

2.1 MATERIALS AND EQUIPMENT

2.1.1 GENERAL REQUIREMENTS

Prior to the start of work, the contractor shall provide and maintain a sufficient quantity of materials and equipment to assure continuous and efficient work throughout the duration of the project. Work shall not start unless the following items have been delivered to the site and the CPIH/CIH has submitted verification to the VA's representative.

- A. All materials shall be delivered in their original package, container or bundle bearing the name of the manufacturer and the brand name (where applicable).
- B. Store all materials subject to damage off the ground, away from wet or damp surfaces and under cover sufficient enough to prevent damage or contamination. Flammable and combustible materials cannot be stored inside buildings. Replacement materials shall be stored outside of the regulated area until abatement is completed.
- C. The Contractor shall not block or hinder use of buildings by patients, staff, and visitors to the VA in partially occupied buildings by placing materials/equipment in any unauthorized location.
- D. The Competent Person shall inspect for damaged, deteriorating or previously used materials. Such materials shall not be used and shall be removed from the worksite and disposed of properly.
- E. Polyethylene sheeting for walls in the regulated area shall be a minimum of 4-mils. For floors and all other uses, sheeting of at least 6-mil shall be used in widths selected to minimize the frequency of joints. Fire retardant poly shall be used throughout.
- F. The method of attaching polyethylene sheeting shall be agreed upon in advance by the Contractor and the VA and selected to minimize damage to equipment and surfaces. Method of attachment may include any combination of moisture resistant duct tape furring strips, spray glue, staples, nails, screws, lumber and plywood for enclosures or other effective procedures capable of sealing polyethylene to dissimilar finished or unfinished surfaces under both wet and dry conditions.
- G. Polyethylene sheeting utilized for the PDF shall be opaque white or black in color, 6 mil fire retardant poly.
- H. Installation and plumbing hardware, showers, hoses, drain pans, sump pumps and waste water filtration system shall be provided by the Contractor.
- I. An adequate number of HEPA vacuums, scrapers, sprayers, nylon brushes, brooms, disposable mops, rags, sponges, staple guns, shovels, ladders and scaffolding of suitable height and length as well as meeting OSHA requirements, fall protection devices, water hose to reach all areas in the regulated area, airless spray equipment, and any other tools, materials or equipment required to conduct the abatement project. All electrically operated hand tools, equipment, electric cords shall be connected to GFCI protection.
- J. Special protection for objects in the regulated area shall be detailed (e.g., plywood over carpeting or hardwood floors to prevent damage from scaffolds, water and falling material).
- K. Disposal bags 2 layers of 6 mil poly for asbestos waste shall be preprinted with labels, markings and address as required by OSHA, EPA and DOT regulations.
- L. The VA shall be provided an advance copy of the MSDS as required for all hazardous chemicals under OSHA 29 CFR 1910.1200 Hazard

Communication in the pre-start meeting submittal. Chlorinated compounds shall not be used with any spray adhesive, mastic remover or other product. Appropriate encapsulant(s) shall be provided.

- M. OSHA DANGER demarcation signs, as many and as required by OSHA 29 CFR 1926.1101(k)(7) shall be provided and placed by the Competent Person. All other posters and notices required by Federal and State regulations shall be posted in the Clean Room.
- N. Adequate and appropriate PPE for the project and number of personnel/shifts shall be provided. All personal protective equipment issued must be based on a written hazard assessment conducted under 29 CFR 1910.132(d).

2.2 MONITORING, INSPECTION AND TESTING

2.2.1 GENERAL

- A. Perform throughout abatement work monitoring, inspection and testing inside and around the regulated area in accordance with the OSHA requirements and these specifications. OSHA requires that the employee exposure to asbestos must not exceed 0.1 fiber per cubic centimeter (f/cc) of air, averaged over an 8-hour work shift. The CPIH/CIH is responsible for and shall inspect and oversee the performance of the Contractor IH Technician. The IH Technician shall continuously inspect and monitor conditions inside the regulated area to ensure compliance with these specifications. In addition, the CPIH/CIH shall personally manage air sample collection, analysis, and evaluation for personnel, regulated area, and adjacent area samples to satisfy OSHA requirements. Additional inspection and testing requirements are also indicated in other parts of this specification.
- B. The VA will employ an independent industrial hygienist (VPIH/CIH) consultant and/or use its own IH to perform various services on behalf of the VA. The VPIH/CIH will perform the necessary monitoring, inspection, testing, and other support services to ensure that VA patients, employees, and visitors will not be adversely affected by the abatement work, and that the abatement work proceeds in accordance with these specifications, that the abated areas or abated buildings have been successfully decontaminated. The work of the VPIH/CIH consultant in no way relieves the Contractor from their responsibility to perform the work in accordance with contract/specification requirements, to perform continuous inspection, monitoring and testing for the safety of their employees, and to perform other such services as specified. The cost of the VPIH/CIH and their services will be borne by the VA except for any repeat of final inspection and testing that may be required due to unsatisfactory initial results. Any repeated final inspections and/or testing, if required, will be paid for by the Contractor.
- C. If fibers counted by the VPIH/CIH during abatement work, either inside or outside the regulated area, utilizing the NIOSH 7400 air monitoring method, exceed the specified respective limits, the Contractor shall stop work. The Contractor may request confirmation of the results by analysis of the samples by TEM. Request must be in writing and submitted to the VA's representative. Cost for the confirmation of results will be borne by the Contractor for both the collection and analysis of samples and for the time delay that may/does result for this confirmation. Confirmation sampling and analysis will be the responsibility of the CPIH with review and approval of the VPIH/CIH. An agreement between the CPIH/CIH and the VPIH/CIH shall be reached on the exact details of the confirmation effort, in writing, including such things as the number of samples, location, collection, quality control on-site, analytical laboratory, interpretation of results and any

follow-up actions. This written agreement shall be co-signed by the IH's and delivered to the VA's representative.

2.2.2 SCOPE OF SERVICES OF THE VPIH/CIH CONSULTANT

- A. The purpose of the work of the VPIH/CIH is to: assure quality; adherence to the specification; resolve problems; prevent the spread of contamination beyond the regulated area; and assure clearance at the end of the project. In addition, their work includes performing the final inspection and testing to determine whether the regulated area or building has been adequately decontaminated. All air monitoring is to be done utilizing PCM/TEM. The VPIH/CIH will perform the following tasks:
 - 1. Task 1: Establish background levels before abatement begins by collecting background samples. Retain samples for possible TEM analysis.
 - 2. Task 2: Perform continuous air monitoring, inspection, and testing outside the regulated area during actual abatement work to detect any faults in the regulated area isolation and any adverse impact on the surroundings from regulated area activities.
 - 3. Task 3: Perform unannounced visits to spot check overall compliance of work with contract/specifications. These visits may include any inspection, monitoring, and testing inside and outside the regulated area and all aspects of the operation except personnel monitoring.
 - 4. Task 4: Provide support to the VA representative such as evaluation of submittals from the Contractor, resolution of conflicts, interpret data, etc.
 - 5. Task 5: Perform, in the presence of the VA representative, final inspection and testing of a decontaminated regulated area at the conclusion of the abatement to certify compliance with all regulations and VA requirements/specifications.
 - 6. Task 6: Issue certificate of decontamination for each regulated area and project report.
- B. All documentation, inspection results and testing results generated by the VPIH/CIH will be available to the Contractor for information and consideration. The Contractor shall cooperate with and support the VPIH/CIH for efficient and smooth performance of their work.
- C. The monitoring and inspection results of the VPIH/CIH will be used by the VA to issue any Stop Removal orders to the Contractor during abatement work and to accept or reject a regulated area or building as decontaminated.

2.2.3 MONITORING, INSPECTION AND TESTING BY CONTRACTOR CPIH/CIH

The Contractor's CPIH/CIH is responsible for managing all monitoring, inspections, and testing required by these specifications, as well as any and all regulatory requirements adopted by these specifications. The CPIH/CIH is responsible for the continuous monitoring of all subsystems and procedures which could affect the health and safety of the Contractor's personnel. Safety and health conditions and the provision of those conditions inside the regulated area for all persons entering the regulated area is the exclusive responsibility of the Contractor/Competent Person. The person performing the personnel and area air monitoring inside the regulated area shall be an IH Technician, who shall be trained and shall have specialized field experience in sampling and analysis. The IH Technician shall have successfully completed a NIOSH 582 Course or equivalent and provide documentation. The IH Technician shall participate in the AIHA Asbestos Analysis Registry or participate in the Proficiency Analytic Testing program of AIHA for fiber counting quality control assurance. The IH Technician shall also be an accredited EPA AHERA/State Contractor/Supervisor or Abatement Worker and Building Inspector. The IH Technician shall have participated in five abatement projects collecting personal and area samples as well as responsibility for documentation on substantially similar projects in size and scope. The analytic laboratory used by the Contractor to analyze the samples shall be AIHA accredited for asbestos PAT and approved by the VA prior to start of the project. A daily log shall be maintained by the CPIH/CIH or IH Technician, documenting all OSHA requirements for air personal monitoring for asbestos in 29 CFR 1926.1101(f), (g) and Appendix A. This log shall be made available to the VA representative and the VPIH/CIH upon request. The log will contain, at a minimum, information on personnel or area samples, other persons represented by the sample, the date of sample collection, start and stop times for sampling, sample volume, flow rate, and fibers/cc. The CPIH/CIH shall collect and analyze samples for each representative job being done in the regulated area, i.e., removal, wetting, clean-up, and load-out. No fewer than two personal samples per shift shall be collected and one area sample per 1,000 square feet of regulated area where abatement is taking place and one sample per shift in the clean room area shall be collected. In addition to the continuous monitoring required, the CPIH/CIH will perform inspection and testing at the final stages of abatement for each regulated area as specified in the CPIH/CIH responsibilities. Additionally, the CPIH/CIH will monitor and record pressure readings within the containment daily with a minimum of two readings at the beginning and at the end of a shift, and submit the data in the daily report.

2.3 ASBESTOS HAZARD ABATEMENT PLAN

The Contractor shall have established an Asbestos Hazard Abatement Plan (AHAP) in printed form and loose leaf folder consisting of simplified text, diagrams, sketches, and pictures that establish and explain clearly the procedures to be followed during all phases of the work by the Contractor's personnel. The AHAP must be modified as needed to address specific requirements of this project and the specifications. The AHAP shall be submitted for review and approval to the VA prior to the start of any abatement work. The minimum topics and areas to be covered by the AHAPs are:

- A. Minimum Personnel Qualifications
- B. Emergency Action Plan/Contingency Plans and Arrangements
- C. Security and Safety Procedures
- D. Respiratory Protection/Personal Protective Equipment Program and Training
- E. Medical Surveillance Program and Recordkeeping
- F. Regulated Area Requirements Containment Barriers/Isolation of Regulated Area
- G. Decontamination Facilities and Entry/Exit Procedures (PDF and W/EDF)
- H. Negative Pressure Systems Requirements
- I. Monitoring, Inspections, and Testing
- J. Removal Procedures for ACM
- K. Removal of Contaminated Soil (if applicable)
- L. Encapsulation Procedures for ACM
- M. Disposal of ACM waste/equipment
- N. Regulated Area Decontamination/Clean-up

- O. Regulated Area Visual and Air Clearance
- P. Project Completion/Closeout

2.4 SUBMITTALS

2.4.1 PRE-START MEETING SUBMITTALS

Submit to the VA a minimum of 14 days prior to the pre-start meeting the following for review and approval. Meeting this requirement is a prerequisite for the pre-start meeting for this project:

- A. Submit a detailed work schedule for the entire project reflecting contract documents and the phasing/schedule requirements from the CPM chart.
- B. Submit a staff organization chart showing all personnel who will be working on the project and their capacity/function. Provide their qualifications, training, accreditations, and licenses, as appropriate. Provide a copy of the "Certificate of Worker's Acknowledgment" and the "Affidavit of Medical Surveillance and Respiratory Protection" for each person.
- C. Submit Asbestos Hazard Abatement Plan developed specifically for this project, incorporating the requirements of the specifications, prepared, signed and dated by the CPIH/CIH.
- D. Submit the specifics of the materials and equipment to be used for this project with manufacturer names, model numbers, performance characteristics, pictures/diagrams, and number available for the following:
 - 1. Supplied air system, negative air machines, HEPA vacuums, air monitoring pumps, calibration devices, pressure differential monitoring device and emergency power generating system.
 - 2. Waste water filtration system, shower system, containment barriers.
 - 3. Encapsulants, surfactants, hand held sprayers, airless sprayers, glovebags, and fire extinguishers.
 - 4. Respirators, protective clothing, personal protective equipment.
 - 5. Fire safety equipment to be used in the regulated area.
- E. Submit the name, location, and phone number of the approved landfill; proof/verification the landfill is approved for ACM disposal; the landfill's requirements for ACM waste; the type of vehicle to be used for transportation; and name, address, and phone number of subcontractor, if used. Proof of asbestos training for transportation personnel shall be provided.
- F. Submit required notifications and arrangements made with regulatory agencies having regulatory jurisdiction and the specific contingency/emergency arrangements made with local health, fire. ambulance, hospital authorities and any other notifications/arrangements.
- G. Submit the name, location and verification of the laboratory and/or personnel to be used for analysis of air and/or bulk samples. Personal air monitoring must be done in accordance with OSHA 29 CFR 1926.1101(f) and Appendix A. Area or clearance air monitoring shall be conducted in accordance with EPA AHERA protocols.
- H. Submit qualifications verification: Submit the following evidence of qualifications. Make sure that all references are current and verifiable by providing current phone numbers and documentation.
 - Asbestos Abatement Company: Project experience within the past 3 years; listing projects first most similar to this project: Project Name; Type of Abatement; Duration; Cost; Reference Name/Phone Number; Final Clearance; Completion Date

- 2. List of project(s) halted by owner, A/E, IH, regulatory agency in the last 3 years: Project Name; Reason; Date; Reference Name/Number; Resolution
- 3. List asbestos regulatory citations (e.g., OSHA), notices of violations (e.g., Federal and state EPA), penalties, and legal actions taken against the company including and of the company's officers (including damages paid) in the last 3 years. Provide copies and all information needed for verification.
- I. Submit information on personnel: Provide a resume; address each item completely; copies of certificates, accreditations, and licenses. Submit an affidavit signed by the CPIH/CIH stating that all personnel submitted below have medical records in accordance with OSHA 29 CFR 1926.1101(m) and 29 CFR 1910.20 and that the company has implemented a medical surveillance program and written respiratory protection program, and maintains recordkeeping in accordance with the above regulations. Submit the phone number and doctor/clinic/hospital used for medical evaluations.
 - CPIH/CIH and IH Technician: Name; years of abatement experience; list of projects similar to this one; certificates, licenses, accreditations for proof of AHERA/OSHA specialized asbestos training; professional affiliations; number of workers trained; samples of training materials; samples of AHAPs developed; medical opinion; and current respirator fit test.
 - 2. Competent Person(s)/Supervisor(s): Number; names; social security numbers; years of abatement experience as Competent Person/Supervisor; list of similar projects in size/complexity as Competent Person/Supervisor; as a worker; certificates, licenses, accreditations; proof of AHERA/OSHA specialized asbestos training; maximum number of personnel supervised on a project; medical opinion (asbestos surveillance and respirator use); and current respirator fit test.
 - 3. Workers: Numbers; names; social security numbers; years of abatement experience; certificates, licenses, accreditations; training courses in asbestos abatement and respiratory protection; medical opinion (asbestos surveillance and respirator use); and current respirator fit test.
- J. Submit copies of State license for asbestos abatement; copy of insurance policy, including exclusions with a letter from agent stating in plain language the coverage provided and the fact that asbestos abatement activities are covered by the policy; copy of AHAPs incorporating the requirements of this specification; information on who provides your training, how often; who provides medical surveillance, how often; who performs and how is personal air monitoring of abatement workers conducted; a list of references of independent laboratories/IH's familiar with your air monitoring and standard operating procedures; and copies of monitoring results of the five referenced projects listed and analytical method(s) used.
- K. Rented equipment must be decontaminated prior to returning to the rental agency.
- L. Submit, before the start of work, the manufacturer's technical data for all types of encapsulants, all MSDS and application instructions.

2.4.2 SUBMITTALS DURING ABATEMENT

A. The Competent Person shall maintain and submit a daily log at the regulated area documenting the dates and times of the following: purpose, attendees and summary of meetings; all personnel

entering/exiting the regulated area; document and discuss the resolution of unusual events such as barrier breeching, equipment failures, emergencies, and any cause for stopping work; and representative air monitoring and results/TWA's/EL's. Submit this information daily to the VPIH/CIH.

- B. The CPIH/CIH shall document and maintain the inspection and approval of the regulated area preparation prior to start of work and daily during work.
 - 1. Removal of any poly barriers.
 - 2. Visual inspection/testing by the CPIH/CIH or IH Technician prior to application of lockdown encapsulant.
 - 3. Packaging and removal of ACM waste from regulated area.
 - 4. Disposal of ACM waste materials; copies of Waste Shipment Records/landfill receipts to the VA's representative on a weekly basis.

2.4.3 SUBMITTALS AT COMPLETION OF ABATEMENT

The CPIH/CIH shall submit a project report consisting of the daily log book requirements and documentation of events during the abatement project including Waste Shipment Records signed by the landfill's agent. It will also include information on the containment and transportation of waste from the containment with applicable Chain of Custody forms. The report shall include a certificate of completion, signed and dated by the CPIH/CIH, in accordance with Attachment #1. All clearance and perimeter area samples must be submitted. The VA Representative will retain the abatement report after completion of the project and provide copies of the abatement report to VAMC Office of Engineer and the Safety Office.

2.5 ENCAPSULANTS

2.5.1 TYPES OF ENCAPSULANTS

- A. The following four types of encapsulants, if used, must comply with comply with performance requirements as stated in paragraph 2.6.2:
 - 1. Removal encapsulant used as a wetting agent to remove ACM.
 - 2. Bridging encapsulant provides a tough, durable coating on ACM.
 - Penetrating encapsulant penetrates/encapsulates ACM at least 13 mm (1/2").
 - 4. Lockdown encapsulant seals microscopic fibers on surfaces after ACM removal.

2.5.2 PERFORMANCE REQUIREMENTS

Encapsulants shall meet the latest requirements of EPA; shall not contain toxic or hazardous substances; or solvents; and shall comply with the following performance requirements:

- A. General Requirements for all Encapsulants:
 - 1. ASTM E84: Flame spread of 25; smoke emission of 50.
 - 2. University of Pittsburgh Protocol: Combustion Toxicity; zero mortality.
 - 3. ASTM C732: Accelerated Aging Test; Life Expectancy 20 years.
 - 4. ASTM E96: Permeability minimum of 0.4 perms.
- B. Bridging/Penetrating Encapsulants:
 - 1. ASTM E736: Cohesion/Adhesion Test 24 kPa (50 lbs/ft²).
 - 2. ASTM E119: Fire Resistance 3 hours (Classified by UL for use on fibrous/cementitious fireproofing).

- ASTM D2794: Gardner Impact Test; Impact Resistance minimum 11.5 kg-mm (43 in/lb).
- 4. ASTM D522: Mandrel Bend Test; Flexibility no rupture or cracking.
- C. Lockdown Encapsulants:
 - 1. ASTM E119: Fire resistance 3 hours (tested with fireproofing over encapsulant applied directly to steel member).
 - 2. ASTM E736: Bond Strength 48 kPa (100 lbs/ft²) (test compatibility with cementitious and fibrous fireproofing).
 - 3. In certain situations, encapsulants may have to be applied to hot pipes/equipment. The encapsulant must be able to withstand high temperatures without cracking or off-gassing any noxious vapors during application.

2.5.3 CERTIFICATES OF COMPLIANCE

The Contractor shall submit to the VA representative certification from the manufacturer indicating compliance with performance requirements for encapsulants when applied according to manufacturer recommendations.

PART 3 - EXECUTION

3.1 REGULATED AREA PREPARATIONS

- 3.1.1 SITE SECURITY
 - A. Regulated area access is to be restricted only to authorized, trained/accredited and protected personnel. These may include the Contractor's employees, employees of Subcontractors, VA employees and representatives, State and local inspectors, and any other designated individuals. A list of authorized personnel shall be established prior to commencing the project and be posted in the clean room of the decontamination unit.
 - B. Entry into the regulated area by unauthorized individuals shall be reported immediately to the Competent Person by anyone observing the entry. The Competent Person shall immediately require any unauthorized person to leave the regulated area and then notify the VA Contracting Officer or VA Representative using the most expeditious means.
 - C. A log book shall be maintained in the clean room of the decontamination unit. Anyone who enters the regulated area must record their name, affiliation, time in, and time out for each entry.
 - D. Access to the regulated area shall be through a single decontamination unit. All other access (doors, windows, hallways, etc.) shall be sealed or locked to prevent entry to or exit from the regulated area. The only exceptions for this requirement are the waste/equipment load-out area which shall be sealed except during the removal of containerized asbestos waste from the regulated area, and emergency exits. Emergency exits shall not be locked from the inside; however, they shall be sealed with poly sheeting and taped until needed. In any situation where exposure to high temperatures which may result in a flame hazard, fire retardant poly sheeting must be used.
 - E. The Contractor's Competent Person shall control site security during abatement operations in order to isolate work in progress and protect adjacent personnel. A 24 hour security system shall be provided at the entrance to the regulated area to assure that

all entrants are logged in/out and that only authorized personnel are allowed entrance.

- F. The Contractor will have the VA's assistance in notifying adjacent personnel of the presence, location and quantity of ACM in the regulated area and enforcement of restricted access by the VA's employees.
- G. The regulated area shall be locked during non-working hours and secured by VA Representative or Competent Person. The VA Police should be informed of asbestos abatement regulated areas to provide security checks during facility rounds and emergency response.

3.1.2. SIGNAGE AND POWER MANAGEMENT

- A. Post OSHA DANGER signs meeting the specifications of OSHA 29 CFR 1926.1101 at any location and approaches to the regulated area where airborne concentrations of asbestos may exceed the PEL. Signs shall be posted at a distance sufficiently far enough away from the regulated area to permit any personnel to read the sign and take the necessary measures to avoid exposure. Additional signs will be posted following construction of the regulated area enclosure.
- B. Shut down and lock out/tag out electric power to the regulated area. Provide temporary power and lighting. Insure safe installation including GFCI of temporary power sources and equipment by compliance with all applicable electrical code and OSHA requirements for temporary electrical systems. Electricity shall be provided by the VA.
- C. Shut down and lock out/tag out heating, cooling, and air conditioning system (HVAC) components that are in, supply or pass through the regulated area. Investigate the regulated area and agree on pre-abatement condition with the VA's representative. Seal all intake and exhaust vents in the regulated area with duct tape and 2 layers of 6-mil poly. Also, seal any seams in system components that pass through the regulated area. Remove all contaminated HVAC system filters and place in labeled 6-mil polyethylene disposal bags for staging and eventual disposal as asbestos waste.

3.1.3 NEGATIVE PRESSURE FILTRATION SYSTEM

The Contractor shall provide enough HEPA negative air machines to effect > -0.02" WCG pressure. The Competent Person shall determine the number of units needed for the regulated area by dividing the cubic feet in the regulated area by 15 and then dividing that result by the cubic feet per minute (CFM) for each unit to determine the number of units needed to effect > -0.02" WCG pressure. Provide a standby unit in the event of machine failure and/or emergency in an adjacent area. NIOSH has done extensive studies and has determined that negative air machines typically operate at ~50% efficiency. The contractor shall consider this in their determination of number of units needed to provide > -0.02" WCG pressure. The contractor shall use double the number of machines, based on their calculations, or submit proof their machines operate at stated capacities, at a 2" pressure drop across the filters.

3.1.3.1 DESIGN AND LAYOUT

- A. Before start of work submit the design and layout of the regulated area and the negative air machines. The submittal shall indicate the number of, location of and size of negative air machines. The point(s) of exhaust, air flow within the regulated area, anticipated negative pressure differential, and supporting calculations for sizing shall be provided. In addition, submit the following:
 - 1. Method of supplying power to the units and designation/location of the panels.
 - 2. Description of testing method(s) for correct air volume and pressure differential.
 - 3. If auxiliary power supply is to be provided for the negative air machines, provide a schematic diagram of the power supply and manufacturer's data on the generator and switch.

3.1.3.2 NEGATIVE AIR MACHINES (HEPA UNITS)

- A. Negative Air Machine Cabinet: The cabinet shall be constructed of steel or other durable material capable of withstanding potential damage from rough handling and transportation. The width of the cabinet shall be less than 30" in order to fit in standard doorways. The cabinet must be factory sealed to prevent asbestos fibers from being released during use, transport, or maintenance. Any access to and replacement of filters shall be from the inlet end. The unit must be on casters or wheels.
- B. Negative Air Machine Fan: The rating capacity of the fan must indicate the CFM under actual operating conditions. Manufacturer's typically use "free-air" (no resistance) conditions when rating fans. The fan must be a centrifugal type fan.
- C. Negative Air Machine Final Filter: The final filter shall be a HEPA filter. The filter media must be completely sealed on all edges within a structurally rigid frame. The filter shall align with a continuous flexible gasket material in the negative air machine housing to form an air tight seal. Each HEPA filter shall be certified by the manufacturer to have an efficiency of not less than 99.97%. Testing shall have been done in accordance with Military Standard MIL-STD-282 and Army Instruction Manual 136-300-175A. Each filter must bear a UL586 label to indicate ability to perform under specified conditions. Each filter shall be marked with the name of the manufacturer, serial number, air flow rating, efficiency and resistance, and the direction of test air flow.
- D. Negative Air Machine Pre-filters: The pre-filters, which protect the final HEPA filter by removing larger particles, are required to prolong the operating life of the HEPA filter. Two stages of pre-filtration are required. A first stage pre-filter shall be a low efficiency type for particles 10 μ m or larger. A second stage pre-filter shall have a medium efficiency effective for particles down to 5 μ m or larger. Pre-filters shall be installed either on or in the intake opening of the NAM and the second stage filter must be held in place with a special housing or clamps.

- E. Negative Air Machine Instrumentation: Each unit must be equipped with a gauge to measure the pressure drop across the filters and to indicate when filters have become loaded and need to be changed. A table indicating the cfm for various pressure readings on the gauge shall be affixed near the gauge for reference or the reading shall indicate at what point the filters shall be changed, noting cfm delivery. The unit must have an elapsed time meter to show total hours of operation.
- F. Negative Air Machine Safety and Warning Devices: An electrical/ mechanical lockout must be provided to prevent the fan from being operated without a HEPA filter. Units must be equipped with an automatic shutdown device to stop the fan in the event of a rupture in the HEPA filter or blockage in the discharge of the fan. Warning lights are required to indicate normal operation; too high a pressure drop across filters; or too low of a pressure drop across filters.
- G. Negative Air Machine Electrical: All electrical components shall be approved by the National Electrical Manufacturer's Association (NEMA) and Underwriters Laboratories (UL). Each unit must be provided with overload protection and the motor, fan, fan housing, and cabinet must be grounded.
- H. It is essential that replacement HEPA filters be tested using an "in-line" testing method, to ensure the seal around the periphery was not damaged during replacement. Damage to the outer HEPA filter seal could allow contaminated air to bypass the HEPA filter and be discharged to an inappropriate location. Contractor will provide written documentation of test results for negative air machine units with HEPA filters changed by the contractor or documentation when changed and tested by the contractor filters

3.1.3.3 PRESSURE DIFFERENTIAL

The fully operational negative air system within the regulated area shall continuously maintain a pressure differential of -0.02" water column gauge. Before any disturbance of any asbestos material, this shall be demonstrated to the VA by use of a pressure differential meter/manometer as required by OSHA 29 CFR 1926.1101(e)(5)(i). The Competent Person shall be responsible for providing, maintaining, and documenting the negative pressure and air changes as required by OSHA and this specification.

3.1.3.4 MONITORING

The pressure differential shall be continuously monitored and recorded between the regulated area and the area outside the regulated area with a monitoring device that incorporates a strip chart recorder. The strip chart recorder shall become part of the project log and shall indicate at least -0.02" water column gauge for the duration of the project.

3.1.3.5 AUXILIARY GENERATOR

If the building is occupied during abatement, provide an auxiliary gasoline/diesel generator located outside the building in an area protected from the weather. In the event of a power failure of the general power grid and the VAMC emergency power grid, the generator must automatically start and supply power to a minimum of 50% of the negative air machines in operation.

3.1.3.6 SUPPLEMENTAL MAKE-UP AIR INLETS

Provide, as needed for proper air flow in the regulated area, in a location approved by the VA, openings in the plastic sheeting to allow outside air to flow into the regulated area. Auxiliary makeup air inlets must be located as far from the negative air machines as possible, off the floor near the ceiling, and away from the barriers that separate the regulated area from the occupied clean areas. Cover the inlets with weighted flaps which will seal in the event of failure of the negative pressure system.

3.1.3.7 TESTING THE SYSTEM

The negative pressure system must be tested before any ACM is disturbed in any way. After the regulated area has been completely prepared, the decontamination units set up, and the negative air machines installed, start the units up one at a time. Demonstrate and document the operation and testing of the negative pressure system to the VA using smoke tubes and a negative pressure gauge. Verification and documentation of adequate negative pressure differential across each barrier must be done at the start of each work shift.

3.1.3.8 DEMONSTRATION OF THE NEGATIVE PRESSURE FILTRATION SYSTEM

The demonstration of the operation of the negative pressure system to the VA shall include, but not be limited to, the following:

- A. Plastic barriers and sheeting move lightly in toward the regulated area.
- B. Curtains of the decontamination units move in toward regulated area.
- C. There is a noticeable movement of air through the decontamination units. Use the smoke tube to demonstrate air movement from the clean room to the shower room to the equipment room to the regulated area.
- D. Use smoke tubes to demonstrate air is moving across all areas in which work is to be done. Use a differential pressure gauge to indicate a negative pressure of at least -0.02" across every barrier separating the regulated area from the rest of the building. Modify the system as necessary to meet the above requirements.

3.1.3.9 USE OF THE NEGATIVE PRESSURE FILTRATION SYSTEM DURING ABATEMENT OPERATIONS

A. Start units before beginning any disturbance of ACM occurs. After work begins, the units shall run continuously, maintaining 4 actual air changes per hour at a negative pressure differential of -0.02" water column gauge, for the duration of the work until a final visual clearance and final air clearance has been successfully completed. No negative air units shall be shut down at any time unless authorized by the VA Contracting Officer, verbally and in writing.

- B. Pre-cleaning of ACM contaminated items shall be performed after the enclosure has been erected and negative pressure has been established in the work area. After items have been pre-cleaned and decontaminated, they may be removed from the work area for storage until the completion of abatement in the work area.
- C. Abatement work shall begin at a location farthest from the units and proceed towards them. If an electric failure occurs, the Competent Person shall stop all abatement work and immediately begin wetting all exposed asbestos materials for the duration of the power outage. Abatement work shall not resume until power is restored and all units are operating properly again.
- D. The negative air machines shall continue to run after all work is completed and until a final visual clearance and a final air clearance has been successfully completed for that regulated area.

3.1.3.10 DISMANTLING THE SYSTEM

After completion of the final visual and final air clearance has been obtained by the VPIH/CIH, the units may be shut down. The unit exterior surfaces shall have been completely decontaminated; pre-filters are not to be removed and the units inlet/outlet sealed with 2 layers of 6 mil poly immediately after shut down. No filter removal shall occur at the VA site following successful completion of site clearance. OSHA/EPA/DOT asbestos shall be attached to the units.

3.1.4 CONTAINMENT BARRIERS AND COVERINGS IN THE REGULATED AREA

3.1.4.1 GENERAL

Seal off the perimeter to the regulated area to completely isolate the regulated area from adjacent spaces. All surfaces in the regulated area must be covered to prevent contamination and to facilitate clean-up. Should adjacent areas become contaminated as a result of the work, shall immediately stop work and clean up the contamination at no additional cost to the VA. Provide firestopping and identify all fire barrier penetrations due to abatement work as specified in Section 3.1.4.8; FIRESTOPPING.

3.1.4.2 PREPARATION PRIOR TO SEALING THE REGULATED AREA

Place all tools, scaffolding, materials and equipment needed for working in the regulated area prior to erecting any plastic sheeting. All uncontaminated removable furniture, equipment and/or supplies shall be removed by the VA from the regulated area before commencing work. Any objects remaining in the regulated area shall be completely covered with 2 layers of 6-mil fire retardant poly sheeting and secured with duct tape. Lock out and tag out any HVAC/electrical systems in the regulated area.

3.1.4.3 CONTROLLING ACCESS TO THE REGULATED AREA

Access to the regulated area is allowed only through the personnel decontamination facility (PDF). All other means of access shall be eliminated and OSHA DANGER demarcation signs posted as required by OSHA. If the regulated area is adjacent to, or within view of an occupied area, provide a visual barrier of 6 mil opaque fire retardant poly to prevent building occupant observation. If the adjacent area is accessible to the public, the barrier must be solid and capable of withstanding the negative pressure.

3.1.4.4 CRITICAL BARRIERS

Completely separate any operations in the regulated area from adjacent areas using 2 layers of 6 mil fire retardant poly and duct tape. Individually seal with 2 layers of 6 mil poly and duct tape all HVAC openings into the regulated area. Individually seal all lighting fixtures, clocks, doors, windows, convectors, speakers, or any other objects/openings in the regulated area. Heat must be shut off any objects covered with poly.

3.1.4.5 PRIMARY BARRIERS

- A. Cover the regulated area with two layers of 6 mil fire retardant poly on the floors and two layers of 4 mil, fire retardant poly on the walls, unless otherwise directed in writing by the VA representative. Floor layers must form a right angle with the wall and turn up the wall at least 300 mm (12"). Seams must overlap at least 1800 mm (6') and must be spray glued and taped. Install sheeting so that layers can be removed independently from each other. Carpeting shall be covered with three layers of 6 mil poly. Corrugated cardboard sheets must be placed between the bottom and middle layers of poly. Mechanically support and seal with duct tape and glue all wall layers.
- B. If stairs and ramps are covered with 6 mil plastic, two layers must be used. Provide 19 mm (3/4") exterior grade plywood treads held in place with duct tape/glue on the plastic. Do not cover rungs or rails with any isolation materials.

3.1.4.6 SECONDARY BARRIERS

A loose layer of 6 mil shall be used as a drop cloth to protect the primary layers from debris generated during the abatement. This layer shall be replaced as needed during the work and at a minimum once per work day.

3.1.4.7 EXTENSION OF THE REGULATED AREA

If the enclosure of the regulated area is breached in any way that could allow contamination to occur, the affected area

shall be included in the regulated area and constructed as per this section. Decontamination measures must be started immediately and continue until air monitoring indicates background levels are met.

3.1.4.8 FIRESTOPPING

- A. Through penetrations caused by cables, cable trays, pipes, sleeves, conduits, etc. must be firestopped with a fire-rated firestop system providing an air tight seal.
- B. Firestop materials that are not equal to the wall or ceiling penetrated shall be brought to the attention of the VA Representative. The contractor shall list all areas of penetration, the type of sealant used, and whether or not the location is fire rated. Any discovery of penetrations during abatement shall be brought to the attention of the VA representative immediately. All walls, floors and ceilings are considered fire rated unless otherwise determined by the VA Representative or Fire Marshall.
- C. Any visible openings whether or not caused by a penetration shall be reported by the Contractor to the VA Representative for a sealant system determination. Firestops shall meet ASTM E814 and UL 1479 requirements for the opening size, penetrant, and fire rating needed.

3.1.5 SANITARY FACILITIES

The Contractor shall provide sanitary facilities for abatement personnel and maintain them in a clean and sanitary condition throughout the abatement project.

3.1.6 PERSONAL PROTECTIVE EQUIPMENT

Provide whole body clothing, head coverings, gloves and foot coverings and any other personal protective equipment as determined by conducting the hazard assessment required by OSHA at 29 CFR 1910.132 (d). The Competent Person shall ensure the integrity of personal protective equipment worn for the duration of the project. Duct tape shall be used to secure all suit sleeves to wrists and to secure foot coverings at the ankle.

3.1.7 PRE-CLEANING

The VA will provide water for abatement purposes. The Contractor shall connect to the existing VA system. The service to the shower(s) shall be supplied with backflow prevention.

Pre-cleaning of ACM contaminated items shall be performed after the enclosure has been erected and negative pressure has been established in the work area. All workers performing pre-cleaning activities must don appropriate personal protective equipment (PPE), as specified throughout this document and as approved in the Contractor's work plan. After items have been pre-cleaned and decontaminated, they may be removed from the work area for storage until the completion of abatement in the work area.

Pre-clean all movable objects within the regulated area using a HEPA filtered vacuum and/or wet cleaning methods as appropriate. After cleaning, these objects shall be removed from the regulated area and

carefully stored in an uncontaminated location. Drapes, clothing, upholstered furniture and other fabric items should be disposed of as asbestos contaminated waste. Cleaning these asbestos contaminated items utilizing HEPA vacuum techniques and off-premises steam cleaning is very difficult and cannot guarantee decontamination. Carpeting will be disposed of prior to abatement if in the regulated area. If ACM floor tile is attached to the carpet while the Contractor is removing the carpet that section of the carpet will be disposed of as asbestos waste.

Pre-clean all fixed objects in the regulated area using HEPA filtered vacuums and/or wet cleaning techniques as appropriate. Careful attention must be paid to machinery behind grills or gratings where access may be difficult but contamination may be significant. Also, pay particular attention to wall, floor and ceiling penetration behind fixed items. After pre-cleaning, enclose fixed objects with 2 layers of 6-mil poly and seal securely in place with duct tape. Objects (e.g., permanent fixtures, shelves, electronic equipment, laboratory tables, sprinklers, alarm systems, closed circuit TV equipment and computer cables) which must remain in the regulated area and that require special ventilation or enclosure requirements should be designated here along with specified means of protection. Contact the manufacturer for special protection requirements.

Pre-clean all surfaces in the regulated area using HEPA filtered vacuums and/or wet cleaning methods as appropriate. Do not use any methods that would raise dust such as dry sweeping or vacuuming with equipment not equipped with HEPA filters. Do not disturb asbestos-containing materials during this pre-cleaning phase.

3.1.8 PRE-ABATEMENT ACTIVITIES

3.1.8.1 PRE-ABATEMENT MEETING

The VA representative, upon receipt, review, and substantial approval of all pre-abatement submittals and verification by the CPIH/CIH that all materials and equipment required for the project are on the site, will arrange for a pre-abatement meeting between the Contractor, the CPIH/CIH, Competent Person(s), the VA representative(s), and the VPIH/CIH. The purpose of the meeting is to discuss any aspect of the submittals needing clarification or amplification and to discuss any aspect of the project execution and the sequence of the operation. The Contractor shall be prepared to provide any supplemental information/documentation to the VA's representative regarding any submittals, documentation, materials or equipment. Upon satisfactory resolution of any outstanding issues, the VA's representative will issue a written order to proceed to the Contractor. No abatement work of any kind described in the following provisions shall be initiated prior to the VA written order to proceed.

3.1.8.2 PRE-ABATEMENT CONSTRUCTION AND OPERATIONS

- A. Perform all preparatory work for the first regulated area in accordance with the approved work schedule and with this specification.
- B. Upon completion of all preparatory work, the CPIH/CIH will inspect the work and systems and will notify the VA's representative when the work is completed in accordance with this specification. The VA's representative may

inspect the regulated area and the systems with the VPIH/CIH and may require that upon satisfactory inspection, the Contractor's employees perform all major aspects of the approved AHAP(s), especially worker protection, respiratory systems, contingency plans, decontamination procedures, and monitoring to demonstrate satisfactory operation. The operational systems for respiratory protection and the negative pressure system shall be demonstrated for proper performance.

- C. The CPIH/CIH shall document the pre-abatement activities described above and deliver a copy to the VA's representative.
- D. Upon satisfactory inspection of the installation of and operation of systems the VA's representative will notify the Contractor in writing to proceed with the asbestos abatement work in accordance with this specification and all applicable regulations.

3.1.8.3 PRE-ABATEMENT INSPECTIONS AND PREPARATIONS

Before any work begins on the construction of the regulated area, the Contractor will:

- A. Conduct a space-by-space inspection with an authorized VA representative and prepare a written inventory of all existing damage in those spaces where asbestos abatement will occur. Still or video photography may be used to supplement the written damage inventory. Document will be signed and certified as accurate by both parties.
- B. The VA Representative, the Contractor, and the VPIH/CIH must be aware of VA A/E Quality Alert 07/09 indicating the failure to identify asbestos in the areas listed as well as common issues when preparing specifications and contract documents. This is especially critical when demolition is planned, because AHERA surveys are non-destructive, and ACM may remain undetected. A NESHAPS (destructive) ACM inspection should be conducted on all building structures that will be demolished. Ensure the following areas are inspected on the project: lay-in ceilings concealing ACM; ACM behind walls/windows from previous renovations; inside chases/walls; transite piping/ductwork/sheets; utility behind radiators; lab fume hoods; transite lab countertops; roofing materials; below window sills; water/sewer lines; electrical conduit coverings; crawlspaces (previous abatement contamination); flooring/mastic covered bv carpeting/new flooring; exterior insulated wall panels; on underground fuel tanks; and steam line trench coverings.
- C. Ensure that all furniture, machinery, equipment, curtains, drapes, blinds, and other movable objects required to be removed from the regulated area have been cleaned and removed or properly protected from contamination.
- D. If present and required, remove and dispose of carpeting from floors in the regulated area.
- E. Inspect existing firestopping in the regulated area. Correct as needed.

3.2 REMOVAL OF ACM

3.2.1 WETTING ACM

- A. Use amended water for the wetting of ACM prior to removal. The Competent Person shall assure the wetting of ACM meets the definition of "adequately wet" in the EPA NESHAP regulation and OSHA's "wet methods" for the duration of the project. A removal encapsulant may be used instead of amended water with written approval of the VA's representative.
- B. Amended Water: Provide water to which a surfactant has been added shall be used to wet the ACM and reduce the potential for fiber release during disturbance of ACM. The mixture must be equal to or greater than the wetting provided by water amended by a surfactant consisting one ounce of 50% polyoxyethylene ester and 50% polyoxyethylene ether mixed with 5 gallons (19L) of water.
- C. Removal Encapsulant: When authorized by VA, provide a penetrating encapsulant designed specifically for the removal of ACM. The material must, when used, result in adequate wetting of the ACM and retard fiber release during removal.

3.2.2 SECONDARY BARRIER AND WALKWAYS

- A. Install as a drop cloth a 6 mil poly sheet at the beginning of each work shift where removal is to be done during that shift. Completely cover floors and any walls within 10 feet (3 meters) of the area where work is to done. Secure the secondary barrier with duct tape to prevent it from moving or debris from getting behind it. Remove the secondary barrier at the end of the shift or as work in the area is completed. Keep residue on the secondary barrier wetted. When removing, fold inward to prevent spillage and place in a disposal bag.
- B. Install walkways using 6 mil black poly between the regulated area and the decontamination facilities (PDF and W/EDF) to protect the primary layers from contamination and damage. Install the walkways at the beginning of each shift and remove at the end of each shift.

3.2.3 WET REMOVAL OF ACM

A. Adequately and thoroughly wet the ACM to be removed prior to removal with amended water or when authorized by VA, removal encapsulant to reduce/prevent fiber release to the air. Adequate time (at a minimum two hours) must be allowed for the amended water or removal encapsulant to saturate the ACM. Abatement personnel must not disturb dry ACM. Use a fine spray of amended water or removal encapsulant. Saturate the material sufficiently to wet to the substrate without causing excessive dripping. The material must be sprayed repeatedly/continuously during the removal process in order to maintain adequately wet conditions. Removal encapsulants must be applied in accordance with the manufacturer's written instructions. Perforate or carefully separate, using wet methods, an outer covering that is painted or jacketed in order to allow penetration and wetting of the material. Where necessary, carefully remove covering while wetting to minimize fiber release. In no event shall dry removal occur except when authorized in writing by the VPIH/CIH and VA when a greater safety hazard (e.g., electricity) is present.

- B. If ACM does not wet well with amended water due to composition, coating or jacketing, remove as follows:
 - 1. Mist work area continuously with amended water whenever necessary to reduce airborne fiber levels.
 - 2. Remove saturated ACM in small sections. Do not allow material to dry out. As material is removed, bag material, while still wet into disposal bags. Twist the bag neck tightly, bend over (gooseneck) and seal with a minimum of three tight wraps of duct tape. Clean /decontaminate the outside of the bag of any residue and move to washdown station adjacent to W/EDF.
 - 3. Fireproofing or Architectural Finish on Scratch Coat: Spray with a fine mist of amended water or removal encapsulant. Allow time for saturation to the substrate. Do not over saturate causing excess dripping. Scrape material from substrate. Remove material in manageable quantities and control falling to staging or floor. If the falling distance is over 20 feet (6M), use a drop chute to contain material through descent. Remove residue remaining on the scratch coat after scraping is done using a stiff bristle hand brush. If a removal encapsulant is used, remove residue completely before the encapsulant dries. Periodically re-wet the substrate with amended water as needed to prevent drying of the material before the residue is removed from the substrate.
 - 4. Fireproofing or Architectural Finish on Wire Lath: Spray with a fine mist of amended water or removal encapsulant. Allow time to completely saturate the material. Do not over saturate causing excess dripping. If the surface has been painted or otherwise coated, cut small holes as needed and apply amended water or removal encapsulant from above. Cut saturated wire lath into 2' x 6' (50mm x 150mm) sections and cut hanger wires. Roll up complete with ACM, cover in burlap and hand place in disposal bag. Do not drop to floor. After removal of lath/ACM, remove any overspray on decking and structure using stiff bristle nylon brushes. Depending on hardness of overspray, scrapers may be needed for removal.
 - 5. Pipe/Tank/Vessel/Boiler Insulation: Remove the outer layer of wrap while spraying with amended water in order to saturate the ACM. Spray ACM with a fine mist of amended water or removal encapsulant. Allow time to saturate the material to the substrate. Cut bands holding pre-formed pipe insulation sections. Slit jacketing at the seams, remove and hand place in a disposal bag. Do not allow dropping to the floor. Remove molded fitting insulation/mud in large pieces and hand place in a disposal bag. Remove any residue on pipe or fitting with a stiff bristle nylon brush. In locations where pipe fitting insulation is removed from fibrous glass or other nonasbestos insulated straight runs of pipe, remove fibrous material at least 6" from the point it contacts the ACM.

3.2.4 WET REMOVAL OF AMOSITE

- A. The following areas shown on drawings indicate locations of amosite ACM which will require local exhaust ventilation and collection as described below, in addition to wet removal. Provide specific description /locations/ drawings.
- B. Provide local exhaust ventilation and collection systems to assure collection of amosite fibers at the point of generation. A 300 mm (12") flexible rigid non-collapsing duct shall be shall be located no more than 600 mm (2') from any scraping/brushing activity. Primary filters must be replaced every 30 minutes on the negative air machines. Each

scraping/brushing activity must have a negative air machine devoted to it. For pre-molded pipe insulation or cutting wire lathe attach a 1200 mm (4') square flared end piece on the intake of the duct. Support the duct horizontally at a point 600 mm (2') below the work to effect capture. One person in the crew shall be assigned to operate the duct collection system on a continual basis.

C. Amosite does not wet well with amended water. Submit full information/documentation on the wetting agent proposed prior to start for review and approval by the VPIH/CIH and VA Contracting Officer. Insure that the material is worked on in small sections and is thoroughly and continuously wetted. Package as soon as possible while wet. Remove as required.

3.2.5 REMOVAL OF ACM/DIRT FLOORS AND OTHER SPECIAL PROCEDURES

The CPIH/CIH shall develop and submit a procedure for review and approval by the VPIH/CIH and VA Contracting Officer. Local exhaust; continuous monitoring; misting, if possible; and careful work practices must be followed.

A. MAJOR ABATEMENT ON DIRT FLOORS: When working on dirt floors, remove all visible asbestos debris using wet methods after set-up of PDF, W/EDF, negative air systems as required. Perform work and decontaminate/clean-up; perform lockdown as needed and complete work as required in these specifications. The asbestos contaminated soil (ACS) shall be removed and/or enclosed.

Options for abatement of asbestos contaminated soil include: Removal of top 6 inches of soil; encapsulated the soil using shotcrete or other spray applied concrete materials. Considerations for which option to be used will be made by the VA representative. Factors which may affect which option to be used may include: access to the work area; height of the area (such as is there sufficient height to use concrete materials in the area, etc.) Soils covered with permanent barriers **MUST HAVE PERMANENT SIGNAGE INSTALLED TO WARN AGAINST PENETRATION ASSOCIATED WITH POTENTIAL DISTURBANCE OF ASBESTOS.**

- 1. Remove ACS as shown on drawings to a minimum depth of 6 using wet methods. After wetting with amended water to minimize dust, shovel dirt into disposal bags. The CPIH/CIH shall closely monitor work conditions and take appropriate action to protect workers from over exposure to asbestos and heat stress. The minimum number of air changes per hour shall be six using negative air machines. Use special vacuum truck equipped with HEPA filtration to remove soil
- 2. Enclosure of ACS using a concrete layer of 4" over the entire surface may also be done. Thoroughly dampen soil first with amended water before pouring concrete. Personnel shall be proficient in concrete finishing as well as asbestos trained.
- B. Crawlspaces/Pipe Tunnels: When working in crawlspaces or pipe tunnels, remove all visible asbestos debris using wet methods (if possible) after set-up of PDF, W/EDF, and after establishing negative air systems as required. Perform work and decontaminate/clean-up; perform lockdown as needed and complete work as required in these specifications. The asbestos contaminated soil (ACS) shall be removed and/or enclosed. Clearance requirements include confirmation sampling of affected soil by Polarized Light Microscopy (PLM). Clearance sampling requirements are specified in Sections 3.6.4 and 3.6.5.

Options for abatement of asbestos contaminated soil include: Removal of top 6 inches of soil; encapsulated the soil using shotcrete or other spray applied concrete materials. Considerations for which option to be used will be made by the VA representative. Factors which may affect which option to be used may include: access to the work area; height of the area (such as is there sufficient height to use concrete materials in the area, etc.)

3.3 LOCKDOWN ENCAPSULATION

3.3.1 GENERAL

Lockdown encapsulation is an integral part of the ACM removal. At the conclusion of ACM removal and before removal of the primary barriers, the contractor shall encapsulate all surfaces with a bridging encapsulant.

3.3.2 DELIVERY AND STORAGE

Deliver materials to the job site in original, new and unopened containers bearing the manufacturer's name and label as well as the following information: name of material, manufacturer's stock number, date of manufacture, thinning instructions, application instructions and the MSDS for the material.

3.3.3 WORKER PROTECTION

Before beginning work with any material for which an MSDS has been submitted, provide workers with any required personal protective equipment. The required personal protective equipment shall be used whenever exposure to the material might occur. In addition to OSHA/specification requirements for respiratory protection, a paint pre-filter and an organic vapor cartridge, at a minimum, shall used in addition to the HEPA filter when an organic solvent based encapsulant is used. The CPIH/CIH shall be responsible for provision of adequate respiratory protection. Note: Flammable and combustible encapsulants shall not be used, unless authorized in writing by the VA.

3.3.4 ENCAPSULATION OF SCRATCH COAT PLASTER OR PIPING

- A. Apply two coats of lockdown encapsulant to the scratch coat plaster or piping after all ACM has been removed. Apply in strict accordance with the manufacturer's instructions. Any deviation from the instructions must be approved by the VA's representative in writing prior to commencing the work.
- B. Apply the lockdown encapsulant with an airless sprayer at a pressure and using a nozzle orifice as recommended by the manufacturer. Apply the first coat while the while the scratch coat is still damp from the asbestos removal process, after passing the visual inspection. If the surface has been allowed to dry, wet wipe or HEPA vacuum prior to spraying with encapsulant. Apply a second coat over the first coat in strict conformance with the manufacturer's instructions. Color the lockdown encapsulant and contrast the color in the second coat so that visual confirmation of completeness and uniform coverage of each coat is possible. Adhere to the manufacturer's instructions for coloring. At the completion of the encapsulation, the surface must be a uniform third color produced by the mixture.

3.3.5 SEALING EXPOSED EDGES

Seal edges of ACM exposed by removal work which is inaccessible, such as a sleeve, wall penetration, etc., with two coats of bridging encapsulant. Prior to sealing, permit the exposed edges to dry completely to permit penetration of the bridging encapsulant. Apply in accordance with 3.3.4 (B).

3.4 DISPOSAL OF ACM WASTE MATERIALS

3.4.1 GENERAL

Dispose of waste ACM and debris which is packaged in accordance with these specifications, OSHA, EPA and DOT. The landfill requirements for packaging must also be met. Transport will be in compliance with 49 CFR 100-185 regulations. Disposal shall be done at an approved landfill. Disposal of non-friable ACM shall be done in accordance with applicable regulations.

3.4.2 PROCEDURES

- A. The VA must be notified at least 24 hours in advance of any waste removed from the containment.
- B. Asbestos waste shall be packaged and moved through the W/EDF into a covered transport container in accordance with procedures is this specification. Waste shall be double-bagged and wetted with amended water prior to disposal. Wetted waste can be very heavy. Bags shall not be overfilled. Bags shall be securely sealed to prevent accidental opening and/or leakage. The top shall be tightly twisted and goose necked prior to tightly sealing with at least three wraps of duct tape. Ensure that unauthorized persons do not have access to the waste material once it is outside the regulated area. All transport containers must be covered at all times when not in use. NESHAP signs must be on containers during loading and unloading. Material shall not be transported in open vehicles. If drums are used for packaging, the drums shall be labeled properly and shall not be re-used.
- C. Waste Load Out: Waste load out shall be done in accordance with the procedures in W/EDF Decontamination Procedures. Sealed waste bags shall be decontaminated on exterior surfaces by wet cleaning and/or HEPA vacuuming before being placed in the second waste bag and sealed, which then must also be wet wiped or HEPA vacuumed.
- D. Asbestos waste with sharp edged components, i.e., nails, screws, lath, strapping, tin sheeting, jacketing, metal mesh, etc., which might tear poly bags shall be wrapped securely in burlap before packaging and, if needed, use a poly lined fiber drum as the second container, prior to disposal.

3.5 PROJECT DECONTAMINATION

3.5.1 GENERAL

- A. The entire work related to project decontamination shall be performed under the close supervision and monitoring of the CPIH/CIH.
- B. If the asbestos abatement work is in an area which was contaminated prior to the start of abatement, the decontamination will be done by cleaning the primary barrier poly prior to its removal and cleanings of the surfaces of the regulated area after the primary barrier removal.
- C. If the asbestos abatement work is in an area which was uncontaminated prior to the start of abatement, the decontamination will be done by

cleaning the primary barrier poly prior to its removal, thus preventing contamination of the building when the regulated area critical barriers are removed.

3.5.2 REGULATED AREA CLEARANCE

Clearance air testing and other requirements which must be met before release of the Contractor and re-occupancy of the regulated area space are specified in Final Testing Procedures.

3.5.3 WORK DESCRIPTION

Decontamination includes the clearance air testing in the regulated area and the decontamination and removal of the enclosures/facilities installed prior to the abatement work including primary/critical barriers, PDF and W/EDF facilities, and negative pressure systems.

3.5.4 PRE-DECONTAMINATION CONDITIONS

- A. Before decontamination starts, all ACM waste from the regulated area shall be collected and removed, and the loose 6 mil layer of poly removed while being adequately wetted with amended water and disposed of along with any gross debris generated by the work.
- B. At the start of decontamination, the following shall be in place:
 - 1. Primary barriers consisting of 2 layers of 6 mil poly on the floor and 4 mil poly on the walls.
 - 2. Critical barriers consisting of 2 layers of 6 mil poly which is the sole barrier between the regulated area and openings to the rest of the building or outside.
 - 4. Decontamination facilities for personnel and equipment in operating condition and the negative pressure system in operation.

3.5.5 FIRST CLEANING

Carry out a first cleaning of all surfaces of the regulated area including items of remaining poly sheeting, tools, scaffolding, ladders/staging by wet methods and/or HEPA vacuuming. Do not use dry dusting/sweeping/air blowing methods. Use each surface of a wetted cleaning cloth one time only and then dispose of as contaminated waste. Continue this cleaning until there is no visible residue from abated surfaces or poly or other surfaces. Remove all filters in the air handling system and dispose of as ACM waste in accordance with these specifications. The negative pressure system shall remain in operation during this time. Additional cleaning(s) may be needed as determined by the CPIH/VPIH/CIH.

3.5.6 PRE-CLEARANCE INSPECTION AND TESTING

The CPIH/CIH and VPIH/CIH will perform a thorough and detailed visual inspection at the end of the cleaning to determine whether there is any visible residue in the regulated area. If the visual inspection is acceptable, the CPIH/CIH will perform pre-clearance sampling using aggressive clearance as detailed in 40 CFR 763 Subpart E (AHERA) Appendix A (III)(B)(7)(d). If the sampling results show values below 0.01 f/cc, then the Contractor shall notify the VA's representative of the results with a brief report from the CPIH/CIH documenting the inspection and sampling results and a statement verifying that the regulated area is ready for lockdown encapsulation. The VA reserves the

right to utilize their own VPIH/CIH to perform a pre-clearance inspection and testing for verification.

3.5.7 LOCKDOWN ENCAPSULATION OF ABATED SURFACES

With the express written permission of the VA's representative, perform lockdown encapsulation of all surfaces from which asbestos was abated in accordance with the procedures in this specification. Negative pressure shall be maintained in the regulated area during the lockdown application.

3.6 FINAL VISUAL INSPECTION AND AIR CLEARANCE TESTING

3.6.1 GENERAL

Notify the VA representative 24 hours in advance for the performance of the final visual inspection and testing. The final visual inspection and testing will be performed by the VPIH/CIH starting after the final cleaning.

3.6.2 FINAL VISUAL INSPECTION

Final visual inspection will include the entire regulated area, the PDF, all poly sheeting, seals over HVAC openings, doorways, windows, and any other openings. If any debris, residue, dust or any other suspect material is detected, the final cleaning shall be repeated at no cost to the VA. Dust/material samples may be collected and analyzed at no cost to the VA at the discretion of the VPIH/CIH to confirm visual findings. When the regulated area is visually clean the final testing can be done.

3.6.3 FINAL AIR CLEARANCE TESTING

- A. After an acceptable final visual inspection by the VPIH/CIH and VA Representative, the VPIH/CIH will perform the final clearance testing. Air samples will be collected and analyzed in accordance with procedures for AHERA in this specification. If work is less than 260 lf/160 sf/35 cf, 5 PCM samples shall be collected for clearance and a minimum of one field blank. If work is equal to or more than 260 lf/160 sf/35 cf, AHERA TEM sampling shall be performed for clearance. TEM analysis shall be done in accordance with procedures for EPA AHERA in this specification. If the release criteria are not met, the Contractor shall repeat the final cleaning and continue decontamination procedures until clearance is achieved. All Additional inspection and testing costs will be borne by the Contractor.
- B. If release criteria are met, proceed to perform the abatement closeout and to issue the certificate of completion in accordance with these specifications.

3.6.4 FINAL AIR CLEARANCE PROCEDURES

- A. Contractor's Release Criteria: Work in a regulated area is complete when the regulated area is visually clean and airborne fiber levels have been reduced to or below 0.01 f/cc as measured by the AHERA PCM protocol, or 70 AHERA structures per square millimeter (s/mm²) by AHERA TEM.
- B. Air Monitoring and Final Clearance Sampling: To determine if the elevated airborne fiber counts encountered during abatement operations have been reduced to the specified level, the VPIH/CIH will secure samples and analyze them according to the following procedures:

- 1. Fibers Counted: "Fibers" referred to in this section shall be either all fibers regardless of composition as counted in the NIOSH 7400 PCM method or asbestos fibers counted using the AHERA TEM method.
- 2. Aggressive Sampling: All final air testing samples shall be collected using aggressive sampling techniques except where soil is not encapsulated or enclosed. Samples will be collected on 0.8µ MCE filters for PCM analysis and 0.45µ Polycarbonate filters for TEM. A minimum of 1200 Liters of using calibrated pumps shall be collected for clearance samples. Before pumps are started, initiate aggressive air mixing sampling as detailed in 40 CFR 763 Subpart E (AHERA) Appendix A (III)(B)(7)(d). Air samples will be collected in areas subject to normal air circulation away from corners, obstructed locations, and locations near windows, doors, or vents. After air sampling pumps have been shut off, circulating fans shall be shut off. The negative pressure system shall continue to operate.
- 3. Final clearance for soil that is not encapsulated, samples will be collected on 0.8µ MCE filters for PCM analysis and 0.45µ Polycarbonate filters for TEM. A minimum of 1200 Liters of using calibrated pumps shall be collected for clearance samples. Air clearance of work areas where contaminated soil has been removed is in addition to the requirement for clearance by bulk sample analysis discussed within these specifications. There will be no aggressive air sampling for the clearance of soil due to the fact that aggressive air sampling may overload the cassettes.
- 4. Random samples shall be collected from areas of soil which have been abated to ensure that the soil has been properly decontaminated. The total number of samples to be collected from the soil areas shall be; <1000 SF of soil 3 samples; >1000 to <5000 SF of soil 5 samples; and >5000 SF of soil 7 samples. The soil samples shall be collected in a statistically random manner and shall be analyzed by PLM method. The clearance level to determine the soil clean is <1% asbestos by weight as analyzed by PLM method. If this level is achieved, the soil areas shall be considered clear. If the levels are >1% asbestos, the areas shall be re-cleaned until the sample results are <1%.</p>

3.6.5 CLEARANCE SAMPLING USING PCM - LESS THAN 260LF/160SF:

- A. The VPIH/CIH will perform clearance samples as indicated by the specification.
- B. The NIOSH 7400 PCM method will be used for clearance sampling with a minimum collection volume of 1200 Liters of air. A minimum of 5 PCM clearance samples shall be collected. All samples must be equal to or less than 0.01 f/cc to clear the regulated area.
- C. Random samples shall be collected from areas of soil which have been abated to ensure that the soil has been properly decontaminated. The total number of samples to be collected from the soil areas shall be; <1000 SF of soil - 3 samples; >1000 to <5000 SF of soil - 5 samples; and >5000 SF of soil - 7 samples. The soil samples shall be collected in a statistically random manner and shall be analyzed by PLM method. The clearance level to determine the soil clean is <1% asbestos by weight as analyzed by PLM method. If this level is achieved, the soil areas shall be considered clear. If the levels are >1% asbestos, the areas shall be re-cleaned until the sample results are <1%.

3.6.6 CLEARANCE SAMPLING USING TEM - EQUAL TO OR MORE THAN 260LF/160SF: TEM

- A. Clearance requires 13 samples be collected; 5 inside the regulated area; 5 outside the regulated area; and 3 field blanks.
- B. The TEM method will be used for clearance sampling with a minimum collection volume of 1200 Liters of air. A minimum of 13 clearance samples shall be collected. All samples must be equal to or less than 70 AHERA structures per square millimeter (s/mm²) AHERA TEM.

3.6.7 LABORATORY TESTING OF PCM CLEARANCE SAMPLES

The services of an AIHA accredited laboratory will be employed by the VA to perform analysis for the PCM air samples. The accredited laboratory shall be successfully participating in the AIHA Proficiency Analytical Testing (PAT) program. Samples will be sent daily by the VPIH/CIH so that verbal/faxed reports can be received within 24 hours. A complete record, certified by the laboratory, of all air monitoring tests and results will be furnished to the VA's representative and the Contractor.

3.6.8 LABORATORY TESTING OF TEM SAMPLES

Samples shall be sent by the VPIH/CIH to a NIST accredited laboratory for analysis by TEM. The laboratory shall be successfully participating in the NIST Airborne Asbestos Analysis (TEM) program. Verbal/faxed results from the laboratory shall be available within 24 hours after receipt of the samples. A complete record, certified by the laboratory, of all TEM results shall be furnished to the VA's representative and the Contractor.

3.6.9 LABORATORY TESTING OF BULK SAMPLES

Samples shall be sent by the VPIH/CIH or CPIH/CIH to a NIST accredited laboratory for analysis by PLM. The laboratory shall be successfully participating in the NIST Bulk Asbestos Analysis (PLM) program. Verbal/faxed results from the laboratory shall be available within 24 hours after receipt of the samples. A complete record, certified by the laboratory, of all TEM results shall be furnished to the VA's representative and the Contractor.

3.7 ABATEMENT CLOSEOUT AND CERTIFICATE OF COMPLIANCE

3.7.1 COMPLETION OF ABATEMENT WORK

After thorough decontamination, seal negative air machines with 2 layers of 6 mil poly and duct tape to form a tight seal at the intake/outlet ends before removal from the regulated area. Complete asbestos abatement work upon meeting the regulated area visual and air clearance criteria and fulfilling the following:

- A. Remove all equipment and materials from the project area.
- B. Dispose of all packaged ACM waste as required.
- C. Repair or replace all interior finishes damaged during the abatement work, as required.
- D. Fulfill other project closeout requirements as required in this specification.

3.7.2 CERTIFICATE OF COMPLETION BY CONTRACTOR

The CPIH/CIH shall complete and sign the "Certificate of Completion" in accordance with Attachment 1 at the completion of the abatement and decontamination of the regulated area.

3.7.3 WORK SHIFTS

All work shall be done during administrative hours (8:00 AM to 4:30 PM) Monday -Friday excluding Federal Holidays. Any change in the work schedule must be approved in writing by the VA Representative.

3.7.4 RE-INSULATION

If required as part of the contract, replace all asbestos containing insulation/fire-proofing with suitable non-asbestos material. Provide MSDS's for all replacement materials in advance of installation for VA approval. Refer to Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION.

CERTIFICATE OF COMPLETION

	DATE: VA Project #:
	PROJECT NAME:Abatement Contractor:
	VAMC/ADDRESS:
1.	I certify that I have personally inspected, monitored and supervised the abatement work of (specify regulated area or Building):
	which took place from / / to / /
2.	That throughout the work all applicable requirements/regulations and the VA's specifications were met.
3.	That any person who entered the regulated area was protected with the appropriate personal protective equipment and respirator and that they followed the proper entry and exit procedures and the proper operating procedures for the duration of the work.
4.	That all employees of the Abatement Contractor engaged in this work were trained in respiratory protection, were experienced with abatement work, had proper medical surveillance documentation, were fit-tested for their respirator, and were not exposed at any time during the work to asbestos without the benefit of appropriate respiratory protection.
5.	That I performed and supervised all inspection and testing specified and required by applicable regulations and VA specifications.
6.	That the conditions inside the regulated area were always maintained in a

- That the conditions inside the regulated area were always maintained in a safe and healthy condition and the maximum fiber count never exceeded 0.5 f/cc, except as described below.
- 7. That all abatement work was done in accordance with OSHA requirements and the manufacturer's recommendations.

CPIH/CIH Signature/Date:

CPIH/CIH Print Name:.....

Abatement Contractor Signature/Date:

Abatement Contractor Print Name:

CERTIFICATE OF WORKER'S ACKNOWLEDGMENT

PROJECT :	NAME:	DATE :	

PROJECT ADDRESS:

ABATEMENT CONTRACTOR'S NAME:

WORKING WITH ASBESTOS CAN BE HAZARDOUS TO YOUR HEALTH. INHALING ASBESTOS HAS BEEN LINKED WITH VARIOUS TYPES OF CANCERS. IF YOU SMOKE AND INHALE ASBESTOS FIBERS, YOUR CHANCES OF DEVELOPING LUNG CANCER IS GREATER THAN THAT OF THE NON-SMOKING PUBLIC.

Your employer's contract with the owner for the above project requires that: You must be supplied with the proper personal protective equipment including an adequate respirator and be trained in its use. You must be trained in safe and healthy work practices and in the use of the equipment found at an asbestos abatement project. You must receive/have a current medical examination for working with asbestos. These things shall be provided at no cost to you. By signing this certificate you are indicating to the owner that your employer has met these obligations.

RESPIRATORY PROTECTION: I have been trained in the proper use of respirators and have been informed of the type of respirator to be used on the above indicated project. I have a copy of the written Respiratory Protection Program issued by my employer. I have been provided for my exclusive use, at no cost, with a respirator to be used on the above indicated project.

TRAINING COURSE: I have been trained by a third party, State/EPA accredited trainer in the requirements for an AHERA/OSHA Asbestos Abatement Worker training course, 32 hours minimum duration. I currently have a valid State accreditation certificate. The topics covered in the course include, as a minimum, the following:

Physical Characteristics and Background Information on Asbestos Potential Health Effects Related to Exposure to Asbestos Employee Personal Protective Equipment Establishment of a Respiratory Protection Program State of the Art Work Practices Personal Hygiene Additional Safety Hazards Medical Monitoring Air Monitoring Relevant Federal, State and Local Regulatory Requirements, Procedures, and Standards Asbestos Waste Disposal

MEDICAL EXAMINATION: I have had a medical examination within the past 12 months which was paid for by my employer. This examination included: health history, occupational history, pulmonary function test, and may have included a chest x-ray evaluation. The physician issued a positive written opinion after the examination.

Signature:_____ Printed Name:

Social	Security	Number:	

Witness:

AFFIDAVIT OF MEDICAL SURVEILLANCE, RESPIRATORY PROTECTION AND TRAINING/ACCREDITATION

VA PROJECT NAME AND NUMBER:

VA MEDICAL FACILITY:

ABATEMENT CONTRACTOR'S NAME AND ADDRESS:

1. I verify that the following individual

Name:______Social Security Number:

who is proposed to be employed in asbestos abatement work associated with the above project by the named Abatement Contractor, is included in a medical surveillance program in accordance with 29 CFR 1926.1101(m), and that complete records of the medical surveillance program as required by 29 CFR 1926.1101(m)(n) and 29 CFR 1910.20 are kept at the offices of the Abatement Contractor at the following address.

Address:

2. I verify that this individual has been trained, fit-tested and instructed in the use of all appropriate respiratory protection systems and that the person is capable of working in safe and healthy manner as expected and required in the expected work environment of this project.

- 3. I verify that this individual has been trained as required by 29 CFR 1926.1101(k). This individual has also obtained a valid State accreditation certificate. Documentation will be kept on-site.
- 4. I verify that I meet the minimum qualifications criteria of the VA specifications for a CPIH.

Signature of CPIH/CIH: _____ Date:_____

Printed Name of CPIH/CIH:

Signature of Contractor: _____Date:_____

Printed Name of Contractor:

ABATEMENT	CONTRACTOR/COMPETENT	PERSON(S)	REVIEW	AND	ACCEPTANCE	OF	THE	VA'S
ASBESTOS SPECIFICATIONS								
TTA Decedent	Teretiont							

VA Project Location: VA Project #: VA Project Description:

This form shall be signed by the Asbestos Abatement Contractor Owner and the Asbestos Abatement Contractor's Competent Person(s) prior to any start of work at the VA related to this Specification. If the Asbestos Abatement Contractor's/Competent Person(s) has not signed this form, they shall not be allowed to work on-site.

I, the undersigned, have read VA's Asbestos Specification regarding the asbestos abatement requirements. I understand the requirements of the VA's Asbestos Specification and agree to follow these requirements as well as all required rules and regulations of OSHA/EPA/DOT and State/Local requirements. I have been given ample opportunity to read the VA's Asbestos Specification and have been given an opportunity to ask any questions regarding the content and have received a response related to those questions. I do not have any further questions regarding the content, intent and requirements of the VA's Asbestos Specification.

At the conclusion of the asbestos abatement, I will certify that all asbestos abatement work was done in accordance with the VA's Asbestos Specification and all ACM was removed properly and no fibrous residue remains on any abated surfaces.

Abatement Contractor Owner's Signature_____Date_____

Abatement	Contractor	Competent	Person(s)	Date	
				-	

- - END- - - -

SECTION 02 82 13.19 ASBESTOS FLOOR TILE AND MASTIC ABATEMENT

TABLE OF CONTENTS

PART 1 - GENERAL 1
1.1 SUMMARY OF THE WORK 1
1.1.1 CONTRACT DOCUMENTS AND RELATED REQUIREMENTS 1
1.1.2 EXTENT OF WORK 1
1.1.3 RELATED WORK 1
1.1.4 TASKS 1
1.1.5 ABATEMENT CONTRACTOR USE OF PREMISES 2
1.2 VARIATIONS IN QUANTITY 2
1.3 STOP ASBESTOS REMOVAL
1.4 DEFINITIONS
1.4.1 GENERAL
1.4.2 GLOSSARY
1.4.3 REFERENCED STANDARDS ORGANIZATIONS
1.5 APPLICABLE CODES AND REGULATIONS 10
1.5.1 GENERAL APPLICABILITY OF CODES, REGULATIONS, AND STANDARDS 10
1.5.2 CONTRACTOR RESPONSIBILITY 11
1.5.3 FEDERAL REQUIREMENTS 11
1.5.4 REGULATORY REQUIREMENTS 11
1.5.5 STANDARDS 11
1.5.6 EPA GUIDANCE DOCUMENTS 12
1.5.7 NOTICES 12
1.5.8 PERMITS/LICENSES 12
1.5.9 POSTING AND FILING OF REGULATIONS 12
1.5.10 VA RESPONSIBILITIES 12
1.5.11 SITE SECURITY 13
1.5.12 EMERGENCY ACTION PLAN AND ARRANGEMENTS 13
1.5.13 PRE-construction MEETING 14
1.6 PROJECT COORDINATION 15
1.6.1 PERSONNEL 15
1.7 RESPIRATORY PROTECTION 16
1.7.1 GENERAL - RESPIRATORY PROTECTION PROGRAM 16
1.7.2 RESPIRATORY PROTECTION PROGRAM COORDINATOR 16
1.7.3 SELECTION AND USE OF RESPIRATORS 16
1.7.4 MINIMUM RESPIRATORY PROTECTION 16

1.7.5 MEDICAL WRITTEN OPINION	16
1.7.6 RESPIRATOR FIT TEST	17
1.7.7 RESPIRATOR FIT CHECK	17
1.7.8 MAINTENANCE AND CARE OF RESPIRATORS	17
1.8 WORKER PROTECTION	17
1.8.1 TRAINING OF ABATEMENT PERSONNEL	17
1.8.2 MEDICAL EXAMINATIONS	17
1.8.3 PERSONAL PROTECTIVE EQUIPMENT	18
1.8.4 REGULATED AREA ENTRY PROCEDURE	18
1.8.5 DECONTAMINATION PROCEDURE	18
1.8.6 REGULATED AREA REQUIREMENTS	18
PART 2 - PRODUCTS, MATERIALS AND EQUIPMENT	22
2.1 MATERIALS AND EQUIPMENT	22
2.1.1 GENERAL REQUIREMENTS (all abatement projects)	22
2.1.2 NEGATIVE PRESSURE FILTRATION SYSTEM	23
2.1.3 DESIGN AND LAYOUT	23
2.1.4 NEGATIVE AIR MACHINES (HEPA UNITS)	23
2.1.5 PRESSURE DIFFERENTIAL	25
2.2 CONTAINMENT BARRIERS AND COVERINGS IN THE REGULATED AREA	25
2.2.1 GENERAL	25
2.2.3 CONTROLLING ACCESS TO THE REGULATED AREA	25
2.2.4 CRITICAL BARRIERS	25
2.2.5 secondary barriers:	25
2.2.6 EXTENSION OF THE REGULATED AREA	26
2.3 MONITORING, INSPECTION AND TESTING	26
2.3.1 GENERAL	26
2.3.2 SCOPE OF SERVICES OF THE VPIH/CIH CONSULTANT	27
2.3.3 MONITORING, INSPECTION AND TESTING BY CONTRACTOR CPIH/CIH	28
2.4 asbestos hazard abatement plan	28
2.5 SUBMITTALS	29
2.5.1 PRE-start MEETING SUBMITTALS	29
2.5.2 SUBMITTALS DURING ABATEMENT	31
2.5.3 SUBMITTALS AT COMPLETION OF ABATEMENT	31
PART 3 - EXECUTION	31
3.1 PRE-ABATEMENT ACTIVITIES	31
3.1.1 PRE-ABATEMENT MEETING	31
3.1.2 PRE-ABATEMENT INSPECTIONS AND PREPARATIONS	32

3.1.3 PRE-ABATEMENT CONSTRUCTION AND OPERATIONS	32
3.2 REGULATED AREA PREPARATIONS	33
3.2.1 OSHA DANGER SIGNS	33
3.2.2 CONTROLLING ACCESS TO THE REGULATED AREA	33
3.2.3 SHUT DOWN - LOCK OUT ELECTRICAL	33
3.2.4 SHUT DOWN - LOCK OUT HVAC	33
3.2.5 SANITARY FACILITIES	33
3.2.7 PREPARATION PRIOR TO SEALING OFF	34
3.2.8 Critical Barriers	34
3.2.10 PRE-CLEANING FIXED OBJECTS	34
3.2.11 PRE-CLEANING SURFACES IN THE REGULATED AREA	35
3.2.12 EXTENSION OF THE REGULATED AREA	35
3.3 REMOVAL OF CLASS II FLOORING MATERIALS:	35
3.3.1 GENERAL	35
3.3.2 REMOVAL OF flooring materials:	35
3.3.3 REMOVAL OF MASTIC	36
3.4 DISPOSAL OF CLASS ii WASTE MATERIAL:	36
3.4.1 GENERAL	36
3.5 PROJECT DECONTAMINATION	36
3.5.1 GENERAL	36
3.5.2 REGULATED AREA CLEARANCE	36
3.5.3 WORK DESCRIPTION	36
3.5.4 PRE-DECONTAMINATION CONDITIONS	
3.5.5 CLEANING:	37
3.6 VISUAL INSPECTION AND AIR CLEARANCE TESTING	37
3.6.1 GENERAL	37
3.6.2 VISUAL INSPECTION	37
3.6.3 AIR CLEARANCE TESTING	37
3.6.4 final AIR CLEARANCE PROCEDURES	38
3.7 ABATEMENT CLOSEOUT AND CERTIFICATE OF COMPLIANCE	38
3.7.1 COMPLETION OF ABATEMENT WORK	38
3.7.2 CERTIFICATE OF COMPLETION BY CONTRACTOR	38
3.7.3 WORK SHIFTS	38
ATTACHMENT #1	39
ATTACHMENT #2	40
ATTACHMENT #3	41
ATTACHMENT #4	42

SECTION

02 82 13.19 ASBESTOS FLOOR TILE AND MASTIC ABATEMENT SPECIFICATIONS

PART 1 - GENERAL

1.1 SUMMARY OF THE WORK

1.1.1 CONTRACT DOCUMENTS AND RELATED REQUIREMENTS

Drawings, general provisions of the contract, including general and supplementary conditions and other Division 01 specifications, shall apply to the work of this section. The contract documents show the work to be done under the contract and related requirements and conditions impacting the project. Related requirements and conditions include applicable codes and regulations, notices and permits, existing site conditions and restrictions on use of the site, requirements for partial owner occupancy during the work, coordination with other work and the phasing of the work. In the event the Asbestos Abatement Contractor discovers a conflict in the contract documents and/or requirements or codes, the conflict must be brought to the immediate attention of the Contracting Officer for resolution. Whenever there is a conflict or overlap in the requirements, the most stringent shall apply. Any actions taken by the Contractor without obtaining guidance from the Contracting Officer shall become the sole risk and responsibility of the Asbestos Abatement Contractor. All costs incurred due to such action are also the responsibility of the Asbestos Abatement Contractor.

1.1.2 EXTENT OF WORK

- A. Below is a brief description of the estimated quantities of asbestos flooring materials to be abated. These quantities are for informational purposes only and are based on the best information available at the time of the specification preparation. The Contractor shall satisfy himself as the actual quantities to be abated. Nothing in this section may be interpreted as limiting the extent of work otherwise required by this contract and related documents.
- B. Removal, clean-up and disposal of ACM flooring in an appropriate regulated area in the following approximate quantities: 2,200 square feet of sheet vinyl and vinyl asbestos tile flooring and mastic

1.1.3 RELATED WORK

- A. Section 07 84 00, FIRESTOPPING.
- B. Section 02 41 00, DEMOLITION.
- C. Division 09, FINISHES.

1.1.4 TASKS

The work tasks are summarized briefly as follows:

A. Pre-abatement activities including pre-abatement meeting(s), inspection(s), notifications, permits, submittal approvals, regulated area preparations, emergency procedures arrangements, and Asbestos Hazard Abatement Plans for asbestos abatement work.

- B. Abatement activities including removal, clean-up and disposal of ACM waste, recordkeeping, security, monitoring, and inspections.
- C. Cleaning and decontamination activities including final visual inspection, air monitoring and certification of decontamination.

1.1.5 ABATEMENT CONTRACTOR USE OF PREMISES

- A. The Contractor and Contractor's personnel shall cooperate fully with the VA representative/consultant to facilitate efficient use of available space. The Contractor shall perform the work in accordance with the VA specifications, drawings, and in compliance with any/all applicable Federal, State and Local regulations and requirements.
- B. The Contractor shall use the existing facilities in the building strictly within the limits indicated in contract documents as well as the approved VA Design Construction Procedure. VA Design Construction Procedure drawings of partially occupied buildings will show the limits of regulated areas; the placement of decontamination facilities; the temporary location of bagged waste ACM; the path of transport to outside the building; and the temporary waste storage. Any variation from the arrangements shown on drawings shall be secured in writing from the VA representative through the pre-abatement plan of action.

1.2 VARIATIONS IN QUANTITY

The quantities and locations of ACM as indicated above and the extent of work included in this section are estimated which are limited by the physical constraints imposed by occupancy of the buildings and accessibility to ACM. Accordingly, minor variations (+/- 5%) in quantities of ACM within the regulated area are considered as having no impact on contract price and time requirements of this contract. Where additional work is required beyond the above variation, the contractor shall provide unit prices for newly discovered ACM and those prices shall be used for additional work required under the contractor.

1.3 STOP ASBESTOS REMOVAL

If the Contracting Officer; their field representative; (the facility Safety Officer/Manager or their designee, or the VA Professional Industrial Hygienist/Certified Industrial Hygienist (VPIH/CIH) presents a verbal Stop Asbestos Removal Order, the Contractor/Personnel shall immediately stop all asbestos removal and maintain HEPA filtered negative pressure air flow in the containment and adequately wet any exposed ACM. If a verbal Stop Asbestos Removal Order is issued, the VA shall follow-up with a written order to the Contractor as soon as it is practicable. The Contractor shall not resume any asbestos removal activity until authorized to do so in writing by the VA Contracting Officer. A stop asbestos removal order may be issued at any time the VA Contracting Officer determines abatement conditions/activities are not within VA specification, regulatory requirements or that an imminent hazard exists to human health or the environment. Work stoppage will continue until conditions have been corrected to the satisfaction of the VA. Standby time and costs for corrective actions will be borne by the Contractor, including the VPIH/CIH time. The occurrence of any of the following events shall be reported immediately by the Contractor's competent person to the VA Contracting Office or field representative using the most expeditious means (e.g., verbal or telephonic), followed up with written notification to the Contracting Officer as soon as

practical. The Contractor shall immediately stop asbestos removal/disturbance activities and initiate fiber reduction activities:

- A. Airborne PCM analysis results equal to or greater than 0.01 f/cc outside a regulated area or >0.05 f/cc inside a regulated area;
- B. breach or break in regulated area containment barrier(s);
- C. less than -0.02" WCG pressure in the regulated area;
- D. serious injury/death at the site;
- E. fire/safety emergency at the site;
- F. respiratory protection system failure;
- G. power failure or loss of wetting agent; or
- H. any visible emissions observed outside the regulated area.

1.4 DEFINITIONS

1.4.1 GENERAL

Definitions and explanations here are neither complete nor exclusive of all terms used in the contract documents, but are general for the work to the extent they are not stated more explicitly in another element of the contract documents. Drawings must be recognized as diagrammatic in nature and not completely descriptive of the requirements indicated therein.

1.4.2 GLOSSARY

Abatement - Procedures to control fiber release from asbestoscontaining materials. Includes removal, encapsulation, enclosure, demolition, and renovation activities related to asbestos containing materials (ACM).

Aerosol - Solid or liquid particulate suspended in air.

Adequately wet - Sufficiently mixed or penetrated with liquid to prevent the release of particulates. If visible emissions are observed coming from the ACM, then that material has not been adequately wetted.

Aggressive method - Removal or disturbance of building material by sanding, abrading, grinding, or other method that breaks, crumbles, or disintegrates intact ACM.

Aggressive sampling - EPA AHERA defined clearance sampling method using air moving equipment such as fans and leaf blowers to aggressively disturb and maintain in the air residual fibers after abatement.

AHERA - Asbestos Hazard Emergency Response Act. Asbestos regulations for schools issued in 1987.

Aircell - Pipe or duct insulation made of corrugated cardboard which contains asbestos.

Air monitoring - The process of measuring the fiber content of a known volume of air collected over a specified period of time. The NIOSH 7400 Method, Issue 2 is used to determine the fiber levels in air. For personal samples and clearance air testing using Phase Contrast Microscopy (PCM) analysis. NIOSH Method 7402 can be used when it is necessary to confirm fibers counted by PCM as being asbestos. The AHERA TEM analysis may be used for background, area samples and clearance samples when required by this specification, or at the discretion of the VPIH/CIH as appropriate.

Air sample filter - The filter used to collect fibers which are then counted. The filter is made of mixed cellulose ester membrane for PCM (Phase Contrast Microscopy) and polycarbonate for TEM (Transmission Electron Microscopy)

Amended water - Water to which a surfactant (wetting agent) has been added to increase the penetrating ability of the liquid.

Asbestos - Includes chrysotile, amosite, crocidolite, tremolite asbestos, anthophyllite asbestos, actinolite asbestos, and any of these minerals that have been chemically treated or altered. Asbestos also includes PACM, as defined below.

Asbestos Hazard Abatement Plan (AHAP) - Asbestos work procedures required to be submitted by the contractor before work begins.

Asbestos-containing material (ACM) - Any material containing more than one percent of asbestos.

Asbestos contaminated elements (ACE) - Building elements such as ceilings, walls, lights, or ductwork that are contaminated with asbestos.

Asbestos-contaminated soil (ACS) - Soil found in the work area or in adjacent areas such as crawlspaces or pipe tunnels which is contaminated with asbestos-containing material debris and cannot be easily separated from the material.

Asbestos-containing waste (ACW) material - Asbestos-containing material or asbestos contaminated objects requiring disposal.

Asbestos Project Monitor - Some states require that any person conducting asbestos abatement clearance inspections and clearance air sampling be licensed as an asbestos project monitor.

Asbestos waste decontamination facility - A system consisting of drum/bag washing facilities and a temporary storage area for cleaned containers of asbestos waste. Used as the exit for waste and equipment leaving the regulated area. In an emergency, it may be used to evacuate personnel.

Authorized person - Any person authorized by the VA, the Contractor, or government agency and required by work duties to be present in regulated areas.

Authorized visitor - Any person approved by the VA; the contractor; or any government agency representative having jurisdiction over the regulated area (e.g., OSHA, Federal and State EPA0..

Barrier - Any surface the isolates the regulated area and inhibits fiber migration from the regulated area.

Containment Barrier - An airtight barrier consisting of walls, floors, and/or ceilings of sealed plastic sheeting which surrounds and seals the outer perimeter of the regulated area.

Critical Barrier - The barrier responsible for isolating the regulated area from adjacent spaces, typically constructed of plastic sheeting secured in place at openings such as doors, windows, or any other opening into the regulated area.

Primary Barrier - Plastic barriers placed over critical barriers and exposed directly to abatement work.

Secondary Barrier - Any additional plastic barriers used to isolate and provide protection from debris during abatement work.

Breathing zone - The hemisphere forward of the shoulders with a radius of about 150 - 225 mm (6 - 9 inches) from the worker's nose.

Bridging encapsulant - An encapsulant that forms a layer on the surface of the ACM.

Building/facility owner - The legal entity, including a lessee, which exercises control over management and recordkeeping functions relating to a building and/or facility in which asbestos activities take place.

Bulk testing - The collection and analysis of suspect asbestos containing materials.

Certified Industrial Hygienist (CIH) - A person certified in the comprehensive practice of industrial hygiene by the American Board of Industrial Hygiene.

Class I asbestos work - Activities involving the removal of Thermal System Insulation (TSI) and surfacing ACM and Presumed Asbestos Containing Material (PACM). **Class II asbestos work** - Activities involving the removal of ACM which is not thermal system insulation or surfacing material. This includes, but is not limited to, the removal of asbestos-containing wallboard, floor tile and sheeting, roofing and siding shingles, and construction mastic.

Clean room/Changing room - An uncontaminated room having facilities for the storage of employee's street clothing and uncontaminated materials and equipment.

Clearance sample - The final air sample taken after all asbestos work has been done and visually inspected. Performed by the VA's professional industrial hygiene consultant/Certified Industrial Hygienist (VPIH/CIH).

Closely resemble - The major workplace conditions which have contributed to the levels of historic asbestos exposure, are no more protective than conditions of the current workplace.

Competent person - In addition to the definition in 29 CFR 1926.32(f), one who is capable of identifying existing asbestos hazards in the workplace and selecting the appropriate control strategy for asbestos exposure, who has the authority to take prompt corrective measures to eliminate them, as specified in 29 CFR 1926.32(f); in addition, for Class I and II work who is specially trained in a training course which meets the criteria of EPA's Model Accreditation Plan (40 CFR 763) for supervisor.

Contractor's Professional Industrial Hygienist (CPIH/CIH) – The asbestos abatement contractor's industrial hygienist. The industrial hygienist must meet the qualification requirements of a PIH and may be a certified industrial hygienist (CIH).

Count - Refers to the fiber count or the average number of fibers greater than five microns in length with a length-to-width (aspect) ratio of at least 3 to 1, per cubic centimeter of air.

Crawlspace - An area which can be found either in or adjacent to the work area. This area has limited access and egress and may contain asbestos materials and/or asbestos contaminated soil.

Decontamination area/unit - An enclosed area adjacent to and connected to the regulated area and consisting of an equipment room, shower room, and clean room, which is used for the decontamination of workers, materials, and equipment that are contaminated with asbestos.

Demolition - The wrecking or taking out of any load-supporting structural member and any related razing, removing, or stripping of asbestos products.

VA Total - means a building or substantial part of the building is completely removed, torn or knocked down, bulldozed, flattened, or razed, including removal of building debris.

Disposal bag - Typically 6 mil thick sift-proof, dustproof, leak-tight container used to package and transport asbestos waste from regulated areas to the approved landfill. Each bag/container must be labeled/marked in accordance with EPA, OSHA and DOT requirements.

Disturbance - Activities that disrupt the matrix of ACM or PACM, crumble or pulverize ACM or PACM, or generate visible debris from ACM or PACM. Disturbance includes cutting away small amounts of ACM or PACM, no greater than the amount that can be contained in one standard sized glove bag or waste bag in order to access a building component. In no event shall the amount of ACM or PACM so disturbed exceed that which can be contained in one glove bag or disposal bag which shall not exceed 60 inches in length or width. **Drum** - A rigid, impermeable container made of cardboard fiber, plastic, or metal which can be sealed in order to be sift-proof, dustproof, and leak-tight.

Employee exposure - The exposure to airborne asbestos that would occur if the employee were not wearing respiratory protection equipment.

Encapsulant - A material that surrounds or embeds asbestos fibers in an adhesive matrix and prevents the release of fibers.

Encapsulation - Treating ACM with an encapsulant.

Enclosure - The construction of an air tight, impermeable, permanent barrier around ACM to control the release of asbestos fibers from the material and also eliminate access to the material.

Equipment room - A contaminated room located within the decontamination area that is supplied with impermeable bags or containers for the disposal of contaminated protective clothing and equipment.

Fiber - A particulate form of asbestos, 5 microns or longer, with a length to width (aspect) ratio of at least 3 to 1.

Fibers per cubic centimeter (f/cc) - Abbreviation for fibers per cubic centimeter, used to describe the level of asbestos fibers in air.

Filter - Media used in respirators, vacuums, or other machines to remove particulate from air.

Firestopping - Material used to close the open parts of a structure in order to prevent a fire from spreading.

Friable asbestos containing material - Any material containing more than one (1) percent or asbestos as determined using the method specified in appendix A, Subpart F, 40 CFR 763, section 1, Polarized Light Microscopy, that, when dry, can be crumbled, pulverized, or reduced to powder by hand pressure.

Glovebag - Not more than a 60 x 60 inch impervious plastic bag-like enclosure affixed around an asbestos-containing material, with glovelike appendages through which materials and tools may be handled.

High efficiency particulate air (HEPA) filter – An ASHRAE MERV 17 filter capable of trapping and retaining at least 99.97 percent of all mono-dispersed particles of 0.3 micrometers in diameter.

HEPA vacuum - Vacuum collection equipment equipped with a HEPA filter system capable of collecting and retaining asbestos fibers.

Homogeneous area - An area of surfacing, thermal system insulation or miscellaneous ACM that is uniform in color, texture and date of application.

HVAC - Heating, Ventilation and Air Conditioning

Industrial hygienist (IH) - A professional qualified by education, training, and experience to anticipate, recognize, evaluate and develop controls for occupational health hazards. Meets definition requirements of the American Industrial Hygiene Association (AIHA).

Industrial hygienist technician (IH Technician) - A person working under the direction of an IH or CIH who has special training, experience, certifications and licenses required for the industrial hygiene work assigned. Some states require that an industrial hygienist technician conducting asbestos abatement clearance inspection and clearance air sampling be licensed as an asbestos project monitor.

Intact - The ACM has not crumbled, been pulverized, or otherwise deteriorated so that the asbestos is no longer likely to be bound with its matrix.

Lockdown - Applying encapsulant, after a final visual inspection, on all abated surfaces at the conclusion of ACM removal prior to removal of critical barriers.

National Emission Standards for Hazardous Air Pollutants (NESHAP) - EPA's rule to control emissions of asbestos to the environment (40 CFR Part 61, Subpart M).

Negative initial exposure assessment - A demonstration by the employer which complies with the criteria in 29 CFR 1926.1101 (f)(2)(iii), that employee exposure during an operation is expected to be consistently below the PELs.

Negative pressure - Air pressure which is lower than the surrounding area, created by exhausting air from a sealed regulated area through HEPA equipped filtration units. OSHA requires maintaining -0.02" water column gauge inside the negative pressure enclosure.

Negative pressure respirator - A respirator in which the air pressure inside the facepiece is negative during inhalation relative to the air pressure outside the respirator facepiece.

Non-friable ACM - Material that contains more than 1 percent asbestos but cannot be crumbled, pulverized, or reduced to powder by hand pressure.

Organic vapor cartridge - The type of cartridge used on air purifying respirators to remove organic vapor hazardous air contaminants.

Outside air - The air outside buildings and structures, including, but not limited to, the air under a bridge or in an open ferry dock.

Owner/operator - Any person who owns, leases, operates, controls, or supervises the facility being demolished or renovated or any person who owns, leases, operates, controls, or supervises the demolition or renovation operation, or both.

Penetrating encapsulant - Encapsulant that is absorbed into the ACM matrix without leaving a surface layer.

Personal protective equipment (PPE) – equipment designed to protect user from injury and/or specific job hazard. Such equipment may include protective clothing, hard hats, safety glasses, and respirators.

Personal sampling/monitoring - Representative air samples obtained in the breathing zone for one or workers within the regulated area using a filter cassette and a calibrated air sampling pump to determine asbestos exposure.

Permissible exposure limit (PEL) - The level of exposure OSHA allows for an 8 hour time weighted average. For asbestos fibers, the eight (8) hour time weighted average PEL is 0.1 fibers per cubic centimeter (0.1 f/cc) of air and the 30-minute Excursion Limit is 1.0 fibers per cubic centimeter (1 f/cc).

Pipe Tunnel - An area, typically located adjacent to mechanical spaces or boiler rooms in which the pipes servicing the heating system in the building are routed to allow the pipes to access heating elements. These areas may contain asbestos pipe insulation, asbestos fittings, or asbestos-contaminated soil.

Polarized light microscopy (PLM) - Light microscopy using dispersion staining techniques and refractive indices to identify and quantify the type(s) of asbestos present in a bulk sample.

Polyethylene sheeting - Strong plastic barrier material 4 to 6 mils thick, semi-transparent, flame retardant per NFPA 241.

Positive/negative fit check - A method of verifying the seal of a facepiece respirator by temporarily occluding the filters and breathing in (inhaling) and then temporarily occluding the exhalation valve and breathing out (exhaling) while checking for inward or outward leakage of the respirator respectively.

Presumed ACM (PACM) - Thermal system insulation, surfacing, and flooring material installed in buildings prior to 1981. If the building

owner has actual knowledge, or should have known through the exercise of due diligence that other materials are ACM, they too must be treated as PACM. The designation of PACM may be rebutted pursuant to 29 CFR 1926.1101 (b).

Professional IH - An IH who meets the definition requirements of AIHA; meets the definition requirements of OSHA as a "Competent Person" at 29 CFR 1926.1101 (b); has completed two specialized EPA approved courses on management and supervision of asbestos abatement projects; has formal training in respiratory protection and waste disposal; and has a minimum of four projects of similar complexity with this project of which at least three projects serving as the supervisory IH. The PIH may be either the VA's PIH (VPIH) of Contractor's PIH (CPIH/CIH).

Project designer - A person who has successfully completed the training requirements for an asbestos abatement project designer as required by 40 CFR 763 Appendix C, Part I; (B)(5).

Assigned Protection factor - A value assigned by OSHA/NIOSH to indicate the expected protection provided by each respirator class, when the respirator is properly selected and worn correctly. The number indicates the reduction of exposure level from outside to inside the respirator facepiece.

Qualitative fit test (QLFT) - A fit test using a challenge material that can be sensed by the wearer if leakage in the respirator occurs.

Quantitative fit test (QNFT) - A fit test using a challenge material which is quantified outside and inside the respirator thus allowing the determination of the actual fit factor.

Regulated area - An area established by the employer to demarcate where Class I, II, and III asbestos work is conducted, and any adjoining area where debris and waste from such asbestos work may accumulate; and a work area within which airborne concentrations of asbestos exceed, or there is a reasonable possibility they may exceed the PEL.

Regulated ACM (RACM) - Friable ACM; Category I non-friable ACM that has become friable; Category I non-friable ACM that will be or has been subjected to sanding, grinding, cutting, or abrading or; Category II non-friable ACM that has a high probability of becoming or has become crumbled, pulverized, or reduced to powder by the forces expected to act on the material in the course of the demolition or renovation operation.

Removal - All operations where ACM, PACM and/or RACM is taken out or stripped from structures or substrates, including demolition operations.

Renovation - Altering a facility or one or more facility components in any way, including the stripping or removal of asbestos from a facility component which does not involve demolition activity.

Repair - Overhauling, rebuilding, reconstructing, or reconditioning of structures or substrates, including encapsulation or other repair of ACM or PACM attached to structures or substrates.

Shower room - The portion of the PDF where personnel shower before leaving the regulated area.

Supplied air respirator (SAR) - A respiratory protection system that supplies minimum Grade D respirable air per ANSI/Compressed Gas Association Commodity Specification for Air, G-7.1-1989.

Surfacing ACM - A material containing more than 1 percent asbestos that is sprayed, troweled on or otherwise applied to surfaces for acoustical, fireproofing and other purposes.

Surfactant - A chemical added to water to decrease water's surface tension thus making it more penetrating into ACM.

Thermal system ACM - A material containing more than 1 percent asbestos applied to pipes, fittings, boilers, breeching, tanks, ducts, or other structural components to prevent heat loss or gain.

Transmission electron microscopy (TEM) - A microscopy method that can identify and count asbestos fibers.

VA Professional Industrial Hygienist (VPIH/CIH) – The Department of Veterans Affairs Professional Industrial Hygienist must meet the qualifications of a PIH, and may be a Certified Industrial Hygienist (CIH).

VA Representative - The VA official responsible for on-going project work.

Visible emissions - Any emissions, which are visually detectable without the aid of instruments, coming from ACM/PACM/RACM/ACS or ACM waste material.

Waste/Equipment decontamination facility (W/EDF) - The area in which equipment is decontaminated before removal from the regulated area.

Waste generator - Any owner or operator whose act or process produces asbestos-containing waste material.

Waste shipment record - The shipping document, required to be originated and signed by the waste generator, used to track and substantiate the disposition of asbestos-containing waste material.

Wet cleaning - The process of thoroughly eliminating, by wet methods, any asbestos contamination from surfaces or objects.

1.4.3 REFERENCED STANDARDS ORGANIZATIONS

The following acronyms or abbreviations as referenced in contract/ specification documents are defined to mean the associated names. Names and addresses may be subject to change.

- A. VA Department of Veterans Affairs 810 Vermont Avenue, NW Washington, DC 20420
- B. AIHA American Industrial Hygiene Association 2700 Prosperity Avenue, Suite 250 Fairfax, VA 22031 703-849-8888
- C. ANSI American National Standards Institute 1430 Broadway New York, NY 10018 212-354-3300
- D. ASTM American Society for Testing and Materials 1916 Race St. Philadelphia, PA 19103 215-299-5400
- E. CFR Code of Federal Regulations Government Printing Office Washington, DC 20420
- F. CGA Compressed Gas Association 1235 Jefferson Davis Highway Arlington, VA 22202 703-979-0900

- G. CS Commercial Standard of the National Institute of Standards and Technology (NIST)
 U. S. Department of Commerce Government Printing Office Washington, DC 20420
- H. EPA Environmental Protection Agency 401 M St., SW Washington, DC 20460 202-382-3949
- I. MIL-STD Military Standards/Standardization Division Office of the Assistant Secretary of Defense Washington, DC 20420
- I. NEC National Electrical Code (by NFPA)
- J. NEMA National Electrical Manufacturer's Association 2101 L Street, NW Washington, DC 20037
- K. NFPA National Fire Protection Association 1 Batterymarch Park P.O. Box 9101 Quincy, MA 02269-9101 800-344-3555
- L. NIOSH National Institutes for Occupational Safety and Health 4676 Columbia Parkway Cincinnati, OH 45226 513-533-8236
- M. OSHA Occupational Safety and Health Administration U.S. Department of Labor Government Printing Office Washington, DC 20402
- N. UL Underwriters Laboratory 333 Pfingsten Rd. Northbrook, IL 60062 312-272-8800

1.5 APPLICABLE CODES AND REGULATIONS

1.5.1 GENERAL APPLICABILITY OF CODES, REGULATIONS, AND STANDARDS

- A. All work under this contract shall be done in strict accordance with all applicable Federal, State, and local regulations, standards and codes governing asbestos abatement, and any other trade work done in conjunction with the abatement. All applicable codes, regulations and standards are adopted into this specification and will have the same force and effect as this specification.
- B. The most recent edition of any relevant regulation, standard, document or code shall be in effect. Where conflict among the requirements or with these specifications exists, the most stringent requirement(s) shall be utilized.

C. Copies of all standards, regulations, codes and other applicable documents, including this specification and those listed in Section 1.5 shall be available at the worksite in the clean change area of the worker decontamination system.

1.5.2 CONTRACTOR RESPONSIBILITY

The Asbestos Abatement Contractor (Contractor) shall assume full responsibility and liability for compliance with all applicable Federal, State and Local regulations related to any and all aspects of the asbestos abatement project. The Contractor is responsible for providing and maintaining training, accreditations, medical exams, medical records, personal protective equipment (PPE) including respiratory protection including respirator fit testing, as required by applicable Federal, State and Local regulations. The Contractor shall hold the VA and VPIH/CIH consultants harmless for any Contractor's failure to comply with any applicable work, packaging, transporting, disposal, safety, health, or environmental requirement on the part of himself, his employees, or his subcontractors. The Contractor will incur all costs of the CPIH/CIH, including all sampling/analytical costs to assure compliance with OSHA/EPA/State requirements related to failure to comply with the regulations applicable to the work.

1.5.3 FEDERAL REQUIREMENTS

Federal requirements which govern some aspect of asbestos abatement include, but are not limited to, the following regulations.

- A. Occupational Safety and Health Administration (OSHA)
 - 1. Title 29 CFR 1926.1101 Construction Standard for Asbestos
 - 2. Title 29 CFR 1910.132 Personal Protective Equipment
 3. Title 29 CFR 1910.134 Respiratory Protection

 - 4. Title 29 CFR 1926 Construction Industry Standards
 - 5. Title 29 CFR 1910.20 Access to Employee Exposure and Medical Records
 - 6. Title 29 CFR 1910.1200 Hazard Communication
 - 7. Title 29 CFR 1910.151 Medical and First Aid
- B. Environmental Protection Agency (EPA)
 - 1. 40 CFR 61 Subpart A and M (Revised Subpart B) National Emission Standard for Hazardous Air Pollutants - Asbestos.
 - 2. 40 CFR 763.80 Asbestos Hazard Emergency Response Act (AHERA)
- C. Department of Transportation (DOT)
 - Title 49 CFR 100 185 Transportation

1.5.4 REGULATORY REQUIREMENTS

A. Follow local, state, and federal laws, ordinances, criteria, rules, and regulations regarding removing, handling, storing, transporting, and disposing of asbestos-containing materials

1.5.5 STANDARDS

- A. Standards which govern asbestos abatement activities include, but are not limited to, the following:
 - 1. American National Standards Institute (ANSI) Z9.2-79 Fundamentals Governing the Design and Operation of Local Exhaust Systems Z88.2 -Practices for Respiratory Protection.
 - 2. Underwriters Laboratories (UL) 586-90 UL Standard for Safety of HEPA filter Units, 7th Edition.

- B. Standards which govern encapsulation work include, but are not limited to, the following:
 - 1. American Society for Testing and Materials (ASTM)
- C. Standards which govern the fire and safety concerns in abatement work include, but are not limited to, the following:
 - 1. National Fire Protection Association (NFPA) 241 Standard for Safeguarding Construction, Alteration, and Demolition Operations.
 - 2. NFPA 701 Standard Methods for Fire Tests for Flame Resistant Textiles and Film.
 - 3. NFPA 101 Life Safety Code

1.5.6 EPA GUIDANCE DOCUMENTS

- A. EPA guidance documents which discuss asbestos abatement work activities are listed below. These documents are made part of this section by reference. EPA publications can be ordered from (800) 424-9065.
- B. Guidance for Controlling ACM in Buildings (Purple Book) EPA 560/5-85-024
- C. Asbestos Waste Management Guidance EPA 530-SW-85-007
- D. A Guide to Respiratory Protection for the Asbestos Abatement Industry EPA-560-OPTS-86-001
- E. Guide to Managing Asbestos in Place (Green Book) TS 799 20T July 1990

1.5.7 NOTICES

- A. State and Local agencies: Send written notification as required by state and local regulations including the local fire department prior to beginning any work on ACM as follows:
- B. Copies of notifications shall be submitted to the VA for the facility's records in the same time frame notification are given to EPA, State, and Local authorities.

1.5.8 PERMITS/LICENSES

A. The contractor shall apply for and have all required permits and licenses to perform asbestos abatement work as required by Federal, State, and Local regulations.

1.5.9 POSTING AND FILING OF REGULATIONS

A. Maintain two (2) copies of applicable federal, state, and local regulations. Post one copy of each at the regulated area where workers will have daily access to the regulations and keep another copy in the Contractor's office.

1.5.10 VA RESPONSIBILITIES

Prior to commencement of work:

- A. Notify occupants adjacent to regulated areas of project dates and requirements for relocation, if needed. Arrangements must be made prior to starting work for relocation of desks, files, equipments and personal possessions to avoid unauthorized access into the regulated area. Note: Notification of adjacent personnel is required by OSHA in 29 CFR 1926.1101 (k) to prevent unnecessary or unauthorized access to the regulated area.
- B. Submit to the Contractor results of background air sampling; including location of samples, person who collected the samples, equipment utilized, calibration data and method of analysis. During abatement, submit to the Contractor, results of bulk material analysis and air

sampling data collected during the course of the abatement. This information shall not release the Contractor from any responsibility for OSHA compliance.

1.5.11 SITE SECURITY

- A. Regulated area access is to be restricted only to authorized, trained/accredited and protected personnel. These may include the Contractor's employees, employees of Subcontractors, VA employees and representatives, State and local inspectors, and any other designated individuals. A list of authorized personnel shall be established prior to commencing the project and be posted in the clean room of the decontamination unit.
- B. Entry into the regulated area by unauthorized individuals shall be reported immediately to the Competent Person by anyone observing the entry. The Competent person shall immediately notify the VA.
- C. A log book shall be maintained in the clean room of the decontamination unit. Anyone who enters the regulated area must record their name, affiliation, time in, and time out for each entry.
- D. Access to the regulated area shall be through of a critical barrier doorway. All other access (doors, windows, hallways, etc.) shall be sealed or locked to prevent entry to or exit from the regulated area. The only exceptions for this requirement are the waste/equipment loadout area which shall be sealed except during the removal of containerized asbestos waste from the regulated area, and emergency exits. Emergency exits shall not be locked from the inside; however, they shall be sealed with poly sheeting and taped until needed.
- E. The Contractor's Competent Person shall control site security during abatement operations in order to isolate work in progress and protect adjacent personnel. A 24 hour security system shall be provided at the entrance to the regulated area to assure that all entrants are logged in/out and that only authorized personnel are allowed entrance.
- F. The Contractor will have the VA's assistance in notifying adjacent personnel of the presence, location and quantity of ACM in the regulated area and enforcement of restricted access by the VA's employees.
- G. The regulated area shall be locked during non-working hours and secured by VA security guards.

1.5.12 EMERGENCY ACTION PLAN AND ARRANGEMENTS

- A. An Emergency Action Plan shall be developed prior to commencing abatement activities and shall be agreed to by the Contractor and the VA. The Plan shall meet the requirements of 29 CFR 1910.38 (a);(b).
- B. Emergency procedures shall be in written form and prominently posted in the clean room and equipment room of the decontamination unit. Everyone, prior to entering the regulated area, must read and sign these procedures to acknowledge understanding of the regulated area layout, location of emergency exits and emergency procedures.
- C. Emergency planning shall include written notification of police, fire, and emergency medical personnel of planned abatement activities; work schedule; layout of regulated area; and access to the regulated area, particularly barriers that may affect response capabilities.
- D. Emergency planning shall include consideration of fire, explosion, hazardous atmospheres, electrical hazards, slips/trips and falls, confined spaces, and heat stress illness. Written procedures for response to emergency situations shall be developed and employee training in procedures shall be provided.

- E. Employees shall be trained in regulated area/site evacuation procedures in the event of workplace emergencies.
 - 1. For non life-threatening situations employees injured or otherwise incapacitated shall decontaminate following normal procedures with assistance from fellow workers, if necessary, before exiting the regulated area to obtain proper medical treatment.
 - 2. For life-threatening injury or illness, worker decontamination shall take least priority after measures to stabilize the injured worker, remove them from the regulated area, and secure proper medical treatment.
- F. Telephone numbers of any/all emergency response personnel shall be prominently posted in the clean room, along with the location of the nearest telephone.
- G. The Contractor shall provide verification of first aid/CPR training for personnel responsible for providing first aid/CPR. OSHA requires medical assistance within 3-4 minutes of a life-threatening injury/illness. Bloodborne Pathogen training shall also be verified for those personnel required to provide first aid/CPR.
- H. The Emergency Action Plan shall provide for a Contingency Plan in the event that an incident occurs that may require the modification of the Asbestos Hazard Abatement Plans during abatement. Such incidents include, but are not limited to, fire; accident; power failure; negative pressure failure; and supplied air system failure. The Contractor shall detail procedures to be followed in the event of an incident assuring that asbestos abatement work is stopped and wetting is continued until correction of the problem.

1.5.13 PRE-CONSTRUCTION MEETING

Prior to commencing the work, the Contractor shall meet with the VA Certified Industrial Hygienist (VPCIH) to present and review, as appropriate, the items following this paragraph. The Contractor's Competent Person(s) who will be on-site shall participate in the prestart meeting. The pre-start meeting is to discuss and determine procedures to be used during the project. At this meeting, the Contractor shall provide:

- A. Proof of Contractor licensing.
- B. Proof the Competent Person(s) is trained and accredited and approved for working in this State. Verification of the experience of the Competent Person(s) shall also be presented.
- C. A list of all workers who will participate in the project, including experience and verification of training and accreditation.
- D. A list of and verification of training for all personnel who have current first-aid/CPR training. A minimum of one person per shift must have adequate training.
- E. Current medical written opinions for all personnel working on-site meeting the requirements of 29 CFR 1926.1101 (m).
- F. Current fit-tests for all personnel wearing respirators on-site meeting the requirements of 29 CFR 1926.1101 (h) and Appendix C.
- G. A copy of the Asbestos Hazard Abatement Plan. In these procedures, the following information must be detailed, specific for this project.
 - 1. Regulated area preparation procedures;
 - 2. Notification requirements procedure of Contractor as required in 29 CFR 1926.1101 (d);
 - Decontamination area set-up/layout and decontamination procedures for employees;

- 4. Abatement methods/procedures and equipment to be used;
- 5. Personal protective equipment to be used;
- H. At this meeting the Contractor shall provide all submittals as required.
- I. Procedures for handling, packaging and disposal of asbestos waste.
- J. Emergency Action Plan and Contingency Plan Procedures.

1.6 PROJECT COORDINATION

The following are the minimum administrative and supervisory personnel necessary for coordination of the work.

1.6.1 PERSONNEL

- A. Administrative and supervisory personnel shall consist of a qualified Competent Person(s) as defined by OSHA in the Construction Standards and the Asbestos Construction Standard; Contractor Professional Industrial Hygienist and Industrial Hygiene Technicians. These employees are the Contractor's representatives responsible for compliance with these specifications and all other applicable requirements.
- B. Non-supervisory personnel shall consist of an adequate number of qualified personnel to meet the schedule requirements of the project. Personnel shall meet required qualifications. Personnel utilized on-site shall be pre-approved by the VA representative. A request for approval shall be submitted for any person to be employed during the project giving the person's name; social security number; qualifications; accreditation card with color picture; Certificate of Worker's Acknowledgment; and Affidavit of Medical Surveillance and Respiratory Protection and current Respirator Fit Test.
- C. Minimum qualifications for Contractor and assigned personnel are:
 - 1. The Contractor has conducted within the last three (3) years, three (3) projects of similar complexity and dollar value as this project; has not been cited and penalized for serious violations of federal (and state as applicable) EPA and OSHA asbestos regulations in the past three (3) years; has adequate liability/occurrence insurance for asbestos work as required by the state; is licensed in applicable states; has adequate and qualified personnel available to complete the work; has comprehensive Asbestos Hazard Abatement Plans for asbestos work; and has adequate materials, equipment and supplies to perform the work.
 - 2. The Competent Person has four (4) years of abatement experience of which two (2) years were as the Competent Person on the project; meets the OSHA definition of a Competent Person; has been the Competent Person on two (2) projects of similar size and complexity as this project within the past three (3) years; has completed EPA AHERA/OSHA/State/Local training requirements/accreditation(s) and refreshers; and has all required OSHA documentation related to medical and respiratory protection.
 - 3. The Contractor Professional Industrial Hygienist/CIH (CPIH/CIH) shall have five (5) years of monitoring experience and supervision of asbestos abatement projects; has participated as senior IH on five (5) abatement projects, three (3) of which are similar in size and complexity as this project; has developed at least one complete Asbestos Hazard Abatement Plan for asbestos abatement; has trained abatement personnel for three (3) years; has specialized EPA AHERA/OSHA training in asbestos abatement management, respiratory protection, waste disposal and asbestos inspection; has completed

the NIOSH 582 Course or equivalent, Contractor/Supervisor course; and has appropriate medical/respiratory protection records/documentation.

4. The Abatement Personnel shall have completed the EPA AHERA/OSHA abatement worker course; have training on the Asbestos Hazard Abatement Plans of the Contractor; has one year of asbestos abatement experience within the past three (3) years of similar size and complexity; has applicable medical and respiratory protection documentation; and has certificate of training/current refresher and State accreditation/license.

All personnel should be in compliance with OSHA construction safety training as applicable and submit certification.

1.7 RESPIRATORY PROTECTION

1.7.1 GENERAL - RESPIRATORY PROTECTION PROGRAM

The Contractor shall develop and implement a written Respiratory Protection Program (RPP) which is in compliance with the January 8, 1998 OSHA requirements found at 29 CFR 1926.1101 and 29 CFR 1910.Subpart I;134. ANSI Standard Z88.2-1992 provides excellent guidance for developing a respiratory protection program. All respirators used must be NIOSH approved for asbestos abatement activities. The written RPP shall, at a minimum, contain the basic requirements found at 29 CFR 1910.134 (c)(1)(i - ix) - Respiratory Protection Program.

1.7.2 RESPIRATORY PROTECTION PROGRAM COORDINATOR

The Respiratory Protection Program Coordinator (RPPC) must be identified and shall have two (2) years experience coordinating RPP of similar size and complexity. The RPPC must submit a signed statement attesting to the fact that the program meets the above requirements.

1.7.3 SELECTION AND USE OF RESPIRATORS

The procedure for the selection and use of respirators must be submitted to the VA as part of the Contractor's qualifications. The procedure must written clearly enough for workers to understand. A copy of the Respiratory Protection Program must be available in the clean room of the decontamination unit for reference by employees or authorized visitors.

1.7.4 MINIMUM RESPIRATORY PROTECTION

Minimum respiratory protection shall be a half face, HEPA filtered, air purifying respirator when fiber levels are maintained consistently at or below 0.1 f/cc. A higher level of respiratory protection may be provided or required, depending on fiber levels. Respirator selection shall meet the requirements of 29 CFR 1926.1101 (h); Table 1, except as indicated in this paragraph. Abatement personnel must have a respirator for their exclusive use.

1.7.5 MEDICAL WRITTEN OPINION

No employee shall be allowed to wear a respirator unless a physician or other licensed health care professional has provided a written determination they are medically qualified to wear the class of respirator to be used on the project while wearing whole body impermeable garments and subjected to heat or cold stress.

1.7.6 RESPIRATOR FIT TEST

All personnel wearing respirators shall have a current qualitative/quantitative fit test which was conducted in accordance with 29 CFR 1910.134 (f) and Appendix A. Quantitative fit tests shall be done for PAPRs which have been put into a motor/blower failure mode.

1.7.7 RESPIRATOR FIT CHECK

The Competent Person shall assure that the positive/negative pressure user seal check is done each time the respirator is donned by an employee. Head coverings must cover respirator head straps. Any situation that prevents an effective facepiece to face seal as evidenced by failure of a user seal check shall preclude that person from wearing a respirator inside the regulated area until resolution of the problem.

1.7.8 MAINTENANCE AND CARE OF RESPIRATORS

The Respiratory Protection Program Coordinator shall submit evidence and documentation showing compliance with 29 CFR 1910.134 (h) Maintenance and Care of Respirators.

1.7.9 SUPPLIED AIR SYSTEMS

If a supplied air system is used, the system shall meet all requirements of 29 CFR 1910.134 and the ANSI/Compressed Gas Association (CGA) Commodity Specification for Air current requirements for Type 1 -Grade D breathing air. Low pressure systems are not allowed to be used on asbestos abatement projects. Supplied Air respirator use shall be in accordance with EPA/NIOSH publication EPA-560-OPTS-86-001 "A Guide to Respiratory Protection for the Asbestos Abatement Industry". The competent person on site will be responsible for the supplied air system to ensure the safety of the worker.

1.8 WORKER PROTECTION

1.8.1 TRAINING OF ABATEMENT PERSONNEL

Prior to beginning any abatement activity, all personnel shall be trained in accordance with OSHA 29 CFR 1926.1101 (k)(9) and any additional State/Local requirements. Training must include, at a minimum, the elements listed at 29 CFR 1926.1101 (k)(9)(viii). Training shall have been conducted by a third party, EPA/State approved trainer meeting the requirements of EPA 40 CFR 763 Appendix C (AHERA MAP). Initial training certificates and current refresher and accreditation proof must be submitted for each person working at the site.

1.8.2 MEDICAL EXAMINATIONS

Medical examinations meeting the requirements of 29 CFR 1926.1101 (m) shall be provided for all personnel working in the regulated area, regardless of exposure levels. A current physician's written opinion as required by 29 CFR 1926.1101 (m)(4) shall be provided for each person and shall include in the medical opinion the person has been evaluated for working in a heat and cold stress environment while wearing personal protective equipment (PPE) and is able to perform the work without risk of material health impairment.

1.8.3 PERSONAL PROTECTIVE EQUIPMENT

Provide whole body clothing, head coverings, foot coverings and any other personal protective equipment as determined by conducting the hazard assessment required by OSHA at 29 CFR 1910.132 (d). The Competent Person shall ensure the integrity of personal protective equipment worn for the duration of the project. Duct tape shall be used to secure all suit sleeves to wrists and to secure foot coverings at the ankle. Worker protection shall meet the most stringent requirements.

1.8.4 REGULATED AREA ENTRY PROCEDURE

The Competent Person shall ensure that each time workers enter the regulated area they remove ALL street clothes in the clean room of the decontamination unit and put on new disposable coveralls, head coverings, a clean respirator, and then proceed through the shower room to the equipment room where they put on non-disposable required personal protective equipment.

1.8.5 DECONTAMINATION PROCEDURE

The Competent Person shall require all personnel to adhere to following decontamination procedures whenever they leave the regulated area.

- A. When exiting the regulated area, remove all disposable PPE and dispose of in a disposal bag provided in the regulated area.
- B. Carefully decontaminate and clean the respirator. Put in a clean container/bag.

1.8.6 REGULATED AREA REQUIREMENTS

The Competent Person shall meet all requirements of 29 CFR 1926.1101 (o) and assure that all requirements for Class I regulated areas at 29 CFR 1926.1101 (e) are met applicable to Class II work. All personnel in the regulated area shall not be allowed to eat, drink, smoke, chew tobacco or gum, apply cosmetics, or in any way interfere with the fit of their respirator.

1.9 DECONTAMINATION FACILITIES:

1.9.1 DESCRIPTION:

Provide each regulated area with separate personnel decontamination facilities (PDF) and waste/equipment decontamination facilities (W/EDF). Ensure that the PDF are the only means of ingress and egress to the regulated area and that all equipment, bagged waste, and other material exit the regulated area only through the W/EDF.

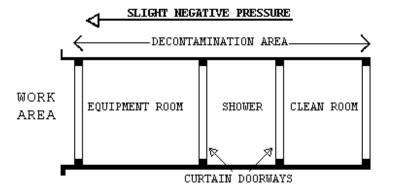
1.9.2 GENERAL REQUIREMENTS

All personnel entering or exiting a regulated area must go through the PDF and shall follow the requirements at 29 CFR 1926.1101 (j)(1) and these specifications. All waste, equipment and contaminated materials must exit the regulated area through the W/EDF and be decontaminated in accordance with these specifications. Walls and ceilings of the PDF and W/EDF must be constructed of a minimum of 3 layers of 6 mil opaque fire retardant polyethylene sheeting and be securely attached to existing building components and/or an adequate temporary framework. A minimum of 3 layers of 6 mil poly shall also be used to cover the floor under the PDF and W/EDF units. Construct doors so that they overlap and secure to

adjacent surfaces. Weight inner doorway sheets with layers of duct tape so that they close quickly after release. Put arrows on sheets so they show direction of travel and overlap. If the building adjacent area is occupied, construct a solid barrier on the occupied side(s) to protect the sheeting and reduce potential for non-authorized personnel entering the regulated area.

1.9.3 TEMPORARY FACILITIES TO THE PDF AND W/EDF

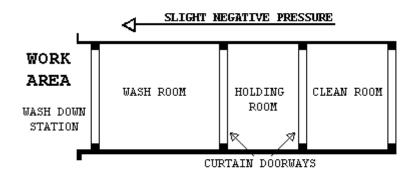
The Competent Person shall provide temporary water service connections to the PDF and W/EDF. Backflow prevention must be provided at the point of connection to the VA system. Water supply must be of adequate pressure and meet requirements of 29 CFR 1910.141 (d)(3). Provide adequate temporary overhead electric power with ground fault circuit interruption (GFCI) protection. Provide a sub-panel equipped with GFCI protection for all temporary power in the clean room. Provide adequate lighting to provide a minimum of 50 foot candles in the PDF and W/EDF. Provide temporary heat, if needed, to maintain 70°F throughout the PDF and W/EDF.


1.9.4 PERSONNEL DECONTAMINATION FACILITY (PDF)

- 1. Clean Room: The clean room must be physically and visually separated from the rest of the building to protect the privacy of personnel changing clothes. The clean room shall be constructed of at least 3 layers of 6 mil opaque fire retardant poly to provide an air tight room. Provide a minimum of 2 - 900 mm (3 foot) wide 6 mil poly opaque fire retardant doorways. One doorway shall be the entry from outside the PDF and the second doorway shall be to the shower room of the PDF. The floor of the clean room shall be maintained in a clean, dry condition. Shower overflow shall not be allowed into the clean room. Provide 1 storage locker per person. A portable fire extinguisher, minimum 10 pounds capacity, Type ABC, shall be provided in accordance with OSHA and NFPA Standard 10. All persons entering the regulated area shall remove all street clothing in the clean room and dress in disposable protective clothing and respiratory protection. Any person entering the clean room does so either from the outside with street clothing on or is coming from the shower room completely naked and thoroughly washed. Females required to enter the regulated area shall be ensured of their privacy throughout the entry/exit process by posting guards at both entry points to the PDF so no male can enter or exit the PDF during her stay in the PDF.
- 2. Shower Room: The Competent Person shall assure that the shower room is a completely water tight compartment to be used for the movement of all personnel from the clean room to the equipment room and for the showering of all personnel going from the equipment room to the clean room. Each shower shall be constructed so water runs down the walls of the shower and into a drip pan. Install a freely draining smooth floor on top of the shower pan. The shower room shall be separated from the rest of the building and from the clean room and equipment room using air tight walls made from at least 3 layers of 6 mil opaque fire retardant poly. The shower shall be equipped with a shower head and controls, hot and cold water, drainage, soap dish and continuous supply of soap, and shall be maintained in a sanitary condition throughout its use. The controls shall be arranged so an individual can shower without assistance. Provide a flexible hose

shower head, hose bibs and all other items shown on Shower Schematic. Waste water will be pumped to a drain after being filtered through a minimum of a 100 micron sock in the shower drain; a 20 micron filter; and a final 5 micron filter. Filters will be changed a minimum of daily or more often as needed. Filter changes must be done in the shower to prevent loss of contaminated water. Hose down all shower surfaces after each shift and clean any debris from the shower pan. Residue is to be disposed of as asbestos waste.

- 3. Equipment Room: The Competent Person shall provide an equipment room which shall be an air tight compartment for the storage of work equipment/tools, reusable personal protective equipment, except for a respirator and for use as a gross decontamination area for personnel exiting the regulated area. The equipment room shall be separated from the regulated area by a minimum 3 foot wide door made with 2 layers of 6 mil opaque fire retardant poly. The equipment room shall be separated from the regulated area, the shower room and the rest of the building by air tight walls and ceiling constructed of a minimum of 3 layers of 6 mil opaque fire retardant poly. Damp wipe all surfaces of the equipment room after each shift change. Provide an additional loose layer of 6 mil fire retardant poly per shift change and remove this layer after each shift. If needed, provide a temporary electrical sub-panel equipped with GFCI in the equipment room to accommodate any equipment required in the regulated area.
- 4. The PDF shall be as follows: Clean room at the entrance followed by a shower room followed by an equipment room leading to the regulated area. Each doorway in the PDF shall be a minimum of 2 layers of 6 mil opaque fire retardant poly.


SPEC. WRITER NOTE: OSHA does not require a decontamination unit for Class II work.

1.9.5 WASTE/EQUIPMENT DECONTAMINATION FACILITY (W/EDF)

The Competent Person shall provide an W/EDF consisting of a wash room, holding room, and clean room for removal of waste, equipment and contaminated material from the regulated area. Personnel shall not enter or exit the W/EDF except in the event of an emergency. Clean debris and residue in the W/EDF daily. All surfaces in the W/EDF shall be wiped/hosed down after each shift and all debris shall be cleaned from the shower pan. The W/EDF shall consist of the following:

- 1. Wash Down Station: Provide an enclosed shower unit in the regulated area just outside the Wash Room as an equipment bag and container cleaning station.
- 2. Wash Room: Provide a wash room for cleaning of bagged or containerized asbestos containing waste materials passed from the regulated area. Construct the wash room using 50 x 100 mm (2" x 4") wood framing and 3 layers of 6 mil fire retardant poly. Locate the wash room so that packaged materials, after being wiped clean, can be passed to the Holding Room. Doorways in the wash room shall be constructed of 2 layers of 6 mil fire retardant poly.
- 3. Holding Room: Provide a holding room as a drop location for bagged materials passed from the wash room. Construct the holding room using 50 x 100 mm (2" x 4") wood framing and 3 layers of 6 mil fire retardant poly. The holding room shall be located so that bagged material cannot be passed from the wash room to the clean room unless it goes through the holding room. Doorways in the holding room shall be constructed of 2 layers of 6 mil fire retardant poly.
- 4. Clean Room: Provide a clean room to isolate the holding room from the exterior of the regulated area. Construct the clean room using 2 x 4 wood framing and 2 layers of 6 mil fire retardant poly. The clean room shall be located so as to provide access to the holding room from the building exterior. Doorways to the clean room shall be constructed of 2 layers of 6 mil fire retardant poly. When a negative pressure differential system is used, a rigid enclosure separation between the W/EDF clean room and the adjacent areas shall be provided.
- 5. The W/EDF shall be as follows: Wash Room leading to a Holding Room followed by a Clean Room leading to outside the regulated area. See diagram.

1.9.6 WASTE/EQUIPMENT DECONTAMINATION PROCEDURES:

At the washdown station in the regulated area, thoroughly wet clean contaminated equipment and/or sealed polyethylene bags and pass into Wash Room after visual inspection. When passing anything into the Wash Room, close all doorways of the W/EDF, other than the doorway between the washdown station and the Wash Room. Keep all outside personnel clear of the W/EDF. Once inside the Wash Room, wet clean the equipment and/or bags. After cleaning and inspection, pass items into the Holding Room. Close all doorways except the doorway between the Holding Room and the Clean Room. Workers from the Clean Room/Exterior shall enter the Holding Room and remove the decontaminated/cleaned equipment/bags for removal and disposal. These personnel will not be required to wear PPE. At no time shall personnel from the clean side be allowed to enter the Wash Room.

PART 2 - PRODUCTS, MATERIALS AND EQUIPMENT

2.1 MATERIALS AND EQUIPMENT

2.1.1 GENERAL REQUIREMENTS (ALL ABATEMENT PROJECTS)

Prior to the start of work, the contractor shall provide and maintain a sufficient quantity of materials and equipment to assure continuous and efficient work throughout the duration of the project. Work shall not start unless the following items have been delivered to the site and the CPIH/CIH has submitted verification to the VA's representative.

- A. All materials shall be delivered in their original package, container or bundle bearing the name of the manufacturer and the brand name (where applicable).
- B. Store all materials subject to damage off the ground, away from wet or damp surfaces and under cover sufficient enough to prevent damage or contamination. Flammable and combustible materials cannot be stored inside buildings. Replacement materials shall be stored outside of the regulated area until abatement is completed.
- C. The Contractor shall not block or hinder use of buildings by patients, staff, and visitors to the VA in partially occupied buildings by placing materials/equipment in any unauthorized location.
- D. The Competent Person shall inspect for damaged, deteriorating or previously used materials. Such materials shall not be used and shall be removed from the worksite and disposed of properly.
- E. Polyethylene sheeting for walls in the regulated area shall be a minimum of 4-mils. For floors and all other uses, sheeting of at least 6-mil shall be used in widths selected to minimize the frequency of joints. Fire retardant poly shall be used throughout.
- F. The method of attaching polyethylene sheeting shall be agreed upon in advance by the Contractor and the VA and selected to minimize damage to equipment and surfaces. Method of attachment may include any combination of moisture resistant duct tape furring strips, spray glue, staples, nails, screws, lumber and plywood for enclosures or other effective procedures capable of sealing polyethylene to dissimilar finished or unfinished surfaces under both wet and dry conditions.
- G. Polyethylene sheeting utilized for the PDF shall be opaque white or black in color, 6 mil fire retardant poly.
- H. Installation and plumbing hardware, showers, hoses, drain pans, sump pumps and waste water filtration system shall be provided by the Contractor.
- I. An adequate number of HEPA vacuums, scrapers, sprayers, nylon brushes, brooms, disposable mops, rags, sponges, staple guns, shovels, ladders and scaffolding of suitable height and length as well as meeting OSHA requirements, fall protection devices, water hose to reach all areas in the regulated area, airless spray equipment, and any other tools, materials or equipment required to conduct the abatement project. All electrically operated hand tools, equipment, electric cords shall be connected to GFCI protection.
- J. Special protection for objects in the regulated area shall be detailed (e.g., plywood over carpeting or hardwood floors to prevent damage from scaffolds, water and falling material).

- K. Disposal bags 2 layers of 6 mil poly for asbestos waste shall be preprinted with labels, markings and address as required by OSHA, EPA and DOT regulations.
- L. The VA shall be provided an advance copy of the MSDS as required for all hazardous chemicals under OSHA 29 CFR 1910.1200 - Hazard Communication in the pre-project submittal. Chlorinated compounds shall not be used with any spray adhesive, mastic remover or other product. Appropriate encapsulant(s) shall be provided.
- M. OSHA DANGER demarcation signs, as many and as required by OSHA 29 CFR 1926.1101(k)(7) shall be provided and placed by the Competent Person. All other posters and notices required by Federal and State regulations shall be posted in the Clean Room.
- N. Adequate and appropriate PPE for the project and number of personnel/shifts shall be provided. All personal protective equipment issued must be based on a written hazard assessment conducted under 29 CFR 1910.132(d).

2.1.2 NEGATIVE PRESSURE FILTRATION SYSTEM

The Contractor shall provide enough HEPA negative air machines to continuously maintain a pressure differential of -0.02" water column gauge (WCG). The Competent Person shall determine the number of units needed for the regulated area by dividing the cubic feet in the regulated area by 15 and then dividing that result by the cubic feet per minute (CFM) for each unit to determine the number of units needed to continuously maintain a pressure differential of -0.02" WCG. Provide a standby unit in the event of machine failure and/or emergency in an adjacent area.

NIOSH has done extensive studies and has determined that negative air machines typically operate at $\sim 50\%$ efficiency. The contractor shall consider this in their determination of number of units needed to continuously maintain a pressure differential of -0.02" WCG. The contractor shall use 8 air changes per hour or double the number of machines, based on their calculations, or submit proof their machines operate at stated capacities, at a 2" pressure drop across the filters.

2.1.3 DESIGN AND LAYOUT

- A. Before start of work submit the design and layout of the regulated area and the negative air machines. The submittal shall indicate the number of, location of and size of negative air machines. The point(s) of exhaust, air flow within the regulated area, anticipated negative pressure differential, and supporting calculations for sizing shall be provided. In addition, submit the following:
 - 1. Method of supplying power to the units and designation/location of the panels.
 - 2. Description of testing method(s) for correct air volume and pressure differential.
 - 3. If auxiliary power supply is to be provided for the negative air machines, provide a schematic diagram of the power supply and manufacturer's data on the generator and switch.

2.1.4 NEGATIVE AIR MACHINES (HEPA UNITS)

A. Negative Air Machine Cabinet: The cabinet shall be constructed of steel or other durable material capable of withstanding potential damage from rough handling and transportation. The width of the cabinet shall be less than 30" in order to fit in standard doorways. The cabinet must be factory sealed to prevent asbestos fibers from being released during use, transport, or maintenance. Any access to and replacement of filters shall be from the inlet end. The unit must be on casters or wheels.

- B. Negative Air Machine Fan: The rating capacity of the fan must indicate the CFM under actual operating conditions. Manufacturer's typically use "free-air" (no resistance) conditions when rating fans. The fan must be a centrifugal type fan.
- C. Negative Air Machine Final Filter: The final filter shall be a HEPA filter. The filter media must be completely sealed on all edges within a structurally rigid frame. The filter shall align with a continuous flexible gasket material in the negative air machine housing to form an air tight seal. Each HEPA filter shall be certified by the manufacturer to have an efficiency of not less than 99.97%. Testing shall have been done in accordance with Military Standard MIL-STD-282 and Army Instruction Manual 136-300-175A. Each filter must bear a UL586 label to indicate ability to perform under specified conditions. Each filter shall be marked with the name of the manufacturer, serial number, air flow rating, efficiency and resistance, and the direction of test air flow.
- D. Negative Air Machine Pre-filters: The pre-filters, which protect the final HEPA filter by removing larger particles, are required to prolong the operating life of the HEPA filter. Two stages of pre-filtration are required. A first stage pre-filter shall be a low efficiency type for particles 10 micron or larger. A second stage pre-filter shall have a medium efficiency effective for particles down to 5 micron or larger. Pre-filters shall be installed either on or in the intake opening of the NAM and the second stage filter must be held in place with a special housing or clamps.
- E. Negative Air Machine Instrumentation: Each unit must be equipped with a gauge to measure the pressure drop across the filters and to indicate when filters have become loaded and need to be changed. A table indicating the cfm for various pressure readings on the gauge shall be affixed near the gauge for reference or the reading shall indicate at what point the filters shall be changed, noting cfm delivery. The unit must have an elapsed time meter to show total hours of operation.
- F. Negative Air Machine Safety and Warning Devices: An electrical/ mechanical lockout must be provided to prevent the fan from being operated without a HEPA filter. Units must be equipped with an automatic shutdown device to stop the fan in the event of a rupture in the HEPA filter or blockage in the discharge of the fan. Warning lights are required to indicate normal operation; too high a pressure drop across filters; or too low of a pressure drop across filters.
- G. Negative Air Machine Electrical: All electrical components shall be approved by the National Electrical Manufacturer's Association (NEMA) and Underwriters Laboratories (UL). Each unit must be provided with overload protection and the motor, fan, fan housing, and cabinet must be grounded.
- H. It is essential that replacement HEPA filters be tested using an "inline" testing method, to ensure the seal around the periphery was not damaged during replacement. Damage to the outer HEPA filter seal could allow contaminated air to bypass the HEPA filter and be discharged to an inappropriate location. Contractor will provide written documentation of test results for negative air machine units with HEPA filters changed by the contractor or documentation when changed and tested by the contractor filters.

2.1.5 PRESSURE DIFFERENTIAL

The fully operational negative air system within the regulated area shall continuously maintain a pressure differential of -0.02" water column gauge. Before any disturbance of any asbestos material, this shall be demonstrated to the VA by use of a pressure differential meter/manometer as required by OSHA 29 CFR 1926.1101(e)(5)(i). The Competent Person shall be responsible for providing, maintaining, and documenting the negative pressure and air changes as required by OSHA and this specification.

2.2 CONTAINMENT BARRIERS AND COVERINGS IN THE REGULATED AREA

2.2.1 GENERAL

- A. Using critical barriers, seal off the perimeter to the regulated area to completely isolate the regulated area from adjacent spaces. All surfaces in the regulated area must be covered to prevent contamination and to facilitate clean-up. Should adjacent areas become contaminated as a result of the work, shall immediately stop work and clean up the contamination at no additional cost to the VA. Provide firestopping and identify all fire barrier penetrations due to abatement work as specified in Section 3.1.4.8; FIRESTOPPING.
- B. Place all tools, scaffolding, materials and equipment needed for working in the regulated area prior to erecting any plastic sheeting. All uncontaminated removable furniture, equipment and/or supplies shall be removed by the VA from the regulated area before commencing work. Any objects remaining in the regulated area shall be completely covered with 2 layers of 6-mil fire retardant poly sheeting and secured with duct tape. Lock out and tag out any HVAC/electrical systems in the regulated area.

2.2.3 CONTROLLING ACCESS TO THE REGULATED AREA

Access to the regulated area is allowed only through the personnel decontamination facility (PDF). All other means of access shall be eliminated and OSHA DANGER demarcation signs posted as required by OSHA. If the adjacent area is accessible to the public, the barrier must be solid and capable of withstanding the negative pressure.

2.2.4 CRITICAL BARRIERS

Completely separate any operations in the regulated area from adjacent areas using 2 layers of 6 mil fire retardant poly and duct tape. Individually seal with 2 layers of 6 mil poly and duct tape all HVAC openings into the regulated area. Individually seal all lighting fixtures, clocks, doors, windows, convectors, speakers, or any other objects/openings in the regulated area. Heat must be shut off any objects covered with poly.

2.2.5 SECONDARY BARRIERS:

A loose layer of 6 mil poly shall be used as a drop cloth to protect the primary layers from debris generated during the abatement. This layer shall be replaced as needed during the work and at a minimum once per work day.

2.2.6 EXTENSION OF THE REGULATED AREA

If the enclosure of the regulated area is breached in any way that could allow contamination to occur, the affected area shall be included in the regulated area and constructed as per this section. Decontamination measures must be started immediately and continue until air monitoring indicates background levels are met.

2.2.7 FIRESTOPPING

- A. Through penetrations caused by cables, cable trays, pipes, sleeves, conduits, etc. must be firestopped with a fire-rated firestop system providing an air tight seal.
- B. Firestop materials that are not equal to the wall or ceiling penetrated shall be brought to the attention of the VA Representative. The contractor shall list all areas of penetration, the type of sealant used, and whether or not the location is fire rated. Any discovery of penetrations during abatement shall be brought to the attention of the VA representative immediately. All walls, floors and ceilings are considered fire rated unless otherwise determined by the VA Representative or Fire Marshall.
- C. Any visible openings whether or not caused by a penetration shall be reported by the Contractor to the VA Representative for a sealant system determination. Firestops shall meet ASTM E814 and UL 1479 requirements for the opening size, penetrant, and fire rating needed.

2.3 MONITORING, INSPECTION AND TESTING

2.3.1 GENERAL

- A. Perform throughout abatement work monitoring, inspection and testing inside and around the regulated area in accordance with the OSHA requirements and these specifications. OSHA requires that the Employee exposure to asbestos must not exceed 0.1 fibers per cubic centimeter (f/cc) of air, averaged over an 8-hour work shift. The CPIH/CIH is responsible for and shall inspect and oversee the performance of the Contractor IH Technician. The IH Technician shall continuously inspect and monitor conditions inside the regulated area to ensure compliance with these specifications. In addition, the CPIH/CIH shall personally manage air sample collection, analysis, and evaluation for personnel, regulated area, and adjacent area samples to satisfy OSHA requirements. Additional inspection and testing requirements are also indicated in other parts of this specification.
- B. The VA will employ an independent industrial hygienist (VPIH/CIH) consultant and/or use its own IH to perform various services on behalf of the VA. The VPIH/CIH will perform the necessary monitoring, inspection, testing, and other support services to ensure that VA patients, employees, and visitors will not be adversely affected by the abatement work, and that the abatement work proceeds in accordance with these specifications, that the abated areas or abated buildings have been successfully decontaminated. The work of the VPIH/CIH consultant in no way relieves the Contractor from their responsibility to perform the work in accordance with contract/specification requirements, to perform continuous inspection, monitoring and testing for the safety of their employees, and to perform other such services as specified. The cost of the VPIH/CIH and their services will be borne by the VA except for any repeat of final inspection and testing that may be required due

to unsatisfactory initial results. Any repeated final inspections and/or testing, if required, will be paid for by the Contractor.

C. If fibers counted by the VPIH/CIH during abatement work, either inside or outside the regulated area, utilizing the NIOSH 7400 air monitoring method, exceed the specified respective limits, the Contractor shall stop work. The Contractor may request confirmation of the results by analysis of the samples by TEM. Request must be in writing and submitted to the VA's representative. Cost for the confirmation of results will be borne by the Contractor for both the collection and analysis of samples and for the time delay that may/does result for this confirmation. Confirmation sampling and analysis will be the responsibility of the CPIH/CIH with review and approval of the VPIH/CIH. An agreement between the CPIH/CIH and the VPIH/CIH shall be reached on the exact details of the confirmation effort, in writing, including such things as the number of samples, location, collection, quality control on-site, analytical laboratory, interpretation of results and any follow-up actions. This written agreement shall be cosigned by the IH's and delivered to the VA's representative.

2.3.2 SCOPE OF SERVICES OF THE VPIH/CIH CONSULTANT

- A. The purpose of the work of the VPIH/CIH is to: assure quality; adherence to the specification; resolve problems; prevent the spread of contamination beyond the regulated area; and assure clearance at the end of the project. In addition, their work includes performing the final inspection and testing to determine whether the regulated area or building has been adequately decontaminated. All air monitoring is to be done utilizing PCM/TEM. The VPIH/CIH will perform the following tasks:
 - 1. Task 1: Establish background levels before abatement begins by collecting background samples. Retain samples for possible TEM analysis.
 - 2. Task 2: Perform continuous air monitoring, inspection, and testing outside the regulated area during actual abatement work to detect any faults in the regulated area isolation and any adverse impact on the surroundings from regulated area activities.
 - 3. Task 3: Perform unannounced visits to spot check overall compliance of work with contract/specifications. These visits may include any inspection, monitoring, and testing inside and outside the regulated area and all aspects of the operation except personnel monitoring.
 - 4. Task 4: Provide support to the VA representative such as evaluation of submittals from the Contractor, resolution of conflicts, interpret data, etc.
 - 5. Task 5: Perform, in the presence of the VA representative, final inspection and testing of a decontaminated regulated area at the conclusion of the abatement to certify compliance with all regulations and VA requirements/specifications.
 - 6. Task 6: Issue certificate of decontamination for each regulated area and project report.
- B. All documentation, inspection results and testing results generated by the VPIH/CIH will be available to the Contractor for information and consideration. The Contractor shall cooperate with and support the VPIH/CIH for efficient and smooth performance of their work.
- C. The monitoring and inspection results of the VPIH/CIH will be used by the VA to issue any Stop Removal orders to the Contractor during

abatement work and to accept or reject a regulated area or building as decontaminated.

2.3.3 MONITORING, INSPECTION AND TESTING BY CONTRACTOR CPIH/CIH

The Contractor's CPIH/CIH is responsible for managing all monitoring, inspections, and testing required by these specifications, as well as any and all regulatory requirements adopted by these specifications. The CPIH/CIH is responsible for the continuous monitoring of all subsystems and procedures which could affect the health and safety of the Contractor's personnel. Safety and health conditions and the provision of those conditions inside the regulated area for all persons entering the regulated area is the exclusive responsibility of the Contractor/Competent Person. The person performing the personnel and area air monitoring inside the regulated area shall be an IH Technician, who shall be trained and shall have specialized field experience in sampling and analysis. The IH Technician shall have successfully completed a NIOSH 582 Course or equivalent and provide documentation. The IH Technician shall participate in the AIHA Asbestos Analysis Registry or participate in the Proficiency Analytic Testing program of AIHA for fiber counting quality control assurance. The IH Technician shall also be an accredited EPA AHERA/State Contractor/Supervisor (or Abatement Worker) and Building Inspector. The IH Technician shall have participated in five abatement projects collecting personal and area samples as well as responsibility for documentation on substantially similar projects in size and scope. The analytic laboratory used by the Contractor to analyze the samples shall be AIHA accredited for asbestos PAT and approved by the VA prior to start of the project. A daily log shall be maintained by the CPIH/CIH or IH Technician, documenting all OSHA requirements for air personal monitoring for asbestos in 29 CFR 1926.1101 (f), (g) and Appendix A. This log shall be made available to the VA representative and the VPIH/CIH upon request. The log will contain, at a minimum, information on personnel or area samples, other persons represented by the sample, the date of sample collection, start and stop times for sampling, sample volume, flow rate, and fibers/cc. The CPIH/CIH shall collect and analyze samples for each representative job being done in the regulated area, i.e., removal, wetting, clean-up, and load-out. No fewer than two personal samples per shift shall be collected and one area sample per 1,000 square feet of regulated area where abatement is taking place and one sample per shift in the clean room area shall be collected. In addition to the continuous monitoring required, the CPIH/CIH will perform inspection and testing at the final stages of abatement for each regulated area as specified in the CPIH/CIH responsibilities. Additionally, the CPIH/CIH will monitor and record pressure readings within the containment daily with a minimum of two readings at the beginning and at the end of a shift, and submit the data in the daily report.

2.4 ASBESTOS HAZARD ABATEMENT PLAN

The Contractor shall have established Asbestos Hazard Abatement Plan (AHAP) in printed form and loose leaf folder consisting of simplified text, diagrams, sketches, and pictures that establish and explain clearly the procedures to be followed during all phases of the work by the Contractor's personnel. The AHAP must be modified as needed to address specific requirements of this project and the specifications. The AHAP(s) shall be submitted for review and approval to the VA prior to the start

of any abatement work. The minimum topics and areas to be covered by the $\ensuremath{\mathtt{AHAP}}(s)$ are:

- A. Minimum Personnel Qualifications
- B. Emergency Action Plan/Contingency Plans and Arrangements
- C. Security and Safety Procedures
- D. Respiratory Protection/Personal Protective Equipment Program and Training
- E. Medical Surveillance Program and Recordkeeping
- F. Regulated Area Requirements Containment Barriers/Isolation of Regulated Area
- G. Decontamination Facilities and Entry/Exit Procedures (PDF and W/EDF)
- H. Negative Pressure Systems Requirements
- I. Monitoring, Inspections, and Testing
- J. Removal Procedures for ACM
- K. Removal of Contaminated Soil (if applicable)
- L. Encapsulation Procedures for ACM
- M. Disposal of ACM waste/equipment
- N. Regulated Area Decontamination/Clean-up
- O. Regulated Area Visual and Air Clearance
- P. Project Completion/Closeout

2.5 SUBMITTALS

2.5.1 PRE-START MEETING SUBMITTALS

Submit to the VA a minimum of 14 days prior to the pre-start meeting the following for review and approval. Meeting this requirement is a prerequisite for the pre-start meeting for this project:

- A. Submit a detailed work schedule for the entire project reflecting contract documents and the phasing/schedule requirements from the CPM chart.
- B. Submit a staff organization chart showing all personnel who will be working on the project and their capacity/function. Provide their qualifications, training, accreditations, and licenses, as appropriate. Provide a copy of the "Certificate of Worker's Acknowledgment" and the "Affidavit of Medical Surveillance and Respiratory Protection" for each person.
- C. Submit Asbestos Hazard Abatement Plan developed specifically for this project, incorporating the requirements of the specifications, prepared, signed and dated by the CPIH/CIH.
- D. Submit the specifics of the materials and equipment to be used for this project with manufacturer names, model numbers, performance characteristics, pictures/diagrams, and number available for the following:
 - Supplied air system, negative air machines, HEPA vacuums, air monitoring pumps, calibration devices, pressure differential monitoring device and emergency power generating system.
 - 2. Waste water filtration system, shower system, containment barriers.
 - 3. Encapsulants, surfactants, hand held sprayers, airless sprayers, and fire extinguishers.
 - 4. Respirators, protective clothing, personal protective equipment.
 - 5. Fire safety equipment to be used in the regulated area.
- E. Submit the name, location, and phone number of the approved landfill; proof/verification the landfill is approved for ACM disposal; the landfill's requirements for ACM waste; the type of vehicle to be used for transportation; and name, address, and phone number of subcontractor, if used. Proof of asbestos training for transportation personnel shall be provided.

- F. Submit required notifications and arrangements made with regulatory regulatory jurisdiction and the agencies having specific contingency/emergency arrangements made with local health, fire, authorities ambulance, hospital and any other notifications/arrangements.
- G. Submit the name, location and verification of the laboratory and/or personnel to be used for analysis of air and/or bulk samples. Personal air monitoring must be done in accordance with OSHA 29 CFR 1926.1101(f) and Appendix A. And area or clearance air monitoring in accordance with EPA AHERA protocols.
- H. Submit qualifications verification: Submit the following evidence of qualifications. Make sure that all references are current and verifiable by providing current phone numbers and documentation.
 - Asbestos Abatement Company: Project experience within the past 3 years; listing projects first most similar to this project: Project Name; Type of Abatement; Duration; Cost; Reference Name/Phone Number; Final Clearance; and Completion Date
 - 2. List of project(s) halted by owner, A/E, IH, regulatory agency in the last 3 years: Project Name; Reason; Date; Reference Name/Number; Resolution
 - 3. List asbestos regulatory citations (e.g., OSHA), notices of violations (e.g., Federal and state EPA), penalties, and legal actions taken against the company including and of the company's officers (including damages paid) in the last 3 years. Provide copies and all information needed for verification.
- I. Submit information on personnel: Provide a resume; address each item completely; copies of certificates, accreditations, and licenses. Submit an affidavit signed by the CPIH/CIH stating that all personnel submitted below have medical records in accordance with OSHA 29 CFR 1926.1101(m) and 29 CFR 1910.20 and that the company has implemented a medical surveillance program and written respiratory protection program, and maintains recordkeeping in accordance with the above regulations. Submit the phone number and doctor/clinic/hospital used for medical evaluations.
 - CPIH/CIH and IH Technician: Name; years of abatement experience; list of projects similar to this one; certificates, licenses, accreditations for proof of AHERA/OSHA specialized asbestos training; professional affiliations; number of workers trained; samples of training materials; samples of AHAP(s) developed; medical opinion; and current respirator fit test.
 - 2. Competent Person(s)/Supervisor(s): Number; names; social security numbers; years of abatement experience as Competent Person/Supervisor; list of similar projects in size/complexity as Competent Person/Supervisor; as a worker; certificates, licenses, accreditations; proof of AHERA/OSHA specialized asbestos training; maximum number of personnel supervised on a project; medical opinion (asbestos surveillance and respirator use); and current respirator fit test.
 - 3. Workers: Numbers; names; social security numbers; years of abatement experience; certificates, licenses, accreditations; training courses in asbestos abatement and respiratory protection; medical opinion (asbestos surveillance and respirator use); and current respirator fit test.
- J. Submit copies of State license for asbestos abatement; copy of insurance policy, including exclusions with a letter from agent stating in plain language the coverage provided and the fact that asbestos abatement activities are covered by the policy; copy of the AHAP

incorporating the requirements of this specification; information on who provides your training, how often; who provides medical surveillance, how often; who performs and how is personal air monitoring of abatement workers conducted; a list of references of independent laboratories/IH's familiar with your air monitoring and Asbestos Hazard Abatement Plans; copies of monitoring results of the five referenced projects listed and analytical method(s) used.

- K. Rented equipment must be decontaminated prior to returning to the rental agency.
- L. Submit, before the start of work, the manufacturer's technical data for all types of encapsulants, all MSDS, and application instructions.

2.5.2 SUBMITTALS DURING ABATEMENT

- A. The Competent Person shall maintain and submit a daily log at the regulated area documenting the dates and times of the following: purpose, attendees and summary of meetings; all personnel entering/exiting the regulated area; document and discuss the resolution of unusual events such as barrier breeching, equipment failures, emergencies, and any cause for stopping work; representative air monitoring and results/TWAs/ELs. Submit this information daily to the VPIH/CIH.
- B. The CPIH/CIH shall document and maintain the inspection and approval of the regulated area preparation prior to start of work and daily during work.
 - 1. Removal of any poly barriers.
 - 2. Visual inspection/testing by the CPIH/CIH or IH Technician prior to application of lockdown encapsulant.
 - 3. Packaging and removal of ACM waste from regulated area.
 - Disposal of ACM waste materials; copies of Waste Shipment Records/landfill receipts to the VA's representative on a weekly basis.

2.5.3 SUBMITTALS AT COMPLETION OF ABATEMENT

The CPIH/CIH shall submit a project report consisting of the daily log book requirements and documentation of events during the abatement project including Waste Shipment Records signed by the landfill's agent. It will also include information on the containment and transportation of waste from the containment with applicable Chain of Custody forms. The report shall include a certificate of completion, signed and dated by the CPIH/CIH, in accordance with Attachment #1. All clearance and perimeter area samples must be submitted. The VA Representative will retain the abatement report after completion of the project and provide copies of the abatement report to VAMC Office of Engineer and the Safety Office.

PART 3 - EXECUTION

3.1 PRE-ABATEMENT ACTIVITIES

3.1.1 PRE-ABATEMENT MEETING

The VA representative, upon receipt, review, and substantial approval of all pre-abatement submittals and verification by the CPIH/CIH that all materials and equipment required for the project are on the site, will arrange for a pre-abatement meeting between the Contractor, the CPIH/CIH, Competent Person(s), the VA representative(s), and the VPIH/CIH. The purpose of the meeting is to discuss any aspect of the submittals needing clarification or amplification and to discuss any aspect of the project execution and the sequence of the operation. The Contractor shall be prepared to provide any supplemental information/documentation to the VA's representative regarding any submittals, documentation, materials or equipment. Upon satisfactory resolution of any outstanding issues, the VA's representative will issue a written order to proceed to the Contractor. No abatement work of any kind described in the following provisions shall be initiated prior to the VA written order to proceed.

3.1.2 PRE-ABATEMENT INSPECTIONS AND PREPARATIONS

Before any work begins on the construction of the regulated area, the Contractor will:

- A. Conduct a space-by-space inspection with an authorized VA representative and prepare a written inventory of all existing damage in those spaces where asbestos abatement will occur. Still or video photography may be used to supplement the written damage inventory. Document will be signed and certified as accurate by both parties.
- B. The VA Representative, the Contractor, and the VPIH/CIH must be aware of VA A/E Quality Alert 07/09 indicating the failure to identify asbestos in the areas listed as well as common issues when preparing specifications and contract documents. This is especially critical when demolition is planned, because AHERA surveys are non-destructive, and ACM may remain undetected. A NESHAPS (destructive) ACM inspection should be conducted on all building structures that will be demolished. Ensure the following areas are inspected on the project: Lay-in ceilings concealing ACM; ACM behind walls/windows from previous renovations; inside utility chases/walls; transite piping/ductwork/sheets; behind radiators; lab fume hoods; transite lab countertops; roofing materials; below window sills; water/sewer lines; electrical conduit coverings; crawl spaces(previous abatement contamination); flooring/mastic covered by carpeting/new flooring; exterior insulated wall panels; on underground fuel tanks; and steam line trench coverings.
- C. Ensure that all furniture, machinery, equipment, curtains, drapes, blinds, and other movable objects required to be removed from the regulated area have been cleaned and removed or properly protected from contamination.
- D. If present and required, remove and dispose of carpeting from floors in the regulated area. If ACM floor tile is attached to the carpet while the Contractor is removing the carpet that section of the carpet will be disposed of as asbestos waste.
- E. Inspect existing firestopping in the regulated area. Correct as needed.

3.1.3 PRE-ABATEMENT CONSTRUCTION AND OPERATIONS

- A. Perform all preparatory work for the first regulated area in accordance with the approved work schedule and with this specification.
- B. Upon completion of all preparatory work, the CPIH/CIH will inspect the work and systems and will notify the VA's representative when the work is completed in accordance with this specification. The VA's representative may inspect the regulated area and the systems with the VPIH/CIH and may require that upon satisfactory inspection, the Contractor's employees perform all major aspects of the approved AHAP, especially worker protection, respiratory systems, contingency plans, decontamination procedures, and monitoring to demonstrate satisfactory

operation. The operational systems for respiratory protection and the negative pressure system shall be demonstrated for proper performance.

- C. The CPIH/CIH shall document the pre-abatement activities described above and deliver a copy to the VA's representative.
- D. Upon satisfactory inspection of the installation of and operation of systems the VA's representative will notify the Contractor in writing to proceed with the asbestos abatement work in accordance with this specification and all applicable regulations.

3.2 REGULATED AREA PREPARATIONS

3.2.1 OSHA DANGER SIGNS

Post OSHA DANGER signs meeting the specifications of OSHA 29 CFR 1926.1101 at any location and approaches to the regulated area where airborne concentrations of asbestos may exceed the PEL. Signs shall be posted at a distance sufficiently far enough away from the regulated area to permit any personnel to read the sign and take the necessary measures to avoid exposure. Additional signs will be posted following construction of the regulated area enclosure.

3.2.2 CONTROLLING ACCESS TO THE REGULATED AREA

Access to the regulated area is allowed only through the personnel decontamination facility (PDF), if required. All other means of access shall be eliminated and OSHA Danger demarcation signs posted as required by OSHA. If the regulated area is adjacent to or within view of an occupied area, provide a visual barrier of 6 mil opaque fire retardant poly sheeting to prevent building occupant observation. If the adjacent area is accessible to the public, the barrier must be solid

3.2.3 SHUT DOWN - LOCK OUT ELECTRICAL

Shut down and lock out/tag out electric power to the regulated area. Provide temporary power and lighting. Insure safe installation including GFCI of temporary power sources and equipment by compliance with all applicable electrical code requirements and OSHA requirements for temporary electrical systems. Electricity shall be provided by the VA.

3.2.4 SHUT DOWN - LOCK OUT HVAC

Shut down and lock out/tag out heating, cooling, and air conditioning system (HVAC) components that are in, supply or pass through the regulated area.

Investigate the regulated area and agree on pre-abatement condition with the VA's representative. Seal all intake and exhaust vents in the regulated area with duct tape and 2 layers of 6-mil poly. Also, seal any seams in system components that pass through the regulated area. Remove all contaminated HVAC system filters and place in labeled 6-mil poly disposal bags for disposal as asbestos waste.

3.2.5 SANITARY FACILITIES

The Contractor shall provide sanitary facilities for abatement personnel and maintain them in a clean and sanitary condition throughout the abatement project.

3.2.6 WATER FOR ABATEMENT

The VA will provide water for abatement purposes. The Contractor shall connect to the existing VA system. The service to the shower(s) shall be supplied with backflow prevention.

3.2.7 PREPARATION PRIOR TO SEALING OFF

Place all tools, materials and equipment needed for working in the regulated area prior to erecting any plastic sheeting. Remove all uncontaminated removable furniture, equipment and/or supplies from the regulated area before commencing work, or completely cover with 2 layers of 6-mil fire retardant poly sheeting and secure with duct tape. Lock out and tag out any HVAC systems in the regulated area.

3.2.8 CRITICAL BARRIERS

Completely separate any openings into the regulated area from adjacent areas using fire retardant poly at least 6 mils thick and duct tape. Individually seal with 2 layers of 6 mil poly and duct tape all HVAC openings into the regulated area. Individually seal all lighting fixtures, clocks, doors, windows, convectors, speakers, or any other objects in the regulated area. Heat must be shut off any objects covered with poly

3.2.9 PRE-CLEANING MOVABLE OBJECTS

Pre-cleaning of ACM contaminated items shall be performed after the enclosure has been erected and negative pressure has been established in the work area. After items have been pre-cleaned and decontaminated, they may be removed from the work area for storage until the completion of abatement in the work area.

Pre-clean all movable objects within the regulated area using a HEPA filtered vacuum and/or wet cleaning methods as appropriate. After cleaning, these objects shall be removed from the regulated area and carefully stored in an uncontaminated location.

3.2.10 PRE-CLEANING FIXED OBJECTS

Pre-cleaning of ACM contaminated items shall be performed after the enclosure has been erected and negative pressure has been established in the work area

Pre-clean all fixed objects in the regulated area using HEPA filtered vacuums and/or wet cleaning techniques as appropriate. Careful attention must be paid to machinery behind grills or gratings where access may be difficult but contamination may be significant. Also, pay particular attention to wall, floor and ceiling penetration behind fixed items. After pre-cleaning, enclose fixed objects with 2 layers of 6-mil poly and seal securely in place with duct tape. Objects (e.g., permanent fixtures, shelves, electronic equipment, laboratory tables, sprinklers, alarm systems, closed circuit TV equipment and computer cables) which must remain in the regulated area and that require special ventilation or enclosure requirements should be designated here along with specified means of protection. Contact the manufacturer for special protection requirements.

3.2.11 PRE-CLEANING SURFACES IN THE REGULATED AREA

Pre-cleaning of ACM contaminated items shall be performed after the enclosure has been erected and negative pressure has been established in the work area

Pre-clean all surfaces in the regulated area using HEPA filtered vacuums and/or wet cleaning methods as appropriate. Do not use any methods that would raise dust such as dry sweeping or vacuuming with equipment not equipped with HEPA filters. Do not disturb asbestos-containing materials during this pre-cleaning phase.

3.2.12 EXTENSION OF THE REGULATED AREA

If the regulated area barrier is breached in any manner that could allow the passage of asbestos fibers or debris, the Competent Person shall immediately stop work, continue wetting, and proceed to extend the regulated area to enclose the affected area as per procedures described in this specification. If the affected area cannot be enclosed, decontamination measures and cleanup shall start immediately. All personnel shall be isolated from the affected area until decontamination/cleanup is completed as verified by visual inspection and air monitoring. Air monitoring at completion must indicate background levels.

3.3 REMOVAL OF CLASS II FLOORING MATERIALS:

3.3.1 GENERAL

All applicable requirements of OSHA, EPA, and DOT shall be followed during Class II work. Keep materials intact; do not disturb; wet while working with it; wrap as soon as possible with 2 layers of 6 mil plastic for disposal.

3.3.2 REMOVAL OF FLOORING MATERIALS:

A. All requirements of OSHA Flooring agreement provisions shall be followed:

1. The Contractor shall provide enough HEPA negative air machines to effect > - 0.02" WCG pressure. Provide a standby unit in the event of machine failure and/or emergency in an adjacent area. The contractor shall use double the number of machines, based on their calculations, or submit proof their machines operate at stated capacities, at a 2" pressure drop across the filters.

2. Flooring shall be removed intact, as much as possible. Do not rip or tear flooring.

- 3. Mechanical chipping or sanding is not allowed.
- 4. Flooring shall be removed with an infra-red heating unit operated by trained personnel following the manufacturer's instructions.
- 5. Wet clean and HEPA vacuum the floor before and after removal of flooring.
- 6. Place a 6 mil poly layer 4' by 10' adjacent to the regulated area for use as a decontaminated area. All waste must be contained in the regulated area.
- 7. Package all waste in 6 mil poly lined fiberboard drums.

3.3.3 REMOVAL OF MASTIC

- A. All chemical mastic removers must be low in volatile organic compound (VOC) content, have a flash point greater than 200° Fahrenheit, contain no chlorinated solvents, and comply with California Air Resources Board (CARB) thresholds for VOCs (effective January 1, 2010).
- B. A negative air machine as required under flooring removal shall be provided.
- C. Follow all manufacturers' instructions in the use of the mastic removal material.
- D. Package all waste in 6 mil poly lined fiberboard drums.
- E. Prior to application of any liquid material, check the floor for penetrations and seal before removing mastic.

3.4 DISPOSAL OF CLASS II WASTE MATERIAL:

3.4.1 GENERAL

Dispose of waste ACM and debris which is packaged in accordance with these specifications, OSHA, EPA and DOT. The landfill requirements for packaging must also be met. Transport will be in compliance with 49 CFR 100-185 regulations. Disposal shall be done at an approved landfill. Disposal of non-friable ACM shall be done in accordance with applicable regulations.

3.5 PROJECT DECONTAMINATION

3.5.1 GENERAL

- A. The VA must be notified at least 24 hours in advance of any waste removed from the containment,
- B. The entire work related to project decontamination shall be performed under the close supervision and monitoring of the CPIH/CIH.
- C. If the asbestos abatement work is in an area which was contaminated prior to the start of abatement, the decontamination will be done by cleaning the primary barrier poly prior to its removal and cleanings of the surfaces of the regulated area after the primary barrier removal.
- D. If the asbestos abatement work is in an area which was uncontaminated prior to the start of abatement, the decontamination will be done by cleaning the primary barrier poly prior to its removal, thus preventing contamination of the building when the regulated area critical barriers are removed.

3.5.2 REGULATED AREA CLEARANCE

Air testing and other requirements which must be met before release of the Contractor and re-occupancy of the regulated area space are specified in Final Testing Procedures.

3.5.3 WORK DESCRIPTION

Decontamination includes the clearance air testing in the regulated area and the decontamination and removal of the enclosures/facilities installed prior to the abatement work including primary/critical barriers, PDF and W/EDF facilities, and negative pressure systems.

3.5.4 PRE-DECONTAMINATION CONDITIONS

A. Before decontamination starts, all ACM waste from the regulated area shall be removed, all waste collected and removed, and the secondary

barrier of poly removed and disposed of along with any gross debris generated by the work.

- B. At the start of decontamination, the following shall be in place:
 - 1. Critical barriers over all openings consisting of two layers of 6 mil poly which is the sole barrier between the regulated area and the rest of the building or outside.
 - 2. Decontamination facilities, if required for personnel and equipment in operating condition.

3.5.5 CLEANING:

Carry out a first cleaning of all surfaces of the regulated area including items of remaining poly sheeting, tools, scaffolding, ladders/staging by wet methods and/or HEPA vacuuming. Do not use dry dusting/sweeping/air blowing methods. Use each surface of a wetted cleaning cloth one time only and then dispose of as contaminated waste. Continue this cleaning until there is no visible residue from abated surfaces or poly or other surfaces. Remove all filters in the air handling system and dispose of as ACM waste in accordance with these specifications. The negative pressure system shall remain in operation during this time. Additional cleaning(s) may be needed as determined by the CPIH/VPIH/CIH.

3.6 VISUAL INSPECTION AND AIR CLEARANCE TESTING

3.6.1 GENERAL

Notify the VA representative 24 hours in advance for the performance of the final visual inspection and testing. The final visual inspection and testing will be performed by the VPIH/CIH after the final cleaning.

3.6.2 VISUAL INSPECTION

Final visual inspection will include the entire regulated area, the PDF, all poly sheeting, seals over HVAC openings, doorways, windows, and any other openings. If any debris, residue, dust or any other suspect material is detected, the final cleaning shall be repeated at no cost to the VA. Dust/material samples may be collected and analyzed at no cost to the VA at the discretion of the VPIH/CIH to confirm visual findings. When the regulated area is visually clean the final testing can be done.

3.6.3 AIR CLEARANCE TESTING

- A. After an acceptable final visual inspection by the VPIH/CIH and VA Representative, the VPIH/CIH will perform the final clearance testing. Air samples will be collected and analyzed in accordance with procedures for AHERA in this specification. If work is less than 260 lf/160 sf/35 cf, 5 PCM samples shall be collected for clearance and a minimum of one field blank. If work is equal to or more than 260 lf/160 sf/35 cf, AHERA TEM sampling shall be performed for clearance. TEM analysis shall be done in accordance with procedures for EPA AHERA in this specification. If the release criteria are not met, the Contractor shall repeat the final cleaning and continue decontamination procedures until clearance is achieved. **All Additional inspection and testing costs will be borne by the Contractor**.
- B. If release criteria are met, proceed to perform the abatement closeout and to issue the certificate of completion in accordance with these specifications.

3.6.4 FINAL AIR CLEARANCE PROCEDURES

- A. Contractor's Release Criteria: Work in a regulated area is complete when the regulated area is visually clean and airborne fiber levels have been reduced to or below 0.01 f/cc as measured by the AHERA PCM protocol, or 70 AHERA structures per square millimeter (s/mm²) by AHERA TEM.
- B. Air Monitoring and Final Clearance Sampling: To determine if the elevated airborne fiber counts encountered during abatement operations have been reduced to the specified level, the VPIH/CIH will secure samples and analyze them according to the following procedures:
 - 1. Fibers Counted: "Fibers" referred to in this section shall be either all fibers regardless of composition as counted in the NIOSH 7400 PCM method or asbestos fibers counted using the AHERA TEM method.
 - 2. Aggressive Sampling: All final air testing samples shall be collected using aggressive sampling techniques except where soil is not encapsulated or enclosed. Samples will be collected on 0.8µ MCE filters for PCM analysis and 0.45µ Polycarbonate filters for TEM. A minimum of 1200 Liters of using calibrated pumps shall be collected for clearance samples. Before pumps are started, initiate aggressive air mixing sampling as detailed in 40 CFR 763 Subpart E (AHERA) Appendix A (III)(B)(7)(d). Air samples will be collected in areas subject to normal air circulation away from corners, obstructed locations, and locations near windows, doors, or vents. After air sampling pumps have been shut off, circulating fans shall be shut off. The negative pressure system shall continue to operate.

3.7 ABATEMENT CLOSEOUT AND CERTIFICATE OF COMPLIANCE

3.7.1 COMPLETION OF ABATEMENT WORK

- A. After thorough decontamination, complete asbestos abatement work upon meeting the regulated area clearance criteria and fulfilling the following:
 - 1. Remove all equipment, materials, and debris from the project area.
 - 2. Package and dispose of all asbestos waste as required.
 - 3. Repair or replace all interior finishes damaged during the abatement work.
 - 4. Fulfill other project closeout requirements as specified elsewhere in this specification.

3.7.2 CERTIFICATE OF COMPLETION BY CONTRACTOR

The CPIH shall complete and sign the "Certificate of Completion" in accordance with Attachment 1 at the completion of the abatement and decontamination of the regulated area.

3.7.3 WORK SHIFTS

All work shall be done during administrative hours (8:00 AM to 4:30 PM) Monday - Friday excluding Federal Holidays. Any change in the work schedule must be approved in writing by the VA Representative.

ATTACHMENT #1

CERTIFICATE OF COMPLETION

DATE: VA Project #: ______ PROJECT NAME: _____Abatement Contractor: _____ VAMC/ADDRESS:

1. I certify that I have personally inspected, monitored and supervised the abatement work of (specify regulated area or Building):

which took place from / / to / /

- 2. That throughout the work all applicable requirements/regulations and the VA's specifications were met.
- 3. That any person who entered the regulated area was protected with the appropriate personal protective equipment and respirator and that they followed the proper entry and exit procedures and the proper operating procedures for the duration of the work.
- 4. That all employees of the Abatement Contractor engaged in this work were trained in respiratory protection, were experienced with abatement work, had proper medical surveillance documentation, were fit-tested for their respirator, and were not exposed at any time during the work to asbestos without the benefit of appropriate respiratory protection.
- 5. That I performed and supervised all inspection and testing specified and required by applicable regulations and VA specifications.
- 6. That the conditions inside the regulated area were always maintained in a safe and healthy condition and the maximum fiber count never exceeded 0.5 f/cc, except as described below.
- 7. That all abatement work was done in accordance with OSHA requirements and the manufacturer's recommendations.

CPIH/CIH Signature/Date:

CPIH/CIH Print Name:_____

Abatement Contractor Signature/Date:_____

Abatement Contractor Print Name:

ATTACHMENT #2

CERTIFICATE OF WORKER'S ACKNOWLEDGMENT

PROJECT	NAME :	DATE:	
PROJECT	ADDRESS	:	

ABATEMENT CONTRACTOR'S NAME:

WORKING WITH ASBESTOS CAN BE HAZARDOUS TO YOUR HEALTH. INHALING ASBESTOS HAS BEEN LINKED WITH VARIOUS TYPES OF CANCERS. IF YOU SMOKE AND INHALE ASBESTOS FIBERS, YOUR CHANCES OF DEVELOPING LUNG CANCER IS GREATER THAN THAT OF THE NON-SMOKING PUBLIC.

Your employer's contract with the owner for the above project requires that: You must be supplied with the proper personal protective equipment including an adequate respirator and be trained in its use. You must be trained in safe and healthy work practices and in the use of the equipment found at an asbestos abatement project. You must receive/have a current medical examination for working with asbestos. These things shall be provided at no cost to you. By signing this certificate you are indicating to the owner that your employer has met these obligations.

RESPIRATORY PROTECTION: I have been trained in the proper use of respirators and have been informed of the type of respirator to be used on the above indicated project. I have a copy of the written Respiratory Protection Program issued by my employer. I have been provided for my exclusive use, at no cost, with a respirator to be used on the above indicated project.

TRAINING COURSE: I have been trained by a third party, State/EPA accredited trainer in the requirements for an AHERA/OSHA Asbestos Abatement Worker training course, 32 hours minimum duration. I currently have a valid State accreditation certificate. The topics covered in the course include, as a minimum, the following:

Physical Characteristics and Background Information on Asbestos Potential Health Effects Related to Exposure to Asbestos Employee Personal Protective Equipment Establishment of a Respiratory Protection Program State of the Art Work Practices Personal Hygiene Additional Safety Hazards Medical Monitoring Air Monitoring Relevant Federal, State and Local Regulatory Requirements, Procedures, and Standards Asbestos Waste Disposal

MEDICAL EXAMINATION: I have had a medical examination within the past 12 months which was paid for by my employer. This examination included: health history, occupational history, pulmonary function test, and may have included a chest x-ray evaluation. The physician issued a positive written opinion after the examination.

Signature:_____

Printed Name:

Social Security Number:

Witness:

ATTACHMENT #3

AFFIDAVIT OF MEDICAL SURVEILLANCE, RESPIRATORY PROTECTION AND TRAINING/ACCREDITATION

VA PROJECT NAME AND NUMBER:

VA MEDICAL FACILITY:

ABATEMENT CONTRACTOR'S NAME AND ADDRESS:

1. I verify that the following individual

Name:______Social Security Number:_____

who is proposed to be employed in asbestos abatement work associated with the above project by the named Abatement Contractor, is included in a medical surveillance program in accordance with 29 CFR 1926.1101(m), and that complete records of the medical surveillance program as required by 29 CFR 1926.1101(m)(n) and 29 CFR 1910.20 are kept at the offices of the Abatement Contractor at the following address.

Address:

2. I verify that this individual has been trained, fit-tested and instructed in the use of all appropriate respiratory protection systems and that the person is capable of working in safe and healthy manner as expected and required in the expected work environment of this project.

- 3. I verify that this individual has been trained as required by 29 CFR 1926.1101(k). This individual has also obtained a valid State accreditation certificate. Documentation will be kept on-site.
- 4. I verify that I meet the minimum qualifications criteria of the VA specifications for a CPIH.

Signature of CPIH/CIH: Date:

Printed Name of CPIH/CIH:

Signature of Contractor: _____ Date: _____

Printed Name of Contractor:

ATTACHMENT #4

ABATEMENT	CONTRACTOR/COMPETENT	PERSON(S)	REVIEW	AND	ACCEPTANCE	OF	THE	VA'S
ASBESTOS S	SPECIFICATIONS							

VA Project Location:______ VA Project #:_____

VA Project Description:

This form shall be signed by the Asbestos Abatement Contractor Owner and the Asbestos Abatement Contractor's Competent Person(s) prior to any start of work at the VA related to this Specification. If the Asbestos Abatement Contractor's/Competent Person(s) has not signed this form, they shall not be allowed to work on-site.

I, the undersigned, have read VA's Asbestos Specification regarding the asbestos abatement requirements. I understand the requirements of the VA's Asbestos Specification and agree to follow these requirements as well as all required rules and regulations of OSHA/EPA/DOT and State/Local requirements. I have been given ample opportunity to read the VA's Asbestos Specification and have been given an opportunity to ask any questions regarding the content and have received a response related to those questions. I do not have any further questions regarding the content, intent and requirements of the VA's Asbestos Specification.

At the conclusion of the asbestos abatement, I will certify that all asbestos abatement work was done in accordance with the VA's Asbestos Specification and all ACM was removed properly and no fibrous residue remains on any abated surfaces.

Abatement Contractor Owner's Signature_____Date_____

Abatement	Contractor	Competent	Person(s)	Date	

- - END- - - -

SECTION 03 30 00 CAST-IN-PLACE CONCRETE

PART 1 - GENERAL

1.1 DESCRIPTION:

This section specifies cast-in-place structural concrete and materials and mixes for other concrete.

1.2 RELATED WORK:

- A. Materials testing and inspection during construction: Section 01 45 29, TESTING LABORATORY SERVICES.
- B. Concrete roads, walks, and similar exterior site work: Section 32 0523, CEMENT AND CONCRETE FOR EXTERIOR IMPROVEMENTS.

1.3 TESTING AGENCY FOR CONCRETE MIX DESIGN:

- A. Testing agency for the trial concrete mix design retained and reimbursed by the Contractor and approved by the COR. For all other testing, refer to Section 01 45 29 Testing Laboratory Services.
- B. Testing agency maintaining active participation in Program of Cement and Concrete Reference Laboratory (CCRL) of National Institute of Standards and Technology. Accompany request for approval of testing agency with a copy of Report of Latest Inspection of Laboratory Facilities by CCRL.
- C. Testing agency shall furnish equipment and qualified technicians to establish proportions of ingredients for concrete mixes.

1.4 TOLERANCES:

- A. Formwork: ACI 117, except the elevation tolerance of formed surfaces before removal of shores is +0 mm (+0 inch) and -20 mm (-3/4 inch).
- B. Reinforcement Fabricating and Placing: ACI 117, except that fabrication tolerance for bar sizes Nos. 10, 13, and 16 (Nos. 3, 4, and 5) (Tolerance Symbol 1 in Fig. 2.1(a), ACI, 117) used as column ties or stirrups is +0 mm (+0 inch) and -13 mm (-1/2 inch) where gross bar length is less than 3600 mm (12 feet), or +0 mm (+0 inch) and -20 mm (-3/4 inch) where gross bar length is 3600 mm (12 feet) or more.
- C. Cross-Sectional Dimension: ACI 117, except tolerance for thickness of slabs 12 inches or less is +20 mm (+3/4 inch) and - 6 mm (-1/4 inch). Tolerance of thickness of beams more than 300 mm (12 inch) but less than 900 mm (3 feet) is +20 mm (+3/4 inch) and -10 mm (-3/8 inch).

- D. Slab Finishes: ACI 117, Section 4.5.6, F-number method in accordance with ASTM E1155, except as follows:
 - Test entire slab surface, including those areas within 600 mm (2 feet) of construction joints and vertical elements that project through slab surface.
 - 2. Maximum elevation change which may occur within 600 mm (2 feet) of any column or wall element is 6 mm (0.25 inches).
 - Allow sample measurement lines that are perpendicular to construction joints to extend past joint into previous placement no further than 1500 mm (5 feet).

1.5 REGULATORY REQUIREMENTS:

- A. ACI SP-66 ACI Detailing Manual.
- B. ACI 318 Building Code Requirements for Reinforced Concrete.
- C. ACI 301 Standard Specifications for Structural Concrete.

1.6 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Shop Drawings: Reinforcing steel: Complete shop drawings
- C. Mill Test Reports:
 - 1. Reinforcing Steel.
 - 2. Cement.
- D. Manufacturer's Certificates:
 - 1. Abrasive aggregate.
 - 2. Lightweight aggregate for structural concrete.
 - 3. Air-entraining admixture.
 - 4. Chemical admixtures, including chloride ion content.
 - 5. Waterproof paper for curing concrete.
 - 6. Liquid membrane-forming compounds for curing concrete.
 - 7. Non-shrinking grout.
 - 8. Liquid hardener.
 - 9. Waterstops.
 - 10. Expansion joint filler.
 - 11. Adhesive binder.
- E. Testing Agency for Concrete Mix Design: Approval request including qualifications of principals and technicians and evidence of active participation in program of Cement and Concrete Reference Laboratory

(CCRL) of National Institute of Standards and Technology and copy of report of latest CCRL, Inspection of Laboratory.

- F. Test Report for Concrete Mix Designs: Trial mixes including water-cement fly ash ratio curves, concrete mix ingredients, and admixtures.
- G. Shoring and Reshoring Sequence: Submit for approval a shoring and reshoring sequence for flat slab/flat plate portions, prepared by a registered Professional Engineer. As a minimum, include timing of form stripping, reshoring, number of floors to be re-shored and timing of re-shore removal to serve as an initial outline of procedures subject to modification as construction progresses. Submit revisions to sequence, whether initiated by the COR (see FORMWORK) or Contractor.

1.7 DELIVERY, STORAGE, AND HANDLING:

- A. Conform to ACI 304. Store aggregate separately for each kind or grade, to prevent segregation of sizes and avoid inclusion of dirt and other materials.
- B. Deliver cement in original sealed containers bearing name of brand and manufacturer, and marked with net weight of contents. Store in suitable watertight building in which floor is raised at least 300 mm (1 foot) above ground. Store bulk cement and fly ash in separate suitable bins.
- C. Deliver other packaged materials for use in concrete in original sealed containers, plainly marked with manufacturer's name and brand, and protect from damage until used.

1.8 PRE-CONCRETE CONFERENCE:

- A. General: At least 15 days prior to submittal of design mixes, conduct a meeting to review proposed methods of concrete construction to achieve the required results.
- B. Agenda: Includes but is not limited to:
 - 1. Submittals.
 - 2. Coordination of work.
 - 3. Availability of material.
 - 4. Concrete mix design including admixtures.
 - 5. Methods of placing, finishing, and curing.
 - 6. Finish criteria required to obtain required flatness and levelness.
 - 7. Timing of floor finish measurements.
 - 8. Material inspection and testing.

- C. Attendees: Include but not limited to representatives of Contractor; subcontractors involved in supplying, conveying, placing, finishing, and curing concrete; lightweight aggregate manufacturer; admixture manufacturers; the COR; Consulting Engineer; Department of Veterans Affairs retained testing laboratories for concrete testing and finish (F-number) verification.
- D. Minutes of the meeting: Contractor shall take minutes and type and distribute the minutes to attendees within five days of the meeting.

1.10 APPLICABLE PUBLICATIONS:

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only.
- B. American Concrete Institute (ACI): 117-10.....Specifications for Tolerances for Concrete Construction and Materials and Commentary 211.1-91(R2009).....Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete 214R-11.....Guide to Evaluation of Strength Test Results of Concrete 301-10.....Standard Practice for Structural Concrete 304R-00(R2009).....Guide for Measuring, Mixing, Transporting, and Placing Concrete 305.1-06.....Specification for Hot Weather Concreting 306.1-90(R2002).....Standard Specification for Cold Weather Concreting 308.1-11.....Specification for Curing Concrete 309R-05.....of Concrete 318-11.....Building Code Requirements for Structural Concrete and Commentary 347-04.....Guide to Formwork for Concrete SP-66-04.....ACI Detailing Manual C. American National Standards Institute and American Hardboard Association (ANSI/AHA): A135.4-2004.....Basic Hardboard D. American Society for Testing and Materials (ASTM):

A82/A82M-07	Standard Specification for Steel Wire, Plain,
	for Concrete Reinforcement
A185/185M-07	Standard Specification for Steel Welded Wire
	Reinforcement, Plain, for Concrete
A615/A615M-09	Standard Specification for Deformed and Plain
	Carbon Steel Bars for Concrete Reinforcement
A653/A653M-11	Standard Specification for Steel Sheet, Zinc
	Coated (Galvanized) or Zinc Iron Alloy Coated
	(Galvannealed) by the Hot Dip Process
A706/A706M-09	Standard Specification for Low Alloy Steel
	Deformed and Plain Bars for Concrete
	Reinforcement
A767/A767M-09	Standard Specification for Zinc Coated
	(Galvanized) Steel Bars for Concrete
	Reinforcement
A775/A775M-07	Standard Specification for Epoxy Coated
	Reinforcing Steel Bars
A820-11	Standard Specification for Steel Fibers for
	Fiber Reinforced Concrete
А996/А996М-09	Standard Specification for Rail Steel and Axle
	Steel Deformed Bars for Concrete Reinforcement
C31/C31M-10	Standard Practice for Making and Curing
	Concrete Test Specimens in the field
C33/C33M-11A	Standard Specification for Concrete Aggregates
С39/С39М-12	Standard Test Method for Compressive Strength
	of Cylindrical Concrete Specimens
C94/C94M-12	Standard Specification for Ready Mixed Concrete
C143/C143M-10	Standard Test Method for Slump of Hydraulic
	Cement Concrete
C150-11	Standard Specification for Portland Cement
C171-07	Standard Specification for Sheet Materials for
	Curing Concrete
C172-10	Standard Practice for Sampling Freshly Mixed
	Concrete
C173-10	Standard Test Method for Air Content of Freshly
	Mixed Concrete by the Volumetric Method

С192/С192М-07	.Standard Practice for Making and Curing
	Concrete Test Specimens in the Laboratory
C231-10	.Standard Test Method for Air Content of Freshly
	Mixed Concrete by the Pressure Method
C260-10	.Standard Specification for Air Entraining
	Admixtures for Concrete
C309-11	.Standard Specification for Liquid Membrane
	Forming Compounds for Curing Concrete
C330-09	.Standard Specification for Lightweight
	Aggregates for Structural Concrete
C494/C494M-11	.Standard Specification for Chemical Admixtures
	for Concrete
C618-12	.Standard Specification for Coal Fly Ash and Raw
	or Calcined Natural Pozzolan for Use in
	Concrete
C666/C666M-03(R2008)	.Standard Test Method for Resistance of Concrete
	to Rapid Freezing and Thawing
C881/C881M-10	.Standard Specification for Epoxy Resin Base
	Bonding Systems for Concrete
C1107/1107M-11	Bonding Systems for Concrete .Standard Specification for Packaged Dry,
C1107/1107M-11	
	.Standard Specification for Packaged Dry,
	.Standard Specification for Packaged Dry, Hydraulic-Cement Grout (Non-shrink)
	.Standard Specification for Packaged Dry, Hydraulic-Cement Grout (Non-shrink) .Standard Specification for Liquid Membrane
C1315-11	.Standard Specification for Packaged Dry, Hydraulic-Cement Grout (Non-shrink) .Standard Specification for Liquid Membrane Forming Compounds Having Special Properties for
C1315-11	.Standard Specification for Packaged Dry, Hydraulic-Cement Grout (Non-shrink) .Standard Specification for Liquid Membrane Forming Compounds Having Special Properties for Curing and Sealing Concrete
C1315-11 D6-95(R2011)	.Standard Specification for Packaged Dry, Hydraulic-Cement Grout (Non-shrink) .Standard Specification for Liquid Membrane Forming Compounds Having Special Properties for Curing and Sealing Concrete .Standard Test Method for Loss on Heating of Oil
C1315-11 D6-95(R2011)	.Standard Specification for Packaged Dry, Hydraulic-Cement Grout (Non-shrink) .Standard Specification for Liquid Membrane Forming Compounds Having Special Properties for Curing and Sealing Concrete .Standard Test Method for Loss on Heating of Oil and Asphaltic Compounds
C1315-11 D6-95(R2011) D297-93(R2006)	.Standard Specification for Packaged Dry, Hydraulic-Cement Grout (Non-shrink) .Standard Specification for Liquid Membrane Forming Compounds Having Special Properties for Curing and Sealing Concrete .Standard Test Method for Loss on Heating of Oil and Asphaltic Compounds .Standard Methods for Rubber Products Chemical
C1315-11 D6-95(R2011) D297-93(R2006)	Standard Specification for Packaged Dry, Hydraulic-Cement Grout (Non-shrink) Standard Specification for Liquid Membrane Forming Compounds Having Special Properties for Curing and Sealing Concrete Standard Test Method for Loss on Heating of Oil and Asphaltic Compounds Standard Methods for Rubber Products Chemical Analysis
C1315-11 D6-95(R2011) D297-93(R2006) D412-06AE2	Standard Specification for Packaged Dry, Hydraulic-Cement Grout (Non-shrink) Standard Specification for Liquid Membrane Forming Compounds Having Special Properties for Curing and Sealing Concrete Standard Test Method for Loss on Heating of Oil and Asphaltic Compounds Standard Methods for Rubber Products Chemical Analysis Standard Test Methods for Vulcanized Rubber and
C1315-11 D6-95(R2011) D297-93(R2006) D412-06AE2	Standard Specification for Packaged Dry, Hydraulic-Cement Grout (Non-shrink) Standard Specification for Liquid Membrane Forming Compounds Having Special Properties for Curing and Sealing Concrete Standard Test Method for Loss on Heating of Oil and Asphaltic Compounds Standard Methods for Rubber Products Chemical Analysis Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers - Tension
C1315-11 D6-95(R2011) D297-93(R2006) D412-06AE2	<pre>.Standard Specification for Packaged Dry, Hydraulic-Cement Grout (Non-shrink) .Standard Specification for Liquid Membrane Forming Compounds Having Special Properties for Curing and Sealing Concrete .Standard Test Method for Loss on Heating of Oil and Asphaltic Compounds .Standard Methods for Rubber Products Chemical Analysis .Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers - Tension .Standard Specification for Preformed Expansion</pre>
C1315-11 D6-95(R2011) D297-93(R2006) D412-06AE2	<pre>.Standard Specification for Packaged Dry, Hydraulic-Cement Grout (Non-shrink) .Standard Specification for Liquid Membrane Forming Compounds Having Special Properties for Curing and Sealing Concrete .Standard Test Method for Loss on Heating of Oil and Asphaltic Compounds .Standard Methods for Rubber Products Chemical Analysis .Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers - Tension .Standard Specification for Preformed Expansion Joint Filler for Concrete Paving and Structural</pre>
C1315-11 D6-95(R2011) D297-93(R2006) D412-06AE2 D1751-04(R2008)	<pre>.Standard Specification for Packaged Dry, Hydraulic-Cement Grout (Non-shrink) .Standard Specification for Liquid Membrane Forming Compounds Having Special Properties for Curing and Sealing Concrete .Standard Test Method for Loss on Heating of Oil and Asphaltic Compounds .Standard Methods for Rubber Products Chemical Analysis .Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers - Tension .Standard Specification for Preformed Expansion Joint Filler for Concrete Paving and Structural Construction (Non-extruding and Resilient</pre>

E1155-96(R2008)..... Standard Test Method for Determining F_F Floor Flatness and F_L Floor Levelness Numbers

- F1249-13.....Standard Test Method for Water Vapor Transmission Rate Through Plastic Film and Sheeting Using a Modulated Infrared Sensor
- F1869-11.....Standard Test Method for Measuring Moisture Vapor Emission Rate of Concrete Subfloor Using Anhydrous Calcium Chloride.
- E. American Welding Society (AWS): D1.4/D1.4M-11.....Structural Welding Code - Reinforcing Steel
- F. Concrete Reinforcing Steel Institute (CRSI): Handbook 2008
- G. National Cooperative Highway Research Program (NCHRP): Report On.....Concrete Sealers for the Protection of Bridge Structures
- H. U. S. Department of Commerce Product Standard (PS): PS 1.....Construction and Industrial Plywood PS 20.....American Softwood Lumber
- I. U. S. Army Corps of Engineers Handbook for Concrete and Cement: CRD C513.....Rubber Waterstops CRD C572.....Polyvinyl Chloride Waterstops

PART 2 - PRODUCTS:

2.1 FORMS:

- A. Wood: PS 20 free from loose knots and suitable to facilitate finishing concrete surface specified; tongue and grooved.
- B. Plywood: PS-1 Exterior Grade B-B (concrete-form) 16 mm (5/8 inch), or 20 mm (3/4 inch) thick for unlined contact form. B-B High Density Concrete Form Overlay optional.
- C. Metal for Concrete Rib-Type Construction: Steel (removal type) of suitable weight and form to provide required rigidity.
- D. Permanent Steel Form for Concrete Slabs: Corrugated, ASTM A653, Grade E, and Galvanized, ASTM A653, G90. Provide venting where insulating concrete fill is used.

- E. Corrugated Fiberboard Void Boxes: Double faced, completely impregnated with paraffin and laminated with moisture resistant adhesive, size as shown. Design forms to support not less than 48 KPa (1000 psf) and not lose more than 15 percent of their original strength after being completely submerged in water for 24 hours and then air dried.
- F. Form Lining:
 - 1. Hardboard: ANSI/AHA A135.4, Class 2 with one (S1S) smooth side)
 - Plywood: Grade B-B Exterior (concrete-form) not less than 6 mm (1/4 inch) thick.
 - 3. Plastic, fiberglass, or elastomeric capable of reproducing the desired pattern or texture.
- G. Concrete products shall comply with following standards for biobased materials:

Material Type	Percent by Weight
Concrete Penetrating Liquid	79 percent biobased material
Concrete form Release Agent	87 percent biobased material
Concrete Sealer	11 percent biobased material

The minimum-content standards are based on the weight (not the volume) of the material.

H. Form Ties: Develop a minimum working strength of 13.35 kN (3000 pounds) when fully assembled. Ties shall be adjustable in length to permit tightening of forms and not have any lugs, cones, washers to act as spreader within form, nor leave a hole larger than 20 mm (3/4 inch) diameter, or a depression in exposed concrete surface, or leave metal closer than 40 mm (1 1/2 inches) to concrete surface. Wire ties not permitted. Cutting ties back from concrete face not permitted.

2.2 MATERIALS:

- A. Portland Cement: ASTM C150 Type I or II.
- B. Fly Ash: ASTM C618, Class C or F including supplementary optional requirements relating to reactive aggregates and alkalies, and loss on ignition (LOI) not to exceed 5 percent.
- C. Coarse Aggregate: ASTM C33.
 - Size 67 or Size 467 may be used for footings and walls over 300 mm (12 inches) thick.

- 2. Coarse aggregate for applied topping, encasement of steel columns, and metal pan stair fill shall be Size 7.
- 3. Maximum size of coarse aggregates not more than one-fifth of narrowest dimension between sides of forms, one-third of depth of slabs, nor three-fourth of minimum clear spacing between reinforcing bars.
- D. Lightweight Aggregates for Structural Concrete: ASTM C330, Table 1. Maximum size of aggregate not larger than one-fifth of narrowest dimension between forms, nor three-fourth of minimum clear distance between reinforcing bars. Contractor to furnish certified report to verify that aggregate is sound and durable, and has a durability factor of not less than 80 based on 300 cycles of freezing and thawing when tested in accordance with ASTM C666.
- E. Fine Aggregate: ASTM C33. Fine aggregate for applied concrete floor topping shall pass a 4.75 mm (No. 4) sieve, 10 percent maximum shall pass a 150 μ m (No. 100) sieve.
- F. Mixing Water: Fresh, clean, and potable.
- G. Admixtures:
 - 1. Water Reducing Admixture: ASTM C494, Type A and not contain more chloride ions than are present in municipal drinking water.
 - 2. Water Reducing, Retarding Admixture: ASTM C494, Type D and not contain more chloride ions than are present in municipal drinking water.
 - 3. High-Range Water-Reducing Admixture (Superplasticizer): ASTM C494, Type F or G, and not contain more chloride ions than are present in municipal drinking water.
 - 4. Non-Corrosive, Non-Chloride Accelerator: ASTM C494, Type C or E, and not contain more chloride ions than are present in municipal drinking water. Admixture manufacturer must have long-term noncorrosive test data from an independent testing laboratory of at least one year duration using an acceptable accelerated corrosion test method such as that using electrical potential measures.
 - 5. Air Entraining Admixture: ASTM C260.
 - Microsilica: Use only with prior review and acceptance of the COR.
 Use only in conjunction with high range water reducer.
 - 7. Calcium Nitrite corrosion inhibitor: ASTM C494 Type C.

- 8. Prohibited Admixtures: Calcium chloride, thiocyanate or admixtures containing more than 0.05 percent chloride ions are not permitted.
- 9. Certification: Written conformance to the requirements above and the chloride ion content of the admixture prior to mix design review.
- H. Vapor Barrier: ASTM F1249, 0.38 mm (15 mil) WVT 0.007 ft./hr.

I. Reinforcing Steel: ASTM A615, or ASTM A996, deformed, grade as shown.

- J. Welded Wire Fabric: ASTM A185.
- K. Reinforcing Bars to be Welded: ASTM A706.
- L. Galvanized Reinforcing Bars: ASTM A767.
- M. Epoxy Coated Reinforcing Bars: ASTM A775.
- N. Cold Drawn Steel Wire: ASTM A82.
- P. Reinforcement for Metal Pan Stair Fill: 50 mm (2 inch) wire mesh, either hexagonal mesh at .8Kg/m² (1.5 pounds per square yard), or square mesh at .6Kg/m² (1.17 pounds per square yard).
- Q. Supports, Spacers, and Chairs: Types which will hold reinforcement in position shown in accordance with requirements of ACI 318 except as specified.
- R. Expansion Joint Filler: ASTM D1751.
- S. Sheet Materials for Curing Concrete: ASTM C171.
- T. Liquid Membrane-forming Compounds for Curing Concrete: ASTM C309, Type I, with fugitive dye, and shall meet the requirements of ASTM C1315.Compound shall be compatible with scheduled surface treatment, such as paint and resilient tile, and shall not discolor concrete surface.
- U. Abrasive Aggregate: Aluminum oxide grains or emery grits.
- V. Liquid Hardener and Dustproofer: Fluosilicate solution of magnesium fluosilicate or zinc fluosilicate. Magnesium and zinc may be used separately or in combination as recommended by manufacturer. Use only on exposed slab. Do not use where floor is covered with resilient flooring, paint or other finish coating.
- W. Moisture Vapor Emissions & Alkalinity Control Sealer: 100% active colorless aqueous siliconate solution concrete surface.
 - ASTM C1315 Type 1 Class A, and ASTM C309 Type 1 Class A, penetrating product to have no less than 34% solid content, leaving no sheen, volatile organic compound (VOC) content rating as required to suite regulatory requirements. The product shall have at least a five (5)

year documented history in controlling moisture vapor emission from damaging floor covering, compatible with all finish materials.

- 2. MVE 15-Year Warranty:
 - a. When a floor covering is installed on a below grade, on grade, or above grade concrete slab treated with Moisture Vapor Emissions & Alkalinity Control Sealer according to manufacturer's instruction, sealer manufacturer shall warrant the floor covering system against failure due to moisture vapor migration or moisture-born contaminates for a period of fifteen (15) years from the date of original installation. The warranty shall <u>cover</u> <u>all labor and materials</u> needed to replace all floor covering that fails due to moisture vapor emission & moisture born contaminates.
- X. Penetrating Sealer: For use on parking garage ramps and decks. High penetration silane sealer providing minimum 95 percent screening per National Cooperative Highway Research Program (NCHRP) No. 244 standards for chloride ion penetration resistance. Requires moist (non-membrane) curing of slab.
- Y. Non-Shrink Grout:
 - 1. ASTM C1107, pre-mixed, produce a compressive strength of at least 18 MPa at three days and 35 MPa (5000 psi) at 28 days. Furnish test data from an independent laboratory indicating that the grout when placed at a fluid consistency shall achieve 95 percent bearing under a 1200 mm x 1200 mm (4 foot by 4 foot) base plate.
 - 2. Where high fluidity or increased placing time is required, furnish test data from an independent laboratory indicating that the grout when placed at a fluid consistency shall achieve 95 percent under an 450 mm x 900 mm (18 inch by 36 inch) base plate.
- Z. Adhesive Binder: ASTM C881.
- AA. Waterstops:
 - 1. Polyvinyl Chloride Waterstop: CRD C572.
 - 2. Rubber Waterstops: CRD C513.
 - 3. Bentonite Waterstop: Flexible strip of bentonite 25 mm x 20 mm (1 inch by 3/4 inch), weighing 8.7 kg/m (5.85 lbs. per foot) composed of Butyl Rubber Hydrocarbon (ASTM D297), Bentonite (SS-S-210-A) and Volatile Matter (ASTM D6).

- 4. Non-Metallic Hydrophilic: Swellable strip type compound of polymer modified chloroprene rubber that swells upon contact with water shall conform to ASTM D412 as follows: Tensile strength 420 psi minimum; ultimate elongation 600 percent minimum. Hardness shall be 50 minimum on the type A durameter and the volumetric expansion ratio in in 70 deg water shall be 3 to 1 minimum.
- BB. Porous Backfill: Crushed stone or gravel graded from 25 mm to 20 mm (1 inch to 3/4 inch).
- CC. Fibers:
 - Synthetic Fibers: Monofilament or fibrillated polypropylene fibers for secondary reinforcing of concrete members. Use appropriate length and 0.9 kg/m³ (1.5 lb. per cubic yard). Product shall have a UL rating.
 - Steel Fibers: ASTM A820, Type I cold drawn, high tensile steel wire for use as primary reinforcing in slab-on-grade. Minimum dosage rate 18 kg/m³ (30 lb. per cubic yard).
- DD. Epoxy Joint Filler: Two component, 100 percent solids compound, with a minimum shore D hardness of 50.
- EE. Bonding Admixture: Non-rewettable, polymer modified, bonding compound.
- FF. Architectural Concrete: For areas designated as architectural concrete on the Contract Documents, use colored cements and specially selected aggregates as necessary to produce a concrete of a color and finish which exactly matches the designated sample panel.

2.3 CONCRETE MIXES:

- A. Mix Designs: Proportioned in accordance with Section 5.3, "Proportioning on the Basis of Field Experience and/or Trial Mixtures" of ACI 318.
 - If trial mixes are used, make a set of at least 6 cylinders in accordance with ASTM C192 for test purposes from each trial mix; test three for compressive strength at 7 days and three at 28 days.
 - 2. Submit a report of results of each test series, include a detailed listing of the proportions of trial mix or mixes, including cement, fly ash, admixtures, weight of fine and coarse aggregate per m³ (cubic yard) measured dry rodded and damp loose, specific gravity, fineness modulus, percentage of moisture, air content,

water-cement -fly ash ratio, and consistency of each cylinder in terms of slump.

- 3. Prepare a curve showing relationship between water-cement -fly ash ratio at 7-day and 28-day compressive strengths. Plot each curve using at least three specimens.
- 4. If the field experience method is used, submit complete standard deviation analysis.
- B. Fly Ash Testing: Submit certificate verifying conformance with ASTM 618 initially with mix design and for each truck load of fly ash delivered from source. Submit test results performed within 6 months of submittal date. Notify COR immediately when change in source is anticipated.
 - Testing Laboratory used for fly ash certification/testing shall participate in the Cement and Concrete Reference Laboratory (CCRL) program. Submit most recent CCRL inspection report.
- C. After approval of mixes no substitution in material or change in proportions of approval mixes may be made without additional tests and approval of COR or as specified. Making and testing of preliminary test cylinders may be carried on pending approval of cement and fly ash, providing Contractor and manufacturer certify that ingredients used in making test cylinders are the same. The COR may allow Contractor to proceed with depositing concrete for certain portions of work, pending final approval of cement and fly ash and approval of design mix.
- D. Cement Factor: Maintain minimum cement factors in Table I regardless of compressive strength developed above minimums. Use Fly Ash as an admixture with 20% replacement by weight in all structural work. Increase this replacement to 40% for mass concrete, and reduce it to 10% for drilled piers and caissons. Fly ash shall not be used in highearly mix design.

Concrete Strength		Non-Air- Entrained	Air-Entrained	
Min. 28 Day Comp. Str. MPa (psi)	Min. Cement kg/m³(lbs/c. yd)	Max. Water Cement Ratio	Min. Cement kg/m ³ (lbs/c. yd)	Max. Water Cement Ratio
35 (5000) ^{1,3}	375 (630)	0.45	385 (650)	0.40
$30 (4000)^{1,3}$	325 (550)	0.55	340 (570)	0.50
25 (3000) ^{1,3}	280 (470)	0.65	290 (490)	0.55
25 (3000) ^{1,2}	300 (500)	*	310 (520)	*

TABLE I - CEMENT AND WATER FACTORS FOR CONCRETE

- If trial mixes are used, the proposed mix design shall achieve a compressive strength 8.3 MPa (1200 psi) in excess of f'c. For concrete strengths above 35 Mpa (5000 psi), the proposed mix design shall achieve a compressive strength 9.7 MPa (1400 psi) in excess of f'c.
- 2. Lightweight Structural Concrete. Pump mixes may require higher cement values.
- 3. For concrete exposed to high sulfate content soils maximum water cement ratio is 0.44.
- 4. Determined by Laboratory in accordance with ACI 211.1 for normal concrete or ACI 211.2 for lightweight structural concrete.
- E. Maximum Slump: Maximum slump, as determined by ASTM C143 with tolerances as established by ASTM C94, for concrete to be vibrated shall be as shown in Table II.

Type of Construction	Normal Weight Concrete	Lightweight Structural Concrete
Reinforced Footings and Substructure Walls	75mm (3 inches)	75 mm (3 inches)
Slabs, Beams, Reinforced Walls, and Building Columns	100 mm (4 inches)	100 mm (4 inches)

TABLE II - MAXIMUM SLUMP, MM (INCHES)*

F. Slump may be increased by the use of the approved high-range waterreducing admixture (superplasticizer). Tolerances as established by ASTM C94. Concrete containing the high-range-water-reducing admixture may have a maximum slump of 225 mm (9 inches). The concrete shall arrive at the job site at a slump of 50 mm to 75 mm (2 inches to 3 inches), and 75 mm to 100 mm (3 inches to 4 inches) for lightweight concrete. This should be verified, and then the high-range-water-reducing admixture added to increase the slump to the approved level.

G. Air-Entrainment: Air-entrainment of normal weight concrete shall conform with Table III. Air-entrainment of lightweight structural concrete shall conform with Table IV. Determine air content by either ASTM C173 or ASTM C231.

TABLE III - TOTAL AIR CONTENT FOR VARIOUS SIZES OF COARSE AGGREGATES (NORMAL CONCRETE)

Nominal Maximum Size of Total Air Content	Coarse Aggregate, mm (Inches) Percentage by Volume		
10 mm (3/8 in).6 to 10	13 mm (1/2 in).5 to 9		
20 mm (3/4 in).4 to 8	25 mm (1 in).3-1/2 to 6-1/2		
40 mm (1 1/2 in).3 to 6			

TABLE IV AIR CONTENT OF LIGHTWEIGHT STRUCTURAL CONCRETE

Nominal Maximum size of	Coarse Aggregate, mm's (Inches)
Total Air Content	Percentage by Volume
Greater than 10 mm (3/8 in) 4 to 8	10 mm (3/8 in) or less 5 to 9

- H. High early strength concrete, made with Type III cement or Type I cement plus non-corrosive accelerator, shall have a 7-day compressive strength equal to specified minimum 28-day compressive strength for concrete type specified made with standard Portland cement.
- I. Lightweight structural concrete shall not weigh more than air-dry unit weight shown. Air-dry unit weight determined on 150 mm by 300 mm (6 inch by 12 inch) test cylinders after seven days standard moist curing followed by 21 days drying at 23 degrees C \pm 1.7 degrees C (73.4 \pm 3 degrees Fahrenheit), and 50 (plus or minus 7) percent relative humidity. Use wet unit weight of fresh concrete as basis of control in field.

- J. Concrete slabs placed at air temperatures below 10 degrees C (50 degrees Fahrenheit) use non-corrosive, non-chloride accelerator. Concrete required to be air entrained use approved air entraining admixture. Pumped concrete, synthetic fiber concrete, architectural concrete, concrete required to be watertight, and concrete with a water/cement ratio below 0.50 use high-range water-reducing admixture (superplasticizer).
- K. Durability: Use air entrainment for exterior exposed concrete subjected to freezing and thawing and other concrete shown or specified. For air content requirements see Table III or Table IV.
- L. Enforcing Strength Requirements: Test as specified in Section 01 45 29, TESTING LABORATORY SERVICES, during the progress of the work. Seven-day tests may be used as indicators of 28-day strength. Average of any three 28-day consecutive strength tests of laboratory-cured specimens representing each type of concrete shall be equal to or greater than specified strength. No single test shall be more than 3.5 MPa (500 psi) below specified strength. Interpret field test results in accordance with ACI 214. Should strengths shown by test specimens fall below required values, The COR may require any one or any combination of the following corrective actions, at no additional cost to the Government:
 - Require changes in mix proportions by selecting one of the other appropriate trial mixes or changing proportions, including cement content, of approved trial mix.
 - 2. Require additional curing and protection.
 - 3. If five consecutive tests fall below 95 percent of minimum values given in Table I or if test results are so low as to raise a question as to the safety of the structure, the COR may direct Contractor to take cores from portions of the structure. Use results from cores tested by the Contractor retained testing agency to analyze structure.
 - 4. If strength of core drilled specimens falls below 85 percent of minimum value given in Table I, the COR may order load tests, made by Contractor retained testing agency, on portions of building so affected. Load tests in accordance with ACI 318 and criteria of acceptability of concrete under test as given therein.

5. Concrete work, judged inadequate by structural analysis, by results of load test, or for any reason, shall be reinforced with additional construction or replaced, if directed by the COR.

2.4 BATCHING AND MIXING:

A. General: Concrete shall be "Ready-Mixed" and comply with ACI 318 and ASTM C94, except as specified. Batch mixing at the site is permitted. Mixing process and equipment must be approved by the COR. With each batch of concrete, furnish certified delivery tickets listing information in Paragraph 16.1 and 16.2 of ASTM C94. Maximum delivery temperature of concrete is 38°C (100 degrees Fahrenheit). Minimum delivery temperature as follows:

Atmospheric Temperature	Minimum Concrete Temperature	
-1. degrees to 4.4 degrees C (30 degrees to 40 degrees F)	15.6 degrees C (60 degrees F.)	
-17 degrees C to -1.1 degrees C (0 degrees to 30 degrees F.)	21 degrees C (70 degrees F.)	

1. Services of aggregate manufacturer's representative shall be furnished during the design of trial mixes and as requested by the COR for consultation during batching, mixing, and placing operations of lightweight structural concrete. Services will be required until field controls indicate that concrete of required quality is being furnished. Representative shall be thoroughly familiar with the structural lightweight aggregate, adjustment and control of mixes to produce concrete of required quality. Representative shall assist and advise the COR.

PART 3 - EXECUTION

3.1 FORMWORK:

- A. General: Design in accordance with ACI 347 is the responsibility of the Contractor. The Contractor shall retain a registered Professional Engineer to design the formwork, shores, and reshores.
 - Form boards and plywood forms may be reused for contact surfaces of exposed concrete only if thoroughly cleaned, patched, and repaired and the COR approves their reuse.

- 2. Provide forms for concrete footings unless the COR determines forms are not necessary.
- 3. Corrugated fiberboard forms: Place forms on a smooth firm bed, set tight, with no buckled cartons to prevent horizontal displacement, and in a dry condition when concrete is placed.
- B. Treating and Wetting: Treat or wet contact forms as follows:
 - Coat plywood and board forms with non-staining form sealer. In hot weather, cool forms by wetting with cool water just before concrete is placed.
 - Clean and coat removable metal forms with light form oil before reinforcement is placed. In hot weather, cool metal forms by thoroughly wetting with water just before placing concrete.
 - 3. Use sealer on reused plywood forms as specified for new material.
- C. Size and Spacing of Studs: Size and space studs, wales and other framing members for wall forms so as not to exceed safe working stress of kind of lumber used nor to develop deflection greater than 1/270 of free span of member.
- D. Unlined Forms: Use plywood forms to obtain a smooth finish for concrete surfaces. Tightly butt edges of sheets to prevent leakage. Back up all vertical joints solidly and nail edges of adjacent sheets to same stud with 6d box nails spaced not over 150 mm (6 inches) apart.
- E. Lined Forms: May be used in lieu of unlined plywood forms. Back up form lining solidly with square edge board lumber securely nailed to studs with all edges in close contact to prevent bulging of lining. No joints in lining and backing may coincide. Nail abutted edges of sheets to same backing board. Nail lining at not over 200 mm (8 inches) on center along edges and with at least one nail to each square foot of surface area; nails to be 3d blued shingle or similar nails with thin flatheads.
- F. Architectural Liner: Attach liner as recommended by the manufacturer with tight joints to prevent leakage.
- G. Wall Form Ties: Locate wall form ties in symmetrically level horizontal rows at each line of wales and in plumb vertical tiers. Space ties to maintain true, plumb surfaces. Provide one row of ties within 150 mm (6 inches) above each construction joint. Space through-ties adjacent to

horizontal and vertical construction joints not over 450 mm (18 inches) on center.

- Tighten row of ties at bottom of form just before placing concrete and, if necessary, during placing of concrete to prevent seepage of concrete and to obtain a clean line. Ties to be entirely removed shall be loosened 24 hours after concrete is placed and shall be pulled from least important face when removed.
- 2. Coat surfaces of all metal that is to be removed with paraffin, cup grease or a suitable compound to facilitate removal.
- H. Inserts, Sleeves, and Similar Items: Flashing reglets, steel strips, masonry ties, anchors, wood blocks, nailing strips, grounds, inserts, wire hangers, sleeves, drains, guard angles, forms for floor hinge boxes, inserts or bond blocks for elevator guide rails and supports, and other items specified as furnished under this and other sections of specifications and required to be in their final position at time concrete is placed shall be properly located, accurately positioned, and built into construction, and maintained securely in place.
 - Locate inserts or hanger wires for furred and suspended ceilings only in bottom of concrete joists, or similar concrete member of overhead concrete joist construction.
 - Install sleeves, inserts and similar items for mechanical services in accordance with drawings prepared specially for mechanical services. Contractor is responsible for accuracy and completeness of drawings and shall coordinate requirements for mechanical services and equipment.
 - 3. Do not install sleeves in beams, joists or columns except where shown or permitted by the COR. Install sleeves in beams, joists, or columns that are not shown, but are permitted by the COR, and require no structural changes, at no additional cost to the Government.
 - 4. Minimum clear distance of embedded items such as conduit and pipe is at least three times diameter of conduit or pipe, except at stub-ups and other similar locations.
 - 5. Provide recesses and blockouts in floor slabs for door closers and other hardware as necessary in accordance with manufacturer's instructions.

- Set and maintain concrete formwork to assure erection of completed work within tolerances specified and to accommodate installation of other rough and finish materials. Accomplish remedial work necessary for correcting excessive tolerances. Erected work that exceeds specified tolerance limits shall be remedied or removed and replaced, at no additional cost to the Government.
- Permissible surface irregularities for various classes of materials are defined as "finishes" in specification sections covering individual materials. They are to be distinguished from tolerances specified which are applicable to surface irregularities of structural elements.

3.2 PLACING REINFORCEMENT:

- A. General: Details of concrete reinforcement in accordance with ACI 318 unless otherwise shown.
- B. Placing: Place reinforcement conforming to CRSI DA4, unless otherwise shown.
 - 1. Place reinforcing bars accurately and tie securely at intersections and splices with 1.6 mm (16 gauge) black annealed wire. Use epoxycoated tie wire with epoxy-coated reinforcing. Secure reinforcing bars against displacement during the placing of concrete by spacers, chairs, or other similar supports. Portions of supports, spacers, and chairs in contact with formwork shall be made of plastic in areas that will be exposed when building is occupied. Type, number, and spacing of supports conform to ACI 318. Where concrete slabs are placed on ground, use concrete blocks or other non-corrodible material of proper height, for support of reinforcement. Use of brick or stone supports will not be permitted.
 - 2. Lap welded wire fabric at least 1 1/2 mesh panels plus end extension of wires not less than 300 mm (12 inches) in structural slabs. Lap welded wire fabric at least 1/2 mesh panels plus end extension of wires not less than 150 mm (6 inches) in slabs on grade.
 - 3. Splice column steel at no points other than at footings and floor levels unless otherwise shown.
- C. Spacing: Minimum clear distances between parallel bars, except in columns and multiple layers of bars in beams shall be equal to nominal

diameter of bars. Minimum clear spacing is 25 mm (1 inch) or 1-1/3 times maximum size of coarse aggregate.

- D. Splicing: Splices of reinforcement made only as required or shown or specified. Accomplish splicing as follows:
 - Lap splices: Do not use lap splices for bars larger than Number 36 (Number 11). Minimum lengths of lap as shown.
 - 2. Welded splices: Splicing by butt-welding of reinforcement permitted providing the weld develops in tension at least 125 percent of the yield strength (fy) for the bars. Welding conform to the requirements of AWS D1.4. Welded reinforcing steel conform to the chemical analysis requirements of AWS D1.4.
 - a. Submit test reports indicating the chemical analysis to establish weldability of reinforcing steel.
 - b. Submit a field quality control procedure to insure proper inspection, materials and welding procedure for welded splices.
 - c. Department of Veterans Affairs retained testing agency shall test a minimum of three splices, for compliance, locations selected by the COR.
 - 3. Mechanical Splices: Develop in tension and compression at least 125 percent of the yield strength (fy) of the bars. Stresses of transition splices between two reinforcing bar sizes based on area of smaller bar. Provide mechanical splices at locations indicated. Use approved exothermic, tapered threaded coupling, or swaged and threaded sleeve. Exposed threads and swaging in the field not permitted.
 - a. Initial qualification: In the presence of the COR, make three test mechanical splices of each bar size proposed to be spliced. Department of Veterans Affairs retained testing laboratory will perform load test.
 - b. During installation: Furnish, at no additional cost to the Government, one companion (sister) splice for every 50 splices for load testing. Department of Veterans Affairs retained testing laboratory will perform the load test.
- E. Bending: Bend bars cold, unless otherwise approved. Do not field bend bars partially embedded in concrete, except when approved by the COR.

- F. Cleaning: Metal reinforcement, at time concrete is placed, shall be free from loose flaky rust, mud, oil, or similar coatings that will reduce bond.
- G. Future Bonding: Protect exposed reinforcement bars intended for bonding with future work by wrapping with felt and coating felt with a bituminous compound unless otherwise shown.

3.3 VAPOR BARRIER:

- A. Except where membrane waterproofing is required, interior concrete slab on grade shall be placed on a continuous vapor barrier.
 - 1. Place 100 mm (4 inches) of fine granular fill over the vapor barrier to act as a blotter for concrete slab.
 - Vapor barrier joints lapped 150 mm (6 inches) and sealed with compatible waterproof pressure-sensitive tape.
 - 3. Patch punctures and tears.

3.4 SLABS RECEIVING RESILIENT COVERING

- A. Slab shall be allowed to cure for 6 weeks minimum prior to placing resilient covering. After curing, slab shall be tested by the Contractor for moisture in accordance with ASTM D4263 or ASTM F1869. Moisture content shall be less than 3 pounds per 1000 sf prior to placing covering.
- B. In lieu of curing for 6 weeks, Contractor has the option, at his own cost, to utilize the Moisture Vapor Emissions & Alkalinity Control Sealer as follows:
 - Sealer is applied on the day of the concrete pour or as soon as harsh weather permits, prior to any other chemical treatments for concrete slabs either on grade, below grade or above grade receiving resilient flooring, such as, sheet vinyl, vinyl composition tile, rubber, wood flooring, epoxy coatings and overlays.
 - Manufacturer's representative will be on the site the day of concrete pour to install or train its application and document. He shall return on every application thereafter to verify that proper procedures are followed.
 - a. Apply Sealer to concrete slabs as soon as final finishing operations are complete and the concrete has hardened sufficiently to sustain floor traffic without damage.

- b. Spray apply Sealer at the rate of 20 m² (200 square feet) per gallon. Lightly broom product evenly over the substrate and product has completely penetrated the surface.
- c. If within two (2) hours after initial application areas are subjected to heavy rainfall and puddling occurs, reapply Sealer product to these areas as soon as weather condition permits.

3.5 CONSTRUCTION JOINTS:

- A. Unless otherwise shown, location of construction joints to limit individual placement shall not exceed 24,000 mm (80 feet) in any horizontal direction, except slabs on grade which shall have construction joints shown. Allow 48 hours to elapse between pouring adjacent sections unless this requirement is waived by the COR.
- B. Locate construction joints in suspended floors near the quarter-point of spans for slabs, beams or girders, unless a beam intersects a girder at center, in which case joint in girder shall be offset a distance equal to twice width of beam. Provide keys and inclined dowels as shown. Provide longitudinal keys as shown.
- C. Place concrete for columns slowly and in one operation between joints. Install joints in concrete columns at underside of deepest beam or girder framing into column.
- D. Allow 2 hours to elapse after column is cast before concrete of supported beam, girder or slab is placed. Place girders, beams, grade beams, column capitals, brackets, and haunches at the same time as slab unless otherwise shown.
- E. Install polyvinyl chloride or rubber water seals, as shown in accordance with manufacturer's instructions, to form continuous watertight seal.

3.6 EXPANSION JOINTS AND CONTRACTION JOINTS:

- A. Clean expansion joint surfaces before installing premolded filler and placing adjacent concrete.
- B. Install polyvinyl chloride or rubber water seals, as shown in accordance with manufacturer's instructions, to form continuous watertight seal.
 - C. Provide contraction (control) joints in floor slabs as indicated on the contract drawings. Joints shall be either formed or saw cut, to the indicated depth after the surface has been finished. Complete saw

joints within 4 to 12 hours after concrete placement. Protect joints from intrusion of foreign matter.

3.7 PLACING CONCRETE:

- A. Preparation:
 - 1. Remove hardened concrete, wood chips, shavings and other debris from forms.
 - 2. Remove hardened concrete and foreign materials from interior surfaces of mixing and conveying equipment.
 - 3. Have forms and reinforcement inspected and approved by the COR before depositing concrete.
 - 4. Provide runways for wheeling equipment to convey concrete to point of deposit. Keep equipment on runways which are not supported by or bear on reinforcement. Provide similar runways for protection of vapor barrier on coarse fill.
- B. Bonding: Before depositing new concrete on or against concrete which has been set, thoroughly roughen and clean existing surfaces of laitance, foreign matter, and loose particles.
 - 1. Preparing surface for applied topping:
 - a. Remove laitance, mortar, oil, grease, paint, or other foreign material by sand blasting. Clean with vacuum type equipment to remove sand and other loose material.
 - b. Broom clean and keep base slab wet for at least four hours before topping is applied.
 - c. Use a thin coat of one part Portland cement, 1.5 parts fine sand, bonding admixture; and water at a 50: 50 ratio and mix to achieve the consistency of thick paint. Apply to a damp base slab by scrubbing with a stiff fiber brush. New concrete shall be placed while the bonding grout is still tacky.
- C. Conveying Concrete: Convey concrete from mixer to final place of deposit by a method which will prevent segregation. Method of conveying concrete is subject to approval of the COR.
- D. Placing: For special requirements see Paragraphs, HOT WEATHER and COLD WEATHER.
 - 1. Do not place concrete when weather conditions prevent proper placement and consolidation, or when concrete has attained its

initial set, or has contained its water or cement content more than $1 \ 1/2$ hours.

- Deposit concrete in forms as near as practicable in its final position. Prevent splashing of forms or reinforcement with concrete in advance of placing concrete.
- 3. Do not drop concrete freely more than 3000 mm (10 feet) for concrete containing the high-range water-reducing admixture (superplasticizer) or 1500 mm (5 feet) for conventional concrete. Where greater drops are required, use a tremie or flexible spout (canvas elephant trunk), attached to a suitable hopper.
- 4. Discharge contents of tremies or flexible spouts in horizontal layers not exceeding 500 mm (20 inches) in thickness, and space tremies such as to provide a minimum of lateral movement of concrete.
- 5. Continuously place concrete until an entire unit between construction joints is placed. Rate and method of placing concrete shall be such that no concrete between construction joints will be deposited upon or against partly set concrete, after its initial set has taken place, or after 45 minutes of elapsed time during concrete placement.
- 6. On bottom of members with severe congestion of reinforcement, deposit 25 mm (1 inch) layer of flowing concrete containing the specified high-range water-reducing admixture (superplasticizer). Successive concrete lifts may be a continuation of this concrete or concrete with a conventional slump.
- 7. Concrete on metal deck:
 - a. Concrete on metal deck shall be minimum thickness shown. Allow for deflection of steel beams and metal deck under the weight of wet concrete in calculating concrete quantities for slab.
 - The Contractor shall become familiar with deflection characteristics of structural frame to include proper amount of additional concrete due to beam/deck deflection.
- E. Consolidation: Conform to ACI 309. Immediately after depositing, spade concrete next to forms, work around reinforcement and into angles of forms, tamp lightly by hand, and compact with mechanical vibrator applied directly into concrete at approximately 450 mm (18 inch)

intervals. Mechanical vibrator shall be power driven, hand operated type with minimum frequency of 5000 cycles per minute having an intensity sufficient to cause flow or settlement of concrete into place. Vibrate concrete to produce thorough compaction, complete embedment of reinforcement and concrete of uniform and maximum density without segregation of mix. Do not transport concrete in forms by vibration.

- 1. Use of form vibration shall be approved only when concrete sections are too thin or too inaccessible for use of internal vibration.
- 2. Carry on vibration continuously with placing of concrete. Do not insert vibrator into concrete that has begun to set.

3.8 HOT WEATHER:

Follow the recommendations of ACI 305 or as specified to prevent problems in the manufacturing, placing, and curing of concrete that can adversely affect the properties and serviceability of the hardened concrete. Methods proposed for cooling materials and arrangements for protecting concrete shall be made in advance of concrete placement and approved by the COR.

3.9 COLD WEATHER:

Follow the recommendations of ACI 306 or as specified to prevent freezing of concrete and to permit concrete to gain strength properly. Use only the specified non-corrosive, non-chloride accelerator. Do not use calcium chloride, thiocyantes or admixtures containing more than 0.05 percent chloride ions. Methods proposed for heating materials and arrangements for protecting concrete shall be made in advance of concrete placement and approved by the COR.

3.10 PROTECTION AND CURING:

A. Conform to ACI 308: Initial curing shall immediately follow the finishing operation. Protect exposed surfaces of concrete from premature drying, wash by rain and running water, wind, mechanical injury, and excessively hot or cold temperatures. Keep concrete not covered with membrane or other curing material continuously wet for at least 7 days after placing, except wet curing period for high-earlystrength concrete shall be not less than 3 days. Keep wood forms continuously wet to prevent moisture loss until forms are removed. Cure exposed concrete surfaces as described below. Other curing methods may be used if approved by the COR.

- Liquid curing and sealing compounds: Apply by power-driven spray or roller in accordance with the manufacturer's instructions. Apply immediately after finishing. Maximum coverage 10m²/L (400 square feet per gallon) on steel troweled surfaces and 7.5m²/L (300 square feet per gallon) on floated or broomed surfaces for the curing/sealing compound.
- Plastic sheets: Apply as soon as concrete has hardened sufficiently to prevent surface damage. Utilize widest practical width sheet and overlap adjacent sheets 50 mm (2 inches). Tightly seal joints with tape.
- Paper: Utilize widest practical width paper and overlap adjacent sheets 50 mm (2 inches). Tightly seal joints with sand, wood planks, pressure-sensitive tape, mastic or glue.

3.11 REMOVAL OF FORMS:

- A. Remove in a manner to assure complete safety of structure after the following conditions have been met.
 - Where structure as a whole is supported on shores, forms for beams and girder sides, columns, and similar vertical structural members may be removed after 24 hours, provided concrete has hardened sufficiently to prevent surface damage and curing is continued without any lapse in time as specified for exposed surfaces.
 - 2. Take particular care in removing forms of architectural exposed concrete to insure surfaces are not marred or gouged, and that corners and arises are true, sharp and unbroken.
- B. Control Test: Use to determine if the concrete has attained sufficient strength and curing to permit removal of supporting forms. Cylinders required for control tests taken in accordance with ASTM C172, molded in accordance with ASTM C31, and tested in accordance with ASTM C39. Control cylinders cured and protected in the same manner as the structure they represent. Supporting forms or shoring not removed until strength of control test cylinders have attained at least 70 percent of minimum 28-day compressive strength specified. Exercise care to assure that newly unsupported portions of structure are not subjected to heavy construction or material loading.

C. Reshoring: Reshoring is required if superimposed load plus dead load of the floor exceeds the capacity of the floor at the time of loading. Reshoring accomplished in accordance with ACI 347 at no additional cost to the Government.

3.12 CONCRETE SURFACE PREPARATION:

- A. Metal Removal: Unnecessary metal items cut back flush with face of concrete members.
- B. Patching: Maintain curing and start patching as soon as forms are removed. Do not apply curing compounds to concrete surfaces requiring patching until patching is completed. Use cement mortar for patching of same composition as that used in concrete. Use white or gray Portland cement as necessary to obtain finish color matching surrounding concrete. Thoroughly clean areas to be patched. Cut out honeycombed or otherwise defective areas to solid concrete to a depth of not less than 25 mm (1 inch). Cut edge perpendicular to surface of concrete. Saturate with water area to be patched, and at least 150 mm (6 inches) surrounding before placing patching mortar. Give area to be patched a brush coat of cement grout followed immediately by patching mortar. Cement grout composed of one part Portland cement, 1.5 parts fine sand, bonding admixture, and water at a 50:50 ratio, mix to achieve consistency of thick paint. Mix patching mortar approximately 1 hour before placing and remix occasionally during this period without addition of water. Compact mortar into place and screed slightly higher than surrounding surface. After initial shrinkage has occurred, finish to match color and texture of adjoining surfaces. Cure patches as specified for other concrete. Fill form tie holes which extend entirely through walls from unexposed face by means of a pressure gun or other suitable device to force mortar through wall. Wipe excess mortar off exposed face with a cloth.
- C. Upon removal of forms, clean vertical concrete surface that is to receive bonded applied cementitious application with wire brushes or by sand blasting to remove unset material, laitance, and loose particles to expose aggregates to provide a clean, firm, granular surface for bond of applied finish.

3.13 CONCRETE FINISHES:

A. Vertical and Overhead Surface Finishes:

- Unfinished areas: Vertical and overhead concrete surfaces exposed in pipe basements, elevator and dumbwaiter shafts, pipe spaces, pipe trenches, above suspended ceilings, manholes, and other unfinished areas will not require additional finishing.
- 2. Interior and exterior exposed areas to be painted: Remove fins, burrs and similar projections on surfaces flush, and smooth by mechanical means approved by the COR, and by rubbing lightly with a fine abrasive stone or hone. Use ample water during rubbing without working up a lather of mortar or changing texture of concrete.
- 3. Interior and exterior exposed areas finished: Give a grout finish of uniform color and smooth finish treated as follows:
 - a. After concrete has hardened and laitance, fins and burrs removed, scrub concrete with wire brushes. Clean stained concrete surfaces by use of a hone stone.
 - b. Apply grout composed of one part of Portland cement, one part fine sand, smaller than a 600 μ m (No. 30) sieve. Work grout into surface of concrete with cork floats or fiber brushes until all pits, and honeycombs are filled.
 - c. After grout has hardened slightly, but while still plastic, scrape grout off with a sponge rubber float and, about 1 hour later, rub concrete vigorously with burlap to remove any excess grout remaining on surfaces.
 - d. In hot, dry weather use a fog spray to keep grout wet during setting period. Complete finish of area in same day. Make limits of finished areas at natural breaks in wall surface. Leave no grout on concrete surface overnight.
- 4. Textured: Finish as specified. Maximum quantity of patched area 0.2 m^2 (2 square feet) in each 93 m^2 (1000 square feet) of textured surface.
- B. Slab Finishes:
 - Monitoring and Adjustment: Provide continuous cycle of placement, measurement, evaluation and adjustment of procedures to produce slabs within specified tolerances. Monitor elevations of structural steel in key locations before and after concrete placement to establish typical deflection patterns for the structural steel. Determine elevations of cast-in-place slab soffits prior to removal

of shores. Provide information to the COR and floor consultant for evaluation and recommendations for subsequent placements.

- 2. Set perimeter forms to serve as screed using either optical or laser instruments. For slabs on grade, wet screeds may be used to establish initial grade during strike-off, unless the COR determines that the method is proving insufficient to meet required finish tolerances and directs use of rigid screed guides. Where wet screeds are allowed, they shall be placed using grade stakes set by optical or laser instruments. Use rigid screed guides, as opposed to wet screeds, to control strike-off elevation for all types of elevated (non slab-on-grade) slabs. Divide bays into halves or thirds by hard screeds. Adjust as necessary where monitoring of previous placements indicates unshored structural steel deflections to other than a level profile.
- 3. Place slabs monolithically. Once slab placement commences, complete finishing operations within same day. Slope finished slab to floor drains where they occur, whether shown or not.
- 4. Use straightedges specifically made for screeding, such as hollow magnesium straightedges or power strike-offs. Do not use pieces of dimensioned lumber. Strike off and screed slab to a true surface at required elevations. Use optical or laser instruments to check concrete finished surface grade after strike-off. Repeat strike-off as necessary. Complete screeding before any excess moisture or bleeding water is present on surface. Do not sprinkle dry cement on the surface.
- 5. Immediately following screeding, and before any bleed water appears, use a 3000 mm (10 foot) wide highway straightedge in a cutting and filling operation to achieve surface flatness. Do not use bull floats or darbys, except that darbying may be allowed for narrow slabs and restricted spaces.
- 6. Wait until water sheen disappears and surface stiffens before proceeding further. Do not perform subsequent operations until concrete will sustain foot pressure with maximum of 6 mm (1/4 inch) indentation.
- 7. Scratch Finish: Finish base slab to receive a bonded applied cementitious application as indicated above, except that bull floats

and darbys may be used. Thoroughly coarse wire broom within two hours after placing to roughen slab surface to insure a permanent bond between base slab and applied materials.

- 8. Float Finish: Slabs to receive unbonded toppings, steel trowel finish, fill, mortar setting beds, or a built-up roof, and ramps, stair treads, platforms (interior and exterior), and equipment pads shall be floated to a smooth, dense uniform, sandy textured finish. During floating, while surface is still soft, check surface for flatness using a 3000 mm (10 foot) highway straightedge. Correct high spots by cutting down and correct low spots by filling in with material of same composition as floor finish. Remove any surface projections and re-float to a uniform texture.
- 9. Steel Trowel Finish: Concrete surfaces to receive resilient floor covering or carpet, monolithic floor slabs to be exposed to view in finished work, future floor roof slabs, applied toppings, and other interior surfaces for which no other finish is indicated. Steel trowel immediately following floating. During final troweling, tilt steel trowel at a slight angle and exert heavy pressure to compact cement paste and form a dense, smooth surface. Finished surface shall be smooth, free of trowel marks, and uniform in texture and appearance.
- 10. Broom Finish: Finish exterior slabs, ramps, and stair treads with a bristle brush moistened with clear water after surfaces have been floated. Brush in a direction transverse to main traffic. Match texture approved by the COR from sample panel.
- 11. Finished slab flatness (FF) and levelness (FL) values comply with the following minimum requirements:
 - a. Areas covered with carpeting, or not specified otherwise in b. below:
 - 1) Slab on Grade:

a) Specified overall value	F_F 40/ F_L 35	
b) Minimum local value	F_F 32/ F_L 30	

2) Level suspended slabs (shored until after testing) and topping
 slabs:

a) Specified overall value	FF	25/FL	20
b) Minimum local value	FF	17/FL	15

3) Unshored suspended slabs	:
a) Specified overall val	ue FF 25
b) Minimum local value	FF 17
4) Level tolerance such that	t 80 percent of all points fall within
a 20 mm (3/4 inch) envel	ope +10 mm, -10 mm (+3/8 inch, -3/8
inch) from the design el	evation.
b. Areas that will be exposed,	receive thin-set tile or resilient
flooring, or roof areas des	igned as future floors:
1) Slab on grade:	
a) Specified overall val	ue FF 40/FL 35
b) Minimum local value	FF 32/FL 30
2) Level suspended slabs (s	hored until after testing) and topping
slabs	
a) Specified overall val	ue FF 30/FL 20
b) Minimum local value	FF 24/FL 15
3) Unshored suspended slabs	:
a) Specified overall val	ue FF 30
b) Minimum local value	FF 24
4) Level tolerance such tha	t 80 percent of all points fall within

- 4) Level tolerance such that 80 percent of all points fall within a 20 mm (3/4 inch) envelope +10 mm, -10 mm (+3/8 inch, -3/8 inch) from the design elevation.
- c. "Specified overall value" is based on the composite of all measured values in a placement derived in accordance with ASTM E1155.
- d. "Minimum local value" (MLV) describes the flatness or levelness below which repair or replacement is required. MLV is based on the results of an individual placement and applies to a minimum local area. Minimum local area boundaries may not cross a construction joint or expansion joint. A minimum local area will be bounded by construction and/or control joints, or by column lines and/or half-column lines, whichever is smaller.

12. Measurements

a. Department of Veterans Affairs retained testing laboratory will take measurements as directed by the COR, to verify compliance with FF, FL, and other finish requirements. Measurements will occur within 72 hours after completion of concrete placement (weekends and holidays excluded). Make measurements before shores or forms are removed to insure the "as-built" levelness is accurately assessed. Profile data for above characteristics may be collected using a laser level or any Type II apparatus (ASTM E1155, "profileograph" or "dipstick"). Contractor's surveyor shall establish reference elevations to be used by Department of Veterans Affairs retained testing laboratory.

- b. Contractor not experienced in using FF and FL criteria is encouraged to retain the services of a floor consultant to assist with recommendations concerning adjustments to slab thicknesses, finishing techniques, and procedures on measurements of the finish as it progresses in order to achieve the specific flatness and levelness numbers.
- 13. Acceptance/ Rejection:
 - a. If individual slab section measures less than either of specified minimum local F_F/F_L numbers, that section shall be rejected and remedial measures shall be required. Sectional boundaries may be set at construction and contraction (control) joints, and not smaller than one-half bay.
 - b. If composite value of entire slab installation, combination of all local results, measures less than either of specified overall F_F/F_L numbers, then whole slab shall be rejected and remedial measures shall be required.
- 14. Remedial Measures for Rejected Slabs: Correct rejected slab areas by grinding, planing, surface repair with underlayment compound or repair topping, retopping, or removal and replacement of entire rejected slab areas, as directed by the COR, until a slab finish constructed within specified tolerances is accepted.

3.14 SURFACE TREATMENTS:

- A. Use on exposed concrete floors and concrete floors to receive carpeting except those specified to receive non-slip finish.
- B. Liquid Densifier/Sealer: Apply in accordance with manufacturer's directions just prior to completion of construction.
- C. Non-Slip Finish: Except where safety nosing and tread coverings are shown, apply non-slip abrasive aggregate to treads and platforms of concrete steps and stairs, and to surfaces of exterior concrete ramps

and platforms. Broadcast aggregate uniformly over concrete surface at rate of application of 8% per 1/10th m² (7.5 percent per square foot) of area. Trowel concrete surface to smooth dense finish. After curing, rub treated surface with abrasive brick and water to slightly expose abrasive aggregate.

3.15 APPLIED TOPPING:

- A. Separate concrete topping on floor base slab of thickness and strength shown. Topping mix shall have a maximum slump of 200 mm (8 inches) for concrete containing a high-range water-reducing admixture (superplasticizer) and 100 mm (4 inches) for conventional mix. Neatly bevel or slope at door openings and at slabs adjoining spaces not receiving an applied finish.
- B. Placing: Place continuously until entire section is complete, struck off with straightedge, leveled with a highway straightedge or highway bull float, floated and troweled by machine to a hard dense finish. Slope to floor drains as required. Do not start floating until free water has disappeared and no water sheen is visible. Allow drying of surface moisture naturally. Do not hasten by "dusting" with cement or sand.

3.16 RESURFACING FLOORS:

Remove existing flooring areas to receive resurfacing to expose existing structural slab and extend not less than 25 mm (1 inch) below new finished floor level. Prepare exposed structural slab surface by roughening, broom cleaning, and dampening. Apply specified bonding grout. Place topping while the bonding grout is still tacky.

3.17 RETAINING WALLS:

- A. Use air-entrained concrete.
- B. Expansion and contraction joints, waterstops, weep holes, reinforcement and railing sleeves installed and constructed as shown.
- C. Exposed surfaces finished to match adjacent concrete surfaces, new or existing.
- D. Place porous backfill as shown.

3.18 PRECAST CONCRETE ITEMS:

Precast concrete items, not specified elsewhere. Cast using 25 MPa (3000 psi) air-entrained concrete to shapes and dimensions shown.

- - - E N D - - -

SECTION 04 20 00 UNIT MASONRY

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies requirements for construction of masonry unit walls including loose lintels and integral flashing.

1.2 RELATED WORK

- A. Flashing outside of masonry: Section 07 60 00, FLASHING AND SHEET METAL.
- B. Sealants and sealant installation: Section 07 92 00, JOINT SEALANTS.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.
- B. Samples:
 - Face brick, sample panel, 200 mm by 400 mm (8 inches by 16 inches,) showing full color range and texture of bricks, bond, and proposed mortar joints. Colors shall match brick and mortar on exterior of building.
 - 2. Mortar: Samples of custom and standard colors to match existing mortar.
- C. Certificates:
 - Certificates signed by manufacturer, including name and address of contractor, project location, and the quantity, and date or dates of shipment of delivery to which certificate applies.
 - Indicating that the following items meet specification requirements:
 a. Face brick.
 - b. Solid and load-bearing concrete masonry units, including fireresistant rated units.
 - Testing laboratories facilities and qualifications of its principals and key personnel to perform tests specified.
- D. Manufacturer's Literature and Data:
 - 1. Anchors, ties, and reinforcement, flashing and other masonry accessories.

1.4 APPLICABLE PUBLICATIONS

A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.

B. American Society for Testing and Materials (ASTM): A951/A951M-14.....Steel Wire for Masonry Joint Reinforcement. A615/A615M-15ae1.....Deformed and Plain Billet-Steel Bars for Concrete Reinforcement. C55-14a.....Concrete Building Brick C62-13a..... Units Made From Brick (Solid Masonry Units Made From Clay or Shale) C67-14.....Sampling and Testing Brick and Structural Clay Tile C90-14..... Load-Bearing Concrete Masonry Units C216-15..... Facing Brick (Solid Masonry Units Made From Clay or Shale) C476-10..... Standard Specification for Grout for Masonry C612-14.....Mineral Fiber Block and Board Thermal Insulation D1056-14.....Flexible Cellular Materials - Sponge or Expanded Rubber F1667-15.....Fasteners: Nails, Spikes and Staples C. Brick Industry Association (BIA): TN 11B-88 - Guide Specifications for Brick Masonry, Part 3. D. Federal Specifications (FS): FF-S-107C(2).....Screws, Tapping and Drive E. Brick Industry Association - Technical Notes on Brick Construction (BIA): 11-2001.....Guide Specifications for Brick Masonry, Part I 11A-1988......Guide Specifications for Brick Masonry, Part II 11B-1988.....Guide Specifications for Brick Masonry, Part III Execution 11C-1998.....Guide Specification for Brick Masonry Engineered Brick Masonry, Part IV 11D-1988.....Guide Specifications for Brick Masonry Engineered Brick Masonry, Part IV continued

1.5 DELIVERY

- A. Deliver products in manufacturer's original sealed packaging.
- B. Mark packaging, legibly. Indicate manufacturer's name or brand, type, color, production run number, and manufacture date.
- C. Before installation, return or dispose of products within distorted, damaged, or opened packaging.

1.6 STORAGE AND HANDLING

- A. Store products above grade, protected from contamination.
- B. Protect products from damage during handling and construction operations.

1.7 FIELD CONDITIONS

A. Hot and Cold Weather Requirements: Comply with ACI 530.1/ASCE 6/TMS 602.

PART 2 - PRODUCTS

2.1 BRICK

- A. Face Brick:
 - 1. ASTM C216, Grade SW, Type FBS.
 - 2. Brick when tested in accordance with ASTM C67: Classified slightly efflorescent or better.
 - 3. Size: Match existing.
 - 4. Color, size, and texture of exposed to view brick shall match existing.
- B. Building Brick: ASTM C62, Grade MW for backup and interior work; Grade SW where in contact with earth.

2.2 CONCRETE MASONRY UNITS

- A. Hollow and Solid Load-Bearing Concrete Masonry Units: ASTM C90.
 - 1. Unit Weight: Normal weight.
 - 2. Sizes: Modular.
- B. Concrete Brick: ASTM C55.

2.3 ANCHORS, TIES, AND REINFORCEMENT

- A. Steel Reinforcing Bars: ASTM A615M, deformed bars, grade as shown.
- B. Joint Reinforcement:
 - 1. Form from wire complying with ASTM A951.
 - 2. Galvanized after fabrication.
 - 3. Width of joint reinforcement 40 mm (0.16 inches) less than nominal width of masonry wall or partition.
 - 4. Cross wires welded to longitudinal wires.
 - 5. Joint reinforcement at least 3000 mm (10 feet) in length.
 - 6. Joint reinforcement in rolls is not acceptable.
 - 7. Joint reinforcement that is crimped to form drip is not acceptable.
 - Maximum spacing of cross wires 400 mm (16 inch) to longitudinal wires.
 - 9. Ladder Design:
 - a. Longitudinal wires deformed 5 mm (0.20 inch) diameter wire.

- b. Cross wires 4 mm (0.16 inch) diameter.
- 10. Trussed Design:
 - a. Longitudinal and cross wires not less than 4 mm (0.16 inch nominal) diameter.
 - b. Longitudinal wires deformed.
- C. Wall Ties, (Mesh or Wire):
 - Mesh wall ties formed of ASTM A82, W0.5, 2 mm, (16 gage) galvanized steel wire 13 mm by 13 mm (1/2 inch by 1/2 inch) mesh, 75 mm (3 inches) wide by 200 mm (8 inches) long.
 - Rectangular wire wall ties formed of W1.4, 3 mm, (9 gage) galvanized steel wire 50 mm (2 inches) wide by 200 mm (8 inches) long.
- D. Corrugated Wall Tie:
 - Form from 1.5 mm (0.0598 inch) thick corrugated, galvanized steel 30 mm (1-1/4 inches) wide by lengths so as to extend at least 100 mm (4 inches) into joints of new masonry plus 38 mm (1-1/2 inch) turn-up.
 - 2. Provide 5 mm (3/16 inch) hole in turn-up for fastener attachment.

2.4 PREFORMED COMPRESSIBLE JOINT FILLER

- A. Thickness and depth to fill the joint as specified.
- B. Closed Cell Neoprene: ASTM D1056, Type 2, Class A, Grade 1, B2F1.
- C. Non-Combustible Type: ASTM C612, Class 5, 1800 degrees F.

2.5 ACCESSORIES

- A. Weep Hole Wicks: Glass fiber ropes, 10 mm (3/8 inch) minimum diameter, 300 mm (12 inches) long.
- B. Box Board:
 - 1. Mineral Fiber Board: ASTM C612, Class 1.
 - 2. 25 mm (1 inch) thickness.
 - 3. Other spacing material having similar characteristics may be used subject to the Contracting Officer's approval.
- C. Masonry Cleaner:
 - 1. Detergent type cleaner selected for each type masonry used.
 - 2. Acid cleaners are not acceptable.
 - Use soapless type specially prepared for cleaning brick or concrete masonry as appropriate.
- D. Fasteners:
 - Concrete Nails: ASTM F1667, Type I, Style 11, 19 mm (3/4 inch) minimum length.
 - Masonry Nails: ASTM F1667, Type I, Style 17, 19 mm (3/4 inch) minimum length.

3. Screws: FS-FF-S-107, Type A, AB, SF thread forming or cutting.

2.6 LOOSE LINTELS

- A. Furnish lintels of sizes shown. Where size of lintels is not shown, provide the sizes specified.
- B. Fabricate lintels with not less than 150 mm (6 inch) bearing at each end for nonbearing masonry walls, and 200 mm (8 inch) bearing at each end for bearing walls.
- C. Provide one angle lintel for each 100 mm (4 inches) of masonry thickness.
- D. Provide bearing plates for lintels where shown.
- E. Weld or bolt upstanding legs of double angle lintels together with 19 mm (3/4 inch bolts) spaced at 300 mm (12 inches) on centers.
- F. Insert spreaders at bolt points to separate the angles for insertion of metal windows, louver, and other anchorage.

2.7 FLASHING

- A. Bituminous Coated Copper: Minimum copper ASTM B370, weight not less than 1 kg/m² (3 oz/sf). Bituminous coating shall weigh not less than 2 kg/m² (6 oz/sf); or, copper sheets may be bonded between two layers of coarsely woven bitumen-saturated cotton fabric ASTM D173. Exposed fabric surface shall be crimped.
- B. Fasteners:
 - Use copper, copper alloy, bronze, brass, or stainless steel for copper and copper clad stainless steel, and stainless steel for stainless steel and aluminum alloy. Use galvanized steel or stainless steel for galvanized steel.
- C. Fabrication: Edges of bituminous coated copper shall be joined by lapping not less than 100 mm (4 inches) in the direction of flow and cementing with asphalt roof cement or sealant as required by the manufacturer's printed instructions.

PART 3 - EXECUTION

3.1 JOB CONDITIONS

- A. Protection:
 - Cover tops of walls with non-staining waterproof covering, when work is not in progress. Secure to prevent wind blow off.
 - On new work protect base of wall from mud, dirt, mortar droppings, and other materials that will stain face, until final landscaping or other site work is completed.
- B. Cold Weather Protection:

- 1. Masonry may be laid in freezing weather when methods of protection are utilized.
- 2. Comply with MSJC and "Hot and Cold Weather Masonry Construction Manual".

3.2 CONSTRUCTION TOLERANCES

- A. Lay masonry units plumb, level and true to line within the tolerances as per MSJC requirements and as follows:
- B. Maximum variation from plumb:
 - 1. In 3000 mm (10 feet) 6 mm (1/4 inch).
 - 2. In 6000 mm (20 feet) 10 mm (3/8 inch).
 - 3. In 12 000 mm (40 feet) or more 13 mm (1/2 inch).
- C. Maximum variation from level:
 - 1. In any bay or up to 6000 mm (20 feet) 6 mm (1/4 inch).
 - 2. In 12 000 mm (40 feet) or more 13 mm (1/2 inch).
- D. Maximum variation from linear building lines:
 - 1. In any bay or up to 6000 mm (20 feet) 13 mm (1/2 inch).
 - 2. In 12 000 mm (40 feet) or more 19 mm (3/4 inch).
- E. Maximum variation in cross-sectional dimensions of columns and thickness of walls from dimensions shown:
 - 1. Minus 6 mm (1/4 inch).
 - 2. Plus 13 mm (1/2 inch).
- F. Maximum variation in prepared opening dimensions:
 - 1. Accurate to minus 0 mm (0 inch).
 - 2. Plus 6 mm (1/4 inch).

3.3 INSTALLATION GENERAL

- A. Keep finish work free from mortar smears or spatters and leave neat and clean.
- B. Anchor masonry as specified in Paragraph, ANCHORAGE.
- C. Wall Openings:
 - 1. Fill hollow metal frames built into masonry walls and partitions solid with mortar as laying of masonry progresses.
 - 2. If items are not available when walls are built, prepare openings for subsequent installation.
- D. Tooling Joints:
 - 1. Do not tool until mortar has stiffened enough to retain thumb print when thumb is pressed against mortar.
 - Tool while mortar is soft enough to be compressed into joints and not raked out.

- Finish joints in exterior face masonry work with a jointing tool, and provide smooth, water-tight concave joint unless specified otherwise.
- 4. Tool Exposed interior joints in finish work concave unless specified otherwise.
- E. Lintels:
 - 1. Length for minimum bearing of 100 mm (4 inches) at ends.
- G. Flashing:
 - Install flashing as shown in Sheet Metal and Air Conditioning Contractors National Association, Inc., publication, ARCHITECTURAL SHEET METAL MANUAL, except as otherwise shown or specified.
 - 2. Lintel Flashing
 - a. Install flashing full length of lintel to nearest vertical joint in masonry over veneer.
 - b. Turn ends up 25 mm (one inch) and fold corners to form dam and extend end to face of wall.
 - c. Turn back edge up to top of lintel; terminate back edge as specified for back-up wall.
 - 3. Window Sill Flashing:
 - a. Install flashing to extend not less than 100 mm (4 inch) beyond ends of sill into vertical joint of masonry or veneer.
 - b. Turn back edge up to terminate under window frame.
 - c. Turn ends up 25 mm (one inch) and fold corners to form dam and extend to face of wall.

3.4 ANCHORAGE

- A. Masonry Facing to Backup and Cavity Wall Ties:
 - 1. Use individual ties for new work.
 - Stagger ties in alternate courses, and space at 400 mm (16 inches) maximum vertically, and 600 mm (2 feet) horizontally.
 - At openings, provide additional ties spaced not more than 900 mm (3 feet) apart vertically around perimeter of opening, and within 300 mm (12 inches) from edge of opening.
 - 4. Anchor new masonry facing to existing masonry with corrugated wall ties spaced at 400 mm (16 inch) maximum vertical intervals and at every second masonry unit horizontally. Fasten ties to masonry with masonry nails.
 - 5. Option: Use joint reinforcing for multiple wythes and cavity wall ties spaced not more than 400 mm (16 inches) vertically.

6. Tie interior and exterior wythes of reinforced masonry walls together with individual ties. Provide ties at intervals not to exceed 600 mm (24 inches) on center horizontally, and 400 mm (16 inches) on center vertically. Lay ties in the same line vertically in order to facilitate vibrating of the grout pours.

3.5 REINFORCEMENT

- A. Joint Reinforcement:
 - 1. Use as joint reinforcement in CMU wythe of combination brick and CMU cavity walls.
 - 2. Reinforcing may be used in lieu of individual ties for anchoring brick facing to CMU backup in exterior masonry walls.
 - 3. Brick veneer over frame backing walls does not require joint reinforcement.
 - 4. Locate joint reinforcement in mortar joints at 400 mm (16 inches) maximum vertical intervals at infill of existing openings in exterior building walls and at 200 mm (8 inches) maximum vertical intervals on porch and stair foundation walls.
 - 5. Additional joint reinforcement is required in mortar joints at both 200 mm (8 inches) and 400 (16 inches) above and below windows, doors, louvers and similar openings in masonry, except where other type anchors are required for anchorage of masonry to concrete structure.
 - Joint reinforcement is required in every other course of stack bond masonry.
 - 7. Wherever brick masonry is backed up with stacked bond masonry, joint reinforcement is required in every other course of CMU backup, and in corresponding joint of facing brick.

3.6 BRICKWORK

- A. Lay clay brick in accordance with BIA Technical Note 11 series.
- B. Laying:
 - Lay brick to match bond pattern of existing building on alterations and additions.
 - 2. Maintain bond pattern throughout.
 - Do not use brick smaller than half-brick at any angle, corner, break or jamb.
 - 4. Where length of cut brick is greater than one half but less than a whole brick, maintain the vertical joint location of such units.

- 5. Lay exposed brickwork joints symmetrical about center lines of openings.
- 6. Do not structural bond multi wythe brick walls unless shown.
- 7. Before starting work, lay facing brick on foundation wall and adjust bond to openings, angles, and corners.
- 8. Lay brick for sills with wash and drip.
- 9. Build solid brickwork as required for anchorage of items.
- C. Joints:
 - 1. Exterior and interior joint widths: Lay to match existing joints.
 - 2. Rake joints for pointing with colored mortar when colored mortar is not full depth.
- D. Weep Holes:
 - Install weep holes at 400 mm (16 inches) on center in bottom of vertical joints of exterior masonry veneer or cavity wall facing over water stops in the wall.
 - Form weep holes using wicks made of mineral fiber insulation strips turned up 200 mm (8 inches) in cavity. Anchor top of strip to backup to securely hold in place.
 - 3. Install sand or pea gravel in cavity approximately 75 mm (3 inches) high between weep holes.

3.7 POINTING

- A. Fill joints with pointing mortar using rubber float trowel to rub mortar solidly into raked joints.
- B. Wipe off excess mortar from joints of glazed masonry units with dry cloth.
- C. Finish exposed joints in finish work with a jointing tool to provide a smooth concave joint unless specified otherwise.
- D. At joints with existing work match existing joint.

3.8 INSTALLATION OF REINFORCED BRICK MASONRY

- A. Mortar Jointing and Bedding:
 - Pattern Bond: Lay exterior wythes in the pattern bond indicated. Lay inner wythes (if any) with all units in a wythe bonded by lapping not less than 50 mm (2 inches). Bond and interlock each course of each wythe at corners and intersections. Do not use units with less than 100 mm (4 inch) nominal horizontal face dimension at corners or jambs.
 - 2. Lay exterior wythes with bed (horizontal) and head (vertical) joints between units completely filled with mortar. Top of bed joint mortar

may be sloped toward center of walls. Butter ends of units with sufficient mortar to completely fill head joints and shove into place. Do not furrow bed joints or slush head joints. Remove any mortar fins which protrude into grout space.

- 3. Maintain joint widths shown for head and bed joints, except for minor variations required to maintain pattern bond. If not shown, lay with 10 mm (3/8 inch) head and bed joints.
- 4. Maintain joint widths shown for head and bed joints, but adjust thickness of bed joints, if required, to allow for not less than 6 mm (1/4 inch) thickness of mortar between reinforcement and masonry units, except 6 mm (1/4 inch) bars (if any) may be laid in 13 mm (1/2 inch) thick bed joints and 4.9 mm diameter (6 gage) or smaller wire reinforcing (if any) may be laid in 10 mm (3/8 inch) thick bed joints.
- B. Two-Wythe Wall Construction: Lay both wythes as previously specified for exterior wythes. Maintain grout space (collar or continuous vertical joint between wythes) of width indicated, but adjust, if required, to provide grout space not less than 13 mm (1/2 inch) wider than the sum of the vertical and horizontal (if any) reinforcement bars shown to be placed in grout space. Do not parge or fill grout space with mortar.

3.9 CLEANING AND REPAIR

- A. General:
 - 1. Clean exposed masonry surfaces on completion.
 - 2. Protect adjoining construction materials and landscaping during cleaning operations.
 - Cut out defective exposed new joints to depth of approximately 19 mm (3/4 inch) and repoint.
 - Remove mortar droppings and other foreign substances from wall surfaces.
- B. Brickwork:
 - 1. First wet surfaces with clean water, then wash down with a solution of soapless detergent. Do not use muriatic acid.
 - 2. Brush with stiff fiber brushes while washing, and immediately thereafter hose down with clean water.
 - Free clean surfaces of traces of detergent, foreign streaks, or stains of any nature.

- C. Concrete Masonry Units:
 - Immediately following setting, brush exposed surfaces free of mortar or other foreign matter.
 - 2. Allow mud to dry before brushing.
 - 3. Prepare schedule of test locations.

- - - E N D - - -

SECTION 05 40 00 COLD-FORMED METAL FRAMING

PART 1 - GENERAL

1.1 DESCRIPTION:

- A. This section specifies materials and services required for installation of cold-formed steel, including tracks and required accessories as shown and specified. This Section includes the following:
 - 1. Interior load-bearing steel stud walls.
 - 2. Interior non-load-bearing steel stud shear walls.

1.2 RELATED WORK:

- A. Non-load-bearing metal stud framing assemblies: Section 09 22 16, NON-STRUCTURAL METAL FRAMING.
- B. Plywood sheathing: Section 06 10 00, ROUGH CARPENTRY.
- C. Gypsum board assemblies: Section 09 29 00, GYPSUM BOARD.

1.3 DESIGN REQUIREMENTS:

- A. Design steel in accordance with American Iron and Steel Institute Publication "Specification for the Design of Cold-Formed Steel Structural Members", except as otherwise shown or specified.
- B. Structural Performance: Engineer, fabricate and erect cold-formed metal framing with the minimum physical and structural properties indicated.
- C. Structural Performance: Engineer, fabricate, and erect cold-formed metal framing to withstand design loads within limits and under conditions required.
- 1. Design Loads: As indicated.
- Design framing systems to withstand design loads without deflections greater than the following:
 - a.Exterior Load-Bearing Walls: N/A.
 - b.Interior Load-Bearing Walls: Lateral deflection of 1/360 of the wall height.
 - c.Exterior Non-load-Bearing Curtain wall: N/A.
 - d.Floor Joists: N/A.
 - e.Roof Trusses: N/A.

3. Engineering Responsibility: Engage a fabricator who assumes undivided responsibility for engineering cold-formed metal framing by employing a qualified professional engineer to prepare design calculations, shop drawings, and other structural data.

1.4 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Shop Drawings: Shop and erection drawings showing steel unit layout, connections to supporting members, and information necessary to complete installation as shown and specified.
- C. Manufacturer's Literature and Data: Showing steel component sections and specifying structural characteristics.

1. Each item specified, showing complete detail, location in the project, material and size of components, method of joining various components and assemblies, finish, and location, size and type of anchors.

2. Mark items requiring field assembly for erection identification and furnish erection drawings and instructions.

3. Provide templates and rough-in measurements as required.

D. Manufacturer's Certificates:

- 1. Anodized finish as specified.
- 2. Live load designs as specified.

E. Design Calculations for specified live loads including dead loads.

F. Furnish setting drawings and instructions for installation of anchors to be preset into concrete and masonry work, and for the positioning of items having anchors to be built into concrete or masonry construction.

1.5 QUALITY ASSURANCE

A. Each manufactured product shall meet, as a minimum, the requirements specified, and shall be a standard commercial product of a manufacturer regularly presently manufacturing items of type specified.

B. Each product type shall be the same and be made by the same manufacturer.

C. Assembled product to the greatest extent possible before delivery to the site.

D. Include additional features, which are not specifically prohibited by this specification, but which are a part of the manufacturer's standard commercial product.

1.6 APPLICABLE PUBLICATIONS:

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only.
- B. American Iron and Steel Institute (AISI):

Specification and Commentary for the Design of Cold-Formed Steel Structural Members (1996)

C. American Society of Testing and Materials (ASTM):

A36/A36M-14 Structural Steel

A47-99(R2014) Malleable Iron Castings

A48-03(R2012) Gray Iron Castings

- A53-12 Pipe, Steel, Black and Hot-Dipped, Zinc-Coated Welded and Seamless
- A123-15 Zinc (Hot-Dip Galvanized) Coatings on Iron and Steel Products
- A240/A240M-15 Standard Specification for Chromium and Chromium-Nickel Stainless Steel Plate, Sheet and Strip for Pressure Vessels and for General Applications.
- A269-15 Seamless and Welded Austenitic Stainless Steel Tubing for General Service

A307-14 Carbon Steel Bolts and Studs, 60,000 PSI Tensile Strength A391/A391M-07(R2015) Grade 80 Alloy Steel Chain

A786/A786M-15 Rolled Steel Floor Plate

- B221-14 Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Shapes, and Tubes
- B456-11 Electrodeposited Coatings of Copper Plus Nickel Plus Chromium and Nickel Plus Chromium

- B632-08 Aluminum-Alloy Rolled Tread Plate
- C1107-13 Packaged Dry, Hydraulic-Cement Grout (Nonshrink)
- D3656-13 Insect Screening and Louver Cloth Woven from Vinyl-Coated Glass Yarns
- F436-16 Hardened Steel Washers

F468-06(R2015) Nonferrous Bolts, Hex Cap Screws, Socket Head Cap Screws and Studs for General Use

F593-13 Stainless Steel Bolts, Hex Cap Screws, and Studs

F1667-15 Driven Fasteners: Nails, Spikes and Staples

D. American Welding Society (AWS):

D1.1-15.....Structural Welding Code Steel

D1.2-14.....Structural Welding Code Aluminum

D1.3-18.....Structural Welding Code Sheet Steel

E. National Association of Architectural Metal Manufacturers (NAAMM) AMP 521-01(R2012)Pipe Railing Manual

AMP 500-06 Metal Finishes Manual

MBG 531-09(R2017) Metal Bar Grating Manual

MBG 532-09 Heavy Duty Metal Bar Grating Manual

F. Structural Steel Painting Council (SSPC)/Society of Protective Coatings:

SP 1-15.....No. 1, Solvent Cleaning

SP 2-04.....No. 2, Hand Tool Cleaning

SP 3-04.....No. 3, Power Tool Cleaning

PART 2 - PRODUCTS

2.1 MATERIALS:

- A. Sheet Steel for joists, studs and accessories 16 gage and heavier: ASTM A653, structural steel, zinc coated G60, with a yield of 340 MPa (50 ksi) minimum.
- B. Sheet Steel for joists, studs and accessories 18 gage and lighter: ASTM A653, structural steel, zinc coated G60, with a yield of 230 MPa (33 ksi) minimum.

C. Galvanizing Repair Paint: MIL-P-21035B.

2.2 WALL FRAMING:

- A. Steel Studs: Manufacturer's standard C-shaped steel studs of web depth indicated, with lipped flanges, and complying with the following:
 - Design Uncoated-Steel Thickness: 0.752 mm (0.0296 inch) thick (20 gage) or heavier steel framing with corrosion-resistant metal coating equivalent to G60 hot-dipped galvanized.
 - 2. Flange Width: 41 mm (1-5/8 inches)
 - 3. Web: Punched.
- B. Steel Track: Manufacturer's standard U-shaped steel track, unpunched, of web depths indicated, with straight flanges, and complying with the following:
 - 1. Design Uncoated-Steel Thickness: Matching steel studs.
 - 2. Flange Width: Manufacturer's standard deep flange where indicated, standard flange elsewhere.

2.3 FRAMING ACCESSORIES:

- A. Fabricate steel framing accessories of the same material and finish used for framing members, with a minimum yield strength of 230 MPa (33 ksi).
- B. Provide accessories of manufacturer's standard thickness and configuration, unless otherwise indicated, as follows:
 - 1. Supplementary framing.
 - 2. Bracing, bridging, and solid blocking.
 - 3. Web stiffeners.
 - 4. Gusset plates.
 - 5. Deflection track and vertical slide clips.

2.4 ANCHORS, CLIPS, AND FASTENERS:

- A. Steel Shapes and Clips: ASTM A36, zinc coated by the hot-dip process according to ASTM A123.
- B. Expansion Anchors: Fabricated from corrosion-resistant materials, with capability to sustain, without failure, a load equal to 5 times the

design load, as determined by testing per ASTM E488 conducted by a qualified independent testing agency.

- C. Power-Actuated Anchors: Fastener system of type suitable for application indicated, fabricated from corrosion-resistant materials, with capability to sustain, without failure, a load equal to 10 times the design load, as determined by testing per ASTM E1190 conducted by a qualified independent testing agency.
- D. Mechanical Fasteners: Corrosion-resistant coated, self-drilling, selfthreading steel drill screws. Low-profile head beneath sheathing, manufacturer's standard elsewhere.

2.5 REQUIREMENTS:

- A. Welding in accordance with AWS D1.3
- B. Furnish members and accessories by one manufacturer only.

PART 3 - EXECUTION

3.1 FABRICATION:

- A. Framing components may be preassembled into panels. Panels shall be square with components attached.
- B. Cut framing components squarely or as required for attachment. Cut framing members by sawing or shearing; do not torch cut.
- C. Hold members in place until fastened.
- D. Fasten cold-formed metal framing members by welding or screw fastening, as standard with fabricator. Wire tying of framing members is not permitted.
 - Comply with AWS requirements and procedures for welding, appearance and quality of welds, and methods used in correcting welding work.
 - Locate mechanical fasteners and install according to cold-formed metal framing manufacturer's instructions with screw penetrating joined members by not less than 3 exposed screw threads.
- E. Where required, provide specified insulation in double header members and double jamb studs which will not be accessible after erection.

3.2 ERECTION:

A. Securely anchor tracks to supports as shown.

- B. At butt joints, securely anchor two pieces of track to same supporting member or butt-weld or splice together.
- C. Plumb, align, and securely attach studs to flanges or webs of both upper and lower tracks.
- D. All axially loaded members shall be aligned vertically to allow for full transfer of the loads down to the foundation. Vertical alignment shall be maintained at floor/wall intersections.
- E. Install headers in all openings that are larger than the stud spacing in that wall.
- F. Attach bridging for studs in a manner to prevent stud rotation. Space bridging rows as shown.
- G. Studs in one piece for their entire length, splices will not be permitted.
- H. Provide a load distribution member at top track where joist is not located directly over bearing stud.
- Provide temporary bracing and leave in place until framing is permanently stabilized.

3.3 TOLERANCES:

- A. Vertical alignment (plumbness) of studs shall be within 1/960th of the span.
- B. Horizontal alignment (levelness) of walls shall be within 1/960th of their respective lengths.
- C. Spacing of studs shall not be more than 3 mm (1/8 inch) +/- from the designed spacing providing that the cumulative error does not exceed the requirements of the finishing materials.
- D. Prefabricated panels shall be not more than 3 mm (1/8 inch) +/- out of square within the length of that panel.

3.4 FIELD REPAIR:

A. Touch-up damaged galvanizing with galvanizing repair paint.

- - - E N D - - -

SECTION 05 50 00 METAL FABRICATIONS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies items and assemblies fabricated from structural steel shapes and other materials as shown and specified.
- B. Items specified.
 - 1. Support for Wall Mounted Items
 - 2. Loose Lintels
 - 3. Safety Nosings
 - 4. Railings
 - 5. Ladders

1.2 RELATED WORK

- A. Colors, finishes, and textures: Section 09 06 00, SCHEDULE FOR FINISHES.
- B. Finish painting: Section 09 91 00, PAINTING.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data: All manufactured items.
- C. Shop Drawings:
 - Each item specified, showing complete detail, location in the project, material and size of components, method of joining various components and assemblies, finish, and location, size and type of anchors.
 - 2. Mark items requiring field assembly for erection identification and furnish erection drawings and instructions.
 - 3. Provide templates and rough-in measurements as required.
- D. Design Calculations for handrails and guardrails.
- E. Furnish setting drawings and instructions for installation of anchors to be preset into concrete and masonry work, and for the positioning of items having anchors to be built into concrete or masonry construction.

1.4 QUALITY ASSURANCE

A. Each manufactured product shall meet, as a minimum, the requirements specified, and shall be a standard commercial product of a manufacturer regularly presently manufacturing items of type specified.

- B. Each product type shall be the same and be made by the same manufacturer.
- C. Assembled product to the greatest extent possible before delivery to the site.
- D. Include additional features, which are not specifically prohibited by this specification, but which are a part of the manufacturer's standard commercial product.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Mechanical Engineers (ASME): B18.6.1-97.....Wood Screws B18.2.2-87(R2005).....Square and Hex Nuts
- C. American Society for Testing and Materials (ASTM): A36/A36M-014.....Structural Steel A53-12....Pipe, Steel, Black and Hot-Dipped, Zinc-Coated Welded and Seamless A123-15....Zinc (Hot-Dip Galvanized) Coatings on Iron and Steel Products A240/A240M-15....Standard Specification for Chromium and Chromium-Nickel Stainless Steel Plate, Sheet and Strip for Pressure Vessels and for General Applications. A307-14.....Carbon Steel Bolts and Studs, 60,000 PSI

Tensile Strength

C1107-13.....Packaged Dry, Hydraulic-Cement Grout (Nonshrink)

F436-16.....Hardened Steel Washers

F468-06(R2015).....Nonferrous Bolts, Hex Cap Screws, and Studs for General Use

F593-13.....Stainless Steel Bolts, Hex Cap Screws, and Studs

- D. American Welding Society (AWS): D1.1-15....Structural Welding Code Steel
- E. National Association of Architectural Metal Manufacturers (NAAMM) AMP 500-06.....Metal Finishes Manual
- F. Federal Specifications (Fed. Spec):

RR-T-650E.....Treads, Metallic and Nonmetallic, Nonskid

PART 2 - PRODUCTS

2.1 DESIGN CRITERIA

- A. Railings and Handrails: 900 N (200 pounds) in any direction at any point.
- B. Ladders and Rungs: 120 kg (250 pounds) in any direction at any point.

2.2 MATERIALS

- A. Structural Steel: ASTM A36, galvanized for exterior use and for lintels in exterior walls.
- B. Stainless Steel: ASTM A167, Type 302 or 304.
- C. Steel Pipe: ASTM A53.
 - 1. Galvanized for exterior locations.
 - 2. Type S, Grade A unless specified otherwise.
 - 3. NPS (inside diameter) as shown.
- D. Primer Paint: As specified in Section 09 91 00, PAINTING.
- E. Grout: ASTM C1107, pourable type.

2.3 HARDWARE

- A. Rough Hardware:
 - Furnish rough hardware with a standard plating, applied after punching, forming and assembly of parts; galvanized, cadmium plated, or zinc-coated by electro-galvanizing process. Galvanized G-90 where specified.
 - 2. Use G90 galvanized coating on ferrous metal for exterior work unless non-ferrous metal or stainless is used.
- B. Fasteners:
 - 1. Bolts with Nuts:
 - a. ASME B18.2.2.
 - b. ASTM A307 for 415 MPa (60,000 psi) tensile strength bolts.
 - c. ASTM F468 for nonferrous bolts.
 - d. ASTM F593 for stainless steel.
 - 2. Screws: ASME B18.6.1.
 - 3. Washers: ASTM F436, type to suit material and anchorage.

2.4 FABRICATION GENERAL

- A. Material
 - Use material as specified. Use material of commercial quality and suitable for intended purpose for material that is not named or its standard of quality not specified.

- 2. Use material free of defects which could affect the appearance or service ability of the finished product.
- B. Size:
 - 1. Size and thickness of members as shown.
 - 2. When size and thickness is not specified or shown for an individual part, use size and thickness not less than that used for the same component on similar standard commercial items or in accordance with established shop methods.
- C. Connections
 - Except as otherwise specified, connections may be made by welding, or bolting.
 - 2. Design size, number and placement of fasteners, to develop a joint strength of not less than the design value.
 - 3. Holes for bolts: Accurately punched or drilled and burrs removed.
 - 4. Size and shape welds to develop the full design strength of the parts connected by welds and to transmit imposed stresses without permanent deformation or failure when subject to service loadings.
 - Use bolts of material selected to prevent corrosion (electrolysis) at bimetallic contacts. Plated or coated material will not be approved.
 - 6. Use stainless steel connectors for removable members machine screws or bolts.
- D. Fasteners and Anchors
 - Use methods for fastening or anchoring metal fabrications to building construction as shown or specified.
 - 2. Where fasteners and anchors are not shown, design the type, size, location and spacing to resist the loads imposed without deformation of the members or causing failure of the anchor or fastener, and suit the sequence of installation.
 - Use material and finish of the fasteners compatible with the kinds of materials which are fastened together and their location in the finished work.
 - 4. Fasteners for securing metal fabrication to existing construction or new construction may be expansion bolts, toggle bolts, power actuated drive pins, welding, self drilling and tapping screws or bolts.
- E. Workmanship
 - 1. General:

- a. Fabricate items to design shown.
- b. Furnish members in longest lengths commercially available within the limits shown and specified.
- c. Fabricate straight, true, free from warp and twist, and where applicable square and in same plane.
- d. Provide holes, sinkages and reinforcement shown and required for fasteners and anchorage items.
- e. Provide openings, cut-outs, and tapped holes for attachment and clearances required for work of other trades.
- f. Prepare members for the installation and fitting of hardware.
- g. Cut openings in gratings and floor plates for the passage of ducts, sumps, pipes, conduits and similar items. Provide reinforcement to support cut edges.
- h. Fabricate surfaces and edges free from sharp edges, burrs and projections which may cause injury.
- 2. Welding:
 - a. Weld in accordance with AWS.
 - b. Welds shall show good fusion, be free from cracks and porosity and accomplish secure and rigid joints in proper alignment.
 - c. Where exposed in the finished work, continuous weld for the full length of the members joined and have depressed areas filled and protruding welds finished smooth and flush with adjacent surfaces.
 - d. Finish welded joints to match finish of adjacent surface.
- 3. Joining:
 - a. Miter or butt members at corners.
 - b. Where frames members are butted at corners, cut leg of frame member perpendicular to surface, as required for clearance.
- 4. Anchors:
 - a. Where metal fabrications are shown to be preset in concrete, weld 32 x 3 mm (1-1/4 by 1/8 inch) steel strap anchors, 150 mm (6 inches) long with 25 mm (one inch) hooked end, to back of member at 600 mm (2 feet) on center, unless otherwise shown.
 - b. Where metal fabrications are shown to be built into masonry use $32 \times 3 \text{ mm} (1-1/4 \text{ by } 1/8 \text{ inch})$ steel strap anchors, 250 mm (10 inches) long with 50 mm (2 inch) hooked end, welded to back of member at 600 mm (2 feet) on center, unless otherwise shown.
- 5. Cutting and Fitting:

- Accurately cut, machine and fit joints, corners, copes, and miters.
- b. Fit removable members to be easily removed.
- c. Design and construct field connections in the most practical place for appearance and ease of installation.
- d. Fit pieces together as required.
- e. Fabricate connections for ease of assembly and disassembly without use of special tools.
- f. Joints firm when assembled.
- g. Conceal joining, fitting and welding on exposed work as far as practical.
- h. The fit of components and the alignment of holes shall eliminate the need to modify component or to use exceptional force in the assembly of item and eliminate the need to use other than common tools.
- F. Finish:
 - 1. Finish exposed surfaces in accordance with NAAMM Metal Finishes Manual.
 - 2. Steel and Iron: NAAMM AMP 504.
 - a. Zinc coated (Galvanized): ASTM A123, G90 unless noted otherwise.
 - b. Surfaces exposed in the finished work:
 - 1) Finish smooth rough surfaces and remove projections.
 - 2) Fill holes, dents and similar voids and depressions with epoxy type patching compound.
 - c. Shop Prime Painting:
 - 1) Surfaces of Ferrous metal:
 - a) Items not specified to have other coatings.
 - b) Galvanized surfaces specified to have prime paint.
 - c) Remove all loose mill scale, rust, and paint, by hand or power tool cleaning as defined in SSPC-SP2 and SP3.
 - d) Clean of oil, grease, soil and other detrimental matter by use of solvents or cleaning compounds as defined in SSPC-SP1.
 - e) After cleaning and finishing apply one coat of primer as specified in Section 09 91 00, PAINTING.
 - 2) Non ferrous metals: Comply with MAAMM-500 series.
 - 3. Stainless Steel: NAAMM AMP-504 Finish No. 4.
- G. Protection:

 Spot prime all abraded and damaged areas of zinc coating which expose the bare metal, using zinc rich paint on hot-dip zinc coat items and zinc dust primer on all other zinc coated items.

2.5 SUPPORTS

- A. General:
 - 1. Fabricate ASTM A36 structural steel shapes as shown.
 - 2. Field connections may be welded or bolted.
- B. For Wall Mounted Items:
 - 1. For items supported by metal stud partitions.
 - 2. Steel strip or hat channel minimum of 1.5 mm (0.0598 inch) thick.
 - 3. Steel strip minimum of 150 mm (6 inches) wide, length extending one stud space beyond end of item supported.
 - 4. Steel hat channels where shown. Flange cut and flatted for anchorage to stud.
 - Structural steel tube or channel for grab bar at water closets floor to structure above with clip angles or end plates formed for anchors.
 - 6. Use steel angles for thru wall counters. Drill angle for fasteners at ends and not over 100 mm (4 inches) on center between ends.

2.6 LOOSE LINTELS

- A. Furnish lintels of sizes shown. Where size of lintels is not shown, provide the sizes specified, refer to paragraphs C. and D. below.
- B. Fabricate lintels with not less than 150 mm (6 inch) bearing at each end for nonbearing masonry walls, and 200 mm (8 inch) bearing at each end for bearing walls.
- C. Provide one angle lintel for each 100 mm (4 inches) of masonry thickness.
- D. For 150 mm (6 inch) thick masonry openings 750 mm to 3000 mm (2-1/2 feet to 10 feet) use one angle 150 x 90 x 9 mm (6 x $3-1/2 \times 3/8$ inch).
- E. Provide bearing plates for lintels where shown.
- F. Weld double angle lintels together.

2.7 SAFETY NOSINGS

A. Fed. Spec. RR-T-650, Type C.

1. Aluminum: Class 2, Style 2.

B. Fabricate nosings for exterior use from cast aluminum. C. Fabricate nosings approximately 100 mm (4 inches) wide with not more than 9 mm (3/8 inch) nose.

- C. Provide nosings with integral type anchors spaced not more than 100 mm (4 inches) from each end and intermediate anchors spaced approximately 375 mm (15 inches) on center.
- D. Fabricate nosings to extend within 100 mm (4 inches) of ends of concrete stair treads except where shown to extend full width.
- E. Fabricate nosings to extend full width between stringers of metal stairs and full width of door openings.

2.8 RAILINGS

- A. In addition to the dead load design railing assembly to support live load specified. All components shall be galvanized.
- B. Fabrication General:
 - 1. Provide continuous welded joints, dressed smooth and flush.
 - 2. Standard flush fittings, designed to be welded, may be used.
 - 3. Exposed threads will not be approved.
 - 4. Form handrail brackets to size and design shown.
 - 5. Post Anchors.
 - a. Fabricate tube or pipe sleeves with closed ends or plates.
 - b. Where inserts interfere with reinforcing bars, provide flanged fittings welded or threaded to posts for securing to concrete with expansion bolts.
 - c. Provide heavy pattern sliding flange base plate with set screws at base of pipe or tube posts.
- C. Handrails:
 - Close free ends of rail with flush metal caps welded in place except where flanges for securing to walls with bolts are shown.
 - 2. Make provisions for attaching handrail brackets to wall, posts, and handrail as shown.

D. Steel Pipe Railings:

- 1. Fabricate of steel pipe with welded joints.
- 2. Number and space of rails as shown.
- 3. Space posts for railings not over 1800 mm (6 feet) on centers between end posts.
- 4. Form handrail brackets from malleable iron.
- 5. Fabricate removable sections with posts at end of section.
- 6. Opening Guard Rails:
 - Fabricate rails with flanged fitting at each end to fit between wall opening jambs.

- b. Design flange fittings for fastening with machine screws to steel plate anchored to jambs.
- c. Fabricate rails for floor openings for anchorage in sleeves.

2.9 LADDERS

- A. Steel Ladders:
 - Fixed-rail type with steel rungs shouldered and headed into and welded to rails. Clear width between rails shall be 381 mm (15 inches).
 - 2. Fabricate angle brackets of 50 mm (2 inch) wide by 13 mm (1/2 inch) thick steel; brackets shall be located at top and bottom of ladder and shall be of length to hold ladder 175 mm (7 inches) from framing to center of rungs. Provide turned ends or clips for anchoring.
 - 3. Rungs: Minimum 19 mm (3/4 inch) diameter, welded to rails.
 - 4. Provide holes for anchoring with expansion bolts through turned ends and brackets.
 - Galvanize ladder and brackets in crawl space after fabrication, ASTM A123, G-90.

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

- A. Set work accurately, in alignment and where shown, plumb, level, free of rack and twist, and set parallel or perpendicular as required to line and plane of surface.
- B. Items set into concrete or masonry.
 - 1. Provide temporary bracing for such items until concrete or masonry is set.
 - 2. Place in accordance with setting drawings and instructions.
 - 3. Build strap anchors, into masonry as work progresses.
- C. Set frames of gratings, covers, corner guards, trap doors and similar items flush with finish floor or wall surface and, where applicable, flush with side of opening.
- D. Field weld in accordance with AWS.
 - 1. Design and finish as specified for shop welding.
 - 2. Use continuous weld unless specified otherwise.
- E. Install anchoring devices and fasteners as shown and as necessary for securing metal fabrications to building construction as specified. Power actuated drive pins may be used except for removable items and where members would be deformed or substrate damaged by their use.

- F. Spot prime all abraded and damaged areas of zinc coating as specified and all abraded and damaged areas of shop prime coat with same kind of paint used for shop priming.
- G. Isolate aluminum from dissimilar metals and from contact with concrete and masonry materials as required to prevent electrolysis and corrosion.
- H. Secure escutcheon plate with set screw.

3.2 INSTALLATION OF SUPPORTS

- A. Supports for Wall Mounted items:
 - 1. Locate center of support at anchorage point of supported item.
 - 2. Locate support at top and bottom of wall hung cabinets.
 - Locate support at top of floor cabinets and shelving installed against walls.
 - 4. Locate supports where required for items shown.
- B. Support for cantilever grab bars:
 - Locate channels or tube in partition for support as shown, and extend full height from floor to underside of structural slab above.
 - 2. Anchor at top and bottom with angle clips bolted to channels or tube with two, 9 mm (3/8 inch) diameter bolts.
 - Anchor to floors and overhead construction with two 9 mm (3/8 inch) diameter bolts.
 - Fasten clips to concrete with expansion bolts, and to steel with machine bolts or welds.

3.3 STEEL LINTELS

- A. Use lintel sizes and combinations shown or specified.
- B. Install lintels with longest leg upstanding, except for openings in 150 mm (6 inch) masonry walls install lintels with longest leg horizontal.
- C. Install lintels to have not less than 150 mm (6 inch) bearing at each end for nonbearing walls, and 200 mm (8 inch) bearing at each end for bearing walls.

3.4 SAFETY NOSINGS

- A. Except as specified and where preformed rubber treads are shown or specified install safety nosings at the following:
 - 1. Exterior concrete steps.
 - 2. Door sills of areaway entrances curbs.
 - 3. Exposed edges of curbs of door sills at transformer and service rooms.

- Interior concrete steps, including concrete filled treads of metal stairs of service stairs.
- B. Install flush with horizontal and vertical surfaces.
- C. Install nosing to within 100 mm (4 inches) of ends of concrete stair treads, except where shown to extend full width.
- D. Extend nosings, full width between stringers of metal stairs, and terminate at point of curvature of steps having short radius curved ends.

3.5 RAILINGS

- A. Steel Posts:
 - Secure fixed posts to concrete with expansion bolts through flanged fittings except where sleeves are shown with pourable grout.
 - 2. Install sleeves in concrete formwork.
 - 3. Set post in sleeve and pour grout to surface. Apply beveled bead of urethane sealant at perimeter of post or under flange fitting as specified in Section 07 92 00, JOINT SEALANTS-on exterior posts.
 - 4. Secure removable posts to concrete with either machine screws through flanged fittings which are secured to inverted flanges embedded in and set flush with finished floor, or set posts in close fitting pipe sleeves without grout.
 - 5. Secure sliding flanged fittings to posts at base with set screws.
 - 6. Secure fixed flanged fittings to concrete with expansion bolts.
 - 7. Secure posts to steel with welds.
- B. Anchor to Walls:
 - Anchor rails to concrete or solid masonry with machine screws through flanged fitting to steel plate.
 - a. Anchor steel plate to concrete or solid masonry with expansion bolts.
 - b. Anchor steel plate to hollow masonry with toggle bolts.
 - Anchor flanged fitting with toggle bolt to steel support in frame walls.
- C. Handrails:
 - 1. Anchor brackets for metal handrails as detailed.
 - Install brackets within 300 mm (12 inches) of return of walls, and at evenly spaced intermediate points not exceeding 1200 mm (4 feet) on centers unless shown otherwise.
 - 3. Expansion bolt to concrete or solid masonry.

4. Toggle bolt to installed supporting frame wall and to hollow masonry unless shown otherwise.

3.6 LADDERS

A. Anchor ladders to wood framing using bolts long enough to extend through framing members, washers and nuts and to crawl space floor with expansion bolts through turned lugs or angle clips or brackets.

3.7 STEEL COMPONENTS FOR MILLWORK ITEMS

A. Coordinate and deliver to Millwork fabricator for assembly where millwork items are secured to metal fabrications.

3.8 CLEAN AND ADJUSTING

- A. Adjust movable parts including hardware to operate as designed without binding or deformation of the members centered in the opening or frame and, where applicable, contact surfaces fit tight and even without forcing or warping the components.
- B. Clean after installation exposed prefinished and plated items and items fabricated from stainless steel, aluminum and copper alloys, as recommended by the metal manufacture and protected from damage until completion of the project.

- - - E N D - - -

SECTION 06 10 00 ROUGH CARPENTRY

PART 1 - GENERAL

1.1 DESCRIPTION:

A. This section specifies wood blocking, framing, sheathing, furring, nailers, sub-flooring, rough hardware, and light wood construction.All wood products installed in the interior of the building shall be fire retardant.

1.2 RELATED WORK:

- A. Sustainable design requirements: Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- B. Milled woodwork: Section 06 20 00, FINISH CARPENTRY.
- C. Gypsum sheathing: Section 09 29 00, GYPSUM BOARD.
- D. Cement board sheathing: Section 06 16 63, CEMENTITIOUS SHEATHING.

1.3 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Sustainable Design Submittals, as described below:
 - 1.Postconsumer and preconsumer recycled content as specified in PART PRODUCTS.
 - Volatile organic compounds per volume as specified in PART 2 - PRODUCTS.
- C. Shop Drawings showing framing connection details, fasteners, connections and dimensions.
- D. Manufacturer's Literature and Data:
 - 1. Submit data for lumber, panels, hardware and adhesives.
 - Submit data for wood-preservative treatment from chemical treatment manufacturer and certification from treating plants that treated materials comply with requirements. Indicate type of preservative used and net amount of preservative retained.
 - 3. Submit data for fire retardant treatment from chemical treatment manufacturer and certification by treating plant that treated

materials comply with requirements. Include physical properties of treated materials based on testing by a qualified independent testing agency.

4. For products receiving a waterborne treatment, submit statement that moisture content of treated materials was reduced to levels specified before shipment to project site. E. Manufacturer's certificate for unmarked lumber.

1.4 PRODUCT DELIVERY, STORAGE AND HANDLING:

- A. Protect lumber and other products from dampness both during and after delivery at site.
- B. Pile lumber in stacks in such manner as to provide air circulation around surfaces of each piece.
- C. Stack plywood and other board products so as to prevent warping.
- D. Locate stacks on well drained areas, supported at least 152 mm (6 inches) above grade and cover with well-ventilated sheds having firmly constructed over hanging roof with sufficient end wall to protect lumber from driving rain.

1.5 QUALITY ASSURANCE:

A. Installer: A firm with a minimum of three (3) years' experience in the type of work required by this section.

1.6 GRADING AND MARKINGS:

A. Any unmarked lumber or plywood panel for its grade and species will not be allowed on VA Construction sites for lumber and material not normally grade marked, provide manufacturer's certificates (approved by an American Lumber Standards approved agency) attesting that lumber and material meet the specified the specified requirements.

1.7 APPLICABLE PUBLICATIONS:

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in the text by basic designation only.
- B. American Forest and Paper Association (AFPA):

NDS-15National Design Specification for Wood

Construction

WCD1-01Details for Conventional Wood Frame

Construction

- C. American Institute of Timber Construction (AITC): A190.1-07Structural Glued Laminated Timber
- D. American Society of Mechanical Engineers (ASME):

B18.2.1-12(R2013)Square and Hex Bolts and

Screws B18.2.2-10Square and Hex Nuts

B18.6.1-81(R2008)Wood Screws

- E. American Plywood Association (APA): E30-11Engineered Wood Construction Guide
- F. ASTM International (ASTM):
 - A653/A653M-13Steel Sheet Zinc-Coated (Galvanized) or Zinc-

06 10 00 - 2

10-01-1	7
Iron Alloy Coated (Galvannealed) by the Hot Dip	
Process	
C954-11Steel Drill Screws for the Application of	
Gypsum Board or Metal Plaster Bases to Steel	
Studs from 0.033 inch (2.24 mm) to 0.112-inch	
(2.84 mm) in thickness	
C1002-14 Steel Self-Piercing Tapping Screws for the	
Application of Gypsum Panel Products or Metal	
Plaster Bases to Wood Studs or Metal Studs	
D198-14 Test Methods of Static Tests of Lumber in	
Structural Sizes	
D2344/D2344M-13Test Method for Short-Beam Strength of Polymer	
Matrix Composite Materials and Their Laminates	
D2559-12aAdhesives for Structural Laminated Wood	
Products for Use Under Exterior (Wet Use)	
Exposure Conditions	
D3498-03(R2011)Adhesives for Field-Gluing Plywood to Lumber	
Framing for Floor Systems	
D6108-13 Test Method for Compressive Properties of	
Plastic Lumber and Shapes	
D6109-13	
Unreinforced and Reinforced Plastic Lumber and	
Related Products	
D6111-13aTest Method for Bulk Density and Specific	
Gravity of Plastic Lumber and Shapes by	
Displacement	
D6112-13Test Methods for Compressive and Flexural Creep	
and Creep-Rupture of Plastic Lumber and Shapes	
F844-07a(R2013)Washers, Steel, Plan (Flat) Unhardened for	
General Use	
F1667-13Nails, Spikes, and Staples	
American Wood Protection Association (AWPA): AWPA Book of Standards	
Commercial Item Description (CID):	
A-A-55615Shield, Expansion (Wood Screw and Lag Bolt Self	
Threading Anchors)	
Forest Stewardship Council (FSC):	
FSC-STD-01-001(Ver. 4-0)FSC Principles and Criteria for Forest	
Stewardship	
06 10 00 - 3	

J. Military Specification (Mil. Spec.): MIL-L-19140ELumber and Plywood, Fire-Retardant Treated K. Environmental Protection Agency (EPA): 40 CFR 59(2014)National Volatile Organic Compound Emission Standards for Consumer and Commercial Products L. Truss Plate Institute (TPI): TPI-85Metal Plate Connected Wood Trusses M. U.S. Department of Commerce Product Standard (PS) PS 1-95Construction and Industrial Plywood PS 20-10American Softwood Lumber Standard N. ICC Evaluation Service (ICC ES): AC09Quality Control of Wood Shakes and Shingles AC174Deck Board Span Ratings and Guardrail Systems

(Guards and Handrails)

PART 2 - PRODUCTS

2.1 LUMBER:

- A. Unless otherwise specified, each piece of lumber must bear grade mark, stamp, or other identifying marks indicating grades of material, and rules or standards under which produced.
 - Identifying marks are to be in accordance with rule or standard under which material is produced, including requirements for qualifications and authority of the inspection organization, usage of authorized identification, and information included in the identification.
 - 2. Inspection agency for lumber approved by the Board of Review, American Lumber Standards Committee, to grade species used.
- B. Structural Members: Species and grade as listed in the AFPA NDS having design stresses as shown.
- C. Lumber Other Than Structural:
 - Unless otherwise specified, species graded under the grading rules of an inspection agency approved by Board of Review, American Lumber Standards Committee.
 - Framing lumber: Minimum extreme fiber stress in bending of 7584 kPa (1100 PSI).
 - 3. Furring, blocking, nailers and similar items 101 mm (4 inches) and narrower Standard Grade; and, members 152 mm (6 inches) and wider, Number 2 Grade.
 - Board Sub-flooring: Shiplap edge, 25 mm (1 inch) thick, not less than 203 mm (8 inches) wide.

06 10 00 - 4

- D. Sizes:
 - 1. Conforming to PS 20.
 - Size references are nominal sizes, unless otherwise specified, actual sizes within manufacturing tolerances allowed by standard under which produced.
- E. Moisture Content:
 - Maximum moisture content of wood products is to be as follows at the time of delivery to site.
 - a. Boards and lumber 50 mm (2 inches) and less in thickness: 19 percent or less.
 - b. Lumber over 50 mm (2 inches) thick: 25 percent or less.
- F. Fire Retardant Treatment:
 - 1. Comply with Mil Spec. MIL-L-19140.
 - Treatment and performance inspection, by an independent and qualified testing agency that establishes performance ratings.
- G. Preservative Treatment:
 - 1. Do not treat Heart Redwood and Western Red Cedar.
 - 2. Treat wood members and plywood exposed to weather or in contact with plaster, masonry or concrete, including framing of open roofed structures; sills, sole plates, furring, and sleepers that are less than 610 mm (24 inches) from ground; nailers, edge strips, blocking, crickets, curbs, cant, vent strips and other members provided in connection with roofing and flashing materials.
 - 3. Treat other members specified as preservative treated (PT).
 - 4. Preservative treat by the pressure method complying with AWPA Book use category system standards Ul and Tl, except any process involving the use of Chromated Copper Arsenate (CCA) or other agents classified as carcinogenic for pressure treating wood is not permitted.

2.2 PLASTIC LUMBER:

- A. General:
 - Allowable loads and spans, as documented in evaluation reports or in information referenced in evaluation reports, are not to be less than design loads and spans indicated on contract documents.
 - 2. Restricted to exterior use only.

2.3 PLYWOOD:

- A. Comply with PS 1.
- B. Bear the mark of a recognized association or independent inspection agency that maintains continuing control over quality of plywood which

identifies compliance by veneer grade, group number, span rating where applicable, and glue type.

10-01-17

- C. Sheathing:
 - 1. APA rated Exposure 1 or Exterior; panel grade CD or better.
 - 2. Wall sheathing:
 - a. Minimum 9 mm (11/32 inch) thick with supports 406 mm (16 inches) on center and 12 mm (15/32 inch) thick with supports 610 mm (24 inches) on center unless specified otherwise.
 - b. Minimum 1200 mm (48 inches) wide at corners without corner bracing of framing.
 - 3. Roof sheathing:
 - a. Minimum 9 mm (11/32 inch) thick with span rating 24/0 or 12 mm (15/32 inch) thick with span rating for supports 406 mm (16 inches) on center unless specified otherwise.
 - b. Minimum 15 mm (19/32 inch) thick or span rating of 40/20 or 18 mm (23/32 inch) thick or span rating of 48/24 for supports 610 mm (24 inches) on center.
- D. Subflooring:
 - 1. Under finish wood flooring or underlayment:
 - a. APA Rated sheathing, Exposure 1. panel grade CD.
 - b. Minimum 15 mm (19/32 inch) thick with span rating 32/16 or greater for supports at 406 mm (16 inches) on center and 18.25 mm (23/32 inch) thick with span rating 48/24 for supports at 610 mm (24 inches) on center.
 - 2. Combination subflooring-underlayment under resilient flooring or carpet:
 - a. APA Rated Stud-I-Floor Exterior or Exposure 1, T and G.
 - b. Minimum 15 mm (19/32 inch) thick or greater, span rating 16, for supports at 406 mm (16 inches) on center; 18 mm (23/32 inch) thick or greater, span rating 24, for supports at 610 mm (24 inches) on center.
 - c. Minimum 19 mm (3/4-inch) thick or greater, span rating 32, for supports at 812 mm (32 inches) on center; 28 mm (1-1/8 inch) thick, span rating 48 for supports at 1219 mm (48 inches) on center.
- E. Underlayment:
 - 1. APA rated Exposure 1 or Exterior, panel grade C-C Plugged.
 - 2. Minimum 6 mm (1/4 inch) thick or greater over plywood subflooring

and 9 mm (3/8 inch) thick or greater over board subflooring, unless otherwise shown. 10-01-17

2.4 STRUCTURAL-USE PANELS:

- A. Comply with APA E30.
- B. Bearing the mark of a recognized association or independent agency that maintains continuing control over quality of panel which identifies compliance by end use, Span Rating, and exposure durability classification.
- C. Wall and Roof Sheathing:
 - APA Rated sheathing panels, durability classification of Exposure 1 or Exterior Span Rating of 16/0 or greater for supports 406 mm (16 inches) on center and 24/0 or greater for supports 610 mm
 - (24 inches) on center.
- D. Subflooring:
 - 1. Under finish wood flooring or underlayment:
 - a. APA rated sheathing panels, durability classification of Exposure1 or Exterior.
 - b. Span Rating of 24/16 or greater for supports 406 mm (16 inches).
 - 2. Under resilient floor or carpet.
 - APA rated combination subfloor-underlayment grade panels, durability classification of Exposure 1 or Exterior T and G.
 - b. Span Rating of 16 or greater for supports 406 mm (16 inches) on center and 24 or greater for supports 610 mm (24 inches) on center.
- E. Underlayment:
 - 1. APA rated Exposure 1.
 - 2. Minimum 6 mm (1/4 inch) thick or greater over subfloor.
- F. Wood "I" Beam Members:
 - 1. Size and Shape as indicated in contract documents.
 - 2. Cambered and marked "TOP UP".
 - Plywood webs: PS-1, minimum 9 mm (3/8 inch) thick, unless shown otherwise.
 - Flanges: Kiln dried stress rated dense lumber minimum 38 mm (1-1/2 inch) thick, width as indicated on contract documents.
 - 5. Plywood web fitted into flanges and joined with ASTM D2559 adhesive to form "I" beam section unless shown otherwise.
- G. Laminated Veneer Lumber (LVL):
 - 1. Bonded jointed wood veneers with ASTM D2559 adhesive.
 - 2. Scarf jointed wood veneers with grain of wood parallel.

06 10 00 - 7

3. Size as indicated on contract documents.

2.5 ROUGH HARDWARE AND ADHESIVES:

- A. Anchor Bolts:
 - 1. ASME B18.2.1 and ASME B18.2.2 galvanized, 13 mm (1/2 inch) unless shown otherwise.
 - Extend at least 203 mm (8 inches) into masonry or concrete with ends bent 50 mm (2 inches).
- B. Miscellaneous Bolts: Expansion Bolts: C1D A-A-55615; lag bolt, long enough to extend at least 65 mm (2-1/2 inches) into masonry or concrete. Provide 13 mm (1/2 inch) bolt unless shown otherwise.
- C. Washers
 - 1. ASTM F844.
 - 2. Provide zinc or cadmium coated steel or cast iron for washers exposed to weather.
- D. Screws:
 - 1. Wood to Wood: ASME B18.6.1 or ASTM C1002.
 - 2. Wood to Steel: ASTM C954, or ASTM C1002.
- E. Nails:
 - Size and type best suited for purpose unless noted otherwise. Provide aluminum-alloy nails, plated nails, or zinc-coated nails, for nailing wood work exposed to weather and on roof blocking.
 - 2. ASTM F1667:
 - a. Common: Type I, Style 10.
 - b. Concrete: Type I, Style 11.
 - c. Barbed: Type I, Style 26.
 - d. Underlayment: Type I, Style 25.
 - e. Masonry: Type I, Style 27.
 - f. Provide special nails designed for use with ties, strap anchors, framing connectors, joists hangers, and similar items. Nails not less than 32 mm (1-1/4 inches) long, 8d and deformed or annular ring shank.
- F. Framing and Timber Connectors:
 - Fabricate of ASTM A653/A653M, Grade A; steel sheet not less than
 1.3 mm (0.052 inch) thick unless specified otherwise. Apply standard plating to steel timber connectors after punching, forming and assembly of parts.
 - Framing Angles: Angle designed with bendable legs to provide three (3) way anchors.

- 3. Straps:
 - a. Designed to provide wind and seismic ties with sizes as shown or specified.
 - b. Strap ties not less than 32 mm (1-1/4 inches) wide.
 - c. Punched for fastener.
- 4. Metal Bridging:
 - a. V shape deformed strap with not less than two (2) nail holes at ends, designed to nail to top and side of framing member and bottom and side of opposite member.
 - b. Not less than 19 by 127 mm (3/4 by 5 inches) bendable nailing flange on ends.
 - c. Fabricated of 1 mm (0.04 inch) minimum thick sheet.
 - 5. Joist Hangers:
 - a. Fabricated of 1.6 mm (0.063 inch) minimum thick sheet, U design unless shown otherwise.
 - b. Heavy duty hangers fabricated of minimum 2.7 mm (0.108 inch) thick sheet, U design with bent top flange to lap over beam.
 - Timber Connectors: Fabricated of steel to shapes indicated on contract drawings.
 - 7. Joist Ties: Mild steel flats, 5 mm by 32 mm (3/16 inch by 1-1/4 inch) size with ends bent about 30 degrees from horizontal, and extending at least 406 mm (16 inches) onto framing. Punch each end for three (3) spikes.
 - 8. Wall Anchors for Joists and Rafters:
 - a. Mild steel strap, 5 mm by 32 mm (3/16 inch by 1-1/4 inch) with wall ends bent 50 mm (2 inches), or provide 9 mm by 130 mm (3/8 inch by 5 inch) pin through strap end built into masonry.
 - b. Strap long enough to extend onto three joists or rafters, and punched for spiking at each bearing.
 - c. Strap not less than 101 mm (4 inches) embedded end.
 - 9. Joint Plates:
 - a. Steel plate punched for nails.
 - b. Steel plates formed with teeth or prongs for mechanically clamping plates to wood.
 - c. Size for axial eccentricity, and fastener loads.
- G. Adhesives:
 - For field-gluing plywood to lumber framing floor or roof systems: ASTM D3498.
 - 2. For structural laminated Wood: ASTM D2559.

3. Adhesives to have a VOC content of 70 g/L or less when calculated according to 40 CFR 59, (EPA Method 24).

10-01-17

PART 3 - EXECUTION

3.1 INSTALLATION OF FRAMING AND MISCELLANEOUS WOOD MEMBERS:

- A. Conform to applicable requirements of the following:
 - 1. AFPA NDS for timber connectors.
 - 2. AITC A190.1 Timber Construction Manual for heavy timber construction.
 - 3. AFPA WCD1 for nailing and framing unless specified otherwise.
 - 4. APA for installation of plywood or structural use panels.
 - 5. TPI for metal plate connected wood trusses.
- B. Fasteners:
 - 1. Nails.
 - a. Nail in accordance with the Recommended Nailing Schedule as specified in AFPA WCD1 where detailed nailing requirements are not specified in nailing schedule. Select nail size and nail spacing sufficient to develop adequate strength for the connection without splitting the members.
 - b. Use special nails with framing connectors.
 - c. For sheathing and subflooring, select length of nails sufficient to extend 25 mm (1 inch) into supports.
 - d. Use 8d or larger nails for nailing through 25 mm (1 inch) thick lumber and for toe nailing 50 mm (2 inch) thick lumber.
 - e. Use 16d or larger nails for nailing through 50 mm (2 inch) thick lumber.
 - f. Select the size and number of nails in accordance with the Nailing Schedule except for special nails with framing anchors.
 - g. Nailing Schedule; Using Common Nails:
 - Joist bearing on sill or girder, toe nail three (3) 8d nails or framing anchor.
 - 2) Bridging to joist, toe nail each end two (2) 8d nails.
 - Ledger strip to beam or girder three (3) 16d nails under each joint.
 - 4) Subflooring or Sheathing:
 - a) 152 mm (6 inch) wide or less to each joist face nail two (2) 8d nails.
 - b) Subflooring, more than 152 mm (6 inches) wide, to each stud or joint, face nail three (3) 8d nails.

c) Plywood or structural use panel to each stud or joist face nail 8d, at supported edges 152 mm (6 inches) on center and at intermediate supports 254 mm (10 inches) on center. When gluing plywood to joint framing increase nail spacing to 305 mm (12 inches) at supported edges and 508 mm (20 inches) o.c. at intermediate supports.

10 - 01 - 17

- 5) Sole plate to joist or blocking, through sub floor face nail 20d nails, 406 mm (16 inches) on center.
- 6) Top plate to stud, end nail two (2) 16d nails.
- Stud to sole plate, toe nail or framing anchor. Four (4) 8d nails.
- 8) Doubled studs, face nail 16d at 610 mm (24 inches) on center.
- Built-up corner studs 16d at 610 mm (24 inches) (24 inches) on center.
- 10) Doubled top plates, face nails 16d at 406 mm (16 inches) on center.
- 11) Top plates, laps, and intersections, face nail two (2) 16d.
- 12) Continuous header, two pieces 16d at 406 mm (16 inches) on center along each edge.
- 13) Ceiling joists to plate, toenail three (3) 8d or framing anchor.
- 14) Continuous header to stud, four (4) 16d.
- 15) Ceiling joists, laps over partitions, face nail three (3) 16d or framing anchor.
- 16) Ceiling joists, to parallel rafters, face nail three (3) 16d.
- 17) Rafter to plate, toe nail three (3) 8d or framing anchor. Brace 25 mm (1 inch) thick board to each stud and plate, face nail three (3) 8d.
- 18) Built-up girders and beams 20d at 812 mm (32 inches) on center along each edge.
- 2. Bolts:
 - a. Fit bolt heads and nuts bearing on wood with washers.
 - b. Countersink bolt heads flush with the surface of nailers.
 - c. Embed in concrete and solid masonry or provide expansion bolts. Special bolts or screws designed for anchor to solid masonry or concrete in drilled holes may be used.
 - d. Provide toggle bolts to hollow masonry or sheet metal.
 - e. Provide bolts to steel over 2.84 mm (0.112 inch, 11 gage) in

thickness. Secure wood nailers to vertical structural steel members with bolts, placed one at ends of nailer and 610 mm (24 inch) intervals between end bolts. Provide clips to beam flanges.

- 3. Drill Screws to steel less than 2.84 mm (0.112 inch) thick.
 - a. ASTM C1002 for steel less than 0.84 mm (0.033 inch) thick.
 - b. ASTM C954 for steel over 0.84 mm (0.033 inch) thick.
- 4. Power actuated drive pins may be provided where practical to anchor to solid masonry, concrete, or steel.
- 5. Do not anchor to wood plugs or nailing blocks in masonry or concrete. Provide metal plugs, inserts or similar fastening.
- 6. Screws to Join Wood:
 - a. Where shown or option to nails.
 - b. ASTM C1002, sized to provide not less than 25 mm (1 inch) penetration into anchorage member.
 - c. Spaced same as nails.
- 7. Installation of Timber Connectors:
 - a. Conform to applicable requirements of the AFPA NDS.
 - b. Fit wood to connectors and drill holes for fasteners so wood is not split.
- C. Set sills or plates level in full bed of mortar on masonry or concrete walls.
 - Space anchor bolts 1219 mm (4 feet) on centers between ends and within 152 mm (6 inches) of end. Stagger bolts from side to side on plates over 178 mm (7 inches) in width.
 - Provide shims of slate, tile or similar approved material to level wood members resting on concrete or masonry. Do not use wood shims or wedges.
 - 3. Closely fit, and set to required lines.
- D. Cut notch, or bore in accordance with AFPA WCD1 passage of ducts wires, bolts, pipes, conduits and to accommodate other work. Repair or replace miscut, misfit or damaged work.
- E. Blocking Nailers, and Furring:
 - 1. Install furring, blocking, nailers, and grounds where shown.
 - 2. Provide longest lengths practicable.
 - 3. Provide fire retardant treated wood blocking where shown at openings and where shown or specified.
 - 4. Layers of Blocking or Plates:
 - a. Stagger end joints between upper and lower pieces.

10-01-17

b. Nail at ends and not over 610 mm (24 inches) between ends.

- c. Stagger nails from side to side of wood member over 127 mm(5 inches) in width.
- 5. Fabricate roof edge vent strips with 6 mm by 6 mm (1/4 inch by 1/4 inch) Option: Texture 1-11 plywood with parallel grooves 101 mm (4 inches) o.c. may be used. Floor and Ceiling Framing
- F. Bridging: (NOT USED)

G. Roof Framing:

- 1. Set rafters with crown edge up.
- 2. Form a true plane at tops of rafters.
- 3. Valley, Ridge, and Hip Members:
 - a. Size for depth of cut on rafters.
 - b. Straight and true intersections of roof planes.
 - c. Secure hip and valley rafters to wall plates by using framing connectors.
 - d. Double valley rafters longer than the available lumber, with pieces lapped not less than 1219 mm (4 feet) and spiked together.
 - e. Butt joint and scab hip rafters longer than the available lumber.
- 4. Spike to wall plate and to ceiling joists except when secured with framing connectors.
- 5. Frame openings in roof with headers and trimmer rafters. Double headers carrying more than one (1) rafter unless shown otherwise.
- Install 50 mm by 101 mm (2 inch by 4 inch) strut between roof rafters and ceiling joists at 1219 mm (4 feet) on center unless shown otherwise.
- H. Framing of Dormers:
 - Frame as indicated in contract documents, with top edge of ridge beveled to pitch of roof header.
 - 2. Set studs on doubled trimmer rafters.
 - 3. Double studs at corners of dormers.
 - Double plate on studs and notch rafters over plate and bear at least 75 mm (3 inches) on plates.
 - 5. Frame opening to receive window frame or louver frame.
- I. Partition and Wall Framing:
 - Provide 50 mm by 101 mm (2 inch by 4 inch) studs spaced 406 mm (16 inches) on centers; unless otherwise indicated on contract documents.
 - 2. Install double studs at openings and triple studs at corners.

- 3. Installation of sole plate:
 - a. Anchor plates of walls or partitions resting on concrete floors in place with expansion bolts, one (1) near ends of piece and at intermediate intervals of not more than 1219 mm (4 feet) or with power actuated drive pins with threaded ends of suitable type and size, spaced 610 mm (2 feet) on center unless shown otherwise.
 - b. Nail plates to wood framing through subfloor as specified in nailing schedule.
- 4. Headers or Lintels:
 - a. Make headers for openings of two (2) pieces of 50 mm (2 inch) thick lumber of size shown with plywood filler to finish flush with face of studs or solid lumber of equivalent size.
 - b. Support ends of headers on top of stud cut for height of opening.Spike cut stud to adjacent stud. Spike adjacent stud to header.
- Provide double top plates, with members lapped at least 610 mm (2feet) spiked together.
- Install intermediate cut studs over headers and under sills to maintain uniformity of stud spacing.
- Provide single sill plates at bottom of opening unless otherwise indicated in contract documents. Toe nail to end stud, face nail to intermediate studs.
- Install 50 mm (2 inch) blocking for firestopping so that maximum dimension of any concealed space is not over 2438 mm (8 feet) in accordance with AFPA WCD1.
- 9. Install corner bracing when plywood or structured use panel sheathing is not used.
 - a. Let corner bracing into exterior surfaces of studs at an angle of approximately 45 degrees, extended completely over walls plates, and secured at bearing with two (2) nails.
 - b. Provide 25 mm by 101 mm (1 inch by 4 inch) corner bracing.
- J. Rough Bucks:
 - Install rough wood bucks at opening in masonry or concrete where wood frames or trim occur.
 - 2. Brace and maintain bucks plumb and true until masonry has been built around them or concrete cast in place.
 - 3. Cut rough bucks from 50 mm (2 inch) thick stock, of same width as partitions in which they occur and of width shown in exterior walls.
 - Extend bucks full height of openings and across head of openings; fasten securely with anchors specified.

10-01-17

 $06 \ 10 \ 00 \ - \ 14$

- K. Subflooring: (NOT USED)
- L. Sheathing:
 - 1. Provide plywood or structural-use panels for sheathing.
 - Lay panels with joints staggered, with edge and ends 3 mm (1/8 inch) apart and nailed over bearings as specified.
 - 3. Set nails not less than 9 mm (3/8 inch) from edges.
 - 4. Install 50 mm by 101 mm (2 inch by 4 inch) blocking spiked between joists, rafters and studs to support edge or end joints of panels.

- - - E N D - - -

SECTION 06 16 63 CEMENTITIOUS SHEATHING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Cement board sheathing at exterior framed wall construction.

1.2 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this Section.
- B. American National Standards Institute (ANSI):
 - 1. A118.9-10 Cementitious Backer Units.
- C. ASTM International (ASTM):
 - C954-15 Steel Drill Screws for the Application of Gypsum Panel Products or Metal Plaster Bases to Steel Studs from 0.033 in. (0.84 mm) to 0.112 in. (2.84 mm) in Thickness
 - C1002-14 Steel Self-Piercing Tapping Screws for Application of Gypsum Panel Products or Metal Plaster Bases to Wood Studs or Steel Studs.
 - C1325-14 Non-Asbestos Fiber-Mat Reinforced Cementitious Backer Units.

1.3 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Description of each product.
 - 2. Installation instructions.
 - 3. Warranty.
- C. Samples:
 - 1. Cement Board: 200 mm by 200 mm (8 inches by 8 inches), minimum size.
 - 2. Fasteners: One of each type used.

1.4 DELIVERY AND STORAGE

- A. Deliver products in manufacturer's original sealed packaging.
- B. Mark packaging, legibly. Indicate manufacturer's name or brand, type, production run number, and manufacture date.
- C. Before installation, return or dispose of products within distorted, damaged, or opened packaging.

1.5 STORAGE AND HANDLING

- A. Store products indoors in dry, weathertight facility.
- B. Protect products from damage during handling and construction operations.

1.6 WARRANTY

- A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."
- B. Manufacturer's Warranty: Warrant sheathing against material and manufacturing defects.
 - 1. Warranty Period: 10 years.

PART 2 - PRODUCTS

2.1 PRODUCTS - GENERAL

- A. Provide each product from one manufacturer.
- B. Sustainable Construction Requirements:
 - Sheathing Recycled Content: 15 percent total recycled content, minimum.

2.2 SHEATHING

- A. Cement Boards: Meeting ANSI A118.9 and ASTM C1325.
 - Thickness: 13 mm (1/2 inch)or 16 mm or (5/8 inch), as shown on drawings.
 - 2. Width: 1219 mm (48 inches), minimum.

2.3 ACCESSORIES

- A. Steel Drill Screws: Corrosion-resistant, self-drilling.
 - ASTM C1002, Type S for fastening to framing less than 0.8 mm (33 mils) thick.
 - 2. ASTM C954 for fastening to framing 0.8 mm (33 mils) thick and greater.
- B. Joint Reinforcement: Alkali resistant tape as recommended by sheathing manufacturer.
- C. Bonding Material: As recommended by sheathing manufacturer.
- D. Air Barrier: As shown on drawings.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Examine and verify substrate suitability for product installation.
- B. Protect existing construction and completed work from damage.

06 16 63 - 2

- C. Verify framing is plumb and level and in plane.
- D. Correct substrate deficiencies.

3.2 SHEATHING INSTALLATION

- A. Install products according to manufacturer's instructions.
 - Secure units to framing members with screws spaced maximum 200 mm (8 inches) o.c. and not closer than 13 mm (1/2 inch) from edge of unit.
 - 2. Install screw heads without penetrating cement board surface.
 - Install sheathing with 6 mm (1/4 inch) gap where sheathing abuts masonry or similar materials to prevent wicking of moisture.
 - 4. Install sheathing with 10 mm (3/8 inch) gap where non-load-bearing construction abuts structural elements or building expansion joints.
 - Horizontal Installation: Abut ends of boards over centers of studs. Stagger end joints minimum one stud spacing for adjacent boards. Fasten boards at perimeter and within field of board to each stud.
 - Vertical Installation: Install board vertical edges centered over studs. Abut ends and edges of each board with those of adjacent boards. Fasten boards at perimeter and with fin field of board to each stud.
 - Apply bonding material to imbed tape and completely fill board joints, and gaps between each panel.

3.3 PROTECTION

- A. Remove loose or spalling joint finish. Patch areas missing joint finish.
- B. Replace broken or damaged boards.
- C. Protect boards from moisture using temporary coverings until finishes are applied.

- - E N D - -

SECTION 06 20 00 FINISH CARPENTRY

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Specifies:
 - 1. Interior millwork.
- B. Items specified:
 - 1. Window stools
 - 2. Counter(s)
 - 3. Shelf(s)
 - 4. Counter or Work Tops
 - 5. Wall and Base Cabinets
 - 6. Plastic Laminate
 - 7. Solid Surfacing Material
 - 8. Brackets and Supports

1.2 RELATED REQUIREMENTS

- A. Adhesive, Paint, and Finish VOC Limits: Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- B. Woodwork Finish and Color: Section 09 06 00, SCHEDULE FOR FINISHES.
- C. Fabricated Metal brackets: Section 05 50 00, METAL FABRICATIONS.
- D. Framing, furring and blocking: Section 06 10 00, ROUGH CARPENTRY.
- E. Wood doors: Section 08 14 00, WOOD DOORS.
- F. Color and texture of finish: Section 09 06 00, SCHEDULE FOR FINISHES.
- G. Stock Casework: Section 12 32 00, MANUFACTURED WOOD CASEWORK.
- H. Other Countertops: Division 11, EQUIPMENT and Division 12, FURNISHINGS.
- I. Electrical light fixtures and duplex outlets: Division 26, ELECTRICAL.
- J. Plumbing fixtures and trim: Division 22, PLUMBING.

1.3 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- B. ASTM International:
 - 1. A36/A36M-14 Carbon Structural Steel.
 - A53/A53M-12 Pipe, Steel, Black and Hot-Dipped Zinc Coated, Welded and Seamless.
 - 3. A240/A240M-15b Chromium and Chromium-Nickel Stainless Steel Plate, Sheet, and Strip for Pressure Vessels and for General Applications.

- 4. B26/B26M-14e1 Aluminum-Alloy Sand Castings.
- B221-14 Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Profiles, and Tubes.
- 6. E84-15b Surface Burning Characteristics of Building Materials.
- C. American Hardboard Association (AHA):
 - 1. A135.4-04 Basic Hardboard.
- D. Architectural Woodwork Institute (AWI):
 - AWI-09 Architectural Woodwork Quality Standards and Quality Certification Program.
- E. Builders Hardware Manufacturers Association (BHMA):
 - 1. A156.9-10 Cabinet Hardware.
 - 2. A156.11-14 Cabinet Locks.
 - 3. A156.16-13 Auxiliary Hardware.
- F. Federal Specifications (Fed. Spec.):
 - 1. A-A-1922A Shield Expansion (Calking Anchors, Single Lead).
 - 2. A-A-1936A Adhesive, Contact, Neoprene Rubber.
 - FF-N-836E- Nut: Square, Hexagon, Cap, Slotted, Castle, Knurled, Welding.
 - 4. FF-S-111D(1) Screw, Wood (Notice 1 inactive for new design).
 - 5. MM-L-736C(1) Lumber, Hardwood.
- G. Hardwood Plywood and Veneer Association (HPVA):
 - 1. HP1-09 Hardwood and Decorative Plywood.
- H. Military Specification (Mil. Spec):
 - 1. MIL-L-19140E Lumber and Plywood, Fire-Retardant Treated.
- I. National Particleboard Association (NPA):
 - 1. A208.1-09 Wood Particleboard.
- J. National Electrical Manufacturers Association (NEMA):
 - 1. LD 3-05 High-Pressure Decorative Laminates.
- K. U.S. Department of Commerce, Product Standard (PS):
 - 1. PS1-07 Construction and Industrial Plywood.
 - 2. PS20-10 American Softwood Lumber Standard.

1.4 PREINSTALLATION MEETINGS

- A. Conduct preinstallation meeting at project site minimum 30 days before beginning Work of this section.
 - 1. Required Participants:
 - a. Contracting Officer's Representative.
 - b. VA Interior Designer.
 - c. Contractor.

- d. Installer.
- Meeting Agenda: Distribute agenda to participants minimum 3 days before meeting.
 - a. Installation schedule.
 - b. Installation sequence.
 - c. Preparatory work.
 - d. Protection before, during, and after installation.
 - e. Installation.
 - f. Terminations.
 - g. Transitions and connections to other work.
 - h. Other items affecting successful completion.
- 3. Document and distribute meeting minutes to participants to record decisions affecting installation.

1.5 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Submittal Drawings:
 - 1. Show size, configuration, and fabrication and installation details.
 - Millwork items Half full size scale for sections and details 1: 50 (1/4 inch) for elevations and plans.
- C. Manufacturer's Literature and Data:
 - 1. Description of each product.
 - a. Finish hardware.
 - b. Sinks with fittings.
 - c. Electrical components.
 - 2. List of acceptable sealers for fire retardant materials.
 - 3. Installation instructions.
- D. Samples:
 - Plastic Laminate Finished Plywood and Particleboard: 150 mm by 300 mm (6 by 12 inches), each type and color.
 - a. Submit quantity required to show full color and texture range.
 - 2. Approved samples may be incorporated into work.
- E. Sustainable Construction Submittals:
 - 1. Recycled Content: Identify post-consumer and pre-consumer recycled content percentage by weight.
 - 2. Low Pollutant-Emitting Materials:
 - a. Show volatile organic compound types and quantities.

- Certify each composite wood and agrifiber product contains no added urea formaldehyde.
- F. Certificates: Certify each product complies with specifications.
 - 1. Fire retardant treatment of materials.
 - 2. Moisture content of materials.
- G. Qualifications: Substantiate qualifications comply with specifications.
 - 1. Fabricator with project experience list.
 - 2. Installer with project experience list.

1.6 QUALITY ASSURANCE

- A. Fabricator Qualifications:
 - 1. Regularly fabricates specified products.
 - 2. Fabricated specified products with satisfactory service on five similar installations for minimum five years.
 - a. Project Experience List: Provide contact names and addresses for completed projects.
- B. Installer Qualifications:
 - 1. Regularly installs specified products.
 - 2. Installed specified products with satisfactory service on five similar installations for minimum five years.
 - Project Experience List: Provide contact names and addresses for completed projects.

1.7 DELIVERY, STORAGE AND HANDLING

- A. Deliver products in manufacturer's original sealed packaging.
- B. Mark packaging, legibly. Indicate manufacturer's name or brand, type, color, production run number, and manufacture date.
- C. Before installation, return or dispose of products within distorted, damaged, or opened packaging.
- D. Store products indoors in dry, weathertight, conditioned facility per manufacturer's recommendations.
- E. Protect products from damage during handling and construction operations.

1.8 FIELD CONDITIONS

- A. Environment:
 - Product Temperature: Minimum 21 degrees C (70 degrees F) for minimum
 48 hours before installation.
 - Work Area Ambient Conditions: HVAC systems are complete, operational, and maintaining facility design operating conditions

continuously, beginning 48 hours before installation until Government occupancy.

- 3. Install products when building is permanently enclosed and when wet construction is completed, dried, and cured.
- Do not install finish lumber or millwork in any room or space where wet process systems such as concrete, masonry, or plaster work is not complete and dry.
- B. Field Measurements: Verify field conditions affecting // ____ // fabrication and installation. Show field measurements on Submittal Drawings.
 - Coordinate field measurement and fabrication schedule to avoid delay.

1.9 WARRANTY

A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Grading and Marking: Factory mark with grade stamp lumber and plywood of inspection agency approved by the Board of Review, American Lumber Standard Committee.
- B. Lumber:
 - 1. Sizes:
 - a. Lumber Size references, unless otherwise specified, are nominal sizes, and actual sizes within manufacturing tolerances allowed by the standard under which product is produced.
 - b. Millwork, standing and running trim, and rails: Actual size as shown or specified.
 - 2. Hardwood: MM-L-736, species as specified for each item.
 - 3. Softwood: PS-20, exposed to view appearance grades:
 - a. Use C select or D select, vertical grain for transparent finish including stain transparent finish.
 - b. Use Prime for painted or opaque finish.
 - 4. Use edge grain Wood members exposed to weather.
 - 5. Moisture Content:
 - a. 32 mm (1-1/4 inches) or less nominal thickness: 12 percent on 85 percent of the pieces and 15 percent on the remainder.

- b. Other materials: According to standards under which the products are produced.
- 6. Fire Retardant Treatment: Mil. Spec. MIL-L-19140E.
 - a. Treatment and performance inspection by an independent and qualified testing agency that establishes performance ratings.
 - Each piece of treated material bear identification of the testing agency and indicate performance according to such rating of flame spread and smoke developed.
 - c. Treat wood for maximum flame spread of 25 and smoke developed of 25.
 - d. Fire Resistant Softwood Plywood:
 - 1) Grade A, Exterior, plywood for treatment.
 - 2) Surface Burning Characteristics: When tested according to ASTM E84.
 - a) Flame spread: 0 to 25.
 - b) Smoke developed: 100 maximum.
 - e. Fire Resistant Hardwood Plywood:
 - 1) Core: Fire retardant treated softwood plywood.
 - 2) Hardwood face and back veneers untreated.
 - 3) Factory seal panel edges.
- C. Plywood:
 - 1. Softwood Plywood: DOC PS1.
 - a. Plywood, 13 mm (1/2 inch) and thicker; minimum five ply construction, except 32 mm (1-1/4 inch) thick plywood minimum seven ply.
 - b. Plastic Laminate Plywood Cores:
 - 1) Exterior Type, and species group.
 - 2) Veneer Grade: A-C.
 - c. Shelving Plywood:
 - 1) Interior Type, any species group.
 - 2) Veneer Grade: A-B or B-C.
 - d. Other: As specified for item.
 - 2. Hardwood Plywood: HPVA: HP.1.
 - a. Species of Face Veneer: As shown or as specified with each particular item.
 - b. Grade:
 - 1) Transparent Finish: Type II (interior) A grade veneer.
 - 2) Paint Finish: Type II (interior) Sound Grade veneer.

- c. Species and Cut: Plain sliced red oak unless specified otherwise.
- D. Particleboard: NPA A208.1, Type 1, Grade 1-M-3 or Type 2, Grade 2-M-2.
 - 1. Plastic Laminate Particleboard Cores:
 - a. Type 1, Grade 1-M-3, unless otherwise specified.
 - b. Type 2, Grade 2-M-2, exterior bond, for tops with sinks.
- E. Building Board (Hardboard):
 - 1. ANSI/AHA A135.4, 6 mm (1/4 inch) thick unless specified otherwise.
 - Perforated hardboard (Pegboard): Type 1, Tempered perforated 6 mm (1/4 inch) diameter holes, on 25 mm (1 inch) centers each way, smooth surface one side.
- F. Plastic Laminate: NEMA LD-3.
 - Exposed Laminate Surfaces including Countertops, and Sides of Cabinet Doors: Grade HGL.
 - Cabinet Interiors including Shelving: NEMA, CLS as a minimum, with the following:
 - a. Plastic laminate clad plywood or particle board.
 - Resin impregnated decorative paper thermally fused to particle board.
 - 3. Plastic Laminate Covered Wood Tops Backing: Grade HGP.
 - 4. Postformed Surfaces: Grade HGP.
- G. Stainless Steel: ASTM A240, Type 302 or 304.
- H. Cast Aluminum: ASTM B26.
- I. Extruded Aluminum: ASTM B221.

2.2 PRODUCTS - GENERAL

- A. Basis of Design: Section 09 06 00, SCHEDULE FOR FINISHES.
- B. Provide each product from one manufacturer/.
- C. Sustainable Construction Requirements:
 - Select products with recycled content to achieve overall Project recycled content requirement.
 - Section 01 81 11, SUSTAINABLE DESIGN REQUIREMENTS includes comprehensive product list setting VOC limits for low-emitting materials. Refer to subparagraphs applicable to products specified.
 - 3. Low Pollutant-Emitting Materials: Comply with VOC limits specified in Section 01 81 11, SUSTAINABLE DESIGN REQUIREMENTS for the following products:
 - a. Non-flooring adhesives and sealants.
 - b. Aerosol adhesives.

- c. Paints and coatings.
- d. Wall base and accessories.
- e. Composite wood and agrifiber.
- D. Acoustical Panel: Fabric-covered glass fiber panel.
 - 1. NRC 19 mm (3/4 inch) adhesive mounting direct to substrate.
 - 2. Glass Fiber Panel: 25 mm (1 inch) thick minimum, self-supporting of density required for minimum NRC.
 - 3. Fabric: Bonded directly to glass fiber panel face, flat wrinkle-free surface, stain and soil resistant.
 - 4. Adhesive: As recommended by panel manufacturers.

2.3 FABRICATION

- A. General:
 - 1. AWI Custom Grade for interior millwork.
 - 2. Finish woodwork, free from pitch pockets.
 - 3. Trim, standard stock molding and members of same species, except where special profiles are shown.
 - Plywood, minimum 13 mm (1/2 inch), unless otherwise shown on Drawings or specified.
 - 5. Edges of members in contact with concrete or masonry having a square corner caulking rebate.
 - 6. Fabricate members less than 4 m (14 feet) in length from one piece of lumber, back channeled and molded a shown.
 - Fabricate interior trim and items of millwork to be painted from jointed, built-up, or laminated members, unless otherwise shown on Drawings or specified.
 - 8. Plastic Laminate Work:
 - Factory glued to either a plywood or a particle board core, thickness as shown on Drawings or specified.
 - b. Cover exposed edges with plastic laminate, except where aluminum, stainless steel, or plastic molded edge strips are shown on drawings or specified. Use plastic molded edge strips on 19 mm (3/4 inch) thick or thinner core material.
 - c. Provide plastic backing sheet on underside of countertops, vanity tops, thru-wall counter // and sills // including back splashes and end splashes of countertops.
 - d. Use backing sheet on concealed large panel surface when decorative face does not occur.
- B. Seats and Benches: N/A

- C. Mounting Strips, Shelves and Rods:
 - Cut mounting strips from softwood stocks, 25 mm by 100 mm (1 by 4 inches), exposed edge slightly rounded.
 - Cut wood shelf from softwood 1 inch stock, of width shown, exposed edge slightly rounded.
 - a. Option: Provide 19 mm (3/4 inch) thick plywood with 19 mm (3/4 inch) softwood edge nosing on exposed edge, slightly rounded.
 - Plastic laminate cover, 19 mm (3/4 inch) thick plywood or particle board core with plastic molded edge and end strips. Size, finish and number as shown on Drawings.
 - 4. Rod or Closet Bar: L03131.
 - Combination Garment and Shelf Support, Intermediate Support for Closet Bar: B04051 for rods over 1800 mm (6 feet) long.
- D. Pegboard:
 - 1. Perforated hardboard sheet size as shown on Drawings.
 - Spacing strip: 13 mm by 13 mm (1/2 by 1/2 inch); glued to hardboard sheet.
 - a. Locate at perimeter of sheet edge.
 - b. Locate material intermediate spacing strips at 800 mm (32 inches)o.c.
 - Cover exposed edge with 19 mm (3/4 inch) one quarter round edge trim and finish flush with hardboard surface. Glue to spacing strip and hard board.
- E. Plastic Laminate Counter or Work Tops:
 - 1. Thickness: 32 mm (1-1/4 inch) thick core unless shown otherwise.
 a. Edges:
 - Decorative laminate for exposed edges of tops, back, and endsplash, 38 mm (1-1/2 inches) wide.
 - Plastic or metal edges for top edges less than 38 mm (1-1/2 inches) wide.
 - b. Assemble backsplash and end splash to counter top.
 - c. Use one piece counters for straight runs.
 - d. Miter corners for field joints with overlapping blocking on underside of joint.
 - 2. Fabricate wood counter for work benches as shown on Drawings.

2.4 ACCESSORIES

A. Hardware:

- 1. Rough Hardware:
 - a. Provide rough hardware with a standard plating, applied after punching, forming and assembly of parts; galvanized, cadmium plated, or zinc-coated by electric-galvanizing process. Galvanized where specified.
 - b. Fasteners:
 - 1) Bolts with Nuts: FF-N-836.
 - 2) Expansion Bolts: A-A-1922A.
 - 3) Screws: Fed. Spec. FF-S-111.
- 2. Finish Hardware:
 - a. Cabinet Hardware: ANSI A156.9.
 - 1) Door/Drawer Pulls: B02011. Door in seismic zones: B03182.
 - 2) Drawer Slides: B05051 for drawers over 150 mm (6 inches) deep, B05052 for drawers 75 mm to 150 mm (3 to 6 inches) deep, and B05053 for drawers less than 75 mm (3 inches) deep.
 - 3) Sliding Door Tracks: B07063.
 - 4) Adjustable Shelf Standards: B4061 with shelf rest B04083.
 - 5) Concealed Hinges: B1601, minimum 110 degree opening.
 - 6) Butt Hinges: B01361, for flush doors, B01381 for inset lipped doors, and B01521 for overlay doors.
 - 7) Cabinet Door Catch: B0371 or B03172.
 - Vertical Slotted Shelf Standard: B04103 with shelf brackets B04113, sized for shelf depth.
 - b. Cabinet Locks: ANSI A156.11.
 - 1) Drawers and Hinged Door: E07262.
 - 2) Sliding Door: E07162.
 - c. Auxiliary Hardware: ANSI A156.16.
 - 1) Shelf Bracket: B04041, japanned or enameled finish.
 - Combination Garment rod and Shelf Support: B04051 japanned or enamel finish.
 - 3) Closet Bar: L03131 chrome finish of required length.
 - 4) Handrail Brackets: L03081 or L03101.
 - a) Cast Aluminum, satin polished finish.
 - b) Cast Malleable Iron, japanned or enamel finish.
 - d. Steel Channel Frame and Leg supports for Counter top. Fabricated under Section 05 50 00, METAL FABRICATIONS.
 - e. Edge Strips Moldings:

- Driven type "T" shape with serrated retaining stem; vinyl plastic to match plastic laminate color, stainless steel, or 3 mm (1/8 inch) thick extruded aluminum.
- 2) Stainless steel or extruded aluminum channels.
- 3) Stainless steel, number 4 finish; aluminum, mechanical applied medium satin finish, clear anodized 0.1 mm (0.4 mils) thick.
- f. Rubber or Vinyl molding:
 - Rubber or vinyl standard stock and in longest lengths practicable.
 - Design for closures at joints with walls and adhesive anchorage.
 - 3) Adhesive as recommended by molding manufacturer.
- g. Primers: Manufacturer's standard primer for steel providing baked enamel finish.

B. Adhesive:

- 1. Plastic Laminate: Fed. Spec. A-A-1936.
- Interior Millwork: Unextended urea resin, unextended melamine resin, phenol resin, or resorcinol resin.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Examine and verify substrate suitability for product installation.
- B. Protect existing construction and completed work from damage.
- C. Clean substrates. Remove contaminants capable of affecting subsequently installed product's performance.

3.2 INSTALLATION

- A. Installation:
 - 1. Prime millwork receiving transparent finish and back-paint concealed surfaces.
 - 2. Fasten trim with fine finishing nails, screws, or glue as required.
 - 3. Set nails for putty stopping. Provide washers under bolt heads where no other bearing plate occurs.
 - 4. Seal cut edges of fire-retardant treated wood materials with a certified acceptable sealer.
 - 5. Coordinate with plumbing and electrical work for installation of fixtures and service connections in millwork items.
 - 6. Plumb and level items unless shown otherwise.

- Nail finish at each blocking, lookout, or other nailer and intermediate points; toggle or expansion bolt in place where nails are not suitable.
- Apply adhesive uniformly for full contact between // ____ // and substrate.
- B. Pegboard or Perforated Hardboard:
 - Install board with chromium plated steel round-head toggle bolts or other fasteners capable of supporting board when loaded at 122 kg/sq. m (25 psf) of board.
 - Install board with spacers to allow insertion and removal of hooks and accessories.
 - 3. Install round trim, 6 mm (1/4 inch) at perimeter to finish flush with face of board and close space between wall and hardboard.

C. Wall Paneling:

- 1. Solid Hardwood Boards:
 - a. Install furring strips, 25 by 75 mm (1 by 3 inch) at 400 mm
 (16 inch) centers horizontally between top and bottom strips.
 Fasten each stud with two screws.
 - Install paneling laid vertically with end joints staggered between adjacent boards.
 - c. Tightly butt joints and blind nail each board at each furring strip.
- 2. Plywood Paneling:
 - a. Install furring strips horizontally, 25 by 75 mm (1 by 3 inch) under end joints of plywood and 300 mm (16 inches) on center between end strips. Install cross furring strips centered vertically at side joints of plywood paneling less than 13 mm (1/2 inch) thick. Fasten each stud with two screws.
 - Install panels with long edge vertically and end joints aligned where exposed to view.
 - c. Align V-grooves where end joints meet and maintain continuity of pattern.
 - d. Apply continuous bead of adhesive to each furring strip to securely bond panel according to adhesive manufacturer's specifications.
 - e. Nailing:
 - Nail in V-grooves to horizontal furring strips and at panel edges and within 25 mm (1 inch) of ends except within 50 mm

(2 inches) of end when panel end abutts other surfaces. Do not space nails in V-groves over 150 mm (6 inches), on center.

- 2) Nail ungrooved panels at 400 mm (16 inches) centers to horizontal furring strips between end or edge nails. Set nails and fill hole with filler to match wood panel for panels thicker than 13 mm (1/2 inch). // Set nails flush with surface of panel thinner than 13 mm (1/2 inch). //
- Use colored nails matching panel finish for prefinished panels or panels less than 13 mm (1/2 inch) thick.
- 3. Edge Trim and Base: Install solid wood as shown on Drawings, species same as wall paneling.
- D. Shelves:
 - Install mounting strip at back wall and end wall for shelves in closets where shown secured with toggle bolts at each end, not over 600 mm (24 inch) centers between ends.
 - Nail Shelf to mounting strip at ends and to back wall strip at not over 900 mm (36 inches) on center.
 - b. Install metal bracket, ANSI A156.16, B04041, not over 1200 mm(4 feet) centers when shelves exceed 1800 mm (6 feet) in length.
 - c. Install metal bracket, ANSI A156.16, B04051, not over 1200 mm (4 feet) on centers where shelf length exceeds 1800 mm (6 feet) in length with metal rods, clothes hanger bars ANSI A156.16, L03131, of required length, full length of shelf.
 - Install vertical slotted shelf standards to studs with toggle bolts through each fastener opening. Double slotted shelf standards is acceptable where adjacent shelves terminate.
 - a. Install brackets providing supports for shelf not over 900 mm (36 inches) on center and within 13 mm (1/2 inch) of shelf end unless shown otherwise.
 - b. Install shelves on brackets so front edge is restrained by bracket.
- E. Install with butt joints in straight runs and miter at corners.

3.3 CLEANING

- A. Remove excess adhesive before adhesive sets.
- B. Clean exposed surfaces. Remove contaminants and stains.
- C. Touch up damaged factory finishes.
 - 1. Repair painted surfaces with touch up primer.

3.4 PROTECTION

- A. Protect finish carpentry from traffic and construction operations.
- B. Cover finish carpentry with reinforced kraft paper, and plywood or hardboard.
- C. Remove protective materials immediately before acceptance.
- D. Repair damage.

- - - E N D - - -

SECTION 07 21 13 THERMAL INSULATION

PART 1 - GENERAL

1.1 SUMMARY

- A. This section specifies thermal and acoustical insulation for buildings:
 - 1. Thermal insulation.
 - a. Board or block insulation at foundation perimeter.
 - b. Board and spray foam insulation at exterior, framed, and furred walls.
 - c. Spray foam insulation at masonry cavity walls.
 - d. Spray polyurethane foam insulation.
 - e. Batt or blanket insulation
 - 2. Acoustical insulation.
 - a. Batt and blanket insulation at interior framed.

1.2 RELATED REQUIREMENTS

- A. Adhesives VOC Limits: Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- B. Insulation for Cavity Face of Masonry: Section 04 20 00, UNIT MASONRY.
- C. Safing Insulation: Section 07 84 00, FIRESTOPPING.

1.3 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- B. ASTM International (ASTM):
 - ASHRAE 189.1-14 Standard for the Design of High-Performance Green Building
 - 2. C553-13 Mineral Fiber Blanket Thermal Insulation for Commercial and Industrial Applications.
 - C591-15 Unfaced Preformed Rigid Cellular Polyisocyanurate Thermal Insulation.
 - ASTM International (ASTM) E84-16 Standard Test Method for Surface Burning Characteristics of Building Materials.
 - 5. C954-15 Steel Drill Screws for the Application of Gypsum Panel Products or Metal Plaster Base to Steel Studs From 0.033 (0.84 mm) inch to 0.112 inch (2.84 mm) in thickness.
 - C1002-14 Steel Self-Piercing Tapping Screws for Application of Gypsum Panel Products or Metal Plaster Bases to Wood Studs or Steel Studs.
 - 7. D312/D312M-15 Asphalt Used in Roofing.

- 8. E84-16a Surface Burning Characteristics of Building Materials.
- 9. F1667-15 Driven Fasteners: Nails, Spikes, and Staples.

1.4 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Submittal Drawings:
 - 1. Show insulation type, thickness, and R-value for each location.
- C. Manufacturer's Literature and Data:
 - 1. Description of each product.
 - 2. Adhesive indicating manufacturer recommendation for each application.
 - 3. Certificates of Compliance: Certification from an independent testing laboratory that insulation meets fire hazard classification requirements.
- D. Sustainable Construction Submittals:
 - Recycled Content: Identify post-consumer and pre-consumer recycled content percentage by weight.
 - 2. Low Pollutant-Emitting Materials:
 - a. Show volatile organic compound types and quantities.

1.5 QUALITY ASSURANCE

- A. Applicator Qualifications: Approved by manufacturer of insulation material.
- B. Fire Hazard Classification: Maximum flame spread/smoke developed rating of 25/50, tested to ASTM E84.

1.6 DELIVERY

- A. Deliver products in manufacturer's original sealed packaging.
- B. Mark packaging, legibly. Indicate manufacturer's name or brand, type, production run number, and manufacture date.
- C. Before installation, return or dispose of products within distorted, damaged, or opened packaging.

1.7 STORAGE AND HANDLING

- A. Store products indoors in dry, weathertight facility.
- B. Protect products from damage during handling and construction operations.
- C. Protect foam plastic insulation from UV exposure.

1.8 WARRANTY

A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."

PART 2 - PRODUCTS

2.1 INSULATION - GENERAL

- A. Insulation Thickness:
 - 1. Provide thickness required by R-value shown on drawings.
 - 2. Provide thickness indicated when R-value is not shown on drawings.
- B. Insulation Types:
 - 1. Provide one insulation type for each application.
- C. Sustainable Construction Requirements:
 - 1. Insulation Recycled Content:
 - a. Polyisocyanurate/polyurethane rigid foam: 9 percent recovered material.
 - b. Polyisocyanurate/polyurethane foam-in-place: 5 percent recovered material.
 - c. Glass fiber reinforced: 6 percent recovered material.
 - d. Phenolic rigid foam: 5 percent recovered material.
 - e. Rock wool material: 75 percent recovered material.
 - 2. Low Pollutant-Emitting Materials: Comply with VOC limits specified in Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS for the following products:
 - a. Non-Flooring Adhesives and Sealants.

2.2 THERMAL INSULATION

- A. Perimeter Insulation In Contact with Soil:
 - 1. Polystyrene Board: ASTM C578, Type IV, V, VI, VII, or IX.
- B. Exterior Framing or Furring Insulation:
 - 1. Polyisocyanurate Board: ASTM C591, Type I, Class C, Category I where concealed by thermal barrier.
 - Spray Polyurethane Foam: Two-component spray polyurethane cellular plastic foam, complying with the following methods. Located on inside face of exterior gypsum wall sheathing.
 - a. Core Density (ASSTM D1622): Minimum 2pcf
 - b. Thermal Resistance (ASTM C518): 140 degree F / 90 day Aged R-Value, measured at 75 F Mean Temp: Minimum R-Value 6.0 per inch.
 - c. Flame Spread (ASTM E84, Class A): 25 or less.
 - d. Smoke Developed (ASTM E84, Class A): 450 or less.

- e. Compressive strength minimum (ASTM D1621, 10% parallel to rise):20 PSI.
- f. Closed Cell Content (ASTM D2856): Minimum 95 percent.
- g. Water Absorption by Colume maximum. (ASTM E96): 1.0 perm-inches.
- h. Ignition Barrier (ICC- ES AC377 Appendix X) Complies with the applicable requirements of ICC-ES AC377 Appendix X for use in attics and crawlspaces without a prescriptive ignition barrier.
- i. Thermal Barrier (NFPA 286) Pass using DC315 manufactured by International Fireproof Technology, Inc at 18 wet mils / 12 Dry Mils; (UL 1715) Pass using Fireshell TB manufactured by TPR2, Inc. at 26 wet mils / 14 Dry Mils when used as a component in tested alternative thermal barrier assemblies.
- j. Commercial Fire Tested Wall Assemblies (NFPA 285) Compliant in Building Types I, II, III, IV, V
- 3.
- C. Inside Face of Exterior Wall Insulation:
 - Closed Cell Spray Polyurethane Foam Insulation: Two-component spray polyurethane cellular plastic foam, complying with the following methods.
 - a. Core Density (ASSTM D1622): Minimum 2pcf
 - b. Thermal Resistance (ASTM C518): 140 degree F / 90 day Aged R-Value, measured at 75 F Mean Temp: Minimum R-Value 6.0 per inch.
 - c. Flame Spread (ASTM E84, Class A): 25 or less.
 - d. Smoke Developed (ASTM E84, Class A): 450 or less.
 - e. Compressive strength minimum (ASTM D1621, 10% parallel to rise):20 PSI.
 - f. Closed Cell Content (ASTM D2856): Minimum 92 percent.
 - g. Water Absorption by Volume maximum. (ASTM E96): 1.0 perm-inches.
 - h. Ignition Barrier (ICC- ES AC377 Appendix X) Complies with the applicable requirements of ICC-ES AC377 Appendix X for use in attics and crawlspaces without a prescriptive ignition barrier.
 - i. Thermal Barrier (NFPA 286) Pass using DC315 manufactured by International Fireproof Technology, Inc at 18 wet mils / 12 Dry Mils; (UL 1715) Pass using Fireshell TB manufactured by TPR2, Inc. at 26 wet mils / 14 Dry Mils when used as a component in tested alternative thermal barrier assemblies.
 - j. Commercial Fire Tested Wall Assemblies (NFPA 285) Compliant in Building Types I, II, III, IV, V

k.

- D. Floor Assemblies Above Unconditioned Spaces:
 - 1. Closed Cell Spray Polyurethane Foam Insulation.
- E. Between Roof Joists underside of roof sheathing and exterior walls above the ceiling.
 - 1. Closed Cell Spray Polyurethane Insulation.

2.3 ACOUSTICAL INSULATION

- A. Semi Rigid, Batts and Blankets:
 - Widths and lengths to fit tight against framing.
 a. Density: nominal 4.5 pound.
 - 2. Mineral Fiber Batt or Blankets: ASTM C665 FSK faced.
 - 3. Maximum Surface Burning Characteristics: ASTM E84.
 - a. Flame Spread Rating: 25.
 - b. Smoke Developed Rating: 450.
- B. Sound Deadening Board:
 - 1. Mineral Fiber Board: ASTM C612, Type IB.
 - a. Thickness: 13 mm (1/2 inch).
 - 2. Perlite Board: ASTM C728.
 - a. Thickness: 13 mm (1/2 inch).
- C. Minimum STC rating, where indicated on drawings, is and STC 51.

2.4 SPRAY POLYURETHANE FOAM INSULATION:

- A. Seal attic w/ closed cell spray insulation (r-38 min.) Applied between attic trusses to underside of the roof sheathing. Apply closed cell insulation to both end walls in the attic.
- B. Foam insulation shall be class A flame-spread 0-25, smoke developed 0-450. All closed cell spray insulation shall comply with ICC-ES AC 377 appendix X for attics and crawl spaces w/o a prescriptive ignition barrier.

2.5 ACCESSORIES

- A. Fasteners:
 - 1. Staples or Nails: ASTM F1667, zinc-coated, size and type to suit application.
 - 2. Screws: ASTM C954 or ASTM C1002, size and length to suit application with washer minimum 50 mm (2 inches) diameter.
 - Impaling Pins: Steel pins with head minimum 50 mm (2 inches) diameter.

- a. Length: As required to extend beyond insulation and retain cap washer when washer is placed on pin.
- b. Adhesive: Type recommended by manufacturer to suit application.
- B. Insulation Adhesive:
 - 1. Nonflammable type recommended by insulation manufacturer to suit application.
- C. Tape:
 - 1. Pressure sensitive adhesive on one face.
- D. Gypsum Wall Board for Fire Protection:
 - All spray foam must be separated from the interior by a single layer of continuous 5/8" gypsum wall board.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Examine and verify substrate suitability for product installation.
- B. Protect existing construction and completed work from damage.
- C. Clean substrates. Remove contaminants capable of affecting subsequently installed product's performance.

3.2 INSTALLATION - GENERAL

- A. Install products according to manufacturer's instructions and approved submittal drawings.
 - When manufacturer's instructions deviate from specifications, submit proposed resolution for Contracting Officer's Representative consideration.
- B. Install insulation with vapor barrier facing the heated side, unless indicated otherwise.
- C. Install board insulation with joints close and flush, in regular courses, and with end joints staggered.
- D. Install batt and blanket insulation with joints tight. Fill framing voids completely. Seal penetrations, terminations, facing joints, facing cuts, tears, and unlapped joints with tape.
- E. Fit insulation tight against adjoining construction and penetrations, unless indicated otherwise.

3.3 THERMAL INSULATION

- A. Perimeter Insulation In Contact with Soil:
 - 1. Vertical insulation:
 - a. Fill joints of insulation with same material used for bonding.

- b. Bond polystyrene board to surfaces with adhesive.
- c. Bond cellular glass insulation to surfaces with hot asphalt or adhesive cement.
- 2. Horizontal insulation under concrete floor slab:
 - Lay insulation boards and blocks horizontally on level, compacted and drained fill.
 - Extend insulation from foundation walls towards center of building minimum 600 mm (24 inches).
- B. Exterior Framing or Furring Insulation:
 - 1. General:
 - a. Open voids are not acceptable.
 - b. Spray foam insulation around door frames and windows, in building expansion joints, door soffits, and other voids.
 - c. Spray behind outlets, around pipes, ducts, and services encased in walls.
 - d. Seal penetrations through insulation and facings.
 - 2. Metal Studs:
 - a. Fasten insulation between metal studs, framing, and furring with pressure sensitive tape continuous along flanged edges.
 - 3. Wood Studs:
 - a. Fasten insulation between wood studs or framing with nails or staples through flanged edges on face of stud.
 - b. Space fastenings maximum 150 mm (six inches) apart.
 - 4. Roof Rafters and Floor Joists:
 - a. Spray foam continuous with spray foam wall insulation.
 - 5. Ceilings and Soffits:
 - a. Wood Framing (ALL WOOD MUST BE FIRE-RETARDANT):
 - Fasten blanket insulation between wood framing and joists with nails or staples through flanged edges of insulation.
 - 2) Space fastenings maximum 150 mm (6 inches) on center.
 - b. Metal Framing:
 - Fasten insulation between metal framing with pressure sensitive tape continuous along flanged edges.
 - At metal framing and ceilings suspension systems, install insulation above suspended ceilings and metal framing at right angles to main runners and framing.
 - Tape insulation tightly together without gaps. Cover metal framing members with insulation.

07 21 13 - 7

- c. Ceiling Transitions:
 - In areas where suspended ceilings transition to structural ceiling, install blanket or batt insulation.
 - Extend insulation from suspended ceiling to underside of structure above.
 - Secure blanket and batt with continuous cleats to structure above.
- C. Inside Face of Exterior Wall Insulation:
 - Location: On interior face of solid masonry and concrete walls, beams, beam soffits, underside of floors, and to face of studs to support interior wall finish where indicated.
 - Spray closed cell spray insulation (r-38 min.) directly to masonry wall, filling space behind studs. Spray uniformly and in several layers to prevent studs from being dislocated or bent by the expansion of the foam.
 - 3. Apply SPF in accordance with ASTM C1029 and manufacturer's installation guidelines.
 - 4. Apply sprayed foam insulation in consecutive layers of not less than ½ inch and not more than 2 inch thick each to achieve total thickness required. For light gage steel and extruded polystyrene board first layer should be a skim coat of ½ inch before adding extra layers. Ensure the substrate is well supplied.
 - 5. Avoid formation of sub-layer air pockets.
 - Apply product in overlapping layers, to obtain a smooth, uniform surface.
 - Maintain 3-inch clearance around heating vents, steam pipes, recessed lighting fixtures and other heat sources.
 - Do not apply product to inside of exit openings or electrical junction boxes.
- D. Floor Assemblies Above Unconditioned Spaces:
 - Spray closed cell spray insulation (r-38 min.) directly to underside of the floor sheathing between the joists.
- E. Masonry Cavity Wall Insulation:
 - Install insulation on exterior faces of concrete and masonry inner wythes of cavity walls.
 - 2. Bond polystyrene board to surfaces with adhesive.
 - Bond polyurethane or polyisocyanurate board, and perlite board to surfaces with adhesive.

- 4. Bond cellular glass insulation to surfaces with hot asphalt or adhesive cement.
- 5. Fill insulation joints with same material used for bonding.

3.4 ACOUSTICAL INSULATION

- A. General:
 - 1. Install insulation without voids.
 - Pack insulation around door frames and windows, in building expansion joints, door soffits, and other voids.
 - Pack behind outlets, around pipes, ducts, and services encased in walls.
 - 4. Hold insulation in place with pressure sensitive tape.
 - 5. Lap facer flanges together over framing for continuous surface. Seal all penetrations through the insulation and facers.
 - Do not compress insulation below required thickness except where embedded items prevent required thickness.
- B. Semi Rigid, Batts and Blankets:
 - When insulation is not full thickness of cavity, adhere insulation to one side of cavity, maintaining continuity of insulation and covering penetrations or embedments.
 - a. Wood Framing:
 - Fasten blanket insulation between wood framing and joists with nails or staples through flanged edges of insulation.
 - 2) Space fastenings maximum 150 mm (6 inches) on center.
 - b. Metal Framing:
 - Fasten insulation between metal framing with pressure sensitive tape continuous along flanged edges.
 - At metal framing or ceilings suspension systems, install blanket insulation above suspended ceilings or metal framing at right angles to the main runners or framing.
 - Tape insulation tightly together so no gaps occur and metal framing members are covered by insulation.
- C. Sound Deadening Board:
 - Secure with adhesive to masonry and concrete walls and with screws to metal and wood framing. Secure sufficiently in place until subsequent cover is installed. Seal all cracks with caulking.

3.5 FIELD QUALITY CONTROL

- A. Conduct field inspection and testing in accordance with manufacturers and general contractors instructions.
- B. Test completed application daily for core density and cohesion/adhesion to substrate. Record results daily.
- C. Tolerance for spray foam insulation: maximum variation in applied thickness is minus ¼ inch, plus 5/8 inch.
- D. Apply foam in a uniform fashion to prevent dislodging or bending the metal studs.

3.6 CLEANING

- A. Remove excess adhesive before adhesive sets.
- B. Remove overspray from non-prescribed surfaces without causing damage to surfaces.
- C. Remove protective covers from adjacent surfaces.

3.7 PROTECTION

- A. Protect insulation from construction operations.
- B. Repair damage.
- C. C. All plastic insulation must be protected from interior occupancy space by an approved thermal barrier to meet the requirements of the building codes.

- - E N D - -

SUBMITTAL REVIEW

Client Name: VAMC Martinsburg, WV	Submittal ID No.: 07 21 13-001	
Project Name: Renovate/Expand 47 Bed DOM	Sender ID No.: 45	
Pod A		
Client Project No.: 613-120	Reference Spec/Dwg. No.: 07 21 13	
MR Project No.: 0499-0081	Description: Close Cell Spray Foam	

ACT	TION DESCRIPTION	ENGINEER'S review is only to determine general conformance with the design concept
	NE NO EXCEPTIONS TAKEN	of the project and general compliance with information given in the Contract Documents. This review is not to determine accuracy or completeness of details, such as dimensions and quantities. Corrections or comments made during this review do
X	MC MAKE CORRECTIONS AS NOTED	not relieve CONTRACTOR from compliance with the requirements of plans and/or specifications. Review of a specific item shall not include review of an assembly of
	RR REVISE AND RESUBMIT	which the item is a component. <u>CONTRACTOR is and ENGINEER is NOT</u> responsible for: dimensions to be confirmed and correlated at the jobsite; all matters relating to
	R REJECTED	means, methods, techniques, coordination, fabrication, shipping, handling, storage, assembly, installation, construction (including all safety aspects of performing the
	RA RECEIPT ACKNOWLEDGED	Work); and satisfactory performance of the Work.
	O OTHER (SPECIFY)	Miller-Remick
		By: <u>Alan Arce, PF&A</u> Date: <u>01/09/2019</u>

THIS SUBMITTAL REVIEW IS RECOMMENDATION OF ACTION, AS IT RELATES TO COMPLIANCE WITH THE CONTRACT DOCUMENTS, TO THE VA. THE VA HAS FINAL REVIEW AUTHORITY. THE CONTRACTOR SHALL NOT TAKE ANY ACTION PER THIS SUBMITTAL WITHOUT THE VA'S REVIEW.

Comments:

See correction within submittal.

101 West Main Street, Suite 7000 Norfolk, Virginia 23510 P 757. 471.0537 F 757. 471.4205 www.pfa-architect.com

6425 Canon Way Gloucester, Virginia 23061 P 804.684.5820 C 919.880.2329

SUBMITTAL - LETTER OF TRANSMITTAL

DATE:	
то:	
ATTN:	
JOB NUMBER:	
RE:	

WE ARE SENDING YOU: ATTACHED

UNDER SEPARATE COVER VIA:

No. of Copies	Date	Submittal No.	Division No.	Description

THESE ARE TRANSMITTED AS:	NO EXCEPTIONS TAKEN	The Contractor shall not be relieved of responsibility for deviations from requirements of the Contract Documents
	MAKE CORRECTIONS NOTED	by the Architect's approval of Shop Drawings, Product Data, Samples or similar submittals unless the Contractor
	AMEND & RESUBMIT	has specifically informed the Architect in writing of such deviations at the time of submittal and the Architect has
	REJECTED – SEE REMARKS	given written approval to the specific deviation. The Contractor shall not be relieved of responsibility for errors
	RECEIPT ACKNOWLEDGED	or omissions in Shop Drawings, Product Data, Samples or similar submittals by the Architect's approval thereof.
	DATE:	REVIEWED BY:

REMARKS:					
COPY TO:	FILE]	 	 	
FROM:			 	 	
SIGNATURE:			 		

Miller-Remick LLC | 1010 Kings Highway South Cherry Hill NJ 08034 United States

PROJECT:	Martinsburg Pod A 0499-0081	DATE SENT:	1/9/2019
		RETURN BY:	1/16/2019
SUBJECT:	Close Cell Spray Foam	SUBMITTAL ID:	07 21 13-001
TYPE:	Submittal	TRANSMITTAL ID:	136
TYPE: PURPOSE:	Submittal For Review	TRANSMITTAL ID: VIA:	136 Info Exchange

FROM

NAME	COMPANY	EMAIL	PHONE
Alan Arce	Miller-Remick LLC	aarce@miller- remick.com	(856) 429-4000

ТО

NAME	COMPANY	EMAIL	PHONE
PFA Shop Drawings	PF&A Design	shopdrawings@pfa- architect.com	
Joseph Trost	PF&A Design	jtrost@pfa- architect.com	(757) 471-0537 x303

DESCRIPTION OF CONTENTS

QTY	DATED	TITLE	NUMBER	NOTES
1	1/9/2019	45. 072113. Closed Cell Spray Foam Insulation.pdf		

Transmittal

District Veterans Contracting 5772 2nd Street NE Washington, DC 20011 PH: 202-386-6030 FX: 202-558-5262

Date: 1.8.2019 Company: Department of Veteran Affairs Martinsburg, VAMC Martinsburg, WV Attn: Enoch Johnson From: Susan Kang Project Name: 47 Bed Domiciliary

Transmittal: #45

Subject: Submittal – Spray Foam Insulation

Number of Copies (1)

Submitted under Spec Section: 07 21 13

We are sending you:

() As Requested

() Under Separate Cover

For Your:

() Records () Use and Information (x) Review and Comment () Use and Distribution

() Attached

Via:

() Email () Hand Delivered () Fax

Number of Pages: 8 pages (incl transmittal)

____REVIEWED ____REVISE & RESUBMIT ____REJECTED Reviewed for general conformance to plans and specifications. Supplier or subcontractor is responsible for fabrication process, techniques of construction and for coordination of the work with all trades. Date: 1/8/2019 By: Susan Kang

TECHNICAL DATA SHEET

Material Specification Criteria | Project Submittal Data

Thermoseal 2000

Medium Density • Closed Cell Spray Foam Insulation

ThermoSeal 2000 is a two component, semi-rigid, medium density, 2 lb closed cell polyurethane foam insulation system which simultaneously insulates and air-seals your building structure. Thermoseal 2000 requires the use of an "A" component (ISO) and a blended "B" component (RESIN), which contains ZERO ozone depleting catalysts, polyols and fire retarding materials. ThermoSeal 2000 is designed for residential, commercial, and industrial building applications to make structures more energy efficient, guieter, healthier and more comfortable. ThermoSeal 2000 is applied as a liquid spray and fills all building cavities completely sealing all cracks, crevices, and voids where air loss and infiltration are most common.

Р	hysical Properties		
Property	Value		Test Method
R-Value	6.9 @ 1″/21.0 @ 3″	6.9 @ 1"/21.0 @ 3"	
Core Density	2.07 LB / Cubic Foot	95%	ASTM D 1622
Closed Cell Content	>=92%	minimum	ASTM D 2586
Water Vapor Transmission - Permeance	Perms: .8 @ 1"/ .23 @ 3.5"		ASTM E 96
Air Leakage Rate	Zero (0) ft3/s.ft2 @ 75Pa		ASTM E 283
Compressive Strength (PSI)	25		ASTM D 1621
Tensile Strength (PSI)	60		ASTM D 1623
Dimensional Stability	< 9%		ASTM D 2126
Sound Transmission Coefficient	41	ŀ	ASTM E-90-85/E 41
	Fire Properties		
Property	Value		Test Method
Surface Burning Charateristics Flame Spread / Smoke Index 	Class 1 Pass <25 / <450		ASTM E 84
Ignition Barrier	• Complies with the applicable requirements of ICC-ES AC377 Appendix X for use in attics and crawlspaces without a prescriptive ignition barrier.		ICC- ES AC377 Appendix X
Thermal Barrier	Theproof fectinology, the at to wet this? T2 Dry Mils		NFPA 286
	• Pass using Fireshell TB manufactured by TPR2, Inc at 26 wet mils / 14 Dry Mils when used as a component in tested alternative thermal barrier assemblies.		t UL 1715
Commercial Fire Tested Wall Assemblies	Compliant in Building Types I, II, III, IV, V		NFPA 285
Buildi	ng Code Certifications		
Evaluation Report	UES-0581		ТАМРО
GreenGuard Gold	2013 Standard for Chemical Emmissions GOLD: UI for Building Materials		
Thermoseal, llc Po Box 32	TDS V2.1 May 14, 2018	wv	vw.ThermoSealUSA.con 800.853.1577

TECHNICAL DATA SHEET

Material Specification Criteria | Project Submittal Data

Thermoseal 2000

Storage and Proccessing Information

Liquid Component Properties				
Property	A Side - PMDI	B Side- Thermoseal 2000		
Color	Brown	Amber		
Viscosity @ 77°F (25°C)	185 - 230 cps	400-520 cps		
Specific Gravity	1.25	1.17 - 1.19		
Storage Temperature	50°F-75°F (10°C-24°C)	50°F-75°F (10°C-24°C)		
Mixing Ratio (By Volume)	1:1	1:1		
Shelf Life • Of unopened drums stored within specified range	1 Year	18 Months		

Reco	mmenc	led l	Processi	ing F	Paramet	ers

Recirculation Target	Do not recirculate. Gradually warm drums to 77°F prior to use.			
Primary Heater Target (Initial)	125°F	52°C		
Primary Hose Target (Initial)	125°F	52°C		
Target Processsing Pressure	1200 psi	8274 kPa		
Substrate & Ambient Temp	>14°F (Winter)/ >45 °F (Summer)	>-10°C (Winter)/ >7 °C (Summer)		
Moisture Content of Substrate	<20%	<20%		
Moisture Content of Concrete • Must be clean and free of dust and debris	<10%	<10%		

Processing - Application processing temperatures can vary and are dependent upon indoor ambient temperature, outdoor ambient temperature, substrate temperature, humidity, elevation, substrate type, equipment, and other factors. While manufacturing polyurethane foam plastic on site, the applicator must continuously observe the characteristics of the sprayed foam and adjust the processing temperatures and pressures to maintain optimal cell structure, adhesion, and overall foam quality. It is the sole responsibility of the applicator to manufacture Thermoseal polyurethane foam plastic on-site within our specifications. When applying Thermoseal, all substrates must be 10°F degrees above the dew point and free of all debris including frost, oil, rust, dust, or other debris. The equipment being used must be set to deliver a consistent 1:1 ratio by volume and must be capable of achieving at least 1200 psi and the target processing temperatures outlined in this manual. To maintain warranty status on all Thermoseal products, the Applicator's Thermoseal Training Certificate must be current. Thermoseal Training is free and can be conducted on our website at http://www.ThermosealUSA.com.

DISCLAIMER: To the best of our knowledge, all technical data contained herein is true and accurate as of the date of issuance and subject to change without prior notice. User must contact Thermoseal, Ilc to verify correctness before specifying or ordering. We guarantee our products to conform to the quality control standards established by Thermoseal, Ilc. We assume no responsibility for coverage, performance or injuries resulting from use. Liability, if any, is limited to replacement of the product. NO OTHER WARRANTY OR GUARANTEE OF ANY KIND IS MADE BY THERMOSEAL USA EXPRESSED OR IMPLIED; STATUTORY, BY OPERATION OF LAW, OR OTHERWISE, INCLUDING MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Thermoseal, Ilc Po Box 32 New Canaan, CT. 06840

THERMOSEAL, LLC.

THERMOSEAL 2000/2000W SPRAY-APPLIED POLYURETHANE FOAM PLASTIC INSULATION

CSI Section: 07 21 00 Thermal Insulation

1.0 RECOGNITION

Thermoseal 2000/2000W spray-applied polyurethane foam plastic insulation described in this report has been evaluated for use as thermal insulation and for use in construction Types I through V. The physical properties, thermal resistance, surface burning characteristics, air permeability, fire-resistance-rating, attic and crawl space installations were evaluated for compliance with the following codes and regulations:

- 2015, 2012, 2009, and 2006 International Building Code[®] (IBC)
- 2015, 2012, 2009, and 2006 International Residential Code[®] (IRC)
- 2015, 2012, 2009, and 2006 International Energy Conservation Code[®] (IECC)

2.0 LIMITATIONS

Use of Thermoseal 2000/2000W spray-applied polyurethane foam plastic insulation recognized in this report is subject to the following limitations:

2.1 The insulations shall be installed in accordance with the manufacturer's published installation instructions, this evaluation report and the applicable code. If there are any conflicts between the manufacturer's published installation instructions and this report, the more restrictive shall govern.

2.2 In accordance with Sections 4.6.1 and 4.6.2 of this report, the insulations shall be separated from the interior of the building by a code-complying thermal barrier or ignition barrier as appropriate.

2.3 The insulations shall not exceed the nominal density and thickness for the installation conditions described in this report.

2.4 During application, the insulations shall be protected from exposure to weather.

2.5 The insulations shall be installed by professional spray polyurethane foam installers approved by Thermoseal, LLC, or by the Spray Polyurethane Foam Alliance (SPFA).

Valid Through: 03/31/2019

2.6 Use of the insulations in areas of "very heavy" termite infestation probability shall be in accordance with 2015 IBC Section 2603.8, 2012 IBC Section 2603.9, 2009 or 2006 IBC Section 2603.8, or 2015, 2012 and 2009 IRC Section R318.4, or 2006 IRC Section R320.5, as applicable.

2.7 When required by the applicable code, a vapor retarder shall be installed.

2.8 Labeling and jobsite certification of the insulations and coatings shall comply with the following code sections as applicable:

- 2015, 2012 or 2009 IBC Section 2603.2
- 2015, 2012 or 2009 IRC Section R316.2
- 2015 IRC Section N1101.10.1.1
- 2012 IRC Section N1101.12.1.1
- 2009 IRC Section N1101.4.1
- 2015 or 2012 IECC Sections C303.1.1.1 or R303.1.1.1
- 2009 IECC Section 303.1.1.1

2.9 The insulations shall be produced by Thermoseal, LLC under a quality control program with inspections.

3.0 PRODUCT USE

Thermoseal 2000/2000W spray-applied polyurethane foam plastic insulation complies with IBC Section 2603, IRC Section R316, 2012 IECC Sections C303, C402, R303, and R402, 2009 IECC Sections 303 and 402, and 2006 IECC Section 402. When installed in accordance with Section 4.0 of this report, the foam plastic insulation can be used in wall cavities, floor assemblies or ceiling assemblies, and/or in attics and crawl spaces as nonstructural thermal insulation material. Thermoseal 2000/2000W insulation is used in Type V construction under the IBC and in one- and two-family dwellings under the IRC.

Thermoseal 2000/2000W insulation may also be used in Construction Types I, II, III or IV when installed in accordance with Section 4.6.3 of this report.

Thermoseal 2000/2000W spray-applied polyurethane foam plastic insulation may be used as air impermeable insulation when installed in accordance with Section 4.4 of this report.

4.0 PRODUCT DESCRIPTION

4.1 Properties: Thermoseal 2000/2000W is a medium density, closed cell, spray-applied polyurethane foam plastic insulation in accordance with Section 3.1.1 and Table 1 of AC377. The insulation has a nominal in-place

The product described in this Uniform Evaluation Service (UES) Report has been evaluated as an alternative material, design or method of construction in order to satisfy and comply with the intent of the provision of the code, as noted in this report, and for at least equivalence to that prescribed in the code in quality, strength, effectiveness, fire resistance, durability and safely, as applicable, in accordance with IBC Section 104.11. This document shall only be reproduced in its entirety.

Copyright © 2018 by International Association of Plumbing and Mechanical Officials. All rights reserved. Printed in the United States. Ph: 1-877-4IESRPT • Fax: 909.472.4171 web: www.uniform-es.org • 4755 East Philadelphia Street, Ontario, California 91761-2816 – USA

Originally Issued: 03/01/2018

density of 1.9 pcf (30 kg/m³). The two-component spray foam plastic is produced in the field by combining a polymeric isocyanate (A component) and a polymeric resin (B component). The liquid components shall be stored in 55-gallon (208 L) drums at temperatures between 70°F and 80°F (21°C and 27°C). When Component A and Component B are stored in factory-sealed containers at the recommended temperatures, the maximum shelf life is six months.

4.2 Thermal Resistance (R-Values): Thermoseal 2000/2000W spray-applied polyurethane foam plastic insulation has a thermal resistance (R-Value) at a mean temperature of 75° F (24°C) as shown in Table 1 of this report.

Table 1					
Thermal Resistance (R-Values) ¹					
Thickness	Thermoseal 2000/2000W				
(inch)	R-Value (°f•ft ² •h/Btu)				
1	6.9				
2	14				
3	21				
3.5	24				
4	28				
5	34				
5.5	38				
6	41				
7	48				
7.5	52				
8	55				
9	62				
10	69				
11	76				
11.5	79				
12	83				

For **SI:** 1 inch = 25.4 mm, $1^{\circ}F \cdot ft^2 \cdot h/Btu = 0.176 \ 110 \ K \cdot m^2/W$. ¹R-Values are calculated based on tested K values at 1-inch and 4-inch thicknesses.

4.3 Surface Burning Characteristics: At a maximum thickness of 4 inches (102 mm) and a nominal density of 1.9 pcf (30 kg/m³), the Thermoseal 2000/2000W insulations yield a flame spread index of 25 or less and smoke-developed index of 450 or less when tested in accordance with ASTM E84. Greater thicknesses, depending on the end use, are recognized when installed in accordance with this report.

Foam insulation thicknesses of up to $11^{1/2}$ inches (292 mm) for ceiling cavities and $7^{1/2}$ inches (191 mm) for wall cavities when covered by a code complying prescriptive thermal barrier, such as minimum $\frac{1}{2}$ inch (12.7 mm) thick gypsum board, are recognized based on testing in accordance with NFPA 286 and when installed in accordance with Section 4.6 of this report.

4.4 Air Permeability: Thermoseal 2000/2000W insulation is classified as air-impermeable insulations when tested in accordance with ASTM E283 at a minimum thickness of 1

Valid Through: 03/31/2019

inch (25.4 mm), in accordance with 2015 IBC Section 1203.3, 2015 and 2012 IRC Section R806.5 and 2009 and 2006 IRC Section R806.4.

4.5 Fire-Protective Coatings and Coverings: Fire protective coatings, for use as alternative thermal barriers, shall be in accordance with Table 2 of this report, as applicable, and installed in accordance with Section 4.6 of this report.

4.6 Installations: Thermoseal 2000/2000W spray-applied polyurethane foam plastic insulation shall comply with one of the following requirements:

- 2015, 2012 IECC Sections C402.1 (prescriptive)
- 2015, 2012 IECC Section R407 (performance)
- 2009 IECC Sections 402, 405, 502 or 506 as appropriate.

The manufacturer's published installation instructions for Thermoseal 2000/2000W insulation and this report shall be available on the jobsite during installation. Where conflicts occur, the most restrictive governs.

Thermoseal 2000/2000W insulation shall be spray-applied on the jobsite using equipment specified in the manufacturer's published installation instructions. The insulations are applied in multiple passes having a maximum thickness of 3 inches (76 mm) per pass up to the maximum insulation thickness specified in this report. The spray-applied foam plastic insulation shall be allowed to fully expand and cure for a minimum of 10 minutes prior to application of additional passes. The maximum inservice temperature for all areas shall not exceed the maximum temperature stated in the manufacturer's published installation instructions. The insulation shall be spraved onto a substrate that is protected and clean from any debris or weather-related conditions during and after application and shall not be used in electrical outlets or junction boxes or in contact with rain, water, or soil.

4.6.1 Thermal Barrier

4.6.1.1 Application With a Prescriptive Thermal Barrier: Thermoseal 2000/2000W spray-applied polyurethane foam plastic insulation in ceiling cavities and in wall cavities shall be separated from the interior by an approved thermal barrier of minimum ½ inch thick (12.7 mm) gypsum wallboard or equivalent 15-minute thermal barrier. The thermal barrier shall comply with, and be installed in accordance with IBC Section 2603.4, 2015, 2012 and 2009 IRC Section R316.4 or 2006 IRC Section 314.4, as applicable.

4.6.1.2 Alternative Thermal Barrier Assemblies: Thermoseal 2000/2000W spray-applied polyurethane foam plastic insulation may be installed without a thermal barrier as defined in Section 4.6.1 of this report when installed in accordance with Table 2 of this report and as referenced in IAPMO UES ER-499.

Originally Issued: 03/01/2018

TM

4.6.2 Installation in Attics or Crawl Spaces: Thermoseal 2000/2000W spray-applied polyurethane foam plastic insulation may be installed in attics or crawl spaces when installed in accordance with this section (Section 4.6). The insulations may be installed in unvented attics and unvented enclosed rafter spaces for use as air-impermeable insulation as described in Section 4.4 of this report.

When installed in attics or crawl spaces where entry is made only for the service of utilities, Thermoseal 2000/2000W insulation may be installed in accordance with this section. Thermoseal 2000/2000W insulation need not be surfaced with a thermal barrier, however, such attic and crawl space areas shall be separated from the interior of the building by a thermal barrier in accordance with Section 4.2 of this report.

4.6.2.1 Installation Using a Prescriptive Ignition Barrier: When installed within attics or crawl spaces where entry is made only for the service of utilities, Thermoseal 2000/2000W spray-applied polyurethane foam plastic insulation shall be covered with a prescriptive ignition barrier in accordance with IBC Section 2603.4.1.6, 2015, 2012 or 2009 IRC Sections R316.5.3 and R316.5.4 or 2006 IRC Sections R314.5.3 and R314.5.4, as applicable.

Exception: The prescriptive ignition barrier may be omitted when installed in accordance with Section 4.6.2 of this report.

4.6.2.2 Installation Using an Alternative Ignition Barrier Assembly: Thermoseal 2000/2000W sprayapplied polyurethane foam plastic insulations may be installed in attics and crawl spaces using an alternative ignition barrier assembly provided:

- a. Entry is only to service utilities in the attic or crawl space and no storage is permitted.
- b. Attic or crawl space areas cannot be interconnected.
- c. Air from the attic or crawl space cannot be circulated to other parts of the building.
- d. Attic ventilation is provided as required by IBC Section 1203.2 or IRC Section R806 except where air-impermeable insulation is permitted in unvented attics and shall comply with the following code sections as applicable:

For Unvented Attics:

- 2015 IBC Section 1203.3
- 2015 and 2012 IRC Section R806.5
- 2009 IRC Section R806.4

Crawl space ventilation is provided as required by the following code sections as applicable:

- 2015 IBC Section 1203.4
- 2012, 2009 and 2006 IBC Section 1203.3

Valid Through: 03/31/2019

- 2015, 2012, 2009 and 2006 IRC Section R408.1
- e. The foam plastic insulation is limited to the maximum thickness and density tested as shown in Section 4.6.2.2.1 of this report.
- f. In accordance with IMC (International Mechanical Code®) Section 701, [2006 IMC Sections 701 and 703], combustion air is provided.

4.6.2.2.1 Application Without Fire Protective Coating:

Thermoseal 2000/2000W spray-applied polyurethane foam plastic insulation may be applied without a fireretardant or fire protective coating to the underside of roof sheathing or roof rafters and vertical surfaces of attics and in crawl spaces. When applied to the underside of the top of the space, the thickness of the Thermoseal 2000/2000W insulation shall not exceed 11¼ inches (286 mm), and when applied to vertical surfaces maximum thickness shall not exceed 7¼ inches (184 mm). The insulations may be installed in unvented attics as described in this section in accordance with 2015 IBC Section 1203.3, 2015 or 2012 IRC Section R806.5 or 2009 or 2006 IRC Section R806.4, as applicable.

4.6.3 Exterior Walls of Types I, II, III or IV Construction (IBC)

4.6.3.1 General: When Thermoseal 2000/2000W insulation is used in exterior walls of Types I, II, III or IV construction of any height, the insulation shall comply with IBC Section 2603.5 and Section 4.6.3 of this report.

4.6.3.2 Complying Exterior Wall Assembly 1: Wall assemblies shall consist of minimum nominal 3⁵/₈-inch (92 mm) deep, 20 gage steel studs spaced a maximum of 24 inches (610 mm) on-center. Openings, for windows, doors, etc., shall be framed with minimum No. 20 gage steel framing. A layer of $\frac{5}{8}$ -inch (15.9 mm) thick Type X exterior gypsum sheathing complying with ASTM C1396 shall be installed over the exterior wall side, and openings, and secured to the studs with screws spaced a maximum of 8-inches (203 mm) on-center around the perimeter and 12 inches (305 mm) on-center in the field. A layer of $\frac{5}{8}$ -inch (15.9 mm) thick Type X gypsum wallboard shall be installed over the interior side and secured to the studs with screws spaced a maximum of 8 (203 mm) inches on-center around the perimeter and 12 inches (305 mm) on-center in the field. Thermoseal 2000/2000W insulation is spray applied into the stud cavities to approximately one-half the stud depth but not greater than $1^{13}/_{16}$ -inch (46 mm).

4.6.3.3 Complying Exterior Wall Assembly 2: Wall assemblies shall consist of minimum nominal $3^{5}/_{8}$ -inch (92 mm) deep, 20 gage steel studs spaced a maximum of 24 (610 mm) inches on-center. Openings, for windows, doors, etc., shall be framed with minimum No. 20 gage steel framing. A layer of $5/_{8}$ -inch (15.9 mm) thick Type X

Originally Issued: 03/01/2018

TM

exterior gypsum sheathing complying with ASTM C1396 shall be installed over the exterior wall side, and openings, and secured to the studs with screws spaced a maximum of 8-inches (203 mm) on-center around the perimeter and 12 inches (305 mm) on-center in the field. A layer of $\frac{5}{8}$ -inch (15.9 mm) thick Type X gypsum wallboard shall be installed over the interior side and secured to the studs with screws spaced a maximum of 8 inches (203 mm) on-center around the perimeter and 12 inches (305 mm) on-center around the perimeter and 12 inches (305 mm) on-center in the field. Thermoseal 2000/2000W insulation is spray applied over the exterior sheathing to a maximum nominal depth of 3^{1} -inches (82.6 mm). The spray foam insulation shall be covered by nominal 4-inch (102 mm) thick clay brick masonry with a nominal 2-inch (50.8 mm) air gap between the brick and foam insulation.

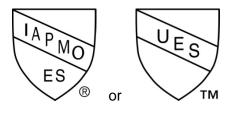
4.6.4 Non-Loadbearing One-Hour Fire-Resistance-Rated Wall Assemblies: Thermoseal 2000/2000W sprayapplied polyurethane foam plastic insulation may be used in non-loadbearing one-hour fire-resistance-rated wall assemblies in accordance with this section.

4.6.4.1 Fire-resistance-rated Assembly 1: Steel studs shall be nominally 51/2 inch (140 mm) deep, minimum 20 gage, spaced a maximum of 24 inches (610 mm) on-center. The interior of the wall assembly shall be covered with minimum ⁵/₈ inch (15.9 mm) thick Type X gypsum wallboard complying with ASTM C79 fastened with No. 6, 1¹/₄ inch (32 mm) long self-drilling drywall screws spaced 8 inches (203 mm) on-center around the perimeter and 12 inches (305 mm) on-center in the field. The Thermoseal 2000/2000W foam plastic insulation shall be spray-applied into the stud cavities to a maximum nominal thickness of 3-inches (76.2 mm). The exterior of the wall assembly shall be covered with minimum $\frac{5}{8}$ inch (15.9 mm) thick Type X exterior gypsum sheathing complying with ASTM C1396 fastened with No. 6, 1¹/₄ inch (32 mm) long self-drilling drywall screws spaced 8 inches (203 mm) on-center around the perimeter and 12 inches (305 mm) oncenter in the field. A layer of DuPont Tyvek HomeWrap water-resistive barrier shall be attached over the Type X exterior gypsum sheathing. The water-resistive barrier shall be covered with ⁵/₁₆-inch (7.9 mm) thick HardiPanel[®] cement board fastened with screws spaced 6 inches (152 mm) on-center around the perimeter and 12 inches (305 mm) on-center in the field.

4.6.4.2 Fire-resistance-rated Assembly 2: Steel studs shall be nominally $3^{5}/_{8}$ inch (92 mm) deep, minimum 25 gage, spaced a maximum of 24 inches (610 mm) on-center. The interior of the wall assembly shall be covered with minimum $5/_{8}$ inch (15.9 mm) thick Type X gypsum wallboard complying with ASTM C79 fastened with No. 6, 1¹/₄ inch (32 mm) long self-drilling drywall screws spaced 8 inches (203 mm) on-center around the perimeter and 12 inches (305 mm) on-center in the field. The exterior of the wall assembly shall be covered with minimum $5/_{8}$ inch (15.9 mm) thick Type X exterior gypsum sheathing complying with ASTM C1396 fastened with No. 6, 1¹/₄

Valid Through: 03/31/2019

inch (32 mm) long self-drilling drywall screws spaced 8 inches (203 mm) on-center around the perimeter and 12 inches (305 mm) on-center in the field. Thermoseal 2000/2000W foam plastic insulation shall be spray-applied onto the exterior sheathing to a maximum nominal thickness of 3-inches (76.2 mm).


4.7 Water-resistive Barrier: Thermoseal 2000/2000W spray-applied polyurethane foam plastic insulation when applied to form a minimum $1\frac{1}{2}$ inches (38.1 mm) thick continuous layer may be used as an alternative water-resistive barrier specified in Section 1404.2 of the IBC and Section R703.2 of the IRC, as applicable.

5.0 IDENTIFICATION

The spray foam insulation is identified with the following:

- a. Report holder's name (Thermoseal, LLC)
- b. address and telephone number,
- c. the product trade name (Thermoseal 2000/2000W)
- d. use instructions
- e. density, flame-spread and smoke-development indices
- f. date of manufacture or batch/run number
- g. thermal resistance values
- h. the evaluation report number (ER-581)
- i. the name or logo of the inspection agency

Either mark of conformity may be used as shown below:

IAPMO UES ER-581

Each container of DC315 Fire Protective Coating is labeled with the manufacturer's name (International Fireproof Technology, Inc.), the product name, and use instructions.

Each container of Fireshell[®] BMS TC is labeled with the manufacturer's name (TPR²), the product name, and use instructions.

6.0 SUBSTANTIATING DATA

6.1 Data in accordance with the ICC-ES Acceptance Criteria for Spray-applied Foam Plastic Insulation, AC377, dated April 2016, including Appendix X.

Originally Issued: 03/01/2018

6.2 Reports of room corner fire testing in accordance with NFPA 286 and room fire testing in accordance with UL 1715.

6.3 Reports of fire tests in accordance with ASTM E119.

6.4 Reports of water penetration tests in accordance with ASTM E331, modified (6.24 psf, 2 hours).

6.5 Reports of water resistance tests in accordance with AATCC Test Method 127.

7.0 CONTACT INFORMATION

TM

Thermoseal. LLC. **P.O. 32** New Canaan, CT 06840 Phone: (800) 853-1577 www.thermosealusa.com

8.0 STATEMENT OF RECOGNITION

This evaluation report describes the results of research carried out by IAPMO Uniform Evaluation Service on

Valid Through: 03/31/2019

Thermoseal 2000/2000W to assess conformance to the codes and standards shown in Section 1.0 of this report and documents the product's certification.

Svian Derben

Brian Gerber, P.E., S.E. Vice President, Technical Operations **Uniform Evaluation Service**

Richard Beck, PE, CBO, MCP Vice President, Uniform Evaluation Service

Run Chaney

GP Russ Chanev CEO, The IAPMO Group

For additional information about this evaluation report please visit www.uniform-es.org or email at info@uniform-es.org

ALTERNIA THE THERMAL RADDER ACCEMENTED

For SI: 1 inch = 25.4 mm, 1 gallon = 3.785 L, 1 ft² = 0.0929 m²

¹ Fire-protective coatings and coverings shall be applied over all exposed SPF surfaces in accordance with the coating/covering manufacturer's instructions and this report.

² International Fireproof Technology, Inc, recognized in <u>IAPMO UES ER-499</u>.

³ TPR² Corporation

SECTION 07 41 13

METAL ROOF PANELS

PART 1 - GENERAL

1.1 DESCRIPTION

- 1. This Section specifies the installation of factory-formed and field-assembled, concealed-fastener, lap-seam standingseam metal roof panels.
- 2. Extent of roofing work is indicated on the drawings and is hereby defined to include membrane systems intended for weather exposure as primary roofing to replace all existing roof systems for the designated project.
- 3. The roof panels are to match the existing panels on the equipment shields mounted between the buildings. The existing panels are:

Manufacturer: Sheffield Metals, 24-gauge Acrylic Coated Galvalume steel, rib height 1-3/4", panel width 18", color Champagne Metallic.

1.2 RELATED WORK

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions, Division 01 Specification Sections and the following Sections, apply to this Section.
 - 1. Sealant: Section 07 92 00, JOINT SEALANTS.
 - 2. Submittals: Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES

1.3APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only:
- B. American Society for Testing and Materials (ASTM):
 - 1. ASTM A653: Steel Sheet, Zinc Coated (Galvanized) or Zinc Iron Alloy Coated (Galvannealed) by the Hot Dip Process.
 - ASTM A755: A755/A755M 01 Standard Specification for Steel Sheet, Metallic Coated by the Hot-Dip Process and Prepainted by the Coil-Coating Process for Exterior Exposed Building Products
 - 3. ASTM A792: Steel Sheet, 55 % Aluminum Zinc Alloy Coated by the Hot Dip Process.
 - 4. ASTM C645: Standard Specification for Nonstructural Steel Framing Members

- 5. ASTM C754: Standard Specification for Installation of Steel Framing Members to Receive Screw-Attached Gypsum Panel Products
- 6. ASTM C1311: Standard Specification for Solvent Release Sealants
- 7. ASTM C1371: Determination of Emittance of Materials Near Room Temperature Using Portable Emissometers.
- 8. ASTM C1549: Determination of Solar Reflectance Near Ambient Temperature Using a Portable Solar Reflectometer.
- 9. ASTM D226: Standard Specification for Asphalt-Saturated Organic Felt Used in Roofing and Waterproofing
- 10. ASTM D523: Specular Gloss.
- 11. ASTM D779: Standard Test Method for Water Resistance of Paper, Paperboard, and Other Sheet Materials by the Dry Indicator Method
- 12. ASTM 1970: Standard Specification for Self-Adhering Polymer Modified Bituminous Sheet Materials Used as Steep Roofing Underlayment for Ice Dam Protection
- 13. ASTM D2244: Standard Practice for Calculation of Color tolerances and Color Differences from Instrumentally Measured Color Coordinates.
- 14. ASTM D3767: Standard Practice for Rubber-Measurement of Dimensions
- 15. ASTM D4214: Standard Test Methods for Evaluating the Degree of Chalking of Exterior Paint Films
- 16. ASTM D4533: Standard Test Method for Trapezoid Tearing Strength of Geotextiles
- 17. ASTM D4869: Standard Specification for Asphalt-Saturated Organic Felt Underlayment Used in Steep Slope Roofing
- 18. ASTM E84: Standard Test Method for Surface Burning Characteristics of Building Materials
- 19. ASTM E136: Standard Test Method for Behavior of Materials in a Vertical Tube Furnace at 750°C
- 20. ASTM E1514: Standard Specification for Structural Standing Seam Steel Roof Panel Systems
- 21. ASTM E1592: Structural Performance of Sheet Metal Roof and Siding Systems by Uniform Static Air Pressure Difference.
- 22. ASTM E1637: Standard Specification for Structural Standing Seam Aluminum Roof Panel Systems
- 23. ASTM E1646: Water Penetration of Exterior Metal Roof Panel Systems by Uniform Static Air Pressure Difference.
- 24. ASTM E1680: Rate of Air Leakage Through Exterior Metal Roof Panel Systems

- 25. ASTM E1918: Measuring Solar Reflectance of Horizontal and Low Sloped Surfaces in the Field.
- 26. ASTM E1980: Calculating Solar Reflectance Index of Horizontal and Low Sloped Opaque Surfaces.
- 27. ASTM E2140: Weather Penetration of Metal Roof Panel Systems by Static Water Pressure Head.
- 28. CRRC-1 Method #1: Measuring Solar Reflectance of a Flat, Opaque, and Heterogeneous Surface Using a Portable Solar Reflectometer.
- 29. FM Approvals Standard 4471: Class 1 Panel Roofs.
- 30. SMACNA Architectural Sheet Metal Manual.
- 31. UL 580: Standard for Tests for Uplift Resistance of Roof Assemblies
- 32. US Environmental Protection Agency: Energy Star Reflective Roof Products

33. US Green Building Council : Leadership in Energy and

Environmental Design

1.4 REFERENCES

- A. ALUMINUM ASSOCIATION (AA)
- B. AMERICAN INSTITUTE OF STEEL CONSTRUCTION (AISC)
- C. AMERICAN IRON AND STEEL INSTITUTE (AISI)
- D. AMERICAN SOCIETY OF CIVIL ENGINEERS (ASCE)
- E. ASCE 7 (2010; Errata 2011; Supp 1 2013) Minimum
- F. AMERICAN WELDING SOCIETY (AWS)
- G. ASTM INTERNATIONAL (ASTM)
- H. FM GLOBAL (FMG) FM 4471 (2010) Class I Panel Roofs
- I. METAL BUILDING MANUFACTURERS ASSOCIATION (MBMA)
- J. MBMA RSDM (2000) Metal Roofing Systems Design Manual
- K. NATIONAL ROOFING CONTRACTORS ASSOCIATION (NRCA)
- L. SHEET METAL AND AIR CONDITIONING CONTRACTORS' NATIONAL ASSOCIATION (SMACNA)
- M. UNDERWRITERS LABORATORIES (UL)

1.5 DEFINITIONS

A. Metal Roof Panel Assembly: Metal roof panels, attachment system components, miscellaneous metal framing, thermal insulation, and accessories necessary for a complete weathertight roofing system. All components shall be manufactured and supplied by the Metal Roof Panel Manufacturer.

- B. Solar Flux: Direct and diffuse radiation from the sun received at ground level over the solar spectrum, expressed in watts per square meter.
- C. Solar Reflectance: Fraction of solar flux reflected by a surface, expressed as a percent or within the range of 0.00 and 1.00.

1.6 PERFORMANCE REQUIREMENTS

- A. General: Provide metal roof panel assemblies that comply with performance requirements specified as determined by testing manufacturers' standard assemblies similar to those indicated for this Project, by a qualified testing and inspecting agency.
- B. Wind-Uplift Resistance: Provide metal roof panel assemblies that comply with UL 580 for wind-uplift resistance class indicated.
- C. Air Infiltration: Air leakage through assembly of not more than 0.02 cfm/sq. ft., of roof area when tested according to ASTM E 1680-95 at the following test-pressure difference:

1.Test-Pressure Difference: Positive and negative 1.57 lbf/sq.
ft. (75 Pa).

- D. Water Penetration: No water penetration when tested according to ASTM E 1646-95 or the latest version at the following test-pressure difference:
 - Test-Pressure Difference: 20 percent of positive design wind pressure, but not less than 6.24 lbf/sq. ft. (300 Pa) and not more than 12.0 lbf/sq. ft. (575 Pa).
- E. Structural Performance: Provide metal roof panel assemblies capable of withstanding the effects of gravity loads and the following loads and stresses within limits and under conditions indicated, based on testing according to ASTM E 1592:
- F. Seismic Performance: To comply with previous building testing or construction for seismic performance, provide metal roof panel assemblies capable of withstanding the effects of earthquake motions determined according to ASCE 7, "Minimum Design Loads for Buildings and Other Structures": Section 9, "Earthquake Loads." Not applicable if previous building seismic testing or construction has not been established.
- G. Thermal Movements: Provide metal roof panel assemblies that allow for thermal movements resulting from the following maximum change (range) in ambient and surface temperatures by preventing buckling, opening of joints, overstressing of components, failure of joint sealants, failure of connections, and other detrimental effects. Base engineering calculation on surface temperatures of materials due to both solar heat gain and nighttime-sky heat loss.

1.Temperature Change (Range): 120 deg F (67 deg C), ambient; 180 deg F (100 deg C), material surfaces.

1.7 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Product Data: Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for each type of metal roof panel and accessory.
 - 1. Contractor shall supply all material and accessories from the Metal Roof Panel Manufacturer.
 - 2. Metal Roof Panel Manufacturer shall approve and warrant all products and accessories incorporated into the Metal Roof System.
 - a. No exclusions will be permitted.
- C. Material List: A complete listing of all products intended for use on this project shall be submitted along with the shop drawings. List shall include all accessories to be incorporated into the finished roof system.
- D. Manufacturer Data:
 - 1. Manufacturer Certificate signed by roofing manufacturer certifying that metal roof panel system complies with requirements specified.
 - 2. Submit evidence of complying with performance requirements.
 - 3. Field quality-control inspection reports
- E. Shop Drawings: Show fabrication and installation layouts of metal roof panels; details of edge conditions, joints, panel profiles, corners, anchorages, trim, flashings, closures, and accessories; and special details. Distinguish between factoryand field-assembled work.
 - 1.Accessories: Include details of the following items, at a scale of not less than 1 ½ inches per 12 inches (1:10):
 - a. Flashing and trim to include perimeter, hip, rake, ridge, valley metal, step flashing, and all trim components.
 - 1) Installation requirements shall be identified for all the details required to furnish and install a complete warrantied roof system.
 - b. Gutters.
 - c. Downspouts.
 - d. Roof curbs.
 - 2. For installed products indicated to comply with design loads, include structural analysis data signed and sealed

by the qualified professional engineer responsible for their preparation.

- 3. Coordination Drawings: Roof plans drawn to scale and coordinating penetrations and roof-mounted items. Show the following:
- 4. Roof panels and attachments at all perimeters and transitions.
- 5. Sub -Purlins "Z" style or hat channel material.
- Roof-mounted items including roof hatches, equipment supports, pipe supports, pipe penetrations, lighting fixtures, snow guards, and items mounted on roof curbs.
- 7. Pre-fabricated cricket or saddle panels for penetrations restricting water drainage.
- F. Samples for Initial Selection: For each type of metal roof panel indicated with factory-applied color finishes.
 - 1. Include similar Samples of trim and accessories involving color selection.
- G. Samples for Verification: For each type of exposed finish required, prepared on Samples of size indicated below.
 - 1.Trim and Closures: 12 inches (300 mm) long. Include fasteners and other exposed accessories.
 - Panel edge fastening configuration at perimeter edge -12inch- (300-mm-) long Samples
 - 3. Accessories: 12-inch- (300-mm-) long Samples for each type of accessory.
- H. Qualification Data: Minimum Ten years installing the specified type of roof system.
- I. Product Test Reports: Based on evaluation of comprehensive tests performed by a qualified testing agency, for the following:
 - Metal Roof Panels: Include reports for air infiltration, water penetration, thermal performance, and fire-testresponse characteristics.
 - 2. Components of metal roofing system
- J. Maintenance Data: For metal roof panels to include in maintenance manuals.
- K. Warranties: Manufacturer, Contractor, and all special warranties specified in this Section.

1.8 QUALITY ASSURANCE

A. No asbestos containing material shall be allowed on this project

- B. Manufacturer Qualifications: A qualified manufacturer that is UL listed approved for membrane roofing system identical to that used for this Project.
 - 1. Obtain primary metal roof system and all accessories from a single manufacturer. To participate as a qualified company in production of metal roof materials, the company must have a minimum of ten (10) years' experience as the sole manufacturer of the brand named.
 - The manufacturer shall also furnish a notarized certification that it has been in business and had roofs installed for a minimum of five (5) years.
 - 3. All related components of the Metal Roof Panel system shall be compatible and by the same manufacturer.
 - 4. Manufacturer shall provide qualified technical representatives as required for purposes of advising Installer of procedures and precautions for use of roofing materials installer Qualifications: An employer of workers trained and approved by manufacturer.
- C. Installer's Qualifications: A qualified firm that is approved, authorized, or licensed by metal roof panel manufacturer to install manufacturer's product and that is eligible to receive manufacturer's specified NDL (No Dollar Limit) warranty
 - 1. Installer (Contractor) firm with not less than ten (10) years of successful experience in installation of metal roof systems. The date of the Contractor's manufacturer applicator approval or license must be completed prior to the notice to proceed for construction.
 - 2. Experience shall include all related work and accessories associated with metal roofing including but not limited to roof removal procedures, roof removal, underlayments, subpurlins/hat channels, flashings, sheet metal counterflashings, expansion joints, joint sealers and all other required components of specified roofing system
 - 3. Responsibilities include fabricating and installing metal roof panel assemblies and providing professional engineering services needed to assume engineering responsibility.
 - 4. Engineering Responsibility: Preparation of data for metal roof panels, including Shop Drawings, based on testing and engineering analysis of manufacturer's standard units in assemblies similar to those indicated for this Project.
- D. Package and Labels: Deliver materials in sealed package, manufacturer's original labels thereon. Do not remove labels or open packages until the clients representative inspects and approves them. All materials must have MSDS and be labeled as "asbestos free".

- E. Assignment: The Contractor shall not subcontract any phase of the work without previous approval from the Owner. Subcontracted work without previous approval is subject to rejection by the Owner.
- F. Contractor must be able to document the Project Foreman's experience with the metal roof system if required by the client's representative.
- G. Source Limitations: Obtain each type of metal roof panels and all accessories through one source from a single manufacturer.
- H. Product Options: Drawings indicate size, profiles, and dimensional requirements of metal roof panels and are based on the specific system indicated. Refer to Division 1 Section "Product Requirements."
 - 1.Do not modify intended aesthetic effects, as judged solely by client's representative, except with Architect's approval. If modifications are proposed, submit comprehensive explanatory data to client's representative for review.
- I. Fire-Resistance Ratings: Where indicated, provide metal roof panels identical to those of assemblies tested for fire resistance per ASTM E 119 and UL 790 by a testing and inspecting agency acceptable to authorities having jurisdiction.

1.Combustion Characteristics: ASTM E 136.

- 2. Fire-Resistance Ratings: Indicated by design designations from UL's "Fire Resistance Directory" or from the listings of another testing and inspecting agency.
- 3. Metal roof panels shall be identified with appropriate markings of applicable testing and inspecting agency.
- J. Surface-Burning Characteristics: Provide insulated metal roof panels having insulation core material with the following surface-burning characteristics as determined by testing identical products per ASTM E 84 by UL or another testing and inspecting agency acceptable to authorities having jurisdiction:
 - Flame-Spread Index: 25 or less, unless otherwise indicated.
 - Smoke-Developed Index: 450 or less, unless otherwise indicated.
- K. Mockups: Build mockups to verify selections made under sample Submittals and to demonstrate aesthetic effects and qualities of materials and execution.
 - 1.Build mockup of typical roof eave , including fascia, as shown on Drawings; approximately 48 inches (1200 mm) square by full thickness, including insulation, underlayment, attachments, and accessories.
 - 2. Approval of mockups is for other material and construction qualities specifically approved by Architect in writing.

- Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless such deviations are specifically approved by Owner in writing.
- 4. Approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.
- L. Pre-Installation Roofing Conference: Before starting roof deck purlin construction, conduct conference at Project site. Review methods and procedures related to roof deck sheathing purlin and rafter construction and metal roof panels including, but not limited to, the following:
 - 1.Meet with Owner, Consultant, Engineer, and all other Owner's agents or if applicable, testing and inspecting agency representative, metal roof panel Installer, metal roof panel manufacturer's representative, and installers whose work interfaces with or affects metal roof panels including installers of roof accessories and roof-mounted equipment.
 - Review and finalize construction schedule and verify availability of materials, Installer's personnel, equipment, and facilities needed to make progress and avoid delays.
 - Review methods and procedures related to metal roof panel installation, including manufacturer's written instructions.
 - 4. Examine deck substrate conditions for compliance with requirements, including flatness and attachment to structural members.
 - 5. Review structural loading limitations of deck and structural members before, during and after roofing installation.
 - 6. Review flashings, special roof details, roof drainage, roof penetrations, equipment curbs, and condition of other construction that will affect metal roof panels.
 - Review governing regulations and requirements for insurance, certificates, and testing and inspecting if applicable.
 - 8. Review temporary protection requirements for metal roof panels during and after installation.
 - 9. Review roof observation and repair procedures after metal roof panel installation.
 - 10. Review Owners specific site requirements for Building and Grounds.

1.9 DELIVERY, STORAGE, AND HANDLING

- A. Roof Panel Manufacturer shall have the capacity to fabricate and deliver materials within two weeks of material order.
 - Metal roof system panels, components, and accessories shall be delivered as required to not impede roof system installation and to best meet the phasing of the installer.
 - 2. Material shall be pre-packaged, protected by protective plastic, and crated prior to shipping.
 - 3. All components shall be properly labeled for easy identification.
 - 4. Shipping containers shall contain lot numbers and manufacturer data for Owner tracking in the event there is a problem or defect discovered after it has arrived at the jobsite and prior to installation.
- B. Deliver components, sheets, metal roof panels, and other manufactured items so as not to be damaged or deformed. Package metal roof panels for protection during transportation and handling.
- C. Deliver roofing materials to Project site in original containers with seals unbroken and labeled with manufacturer's name, product brand name and type, date of manufacture, approval or listing agency markings, and directions for storing and mixing with other components
- D. Handle and store roofing materials and place equipment in a manner to avoid permanent deflection of deck.
- E. Product Handling: Use all means necessary to protect all materials before, during and after installation. Storage outside on skids and covered with tarps will be permitted if securely tied at sides (no material visible) and sufficiently above ground to eliminate any water damage. No wet insulation will be installed under any conditions.
- F. NOTE: Poly wrap is not considered proper protection. A tarp must also be used to prevent condensation
- G. Unload, store, and erect metal roof panels in a manner to prevent bending, warping, twisting, and surface damage.
- H. Stack metal roof panels on platforms or pallets, covered with suitable weathertight and ventilated covering. Store metal roof panels to ensure dryness. Do not store metal roof panels in contact with other materials that might cause staining, denting, or other surface damage.
- Protect strippable protective covering on metal roof panels from exposure to sunlight and high humidity, except to extent necessary for period of metal roof panel installation.
- J. All roofing equipment shall be placed so that the building or premises will not be damaged. The hoist shall be substantial and arranged so as not to deface the building with drippings or scarring. The Contractor shall be responsible for cleaning the building walls.

- K. Do not permit the roofing surface to be used for traffic. Use rubber- tired buggies for transporting heavy materials over insulated surfaces or plywood panels at certain conditions.
- L. In the event of damage, immediately make all repairs and replacement necessary to the Consultant's approval and at no additional cost to the Owner. Contractors shall list and document any and all damage prior to the start of their work and file it with the Owner and Consultant

1.10 PROJECT CONDITIONS

- A. Weather Limitations: Proceed with installation only when existing and forecasted weather conditions permit assembly of metal roof panels to be performed according to manufacturers' written instructions and warranty requirements.
- B. Field Measurements: Verify locations of roof framing and roof opening dimensions by field measurements before metal roof panel fabrication and indicate measurements on Shop Drawings.
 - 1. Established Dimensions: Where field measurements cannot be made without delaying the Work, either establish framing and opening dimensions and proceed with fabricating metal roof panels without field measurements, or allow for fieldtrimming of panels. Coordinate roof construction to ensure that actual building dimensions, locations of structural members, and openings correspond to established dimensions.
- C. No tear-off shall begin when the threat of rain is above 35% without approval from Consultant. Re-roofing shall not take place when the average temperature for the day is to be below thirty-two (32) degrees F without approval from the Consultant.
- D. Wet Materials: Insulation and roofing materials that have become wet before or after installation shall be removed and replaced. Drying out of wet insulation or roofing membranes will not be permitted or acceptable for installation.
- E. Comply with recommendations of the manufacturer for environmental conditions before, during, and after application of roofing system.
- F. Workers: All workers shall be thoroughly experienced in the particular class of work employed on this project and all materials shall be securely fastened in place in a watertight, neat and workmanlike manner.
- G. All work shall be done in accordance with these specifications and shall meet the approval in the field of the Owner's Representative and the Consultant. The Contractor's Representative or Job Superintendent shall have a complete copy of specifications and drawings on the job site at all times.

- H. The Contractor shall plan and conduct the operations of the work so that each section started on one day is complete and thoroughly protected before the close of that day.
- I. The Contractor must review the scope of work with the Owner. Any incomplete areas left over twenty-four (24) hours must have the Owners approval

1.11 INSPECTION

- A. During application of the materials, the Contractor shall have the manufacturer's representative accompanied by the Owner on the job site for job meetings as required.
- B. Upon Completion, a final inspection will be made by a representative of the Owner, the material representative and the Contractor. No final payment will be authorized for work done until such inspection has been made and all work is found to have been performed in accordance with the Specifications, manufacturer's requirements and to the satisfaction of the Consultant and Owner.
- C. The Owner must be notified forty-eight (48) hours prior to the Roof Manufacturer's interim site and final inspection and be present. A letter of the inspection results must be issued by the manufacturer representative to the Owner and Consultant.
- D. Failure to properly notify the Owner of the manufacturer's inspection could be cause to require a re-inspection of the project.

1.12 COORDINATION

- A. Coordinate installation of roof curbs, equipment supports, and roof penetrations, which are specified in Division 7 Section "Roof Accessories."
- B. Coordinate metal panel roof assemblies with rain drainage work, flashing, trim, and construction of decks, purlins and rafters, parapets, walls, and other adjoining work to provide a leak proof, secure, and noncorrosive installation.

1.13 WARRANTY

A. Manufacturer's standard or customized form, without monetary limitation, in which manufacturer agrees to repair or replace

components of membrane roofing system that fail in materials or workmanship within specified warranty period

- B. The Metal Roof Panel manufacturer shall furnish to the Owner a written Twenty (20) year NDL (No Dollar Limit) guarantee as specified on the complete roof installation. The guarantee shall be sent in triplicate to Owner for review and filing. Said Guarantee shall begin when the project is completed and accepted by the Owner
- C. The Roofing Contractor shall furnish to the Owner an additional written Two (2) year workmanship guarantee on all work items not covered under Manufacturer's warranty (sheet metal, sealant, fasteners, and roof panel attachment
 - 1. The Guarantee shall cover, at no cost to the Owner, all labor and materials required to repair or replace roofing, flashing, sheet metal, coping and metal work against leaks or faulty workmanship. All costs for any of the above shall be absorbed by the Roofing Contractor primarily and materials manufacturer secondarily
- D. The Manufacturers and Contractor Guarantees shall include the following:
 - Warranty shall cover 100% of all labor and materials including for the entire roof system assembly. No exclusions will be allowed.
 - a. Failure shall include roof leaks
 - 2. Warranties shall not be pro-rated.
 - 3. Warranties shall not be limited to the cost of original application.
 - 4. Warranties shall cover entire roof system, not just roof membrane.
 - 5. Warranties shall be fully transferable.
 - 6. Manufacturer shall provide wind warranty with normal wind warranty.
- E. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of metal roof panel assemblies that fail in materials or workmanship within specified warranty period.
 - 1. Failures include, but are not limited to, the following:
 - a. Structural failures, including rupturing, cracking, or puncturing.
 - b. Deterioration of metals, metal finishes, and other materials beyond normal weathering.
 - 2.Warranty Period: Five (5) years from date of Substantial Completion.
 - Warranty Period: Fifteen (15) years from date of Substantial Completion.

- F. Special Warranty on Panel Finishes: Manufacturer's standard form in which manufacturer agrees to repair finish or replace metal roof panels that show evidence of deterioration of factory-applied finishes within specified warranty period.
 - - a. Color fading more than 5 Hunter units when tested according to ASTM D 2244.
 - b. Chalking in excess of a No. 8 rating when tested according to ASTM D 4214.
 - c. Cracking, checking, peeling, or failure of paint to adhere to bare metal.
 - 2.Finish Warranty Period: 30 years from date of Substantial Completion.
- G. Special Weather tightness Warranty for Standing-Seam Metal Roof Panels: Manufacturer's standard form in which manufacturer agrees to repair or replace standing-seam metal roof panel assemblies that fail to remain weathertight, including leaks, within specified warranty period.
 - 1.Warranty Period: 20 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturer to supply all components required of metal roof including zee purlins or hat channels. Ice and water shield and/or protective fabrics or underlayments shall be provided by the installer to meet the acceptability of the manufacturers system. Manufacturer must be able to supply purlins, trims and panels in phases, if necessary, in order to keep the project flowing.
- B. All trims and accessories must be fabricated by the manufacturer for quality control and NDL warranty purposes

2.2 PANEL MATERIALS

- A.Metallic-Coated Steel Sheet Pre-painted with Coil Coating: Steel sheet metallic coated by the hot-dip process and pre-painted by the coil-coating process to comply with ASTM A 755/A 755M.
 - 1.Zinc-Coated (Galvanized) Steel Sheet: ASTM A 653/A 653M, G90
 (Z275) coating designation; structural quality.
 - 2. Aluminum-Zinc Alloy-Coated Steel Sheet (Galvalume): ASTM A 792/A 792M, Class AZ50 coating designation, Grade 40

(Class AZM150 coating designation, Grade 275); structural quality.

- 3. Surface: Smooth, flat finish.
- 4. Exposed Finishes: Apply the following coil coating, as specified or indicated on Drawings.
 - a.High-Performance Organic Finish: Prepare, pretreat, and apply coating to exposed metal surfaces to comply with coating and resin manufacturers' written instructions.
 - 1)Fluoropolymer Two-Coat System: Manufacturer's standard two-coat, thermocured system consisting of specially formulated inhibitive primer and fluoropolymer color topcoat containing not less than 70 percent polyvinylidene fluoride resin by weight; complying with physical properties and coating performance requirements of AAMA 2604, except as modified below:
 - a) Humidity Resistance: 2000 hours.
 - b) Salt-Spray Resistance: 1000 hours.
 - b.Plastisol: Epoxy primer and vinyl plastisol topcoat; with a dry film thickness of not less than 0.2 mil (0.005 mm) for primer and 3.8 mil (0.97 mm) for topcoat.
- 5.Concealed Finish: Apply pretreatment and manufacturer's standard white or light-colored acrylic or polyester backer finish, consisting of prime coat and wash coat with a minimum total dry film thickness of 0.5 mil (0.013 mm).
- B. Aluminum Sheet: Coil-coated sheet, ASTM B 209 (ASTM B 209M), alclad alloy 3003, 3004, or 3105 for painted finishes and alloy as standard with manufacturer, with temper as required to suit forming operations and structural performance required.

1.Alternative alloys include the following:

- a. Alclad Alloy 3003: H24 temper.
- b. Alloy 3105: H14 temper.
- c. Alloy 5005: H34 temper.
- 2.Surface: Smooth, flat finish.
- 3. Exposed Finishes: Apply the following coating, as specified or indicated on Drawings.
 - a. Class I, Clear Anodic Finish: AA-M12C22A41 (Mechanical Finish: non-specular as fabricated; Chemical Finish: etched, medium matte; Anodic Coating: Architectural Class I, clear coating 0.018 mm or thicker) complying with AAMA 611.

- b. Class I, Color Anodic Finish: AA-M12C22A42/A44 (Mechanical Finish: non-specular as fabricated; Chemical Finish: etched, medium matte; Anodic Coating: Architectural Class I, integrally colored or electrolytically deposited color coating 0.018 mm or thicker) complying with AAMA 611.
- c. High-Performance Organic Finish: AA-C12C42R1x (Chemical Finish: cleaned with inhibited chemicals; Chemical Finish: acid-chromate-fluoride-phosphate conversion coating; Organic Coating: as specified below). Prepare, pretreat, and apply coating to exposed metal surfaces to comply with coating and resin manufacturers' written instructions.
 - 1)Fluoropolymer Two-Coat System: Manufacturer's standard two-coat, thermocured system consisting of specially formulated inhibitive primer and fluoropolymer color topcoat containing not less than 70 percent polyvinylidene fluoride resin by weight; complying with AAMA 2604.
- 4.Concealed Finish: Apply pretreatment and manufacturer's standard white or light-colored acrylic or polyester backer finish, consisting of prime coat and wash coat with a minimum total dry film thickness of 0.5 mil (0.013 mm).
- C.Stainless-Steel Sheet: ASTM A 666, Type 304 or Type 316L, fully annealed.
 - 1. Exposed Finishes:
 - a. Surface: Smooth, flat finish.
 - b. Bright, Directional Polish: No. 4 finish. Remove tool and die marks and stretch lines or blend into finish. Grind and polish surfaces to produce uniform, directionally textured, polished finish indicated, free of cross scratches. Run grain with long dimension of each piece. When polishing is completed, passivate and rinse surfaces. Remove embedded foreign matter and leave surfaces chemically clean.
 - c. Grade: 3042D or 3042B

D.Panel Sealants:

 (Optional) Butyl-Rubber-Based, Solvent-Release Sealant: ASTM C 1311.

2.3 UNDERLAYMENT MATERIALS

A. Self-Adhering, High-Temperature Sheet: 30 to 40 mils (0.76 to 1.0 mm) thick minimum, consisting of slip-resisting polyethylene-film top surface laminated to layer of butyl or SBS-modified asphalt adhesive, with release-paper backing; cold applied. Provide primer when recommended by underlayment manufacturer.

- Thermal Stability: Stable after testing at 240 deg F (116 deg C); ASTM D 1970.
- Low Temperature Flexibility: Passes after testing at minus 20 deg F (29 deg C); ASTM D 1970.
- B. A high strength woven synthetic roofing underlayment coated with a layer of UV stabilized polyolefin. A water-shedding underlayment mechanically-attached and designed to withstand high wind conditions. Product can be used alone or in conjunction with self-adhered underlayment.
 - 1. Color Black
 - 2. Weight 28 lbs (10 sq roll)
 - 3. Tear strength MD 58 lbs; CD 77 lbs ASTM D4533
 - Accelerated aging Pass (no damage, cracking, chipping) ICC-ES AC48
 - Ultraviolet resistance Pass (no peeling, chipping, cracking, flaking) - ICC-ES AC48
 - 6. Water ponding Pass (no percolation) ASTM D779
 - 7. Pliability Pass (no cracks) ASTM D226
 - 8. Water transmission Pass ASTM D4869
 - 9. Tensile strength MD 96 lbs; CD 116 lbs ASTM D828
 - 10. Thickness 7 mils ASTM D3767
- C.Slip Sheet: Building paper, minimum 5 lb/100 sq. ft. (0.24 kg/sq. m), red rosin sized.

2.4 MISCELLANEOUS METAL FRAMING

- A.General: Comply with ASTM C 754 for conditions indicated.
 - 1.Steel Sheet Components: Complying with ASTM C 645
 requirements for metal and with ASTM A 653/A 653M, G90,
 hot-dip galvanized zinc coating.
- B. Rigid Furring Channels: ASTM C 645.
 - 1. Minimum Base Metal Thickness: 22-gauge min.
 - 2. Depth: 7/8 inch (22 mm).
 - 3. Width: Four (4) inches
 - 4. Spacing: Three (3) feet on center
- C.Z-Shaped Furring: With non-slotted web, face flange of four (4) inches, wall attachment flange of ⁷/₈ inch (22 mm), minimum bare metal thickness of 22-gauge and depth required to fit Manufacturers requirements as indicated.

D. Fasteners for Metal Framing: Stainless Steel and of type, material, size, corrosion resistance, holding power, and other properties required to fasten steel members to substrates.

2.5 MISCELLANEOUS MATERIALS

- A. Fasteners: Stainless Steel, self-tapping screws, bolts, nuts, self-locking rivets and bolts, end-welded studs, and other suitable fasteners designed to withstand design loads. Provide exposed fasteners with heads matching color of metal roof panels by means of plastic caps or factory-applied coating.
 - Fasteners for Roof Panels: Stainless steel self-drilling or self-tapping 410 stainless or zinc-alloy steel hex washer head, with EPDM or PVC washer under heads of fasteners bearing on weather side of metal roof panels.
 - 2. Fasteners for Flashing and Trim: Blind fasteners or stainless steel self-drilling screws with hex washer head.
 - 3. Blind Fasteners: High-strength stainless-steel rivets
 - a. Color to match panel.

2.6 STANDING-SEAM METAL ROOF PANELS

- A.General: Provide factory-formed metal roof panels and accessories designed to be field assembled by lapping and interconnecting raised side edges of adjacent panels with joint type indicated and mechanically attaching panels to supports using concealed clips in side laps. Include clips, cleats, pressure plates, and accessories required for weathertight installation.
 - 1. Steel Panel Systems: Unless more stringent requirements are indicated, comply with ASTM E 1514.
 - 2. Aluminum Panel Systems: Unless more stringent requirements are indicated, comply with ASTM E 1637.
- B. Steep Sloped 3/12 or More: Vertical-Rib, Snap-Joint, Standing-Seam Metal Roof Panels: Formed with vertical ribs at panel edges and intermediate stiffening ribs symmetrically spaced flat pan between ribs; designed for sequential installation by mechanically attaching panels to supports using concealed clips located under one side of panels and engaging opposite edge of adjacent panels, and snapping panels together.
- C. Low Sloped < 3/12: Two (2) inch high double lock integral panel. Vertical-Rib, Double Snap-Joint, Standing-Seam Metal Roof Panels: Formed with vertical ribs at panel edges and intermediate stiffening ribs symmetrically spaced flat pan between ribs; designed for sequential installation by mechanically attaching panels to supports using concealed clips located under one side of panels and engaging opposite edge of adjacent panels, and snapping panels together. Panels shall be

fabricated in a manner that will allow double locking to occur after panel has been installed and secured to the clips.

- 1. Basis-of-Design Product:
 - a. American Architectural Metal Manufacturers, Inc.
 - b. AEP-Span.
 - c. Butler
- Zinc-coated (galvanized) steel sheet, 0.0209 inch (0.55 mm) 24 gauge thick.
 - a. Exterior Finish: Fluoropolymer or Plastisol.
 - Color: As selected by Architect from manufacturer's full range.
- Aluminum-zinc alloy-coated steel sheet, 0.0209 inch (0.55 mm) 0.0269 inch (0.70 mm) thick.
 - a. Exterior Finish: Fluoropolymer or Plastisol.
 - Color: As selected by Architect from manufacturer's full range.
- 4. Aluminum sheet, 0.032 inch (0.8 mm) or 0.040 inch (1.0 mm) thick.
 - a. Exterior Finish: Fluoropolymer.
 - b. Color: As selected by the VA from manufacturer's full range.
- 5. Panels Clips: Fixed and floating to accommodate thermal movement.
 - a. Material: 0.0625-inch- (1.6-mm-) thick, stainlesssteel sheet.
 - b. Clips shall be UL approved.
 - c. Clips shall be pre-drilled with a minimum of two fasteners per clip.
- 6. Panel Coverage: 18 inches (457 mm).
- 7. Panel Height: 1.75 inches (44 mm).
- 8. Uplift Rating: UL 90.
- Striations Panel shall be fabricated to have evenly spaced continuous striations along the entire width of the panel

2.7 ACCESSORIES

- A.All accessories shall be fabricated in maximum not to exceed lengths of ten (10) feet (2500mm).
- B. Prior approval by Owner shall be required for lengths exceeding ten foot.

- C. Roof Panel Accessories: Provide components required for a complete metal roof panel assembly including trim, copings, fasciae, corner units, ridge closures, clips, flashings, sealants, gaskets, fillers, closure strips, and similar items. Match material and finish of metal roof panels, unless otherwise indicated.
 - 1. Closures: Provide closures at eaves and ridges, fabricated of same metal as metal roof panels.
 - Clips: Minimum 0.0625-inch- (1.6-mm-) thick, stainlesssteel panel clips designed to withstand negative-load requirements.
 - Cleats: Mechanically seamed cleats formed from minimum 0.0250-inch- (0.64-mm-) thick, stainless-steel or nyloncoated aluminum sheet.
 - 4. Backing Plates: Provide metal backing plates at panel end splices, fabricated from material recommended by manufacturer.
 - 5. Closure Strips: Closed-cell, expanded, cellular, rubber or cross-linked, polyolefin-foam or closed-cell laminated polyethylene; minimum 1-inch- (25-mm-) thick, flexible closure strips; cut or pre-molded to match metal roof panel profile. Provide closure strips where indicated or necessary to ensure weathertight construction.
- D. Flashing and Trim: Formed from 0.024-inch thick, zinc-coated (galvanized) steel sheet or aluminum-zinc alloy-coated steel sheet pre-finished with coil coating. Provide flashing and trim as required to seal against weather and to provide finished appearance.
 - Locations include, but are not limited to, eaves, rakes, corners, bases, framed openings, ridges, fasciae, and fillers. Finish flashing and trim with same finish system as adjacent metal roof panels.
- E.Gutters: Re-use existing gutters. Shop fabricate any sections required to repair existing gutter.
 - 1. Match existing thickness and profile.
 - 2. Provide aluminum wire ball strainers at outlets.
 - 3. Finish gutters to match existing gutters. (white)
- F. Downspouts: Re-use existing downspouts. Shop fabricate any sections required to repair existing sections.
 - 1. Match existing thickness and profile.
 - 2. Finish gutters to match existing.
- G.Pipe Flashing: Pre-molded, EPDM pipe collar with flexible aluminum ring bonded to base.

2.8 FABRICATION

- A.General: Owner does not allow onsite roll forming of panels due to Building location, use, and occupancy.
- B. Fabricate and finish metal roof panels and accessories at the factory controlled environment to greatest extent possible, by manufacturer's standard procedures and processes, as necessary to fulfill indicated performance requirements demonstrated by laboratory testing. Comply with indicated profiles and with dimensional and structural requirements.
- C. Provide panel profile, including major ribs and intermediate stiffening ribs, for full length of panel.
- D.Where indicated, fabricate metal roof panel joints with factoryinstalled captive gaskets or separator strips that provide a tight seal and prevent metal-to-metal contact, in a manner that will minimize noise from movements within panel assembly.
- E. Sheet Metal Accessories: Fabricate flashing and trim to comply with recommendations in SMACNA's "Architectural Sheet Metal Manual" that apply to the design, dimensions, metal, and other characteristics of item indicated.
 - 1. Form exposed sheet metal accessories that are without excessive oil canning, buckling, and tool marks and that are true to line and levels indicated, with exposed edges folded back to form hems.
 - Seams for Aluminum: Fabricate nonmoving seams with flatlock seams. Form seams and seal with epoxy seam sealer. Rivet joints for additional strength.
 - 3. Seams for Other Than Aluminum: Fabricate nonmoving seams in accessories with flat-lock seams. Tin edges to be seamed, form seams, and solder.
 - 4. Sealed Joints: Form non-expansion but movable joints in metal to accommodate elastomeric sealant to comply with SMACNA standards.
 - 5. Conceal fasteners and expansion provisions where possible. Exposed fasteners are not allowed on faces of accessories exposed to view.
 - 6. Fabricate cleats and attachment devices from same material as accessory being anchored or from compatible, noncorrosive metal recommended by metal roof panel manufacturer.
 - a. Size: As recommended by SMACNA's "Architectural Sheet Metal Manual" or metal roof panel manufacturer for application but not less than thickness of metal being secured.

2.9 FINISHES, GENERAL

- A. Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.
- B. Protect mechanical and painted finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.
- C. Appearance of Finished Work: Variations in appearance of abutting or adjacent pieces are acceptable if they are within one-half of the range of approved Samples. Noticeable variations in the same piece are not acceptable. Variations in appearance of other components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

2.10 OTHER MATERIALS

- A. Lumber: Install new wood blocking as needed to complete this project meeting NRCA and SMACNA recommendations, specifications and details.
- B. New wood blocking to be installed and attached per local building codes and in accordance with FM Loss Prevention Data Sheet 1-14 and 1-49.
- C. Fasteners: Non-corrosive, stainless steel screw type supplied by installer meeting wind rating required.
- D. Metal to Wood: Stainless steel.
- E. Metal to Metal: Factory-coated steel or aluminum fasteners corrosion-resistant and designed for sheet metal fabrication per SMACNA and metal system manufacturer. Standard Color to be selected by Owner.
- F. Nail-in anchors. Zinc with steel nail. Size: ¼ inch by 1½ inch. Type: Rawl Zamac Nailin.
- G. Sheet metal to wood: 10-16 x 1¼ inch indented hex washer head stainless steel sheet metal screw with a stainless steel bonded washer assembly by Triangle Fastener Corp.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances, metal roof panel supports, and other conditions affecting performance of work.

EXISTING ROOF DECK IS COMPOSED OF 0.75" PLANKS OF VARYING WIDTHS. IT IS IMPERATIVE THAT THIS IS TAKEN INTO ACCOUNT WHEN APPLYING FASTENERS TO THE SUBSTRATE.

- 1. Examine primary and secondary roof framing to verify that rafters, purlins, angles, channels, and other structural panel support members and anchorages have been installed within alignment tolerances required by metal roof panel manufacturer
- 2. Examine substrate to verify that it is properly supported by framing or blocking and that installation is within flatness tolerances required by metal roof panel manufacturer.
- B. Examine roughing-in for components and systems penetrating metal roof panels to verify actual locations of penetrations relative to seam locations of metal roof panels before metal roof panel installation.
- C. Prior to the project start, the Contractor shall ascertain to his satisfaction that all aspects of these Specifications and possible modifications are workable and do not conflict with manufacturer's requirements for the specified guarantee.
- D. Upon commencement of the work, it will be presumed that these Specifications and drawings, addenda and modifications are satisfactory to both the Contractor and the manufacturer in their entirety
- E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Remove all existing edge metal, rake metal, ridge shingles, sheet metal flashing, etc: and any material that extends beyond the perimeter edge of the existing building.
- B. Clean substrates of substances harmful to insulation, including removing projections capable of interfering with metal roof panel system attachment.
- C.Substrate Board: Install substrate boards over roof deck or sheathing on entire roof surface. Attach with substrate-board fasteners.
 - 1. Install substrate board with long joints in continuous straight lines, perpendicular to roof slopes with end joints staggered between rows. Tightly butt substrate boards together.
 - 2. Comply with UL requirements for fire-rated construction.

- D. Install flashings, fasciae, copings and other sheet metal to comply with requirements specified in the latest edition of SMACNA.
- E. Miscellaneous Framing: Install subpurlins, eave angles, furring, and other miscellaneous roof panel support members and anchorage according to metal roof panel manufacturer's written recommendations.
- F. Do not cut or damage existing deck that will be left in place. Damaged or cut deck shall be replaced at contractor's expense. Removal of all existing debris down to the existing deck and wall substrates. Contractor must use extreme caution not to cause damage to the exterior or interior of the buildings.
 - 1. Damage caused by the roofing operations shall be repaired or replaced at no additional cost to the Owner.
- G. Repairs must be made to any surface condition that will not allow the new roof system to lie flat and smooth. The deck must be clean and smooth, without structural defect prior to the installation of the new roof systems. Replace any defective decking.
- H. It is mandatory that the work be done in a manner that no weather element (rain, wind, dirt, snow, etc.) penetrates through the roof assembly into the enclosed building space. Special care is to be taken to limit the work of a day so that such weather protection occurs. A watertight tie-in is required at the end of each workday.
- It shall be the sole responsibility of the contractor to maintain special care so as to limit the work of a day so that such weather protection occurs at all times.
 - 1. The contract shall take all necessary precautions to maintain a watertight transition at all times.
 - Contractor shall be responsible to repair any and all damage caused by moisture infiltration at this or any area during the course of the project
- J. The substrate must be clean, dry, relatively smooth, free of protrusions, debris, sharp edges or foreign materials and must be free of accumulated water, ice and snow. Cracks or voids in the substrate greater than ¼" (6 mm) must be filled with a suitable material
- K. Prevent materials from entering and clogging gutters and conductors and from spilling or migrating onto surfaces of other construction.
 - 1. Complete terminations and base flashings and provide temporary seals to prevent water from entering completed sections of roofing system at the end of the workday or when rain is forecast.

G. Remove and discard temporary seals before beginning work on adjoining roofing

3.3 WORKMANSHIP

- A. In the event these Specifications deviate from the manufacturer's current specifications, these specifications shall prevail, except where they conflict with the manufacturer's requirements for the specified guarantee. In this case, the manufacturer's specifications shall prevail.
- B. Metal roof panel system shall be attached to resist the designed uplift forces as determined by the contract documents and Metal Roof Panel manufacturer for state and local building codes and warranty requirements.
- C. Use tarpaulins or other approved means to protect work from spillage or dropping of roofing materials.
 - 1. Protect from concentrated loads or traffic during construction.
- D. At end of each day's work protect exposed edge of incomplete work, including ply sheets and insulation with a watertight sea or night tie-in.
- E. Place a walkway of insulation topped with plywood over new roofing and existing roofing if in contact with repeated foot and equipment traffic.
 - 1. Walkway shall be secured during construction operations and at all times when workers are not present.
 - 2. In the event of extended absence, contractor shall check roof top operations and material storage to ensure all material is secure and will not blow away or become wet or damaged from weather.
- F. Debris are not permitted within roof system.
 - Contractor shall utilize shop vacuum or back-pack blower or other mechanical means to thoroughly clean deck and substrate,
- G. Specification detail drawings are not to scale. Contractor shall be responsible for total wood blocking units and thickness necessary to satisfy specified flashing height, metal panel thickness, and detail designs.
- H. All roofing membrane shall be laid free of wrinkles, creases or buckles or restrictions and shall be laid at right angles to the slope of the roof deck.

- I. If any unusual condition (such as deteriorated deck) is discovered promptly report this finding to the Owner's Representative. Do not proceed with new roof installation if decking is not suitable, structurally sound, or properly secured.
- J. Substrate surfaces must be dry, clean and smooth. Any wet or damaged material must be replaced with material to match existing.
- K. Proceed with flashing work concurrently to prevent water entry at flashing locations. Terminate top edge of metal roof panel system to keep watertight on a daily basis.

3.4 UNDERLAYMENT INSTALLATION:

A. Felt Underlayment: Install felt underlayment and building-paper slip sheet on roof sheathing under metal roof panels, unless otherwise recommended by metal roof panel manufacturer. Use adhesive for temporary anchorage, where possible, to minimize use of mechanical fasteners under metal roof panels. Apply at locations indicated below, in shingle fashion to shed water, with lapped joints of not less than 4 inches (100 mm).
1. Apply underlayment from the eave to the ridge.
2. Apply on roof not covered by self-adhering sheet

underlayment. Lap edges of underlayment not less than 3 inches (75 mm), in shingle fashion to shed water.

- B. Self-Adhering Sheet Underlayment: Install self-adhering sheet underlayment, wrinkle free, on roof sheathing under metal roof panels. Apply primer if required by manufacturer.
 - Comply with temperature restrictions of underlayment manufacturer for installation; use primer rather than nails for installing underlayment at low temperatures.
 - 2. Apply at locations indicated below and at locations indicated on Drawings, in shingle fashion to shed water, with end laps of not less than 6 inches (150 mm) staggered 24 inches (600 mm) between courses. Overlap side edges not less than 3-1/2 inches (90 mm). Extend underlayment into gutter trough. Roll laps with roller. Cover underlayment within 14 days.
 - 3. Valleys, from lowest point to highest point, for a distance on each side of 18 inches (460 mm) .
 - 4. Overlap ends of sheets not less than 6 inches (150 mm).
 - 5. Install along entire length of all Rake, hip and valley areas.
 - 6. Install 20 gauge galvanized sheet metal sub liner panel at all hips, and valley locations. Prime metal as required for underlayment attachment.

- Roof to wall intersections for a distance from wall of 18 inches (460 mm).
- 8. Around dormers, chimneys, skylights, and other penetrating elements for a distance from element of 18 inches (460 mm).
- C. Install flashings to cover underlayment to comply with requirements specified in the latest edition of SMACNA.
- D. Apply slip sheet over underlayment before installing metal roof panels.
- E. Install "Z" sub-purlins or hat channels every two foot on center.
 - 1. Install "Z" sub-purlins or hat channels at perimeter edge and at top of ridge at all locations'

3.5 METAL ROOF PANEL INSTALLATION, GENERAL

- A. General: Provide metal roof panels of full length from eave to ridge, unless otherwise indicated or restricted by shipping limitations. Anchor metal roof panels and other components of the Work securely in place, with provisions for thermal and structural movement.
- B. Field cutting of metal roof panels by torch is not permitted
- C. Panels must be folded under at extended eave edge with no exposed fasteners in order to allow positive movement of panels during expansion and contraction
- D. Install panels perpendicular to purlins.
- E. At all valley and pitch break transitions panels must be folded and hooked to zee trim or joggle cleats (depending on detail) to allow for expansion and contraction. No exposed fasteners are allowed or to be used at these points
- F. Zee closures are to be used at all ridge and hip points. Zees to be fastened with proper screws to secure panels to underlayment and allow for positive movement during expansion and contraction. No J channels and exposed fasteners are to be installed at the ridge and hip locations.
- G. Factory supplied butyl tape to be set under all zee's, joggle cleats and j channels at all Hip, Ridge, Headwall, Sidewall and Rake edges.
- H. Rigidly fasten eave end of metal roof panels and allow ridge end free movement due to thermal expansion and contraction. Predrill panels.
- I. Provide metal "z" closures at peaks rake edges rake walls and each side of ridge and hip caps. Use of the "J" style closure is not acceptable at this location.
- J. Flash and seal metal roof panels with sheet metal closures at eaves, rakes, and at perimeter of all openings. Fasten with self-tapping screws.

- K. Locate and space fastenings in uniform vertical and horizontal alignment.
- L. Install ridge and hip caps as metal roof panel work proceeds.
- M. Panels shall be fabricated in lengths so that no panel splice occurs in the field of the roof area.
- N. Lap metal flashing over metal roof panels to allow moisture to run over and off the material.
- O. Install "D" style drip edge to provide for a one inch minimum extension over the perimeter eave to lock panels into drip edge. Field seal and tighten hem to provide seal and allow for movement at eave condition.

3.6 FASTENERS:

- A. Use stainless-steel fasteners for surfaces exposed to the exterior and the interior.
- B. Minimum two fasteners per clip
- C. Fasteners shall be installed in metal panel clip to accommodate and allow for thermal expansion and contraction.
- D. Metal Protection: Where dissimilar metals will contact each other or corrosive substrates, protect against galvanic action by painting contact surfaces with bituminous coating, by applying rubberized-asphalt underlayment to each contact surface, or by other permanent separation as recommended by metal roof panel manufacturer.
- E. Joint Sealers: Install gaskets, joint fillers, and sealants where indicated and where required for weatherproof performance of metal roof panel assemblies. Provide types of gaskets, fillers, and sealants indicated or, if not indicated, types recommended by metal roof panel manufacturer.
- F. Seal metal roof panel end laps with double beads of tape or sealant, full width of panel. Seal side joints where recommended by metal roof panel manufacturer.

3.7 FIELD-ASSEMBLED METAL ROOF PANEL INSTALLATION

- A. Standing-Seam Metal Roof Panels: Fasten metal roof panels to supports with concealed clips at each standing-seam joint at location, spacing, and with fasteners recommended by manufacturer.
- B. Install clips to supports with self-tapping fasteners.
- C. Install pressure plates where required and complying with the manufacturer's written installation instructions.

- D. Snap Joint: Nest standing seams and fasten together by interlocking and completely engaging factory-applied sealant.
- E. Fascia Panels: Align bottom of panels and fasten with blind rivets, bolts, or self-tapping screws. Flash and seal panels with weather closures where fascia meet soffits, along lower panel edges, and at perimeter of all openings.

3.8 ACCESSORY INSTALLATION

- A. General: Install accessories with positive anchorage to building and weathertight mounting and provide for thermal expansion. Coordinate installation with flashings and other components.
- B. Install components required for a complete metal roof panel assembly including trim, copings, ridge closures, seam covers, flashings, sealants, gaskets, fillers, closure strips, and similar items.
- C. Flashing and Trim: Comply with performance requirements, manufacturer's written installation instructions, and SMACNA's "Architectural Sheet Metal Manual." Provide concealed fasteners where possible, and set units true to line and level as indicated. Install work with laps, joints, and seams that will be permanently watertight and weather resistant.
- D. Install exposed flashing and trim that is without excessive oil canning, buckling, and tool marks and that is true to line and levels indicated, with exposed edges folded back to form hems. Install sheet metal flashing and trim to fit substrates and to result in waterproof and weather-resistant performance.
- E. Expansion Provisions: Provide for thermal expansion of exposed flashing and trim. Space movement joints at a maximum of 10 feet (3 m) with no joints allowed within twenty-four (24) inches (600 mm) of corner or intersection. Where lapped or bayonet-type expansion provisions cannot be used or would not be sufficiently weather resistant and waterproof, form expansion joints of intermeshing hooked flanges, not less than one (1) inch (25 mm) deep, filled with mastic sealant (concealed within joints).

3.9 GUTTERS

- A. Gutters: Re-secure existing gutters and repair as needed to return to a watertight and fully functional condition. Join sections with riveted and soldered or lapped and sealed joints.
- B. Attach gutters to eave with gutter hangers spaced not more than 4 feet (1.2 m) o.c. using manufacturer's standard fasteners. Provide end closures and seal watertight with sealant. Provide for thermal expansion.

3.10 DOWNSPOUTS:

- A. Join sections with 1-1/2-inch (38-mm) telescoping joints. Provide fasteners designed to hold downspouts securely 1 inch (25 mm) away from walls; locate fasteners at top and bottom and at approximately 60 inches (1500 mm) o.c. in between.
- B. Minimum three brackets per ten foot section.
- C. Downspouts must be re-secured to ensure all elbows are secured and splash blocks are installed at base of all downspouts that discharge onto the ground.
- D. Provide elbows at base of downspouts to direct water away from building.
- E. Tie downspouts to underground drainage system, if required.
- F. Roof Curbs: Install flashing around bases where they meet metal roof panels. Install sheet metal crickets or aprons to divert water around all roof curbs and projections.
- G. Pipe Flashing: Form flashing around pipe penetration and metal roof panels. Fasten and seal to metal roof panels as recommended by manufacturer.

3.11 ERECTION TOLERANCES

A. Installation Tolerances: Shim and align metal roof panel units within installed tolerance of 1/4 inch in 20 feet (6 mm in 6 m) on slope and location lines as indicated and within 1/8-inch (3-mm) offset of adjoining faces and of alignment of matching profiles.

3.12 FIELD QUALITY CONTROL

- A. Testing Agency: Owner will engage a qualified independent testing and inspecting agency to perform inspections and prepare reports.
- B. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect completed metal roof panel installation, including accessories. Report results in writing.
- C. Remove and replace applications of metal roof panels where inspections indicate that they do not comply with specified requirements.
- D. Final Roof Inspection: Arrange for roofing system manufacturer's technical personnel to inspect roofing installation on completion.

E. Additional inspections, at Contractor's expense, will be performed to determine compliance of replaced or additional work with specified requirements

3.13 CLEANING AND PROTECTION

- A. Remove temporary protective coverings and strippable films, if any, as metal roof panels are installed, unless otherwise indicated in manufacturer's written installation instructions. On completion of metal roof panel installation, clean finished surfaces as recommended by metal roof panel manufacturer. Maintain in a clean condition during construction.
- B. Replace metal roof panels that have been damaged or have deteriorated beyond successful repair by finish touchup or similar minor repair procedures.
- C. Protect membrane roofing system from damage and wear during remainder of construction period. When remaining construction will not affect or endanger roofing, inspect roofing for deterioration and damage, describing its nature and extent in a written report, with copies to Architect and Owner.
- D. Correct deficiencies in or remove membrane roofing system that does not comply with requirements, repair substrates and repair or reinstall membrane roofing system to a condition free of damage and deterioration at time of Substantial Completion and according to warranty requirements.
- E. It shall be the Contractor's responsibility to protect all property and surfaces from drippings by means of masking, shielding or screening. Any drippings adhering to surfaces not intended to receive materials, including automobiles, shall be removed by the Contractor to the satisfaction of the Owner.
- F. During the course of the job, the Contractor shall maintain good housekeeping practices. Debris shall not be allowed to accumulate, but will be removed from the site on a daily basis. At the completion of the job, all areas shall be left clean to the satisfaction of the Owner's representative.
- G. Immediately upon job completion, the Meal Roof Panel system and flashing surfaces shall be cleaned of debris, excessive adhesive, and all marred surfaces.
- H. Immediately upon completion of the project, the contactor shall be responsible for thoroughly cleaning all dust and debris that was caused by the re-roof. The contractor shall clean all joists, duct, and light fixtures in the ceiling. The contractor shall clean all floor areas ensuring to leave no foreign particles in place. The cleaning is required to be done by an approved subcontractor and all cleaning shall be included in the bid price. The cleaning shall be inspected with owner, contractor, and consultant present before final payment is released.

I. Immediately upon job completion, the area surrounding exterior of the building shall be cleaned of debris and any damage or deficiencies shall be repaired and the price shall be included in the bid price.

3.14 INTENT OF SPECIFICATIONS

- A. It is the intent of these specifications to call out the performance criteria desired for the roof membrane system and insulation on this project. It is the Contractor's responsibility to make all measurements and supply materials for all areas on the project as specified, including all changes made in writing prior to the bid.
- B. The Contractor shall also be responsible for providing approved drawings and details meeting the manufacturer's requirements so that a warranty will be issued upon completion. This specification shall cover all roof areas and related items necessary to complete the roofing project and must accommodate any current detail changes or deviations by the manufacturer necessary to insure that the Warranty will be issued as specified upon completion

END OF SECTION 07 41 13

SECTION 07 60 00 FLASHING AND SHEET METAL

PART 1 - GENERAL

1.1 DESCRIPTION

Formed sheet metal work for wall and roof flashing, roof edge metal, and drainage specialties are specified in this section.

1.2 RELATED WORK

- A. Manufactured flashing, copings, roof edge metal, and fasciae: Section 07 31 13 ASPHALT SHINGLES, 07 41 13 METAL ROOF PANELS, 07 20 00 SNOW GUARDS.
- B. N/A
- C. Flashing components of factory finished roofing systems: Division 07 roofing and wall system sections.
- D. Joint Sealants: Section 07 92 00, JOINT SEALANTS.
- E. Color of factory coated exterior architectural metal and anodized aluminum items: 07 41 13 METAL ROOF PANELS, Section 09 06 00, SCHEDULE FOR FINISHES.
- F. Integral flashing components of manufactured roof specialties and accessories or equipment: Section 07 72 00, ROOF ACCESSORIES, Division 22, PLUMBING sections and Division 23 HVAC sections.
- G. Paint materials and application: Section 09 91 00, PAINTING.
- H. N/A.
- I. N/A.

1.3 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only. Editions of applicable publications current on date of issue of bidding documents apply unless otherwise indicated.
- B. Aluminum Association (AA): AA-C22A41.....Aluminum Chemically etched medium matte, with clear anodic coating, Class I Architectural, 0.7-mil thick AA-C22A42....Chemically etched medium matte, with integrally colored anodic coating, Class I Architectural, 0.7 mils thick

	AA-C22A44	.Chemically etched medium matte with
		electrolytically deposited metallic compound,
		integrally colored coating Class I
		Architectural, 0.7-mil thick finish
C.	American National Stand	ards Institute/Single-Ply Roofing
	Institute/Factory Mutua	
		.Wind Design Standard for Edge Systems Used with
		Low Slope Roofing Systems
D.	American Architectural	Manufacturers Association (AAMA):
	AAMA 620-02	.Voluntary Specification for High Performance
		Organic Coatings on Coil Coated Architectural
		Aluminum
	AAMA 621-02	.Voluntary Specification for High Performance
		Organic Coatings on Coil Coated Architectural
		Hot Dipped Galvanized (HDG) and Zinc-Aluminum
		Coated Steel Substrates
Е.	ASTM International (AST	
		.Standard Specification for Chromium and
		Chromium-Nickel Stainless Steel Plate, Sheet
		and Strip for Pressure Vessels and for General
		Applications.
	A653/A653M-15	.Steel Sheet Zinc-Coated (Galvanized) or Zinc
		Alloy Coated (Galvanized) by the Hot- Dip
		Process
	В32-14	
		.Aluminum and Aluminum-Alloy Sheet and Plate
		.Copper Sheet and Strip for Building
		Construction
	D173 - 03(R2011)	.Bitumen-Saturated Cotton Fabrics Used in
		Roofing and Waterproofing
	D412-15	.Vulcanized Rubber and Thermoplastic Elastomers-
		Tension
	07(D2011)	Asphalt Base Emulsions for Use as Protective
	DII0/ 9/(N2011)	Coatings for Metal
	1784_11	.Rigid Poly (Vinyl Chloride) (PVC) Compounds and
	D1,01 11	Chlorinated Poly (Vinyl Chloride) (CPVC)
		Compounds
		Compounds

D3656-13.....Insect Screening and Louver Cloth Woven from Vinyl-Coated Glass Yarns

D4586-12.....Asphalt Roof Cement, Asbestos Free

- F. Sheet Metal and Air Conditioning Contractors National Association (SMACNA): Architectural Sheet Metal Manual.
- G. National Association of Architectural Metal Manufacturers (NAAMM): AMP 500-06.....Metal Finishes Manual
- H. Federal Specification (Fed. Spec): A-A-1925A.....Shield, Expansion; (Nail Anchors) UU-B-790A....Building Paper, Vegetable Fiber

I. International Code Commission (ICC): International Building Code, Current Edition

1.4 PERFORMANCE REQUIREMENTS

- A. Wind Uplift Forces: Resist the following forces per FM Approvals 1-49:1. N/A.
 - 2. Wind Zone 1: 1.00 to 1.44 kPa (21 to 30 lbf/sq. ft.): 2.87-kPa (60-lbf/sq. ft.) perimeter uplift force, 4.31-kPa (90-lbf/sq. ft.) corner uplift force, and 1.44-kPa (30-lbf/sq. ft.) outward force.
 - 3. N/A.
 - 4. N/A.
- B. Wind Design Standard: Fabricate and install roof-edge flashings tested per ANSI/SPRI/FM ES-1 to resist design pressure indicated on Drawings.

1.5 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Shop Drawings: For all specified items, including:
 - 1. Flashings
 - 2. N/A
 - 3. N/A
 - 4. Gutter and Conductors
 - 5. N/A
 - 6. Fascia-cant
- C. Manufacturer's Literature and Data: For all specified items, including:
 - 1. Two-piece counterflashing
 - 2. Thru wall flashing
 - 3. Expansion joint cover, each type
 - 4. Nonreinforced, elastomeric sheeting

- 5. Copper clad stainless steel
- 6. Polyethylene coated copper
- 7. Bituminous coated copper
- 8. Copper covered paper
- 9. Fascia-cant
- D. Certificates: Indicating compliance with specified finishing requirements, from applicator and contractor.

PART 2 - PRODUCTS

2.1 FLASHING AND SHEET METAL MATERIALS

- A. Stainless Steel: ASTM A240, Type 302B, dead soft temper.
- B. Copper ASTM B370, cold-rolled temper.
- C. Bituminous Coated Copper: Minimum copper ASTM B370, weight not less than 1 kg/m² (3 oz/sf). Bituminous coating shall weigh not less than 2 kg/m² (6 oz/sf); or, copper sheets may be bonded between two layers of coarsely woven bitumen-saturated cotton fabric ASTM D173. Exposed fabric surface shall be crimped.
- D. N/A
- E. N/A
- F. Aluminum Sheet: ASTM B209, alloy 3003-H14 //except alloy used for color anodized aluminum shall be as required to produce specified color. Alloy required to produce specified color shall have the same structural properties as alloy 3003-H14//.
- G. N/A.
- H. N/A.

2.2 FLASHING ACCESSORIES

- A. N/A.
- B. N/A.
- C. Bituminous Paint: ASTM D1187, Type I.
- D. Fasteners:
 - Use copper, copper alloy, bronze, brass, or stainless steel for copper and copper clad stainless steel, and stainless steel for stainless steel and aluminum alloy. Use galvanized steel or stainless steel for galvanized steel.
 - 2. Nails:
 - a. Minimum diameter for copper nails: 3 mm (0.109 inch).
 - b. Minimum diameter for aluminum nails 3 mm (0.105 inch).

- c. Minimum diameter for stainless steel nails: 2 mm (0.095 inch) and annular threaded.
- d. Length to provide not less than 22 mm (7/8 inch) penetration into anchorage.
- 3. Rivets: Not less than 3 mm (1/8 inch) diameter.
- 4. Expansion Shields: Fed Spec A-A-1925A.
- E. Sealant: As specified in Section 07 92 00, JOINT SEALANTS for exterior locations.
- F. N/A.
- G. N/A.

2.3 SHEET METAL THICKNESS

- A. Except as otherwise shown or specified use thickness or weight of sheet metal as follows:
- B. Concealed Locations (Built into Construction):
 - 1. Copper: 30g (10 oz) minimum 0.33 mm (0.013 inch thick).
 - 2. Stainless steel: 0.25 mm (0.010 inch) thick.
 - 3. N/A.
 - 4. N/A.
- C. Exposed Locations:
 - 1. Copper: 0.4 Kg (16 oz).
 - 2. Stainless steel: 0.4 mm (0.015 inch).
 - 3. N/A.
- D. N/A.

2.4 FABRICATION, GENERAL

- A. Jointing:
 - In general, copper, stainless steel and copper clad stainless-steel joints, except expansion and contraction joints, shall be locked and soldered.
 - Jointing of copper over 0.5 Kg (20 oz) weight or stainless steel over 0.45 mm (0.018 inch) thick shall be done by lapping, riveting and soldering.
 - 3. Joints shall conform to following requirements:
 - a. Flat-lock joints shall finish not less than 19 mm (3/4 inch) wide.
 - b. Lap joints subject to stress shall finish not less than 25 mm (one inch) wide and shall be soldered and riveted.

- c. Unsoldered lap joints shall finish not less than 100 mm (4 inches) wide.
- 4. Flat and lap joints shall be made in direction of flow.
- 5. N/A.
- 6. N/A.
- B. N/A
- C. Cleats:
 - Fabricate cleats to secure flashings and sheet metal work over 300 mm (12 inches) wide and where specified.
 - 2. Provide cleats for maximum spacing of 300 mm (12 inch) centers unless specified otherwise.
 - 3. Form cleats of same metal and weights or thickness as the sheet metal being installed unless specified otherwise.
 - 4. Fabricate cleats from 50 mm (2 inch) wide strip. Form end with not less than 19 mm (3/4 inch) wide loose lock to item for anchorage. Form other end of length to receive nails free of item to be anchored and end edge to be folded over and cover nail heads.
- D. Edge Strips or Continuous Cleats:
 - Fabricate continuous edge strips where shown and specified to secure loose edges of the sheet metal work.
 - Except as otherwise specified, fabricate edge strips or minimum 0.6 mm (0.024 inch) thick stainless steel.
 - 3. Use material compatible with sheet metal to be secured by the edge strip.
 - Fabricate in 3000 mm (10 feet) maximum lengths with not less than 19 mm (3/4 inch) loose lock into metal secured by edge strip.
 - 5. Fabricate Strips for fascia anchorage to extend below the supporting wood construction to form a drip and to allow the flashing to be hooked over the lower edge at least 19 mm (3/4-inch).
 - 6. Fabricate anchor edge maximum width of 75 mm (3 inches) or of sufficient width to provide adequate bearing area to insure a rigid installation using 1 Kg (32 oz) copper OR0.8 mm (0.031 inch) thick stainless steel.
- E. Drips:
 - Form drips at lower edge of sheet metal counter-flashings (cap flashings), fascias, gravel stops, wall copings, by folding edge back 13 mm (1/2 inch) and bending out 45 degrees from vertical to carry water away from the wall.

- Form drip to provide hook to engage cleat or edge strip for fastening for not less than 19 mm (3/4 inch) loose lock where shown.
- F. Edges:
 - Edges of flashings concealed in masonry joints opposite drain side shall be turned up 6 mm (1/4 inch) to form dam, unless otherwise specified or shown otherwise.
 - 2. Finish exposed edges of flashing with a 6 mm (1/4 inch) hem formed by folding edge of flashing back on itself when not hooked to edge strip or cleat. Use 6 mm (1/4 inch) minimum penetration beyond wall face with drip for through-wall flashing exposed edge.
 - 3. All metal roof edges shall meet requirements of IBC, current edition.
- G. Metal Options:
 - 1. Where options are permitted for different metals use only one metal throughout.
 - Stainless steel may be used in concealed locations for fasteners of other metals exposed to view and where use of copper may result in staining of exposed surfaces.
 - 3. N/A.

2.5 FINISHES

- A. Use same finish on adjacent metal or components and exposed metal surfaces unless specified or shown otherwise.
- B. In accordance with NAAMM Metal Finishes Manual AMP 500, unless otherwise specified.
- C. Finish exposed metal surfaces as follows, unless specified otherwise:
 - 1. Copper: Mill finish.
 - 2. Stainless Steel: Finish No. 2B or 2D.
 - 3. Aluminum:
 - a. Clear Finish: AA-C22A41 medium matte, clear anodic coating, Class1 Architectural, 18 mm (0.7 mils) thick.
 - b. Colored Finish: AA-C22A42 (anodized) or AA-C22A44 (electrolytically deposited metallic compound) medium matte, integrally colored coating, Class 1 Architectural, 18 mm (0.7 mils) thick. Dyes will not be accepted.
 - c. Fluorocarbon Finish: AAMA 620, high performance organic coating.
 - d. Mill finish.
 - 4. Steel and Galvanized Steel:

- a. Finish painted under Section 09 91 00, PAINTING unless specified as prefinished item.
- b. Manufacturer's finish:
 - 1) Baked on prime coat over a phosphate coating.
 - 2) Baked-on prime and finish coat over a phosphate coating.
 - 3) Fluorocarbon Finish: AAMA 621, high performance organic coating.

2.6 THROUGH-WALL FLASHINGS

- A. Form through-wall flashing to provide a mechanical bond or key against lateral movement in all directions. Install a sheet having 2 mm (1/16 inch) deep transverse channels spaced four to every 25 mm (one inch), or ribbed diagonal pattern, or having other deformation unless specified otherwise.
 - Fabricate in not less than 2400 mm (8 feet) lengths; 3000 mm (10 feet) maximum lengths.
 - 2. Fabricate so keying nests at overlaps.
- B. For Masonry Work When Concealed Except for Drip:
 - 1. Either bituminous coated copper or stainless steel.
 - 2. Form an integral dam at least 5 mm (3/16 inch) high at back edge.
 - Form exposed portions of flashing with drip, approximately 6 mm (1/4 inch) projection beyond wall face.
- C. For Masonry Work When Exposed Edge Forms a Receiver for Counter Flashing:
 - 1. Use same metal and thickness as counter flashing.
 - 2. Form an integral dam at least 5 mm (3/16 inch) high at back edge.
 - 3. Form exposed portion as snap lock receiver for counter flashing upper edge.
- D. N/A.
- E. Window Sill Flashing and Lintel Flashing:
 - Use either copper, stainless steel, copper clad stainless steel plane flat sheet, or nonreinforced elastomeric sheeting, bituminous coated copper, copper covered paper, or polyethylene coated copper.
 - Fabricate flashing at ends with folded corners to turn up 5 mm (3/16 inch) in first vertical masonry joint beyond masonry opening.
 - 3. Turn up back edge as shown.
 - 4. Form exposed portion with drip as specified or receiver.
- F. Door Sill Flashing:

- Where concealed, use either 0.5 Kg (20 oz) copper, 0.5 mm (0.018 inch) thick stainless steel, or 0.5 mm (0.018 inch) thick copper clad stainless steel.
- 2. Where shown on drawings as combined counter flashing under threshold, sill plate, door sill, or where subject to foot traffic, use either 0.6 Kg (24 ounce) copper, 0.6 mm (0.024 inch) stainless steel, or 0.6 mm (0.024 inch) thick stainless steel.
- Fabricate flashing at ends to turn up 5 mm (3/16 inch) in first vertical masonry joint beyond masonry opening with folded corners.
- 2.7 N/A.
- 2.8 N/A.
- 2.9 N/A.
- 2.10 N/A.

2.11 HANGING GUTTERS

- A. Fabricate gutters of not less than the following:
 - 1. N/A.
 - 2. N/A.
 - 3. 0.032 inch thick aluminum.
- B. Fabricate hanging gutters in sections not less than 2400 mm (8 feet) long, except at ends of runs where shorter lengths are required.
- C. Building side of gutter shall be not less than 38 mm (1 1/2 inches) higher than exterior side.
- D. Gutter Bead: Stiffen outer edge of gutter by folding edge over approximately 19 mm (3/4 inch) toward roof and down approximately19 mm (3/4 inch) unless shown otherwise.
- E. Gutter Spacers:
 - 1. Fabricate of same material and thickness as gutter.
 - Fabricate 25 mm (one inch) wide strap and fasten to gutters not over 900 mm (36 inches) on center.
 - 3. Turn back edge up 25 mm (one inch) and lap front edge over gutter bead.
 - 4. Rivet to gutter except rivet and seal to aluminum.
- F. Outlet Tubes:
 - Form outlet tubes to connect gutters to conductors of same metal and thickness as gutters extend into the conductor 75 mm (3 inch).
 Flange upper end of outlet tube 13 mm (1/2 inch).

- 2. Lock longitudinal seam.
- 3. Seal aluminum tube to gutter and rivet to gutter.
- 4. Fabricate basket strainers of same material as gutters.
- G. Gutter Brackets:
 - 1. Fabricate of same metal as gutter. Use the following:
 - a. N/A.
 - b. N/A.
 - c. 6 by 25 mm (1/4 by 1 inch) aluminum.
 - 2. Fabricate to gutter profile.
 - Drill two 5 mm (3/16 inch) diameter holes in anchor leg for countersunk flat head screws.

2.12 CONDUCTORS (DOWNSPOUTS)

- A. Fabricate conductors of same metal and thickness as gutters in sections approximately 3000 mm (10 feet) long [with 19 mm (3/4 inch) wide flat locked seams].
 - 1. Fabricate open face channel shape with hemmed longitudinal edges.
- B. Fabricate elbows by mitering, riveting, and seal aluminum in lieu of solder. Lap upper section to the inside of the lower piece.
- C. Fabricate conductor brackets or hangers of same material as conductor, 2 mm (1/16 inch) thick by 25 mm (one inch) minimum width. Form to support conductors 25 mm (one inch) from wall surface in accordance with Architectural Sheet Metal Manual Plate 34, Design C for rectangular shapes and E for round shapes.
- D. Conductor Heads:
 - 1. Fabricate of same material as conductor.
 - Fabricate conductor heads to not less than 250 mm (10 inch) wide by 200 mm (8 inch) deep by 200 mm (8 inches) from front to back.
 - Form front and side edges channel shape not less than 13 mm (1/2 inch) wide flanges with edge hemmed.
 - 4. Slope bottom to sleeve to conductor or downspout at not less than 60 degree angle.
 - 5. Extend wall edge not less than 25 mm (one inch) above front edge.
 - 6. Solder joints for water tight assembly.
 - Fabricate outlet tube or sleeve at bottom not less than 50 mm (2 inches) long to insert into conductor.

2.13 N/A

2.14 REGLETS

- A. Fabricate reglets of one of the following materials:
 - 1. N/A.
 - 2. Stainless steel, not less than 0.3 mm (0.012 inch) thick.
 - 3. N/A.
 - 4. N/A.
- B. Fill open-type reglets with fiberboard or other suitable separator, to prevent crushing of the slot during installation.
- C. N/A.
- D. Fabricate reglets for building into horizontal masonry mortar joints not less than 19 mm (3/4 inch) deep, nor more than 25 mm (one inch) deep.
- E. Fabricate mitered corners, fittings, and special shapes as may be required by details.
- F. Reglets for concrete may be formed to receive flashing and have a 10 mm (3/8 inch), 45 degree snap lock.
- 2.15 N/A.
- 2.16 N/A.
- 2.17 N/A.
- 2.18 N/A.
- PART 3 EXECUTION

3.1 INSTALLATION

- A. General:
 - Install flashing and sheet metal items as shown in Sheet Metal and Air Conditioning Contractors National Association, Inc., publication, ARCHITECTURAL SHEET METAL MANUAL, except as otherwise shown or specified.
 - 2. Apply Sealant as specified in Section 07 92 00, JOINT SEALANTS.
 - Apply sheet metal and other flashing material to surfaces which are smooth, sound, clean, dry and free from defects that might affect the application.
 - 4. Remove projections which would puncture the materials and fill holes and depressions with material compatible with the substrate. Cover

holes or cracks in wood wider than 6 mm (1/4 inch) with sheet metal compatible with the roofing and flashing material used.

- Coordinate with masonry work for the application of a skim coat of mortar to surfaces of unit masonry to receive flashing material before the application of flashing.
- 6. Apply a layer of 7 Kg (15 pound) saturated felt followed by a layer of rosin paper to wood surfaces to be covered with copper. Lap each ply 50 mm (2 inch) with the slope and nail with large headed copper nails.
- Confine direct nailing of sheet metal to strips 300 mm (12 inch) or less wide. Nail flashing along one edge only. Space nail not over 100 mm (4 inches) on center unless specified otherwise.
- 8. Install bolts, rivets, and screws where indicated, specified, or required in accordance with the SMACNA Sheet Metal Manual. Space rivets at 75 mm (3 inch) on centers in two rows in a staggered position. Use neoprene washers under fastener heads when fastener head is exposed.
- 9. Coordinate with roofing work for the installation of metal base flashings and other metal items having roof flanges for anchorage and watertight installation.
- 10. Nail continuous cleats on 75 mm (3 inch) on centers in two rows in a staggered position.
- Nail individual cleats with two nails and bend end tab over nail heads. Lock other end of cleat into hemmed edge.
- 12. Install flashings in conjunction with other trades so that flashings are inserted in other materials and joined together to provide a water tight installation.
- 13. Where required to prevent galvanic action between dissimilar metal isolate the contact areas of dissimilar metal with sheet lead, waterproof building paper, or a coat of bituminous paint.
- 14. Isolate aluminum in contact with dissimilar metals others than stainless steel, white bronze or other metal compatible with aluminum by:
 - a. Paint dissimilar metal with a prime coat of zinc-chromate or other suitable primer, followed by two coats of aluminum paint.
 - b. Paint dissimilar metal with a coat of bituminous paint.
 - c. Apply an approved caulking material between aluminum and dissimilar metal.

09-01-18

- 15. Paint aluminum in contact with or built into mortar, concrete, plaster, or other masonry materials with a coat of bituminous paint.
- 16. Paint aluminum in contact with absorptive materials that may become repeatedly wet with two coats of bituminous paint or two coats of aluminum paint.
- 17. N/A.

3.2 THROUGH-WALL FLASHING

- A. General:
 - 1. N/A.
 - 2. N/A.
 - 3. Exposed edge of flashing may be formed as a receiver for two piece counter flashing as specified.
 - Terminate exterior edge beyond face of wall approximately 6 mm (1/4 inch) with drip edge where not part of counter flashing.
 - 5. Turn back edge up 6 mm (1/4 inch) unless noted otherwise where flashing terminates in mortar joint or hollow masonry unit joint.
 - Terminate interior raised edge in masonry backup unit approximately
 38 mm (1 1/2 inch) into unit unless shown otherwise.
 - 7. N/A.
 - Lap end joints at least two corrugations, but not less than 100 mm (4 inches). Seal laps with sealant.
 - 9. Where dowels, reinforcing bars and fastening devices penetrate flashing, seal penetration with sealing compound. Sealing compound is specified in Section 07 92 00, JOINT SEALANTS.
 - 10. Coordinate with other work to set in a bed of mortar above and below flashing so that total thickness of the two layers of mortar and flashing are same as regular mortar joint.
 - 11. Where ends of flashing terminate turn ends up 25 mm (1 inch) and fold corners to form dam extending to wall face in vertical mortar or veneer joint.
 - Turn flashing up not less than 200 mm (8 inch) between masonry or behind exterior veneer.
 - 13. When flashing terminates in reglet extend flashing full depth into reglet and secure with lead or plastic wedges spaced 150 mm (6 inch) on center.
 - 14. N/A.

B. N/A.

- C. N/A.
- D. N/A.
- E. Flashing at Veneer Walls:
 - 1. Install near line of finish floors over shelf angles or where shown.
 - 2. Turn up against sheathing.
 - At stud framing, hem top edge 19 mm (3/4 inch) and secure to each stud with stainless steel fasteners through sheathing.
 - 4. At concrete backing, extend flashing into reglet as specified.
 - 5. Coordinate with installation of waterproofing or asphalt felt for lap over top of flashing.
- F. Lintel Flashing when not part of shelf angle flashing:
 - Install flashing full length of lintel to nearest vertical joint in masonry over veneer.
 - 2. Turn ends up 25 mm (one inch) and fold corners to form dam and extend end to face of wall.
 - Turn back edge up to top of lintel; terminate back edge as specified for back-up wall.
- G. Window Sill Flashing:
 - 1. Install flashing to extend not less than 100 mm (4 inch) beyond ends of sill into vertical joint of masonry or veneer.
 - 2. Turn back edge up to terminate under window frame.
 - 3. Turn ends up 25 mm (one inch) and fold corners to form dam and extend to face of wall.
- H. Door Sill Flashing:
 - Install flashing under bottom of plate sills of doors over curbs opening onto roofs. Extend flashing out to form counter flashing or receiver for counter flashing over base flashing. Set in sealant.
 - Extend sill flashing 200 mm (8 inch) beyond jamb opening. Turn ends up one inch in vertical masonry joint, extend end to face of wall. Join to counter flashing for water tight joint.
 - 3. Where doors thresholds cover over waterproof membranes install sill flashing over water proof membrane under thresholds. Extend beyond opening to cover exposed portion of waterproof membrane and not less than 150 mm (6 inch) beyond door jamb opening at ends. Turn up approximately 6 mm (1/4 inch) under threshold.
- I. N/A.

3.3 N/A.

3.4 COUNTERFLASHING (CAP FLASHING OR HOODS)

- A. General:
 - 1. Install counterflashing over and in conjunction with installation of base flashings, except as otherwise specified or shown.
 - Install counterflashing to lap base flashings not less than 100 mm (4 inch).
 - Install upper edge or top of counterflashing not less than 225 mm (9 inch) above top of the roofing.
 - 4. Lap joints not less than 100 mm (4 inch). Stagger joints with relation to metal base flashing joints.
 - 5. N/A.
 - 6. N/A.
- B. One Piece Counterflashing:
 - 1. Where flashing is installed at new masonry, coordinate to insure proper height, embed in mortar, and end lap.
 - Where flashing is installed in reglet in concrete insert upper edge into reglet. Hold flashing in place with lead wedges spaced not more than 200 mm (8 inch) apart. Fill joint with sealant.
 - 3. Where flashing is surface mounted on flat surfaces.
 - a. When top edge is double folded anchor flat portion below sealant "V" joint with fasteners spaced not over 400 mm (16 inch) on center:
 - 1) Locate fasteners in masonry mortar joints.
 - 2) Use screws to sheet metal or wood.
 - b. Fill joint at top with sealant.
 - 4. Where flashing or hood is mounted on pipe.
 - a. Secure with draw band tight against pipe.
 - b. Set hood and secure to pipe with a one by 25 mm x 3 mm (1 x 1/8 inch) bolt on stainless steel draw band type clamp, or a stainless worm gear type clamp.
 - c. Completely fill joint at top with sealant.
- C. N/A.
- D. Where vented edge occur install so lower edge of counterflashing is against base flashing.
- E. When counter flashing is a component of other flashing install as shown.

3.5 REGLETS

- A. Install reglets in a manner to provide a watertight installation.
- B. Locate reglets not less than 225 mm (9 inch) nor more than 400 mm (16 inch) above roofing, and not less than 125 mm (5 inch) nor more than 325 mm (13 inch) above cant strip.
- C. Butt and align end joints or each section of reglet and securely hold in position until concrete or mortar are hardened:
 - 1. Coordinate reglets for anchorage into concrete with formwork construction.
 - Coordinate reglets for masonry to locate horizontally into mortar joints.

3.6 N/A.

- 3.7 N/A.
- 3.8 N/A.

3.9 N/A.

3.10 HANGING GUTTERS

- A. Hang gutters with high points equidistant from downspouts. Slope at not less than 1:200 (1/16 inch per foot).
- B. Lap joints, except for expansion joints, at least 25 mm (one inch) in the direction of flow. Rivet and seal lapped joints.
- C. Support gutters in brackets spaced not more than 600 mm (24 inch) on centers, brackets attached to facial or wood nailer by at least two screws or nails.
 - 1. N/A.
 - 2. N/A.
 - 3. For aluminum gutters use aluminum brackets or stainless steel brackets.
 - 4. Use brass or stainless steel screws.
- D. Secure brackets to gutters in such a manner as to allow free movement of gutter due to expansion and contraction.
- E. Gutter Expansion Joint:
 - 1. Locate expansion joints midway between outlet tubes.
 - 2. Provide at least a 25 mm (one inch) expansion joint space between end baffles of gutters.
 - 3. Install a cover plate over the space at expansion joint.

- 4. Fasten cover plates to gutter section on one side of expansion joint only.
- 5. Secure loose end of cover plate to gutter section on other side of expansion joint by a loose-locked slip joint.
- F. Outlet Tubes: Set bracket strainers loosely into gutter outlet tubes.

3.11 CONDUCTORS (DOWNSPOUTS)

- A. Where gutters discharge into downspouts install conductor head to receive discharge with back edge up behind drip edge of scupper. Fasten and seal joint. Sleeve conductors to gutter outlet tubes and fasten joint and joints between sections.
- B. Set conductors plumb and clear of wall, and anchor to wall with two anchor straps, located near top and bottom of each section of conductor. Strap at top shall be fixed to downspout, intermediate straps and strap at bottom shall be slotted to allow not less than 13 mm (1/2 inch) movement for each 3000 mm (10 feet) of downspout.
- C. Install elbows, offsets and shoes where shown and required. Slope not less than 45 degrees.
- 3.12 N/A.

3.13 N/A.

- - - E N D - - -

SECTION 07 72 00 ROOF ACCESSORIES - SNOW GUARDS

PART 1 - GENERAL

1.1 DESCRIPTION:

A. This section specifies snow guards for metal roofs.

1.2 RELATED WORK:

- A. Sustainable Design Requirements: Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- B. Color and texture of finish: Section 09 06 00, SCHEDULE FOR FINISHES.
- C. Sealant material and installation: Section 07 92 00, JOINT SEALANTS.
- D. General insulation: Section 07 21 13, THERMAL INSULATION.

1.3 QUALITY ASSURANCE:

- A. Provide roof accessories that are the products of manufacturers regularly engaged in producing the kinds of products specified.
- B. For each accessory type provide the same product made by the same manufacturer.
- C. Assemble each accessory to the greatest extent possible before delivery to the site.

1.4 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Sustainable Design Submittals, as described below:
 - Postconsumer and pre-consumer recycled content as specified in PART 2 - PRODUCTS.
- C. Samples: Submit representative sample panel of color not less than 101 x 101 mm (4 x 4 inches). For extrusions, submit width not less than section to be installed. Show coating with integral color and texture and include manufacturer's identifying label.
 - 1. Clamp
 - 2. 300 mm (12 inch) long cross member sample including color-matched strip, splice connector and other hardware.
- D. Shop Drawings: Show locations of snow guards on roof and attachment spacing.
- E. Manufacturer's Literature and Data: Each item specified.
- F. Certificates: Stating that aluminum has been given specified thickness of anodizing.

1.5 APPLICABLE PUBLICATIONS:

A.	The publications listed below form a part of this specification to the
	extend referenced. The publications are referenced in the text by the
	basic designation only.
в.	Federal Specifications (Fed. Spec.):
	RR-G-1602DGrating, Metal, Other Than Bar Type (Floor,
	Except for Naval Vessels)
C.	ASTM International (ASTM):
	A653/A653M-10Steel Sheet, Zinc-Coated (Galvanized) or Zinc-
	Iron Alloy-Coated (Galvannealed) By the Hot-Dip
	Process
	B209-14Aluminum and Aluminum Alloy-Sheet and Plate
	B209M-14Shuminum and Aluminum-Alloy Sheet and Plate
	(Metric)
	B221-14Rods, Wire,
	Shapes, and Tubes
	B221M-13Aluminum and Aluminum-Alloy Extruded Bars,
	Rods, Wire, Shapes, and Tubes (Metric)
	C726-12Bineral Wool Roof Insulation Board
	C1289-14aFaced Rigid Cellular Polyisocyanurate Thermal
	Insulation Board
	D1187/D1187M-97(R2011)Asphalt-Base Emulsions for Use as Protective
	Coatings for Metal
D.	National Association of Architectural Metal Manufacturers (NAAMM):
	AMP 500 SeriesMetal Finishes Manual
Ε.	American Architectural Manufacturers Association (AAMA):
	2603-13 Performance Requirements and Test Procedures
	for Pigmented Organic Coatings on Aluminum
	Extrusions and Panels
	2605-13
	Architectural Extrusions and Panels.
	611-14 Anodized Architectural Aluminum
	621-02
	Coated Architectural Hot Dipped Galvanized
	(HDG) and Zinc-Aluminum Coated Steel Substrates
F.	American Society of Civil Engineers (ASCE):
	ASCE 7-10Minimum Design Loads for Buildings and Other
	Structures

G. U.S. National Archives and Records Administration (NARA):

29 CFR 1910.23.....Guarding Floor and Wall Openings and Holes

PART 2 - PRODUCTS

The design of the snow guards is based on the design of the S-5 Colorgard by Metal Roof Innovations,LTD

2.1 MATERIALS:

- A. Snow guards shall be composed of cross members and clamps attached to metal roof seams with only minor dimpling of panel seams, without penetrations through roof seams or panels, without the use of sealer or adhesives, and without voiding the roof warranty. Cross members shall be designed to receive metal strips color-matched to roof panel.
- B. N/A.
- C. N/A.
- D. N/A.
- E. N/A.
- F. N/A.
- 2.2 N/A
- 2.3 N/A.
- 2.4 N/A.
- 2.5 N/A.

```
2.6 N/A
```

- PART 3 EXECUTION
- 3.1 INSTALLATION:
 - A. Install snow guards where indicated on construction documents.
 - B. Clean areas to receive attachments; remove loose and foreign matter that could interfere with installation or performance.
 - C. Install system in accordance with manufacturer's instructions and approved shop drawings.
 - D. Place clamps in straight, aligned rows.
 - E. Tighten set screws to manufacturer's recommended torque.
 - F. Insert color-matched metal strips into cross members, staggering strips to cover cross member joints.
 - G. Attach cross members to clamps; tighten bolts to manufacturer's recommended torque.
 - H. Install splice connectors at cross member end joints.

- I. Do not cantilever cross members more than 3 inches beyond clamp at ends.
- 3.2 N/A.
- 3.3 N/A.
- 3.4 PROTECTION:
 - A. Protect snow guards from damage during installation and after completion of the work from subsequent construction.

- - - E N D - - -

SECTION 07 84 00 FIRESTOPPING

PART 1 - GENERAL

1.1 DESCRIPTION:

- A. Provide UL or equivalent approved firestopping system for the closures of openings in walls, floors, and roof decks against penetration of flame, heat, and smoke or gases in fire resistant rated construction.
- B. Provide UL or equivalent approved firestopping system for the closure of openings in walls against penetration of gases or smoke in smoke partitions.

1.2 RELATED WORK:

- A. Sustainable Design Requirements: Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- B. Sealants and application: Section 07 92 00, JOINT SEALANTS.
- C. Fire and smoke damper assemblies in ductwork: Section 23 31 00, HVAC DUCTS AND CASINGS, Section 23 37 00, AIR OUTLETS AND INLETS.

1.3 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Sustainable Design Submittals, as described below:
 - Volatile organic compounds per volume as specified in PART 2 - PRODUCTS.
- C. Installer qualifications.
- D. Inspector qualifications.
- E. Manufacturers literature, data, and installation instructions for types of firestopping and smoke stopping used.
- F. List of FM, UL, or WH classification number of systems installed.
- G. Certified laboratory test reports for ASTM E814 tests for systems not listed by FM, UL, or WH proposed for use.
- H. Submit certificates from manufacturer attesting that firestopping materials comply with the specified requirements.

1.4 DELIVERY AND STORAGE:

- A. Deliver materials in their original unopened containers with manufacturer's name and product identification.
- B. Store in a location providing protection from damage and exposure to the elements.

1.5 QUALITY ASSURANCE:

- A. FM, UL, or WH or other approved laboratory tested products will be acceptable.
- B. Installer Qualifications: A firm that has been approved by FM Global according to FM Global 4991 or been evaluated by UL and found to comply with UL's "Qualified Firestop Contractor Program Requirements." Submit qualification data.
- C. Inspector Qualifications: Contractor to engage a qualified inspector to perform inspections and final reports. The inspector to meet the criteria contained in ASTM E699 for agencies involved in quality assurance and to have a minimum of two years' experience in construction field inspections of firestopping systems, products, and assemblies. The inspector to be completely independent of, and divested from, the Contractor, the installer, the manufacturer, and the supplier of material or item being inspected. Submit inspector qualifications.

1.6 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
- B. ASTM International (ASTM):

E84-14.....Surface Burning Characteristics of Building Materials

- E699-09.....Standard Practice for Evaluation of Agencies Involved in Testing, Quality Assurance, and Evaluating of Building Components E814-13a.....Fire Tests of Through-Penetration Fire Stops E2174-14....Standard Practice for On-Site Inspection of Installed Firestops
- E2393-10a.....Standard Practice for On-Site Inspection of Installed Fire Resistive Joint Systems and Perimeter Fire Barriers
- C. FM Global (FM):

Annual Issue Approval Guide Building Materials

4991-13..... Approval of Firestop Contractors

D. Underwriters Laboratories, Inc. (UL):Annual Issue Building Materials DirectoryAnnual Issue Fire Resistance Directory

723-10(2008).....Standard for Test for Surface Burning Characteristics of Building Materials

1479-04(R2014).....Fire Tests of Through-Penetration Firestops

- E. Intertek Testing Services Warnock Hersey (ITS-WH): Annual Issue Certification Listings
- F. Environmental Protection Agency (EPA):
 40 CFR 59(2014).....National Volatile Organic Compound Emission

Standards for Consumer and Commercial Products

PART 2 - PRODUCTS

2.1 FIRESTOP SYSTEMS:

- A. Provide either factory built (Firestop Devices) or field erected (through-Penetration Firestop Systems) to form a specific building system maintaining required integrity of the fire barrier and stop the passage of gases or smoke. Firestop systems to accommodate building movements without impairing their integrity.
- B. Through-penetration firestop systems and firestop devices tested in accordance with ASTM E814 or UL 1479 using the "F" or "T" rating to maintain the same rating and integrity as the fire barrier being sealed. "T" ratings are not required for penetrations smaller than or equal to 101 mm (4 in.) nominal pipe or 0.01 sq. m (16 sq. in.) in overall cross sectional area.
- C. Firestop sealants used for firestopping or smoke sealing to have the following properties:
 - 1. Contain no flammable or toxic solvents.
 - 2. Release no dangerous or flammable out gassing during the drying or curing of products.
 - 3. Water-resistant after drying or curing and unaffected by high humidity, condensation or transient water exposure.
 - When installed in exposed areas, capable of being sanded and finished with similar surface treatments as used on the surrounding wall or floor surface.
 - 5. VOC Content: Firestopping sealants and sealant primers to comply with the following limits for VOC content when calculated according to 40 CFR 59, (EPA Method 24):
 - a. Sealants: 250 g/L.
 - b. Sealant Primers for Nonporous Substrates: 250 g/L.
 - c. Sealant Primers for Porous Substrates: 775 g/L.

- D. Firestopping system or devices used for penetrations by glass pipe, plastic pipe or conduits, unenclosed cables, or other non-metallic materials to have following properties:
 - 1. Classified for use with the particular type of penetrating material used.
 - Penetrations containing loose electrical cables, computer data cables, and communications cables protected using firestopping systems that allow unrestricted cable changes without damage to the seal.
- E. Maximum flame spread of 25 and smoke development of 50 when tested in accordance with ASTM E84 or UL 723. Material to be an approved firestopping material as listed in UL Fire Resistance Directory or by a nationally recognized testing laboratory.
- F. FM, UL, or WH rated or tested by an approved laboratory in accordance with ASTM E814.
- G. Materials to be nontoxic and noncarcinogen at all stages of application or during fire conditions and to not contain hazardous chemicals. Provide firestop material that is free from Ethylene Glycol, PCB, MEK, and asbestos.
- H. For firestopping exposed to view, traffic, moisture, and physical damage, provide products that do not deteriorate when exposed to these conditions.
 - 1. For piping penetrations for plumbing and wet-pipe sprinkler systems, provide moisture-resistant through-penetration firestop systems.
 - 2. For floor penetrations with annular spaces exceeding 101 mm (4 in.) or more in width and exposed to possible loading and traffic, provide firestop systems capable of supporting the floor loads involved either by installing floor plates or by other means acceptable to the firestop manufacturer.
 - 3. For penetrations involving insulated piping, provide throughpenetration firestop systems not requiring removal of insulation.

2.2 SMOKE STOPPING IN SMOKE PARTITIONS:

- A. Provide fire caulking sealant in smoke partitions as specified in Section 07 92 00, JOINT SEALANTS.
- B. Provide mineral fiber filler and bond breaker behind sealant.
- C. Sealants to have a maximum flame spread of 25 and smoke developed of 50 when tested in accordance with ASTM E84.

D. When used in exposed areas capable of being sanded and finished with similar surface treatments as used on the surrounding wall or floor surface.

PART 3 - EXECUTION

3.1 EXAMINATION:

- A. Submit product data and installation instructions, as required by article, submittals, after an on-site examination of areas to receive firestopping.
- B. Examine substrates and conditions with installer present for compliance with requirements for opening configuration, penetrating items, substrates, and other conditions affecting performance of firestopping. Do not proceed with installation until unsatisfactory conditions have been corrected.

3.2 PREPARATION:

- A. Remove dirt, grease, oil, laitance and form-release agents from concrete, loose materials, or other substances that prevent adherence and bonding or application of the firestopping or smoke stopping materials.
- B. Remove insulation on insulated pipe for a distance of 150 mm (6 inches) on each side of the fire rated assembly prior to applying the firestopping materials unless the firestopping materials are tested and approved for use on insulated pipes.
- C. Prime substrates where required by joint firestopping system manufacturer using that manufacturer's recommended products and methods. Confine primers to areas of bond; do not allow spillage and migration onto exposed surfaces.
- D. Masking Tape: Apply masking tape to prevent firestopping from contacting adjoining surfaces that will remain exposed upon completion of work and that would otherwise be permanently stained or damaged by such contact or by cleaning methods used to remove smears from firestopping materials. Remove tape as soon as it is possible to do so without disturbing seal of firestopping with substrates.

3.3 INSTALLATION:

- A. Do not begin firestopping work until the specified material data and installation instructions of the proposed firestopping systems have been submitted and approved.
- B. Install firestopping systems with smoke stopping in accordance with FM, UL, WH, or other approved system details and installation instructions.

- C. Install smoke stopping seals in smoke partitions.
- D. Installation of fire stop material must be in place for each opened penetration anywhere on the construction barrier envelope by COB of the same day penetration was discovered or produced.

3.4 CLEAN-UP:

- A. As work on each floor is completed, remove materials, litter, and debris.
- B. Clean up spills of liquid type materials.
- C. Clean off excess fill materials and sealants adjacent to openings and joints as work progresses by methods and with cleaning materials approved by manufacturers of firestopping products and of products in which opening, and joints occur.
- D. Protect firestopping during and after curing period from contact with contaminating substances or from damage resulting from construction operations or other causes so that they are without deterioration or damage at time of Substantial Completion. If, despite such protection, damage or deterioration occurs, cut out and remove damaged or deteriorated firestopping immediately and install new materials to provide firestopping complying with specified requirements.

3.5 INSPECTIONS AND ACCEPTANCE OF WORK:

- A. Do not conceal or enclose firestop assemblies until inspection is complete and approved by the Contracting Officer Representative (COR).
- B. Furnish service of approved inspector to inspect firestopping in accordance with ASTM E2393 and ASTM E2174 for firestop inspection, and document inspection results. Submit written reports indicating locations of and types of penetrations and type of firestopping used at each location; type is to be recorded by UL listed printed numbers.

- - - E N D - - -

SECTION 07 92 00 JOINT SEALANTS

PART 1 - GENERAL

1.1 DESCRIPTION:

A. This section covers interior and exterior sealant and their application, wherever required for complete installation of building materials or systems.

1.2 RELATED WORK (INCLUDING BUT NOT LIMITED TO THE FOLLOWING):

- A. Sustainable Design Requirements: Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- B. Sealing of Site Work Concrete Paving: Section 32 05 23, CEMENT AND CONCRETE FOR EXTERIOR IMPROVEMENTS.
- C. Masonry Control and Expansion Joint: Section 04 20 00, UNIT MASONRY.
- D. Firestopping Penetrations: Section 07 84 00, FIRESTOPPING.
- E. Glazing: Section 08 80 00, GLAZING.
- F. N/A
- G. Sound Rated Gypsum Partitions/Sound Sealants: Section 09 29 00, GYPSUM BOARD.
- H. Mechanical Work: Section 21 05 11, COMMON WORK RESULTS FOR FIRE SUPPRESSION, Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.

1.3 QUALITY ASSURANCE:

- A. Installer Qualifications: An experienced installer with a minimum of three (3) years' experience and who has specialized in installing joint sealants similar in material, design, and extent to those indicated for this Project and whose work has resulted in joint-sealant installations with a record of successful in-service performance. Submit qualification.
- B. Source Limitations: Obtain each type of joint sealant through one (1) source from a single manufacturer.
- C. Product Testing: Obtain test results from a qualified testing agency based on testing current sealant formulations within a 12-month period.
 - 1. Testing Agency Qualifications: An independent testing agency qualified according to ASTM C1021.
 - Test elastomeric joint sealants for compliance with requirements specified by reference to ASTM C920, and where applicable, to other standard test methods.

- 3. Test elastomeric joint sealants according to SWRI's Sealant Validation Program for compliance with requirements specified by reference to ASTM C920 for adhesion and cohesion under cyclic movement, adhesion-in peel, and indentation hardness.
- 4. Test other joint sealants for compliance with requirements indicated by referencing standard specifications and test methods.
- D. Lab Tests: Submit samples of materials that will be in contact or affect joint sealants to joint sealant manufacturers for tests as follows:
 - Adhesion Testing: Before installing elastomeric sealants, test their adhesion to protect joint substrates according to the method in ASTM C794 to determine if primer or other specific joint preparation techniques are required.
 - Compatibility Testing: Before installing elastomeric sealants, determine compatibility when in contact with glazing and gasket materials.
 - 3. Stain Testing: Perform testing per ASTM C1248 on interior and exterior sealants to determine if sealants or primers will stain adjacent surfaces. No sealant work is to start until results of these tests have been submitted to the Contracting Officer Representative (COR) and the COR has given written approval to proceed with the work.
- E. Preconstruction Field-Adhesion Testing: Before installing elastomeric sealants, field test their adhesion to joint substrates according to Method A, Field-Applied Sealant Joint Hand Pull Tab, in Appendix X1.1 in ASTM C1193 or Method A, Tail Procedure, in ASTM C1521.
 - Locate test joints where indicated in construction documents or, if not indicated, as directed by COR.
 - 2. Conduct field tests for each application indicated below:
 - a. Each type of elastomeric sealant and joint substrate indicated.
 - b. Each type of non-elastomeric sealant and joint substrate indicated.
 - 3. Notify COR seven (7) days in advance of dates and times when test joints will be erected.
 - 4. Arrange for tests to take place with joint sealant manufacturer's technical representative present.
- F. Mockups: N/A

1.4 CERTIFICATION:

A. Contractor is to submit to the COR written certification that joints are of the proper size and design, that the materials supplied are compatible with adjacent materials and backing, that the materials will properly perform to provide permanent watertight, airtight or vapor tight seals (as applicable), and that materials supplied meet specified performance requirements.

1.5 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Sustainable Design Submittals, as described below:
 - Volatile organic compounds per volume as specified in PART 2 - PRODUCTS.
- C. Installer qualifications.
- D. Contractor certification.
- E. Manufacturer's installation instructions for each product used.
- F. Cured samples of exposed sealants for each color.
- G. Manufacturer's Literature and Data:
 - 1. Primers
 - 2. Sealing compound, each type, including compatibility when different sealants are in contact with each other.
- H. Manufacturer warranty.

1.6 PROJECT CONDITIONS:

- A. Environmental Limitations:
 - Do not proceed with installation of joint sealants under following conditions:
 - a. When ambient and substrate temperature conditions are outside limits permitted by joint sealant manufacturer or are below
 4.4 degrees C (40 degrees F).
 - b. When joint substrates are wet.
- B. Joint-Width Conditions:
 - Do not proceed with installation of joint sealants where joint widths are less than those allowed by joint sealant manufacturer for applications indicated.
- C. Joint-Substrate Conditions:
 - Do not proceed with installation of joint sealants until contaminants capable of interfering with adhesion are removed from joint substrates.

1.7 DELIVERY, HANDLING, AND STORAGE:

- A. Deliver materials in manufacturers' original unopened containers, with brand names, date of manufacture, shelf life, and material designation clearly marked thereon.
- B. Carefully handle and store to prevent inclusion of foreign materials.
- C. Do not subject to sustained temperatures exceeding 32 degrees C (90 degrees F) or less than 5 degrees C (40 degrees F).

1.8 DEFINITIONS:

- A. Definitions of terms in accordance with ASTM C717 and as specified.
- B. Backing Rod: A type of sealant backing.
- C. Bond Breakers: A type of sealant backing.
- D. Filler: A sealant backing used behind a back-up rod.

1.9 WARRANTY:

- A. Construction Warranty: Comply with FAR clause 52.246-21 "Warranty of Construction".
- B. Manufacturer Warranty: Manufacturer shall warranty their sealant for a minimum of five (5) years from the date of installation and final acceptance by the Government. Submit manufacturer warranty.

1.10 APPLICABLE PUBLICATIONS:

B. ASTM International (ASTM):

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only.
 - C509-06......Elastomeric Cellular Preformed Gasket and Sealing Material C612-14.....Mineral Fiber Block and Board Thermal Insulation C717-14a.....Standard Terminology of Building Seals and Sealants C734-06(R2012).....Test Method for Low-Temperature Flexibility of Latex Sealants after Artificial Weathering C794-10.....Test Method for Adhesion-in-Peel of Elastomeric Joint Sealants C919-12.....Use of Sealants in Acoustical Applications. C920-14a.....Elastomeric Joint Sealants. C1021-08(R2014).....Laboratories Engaged in Testing of Building Sealants C1193-13.....Standard Guide for Use of Joint Sealants.

C1248-08(R2012)Test Method for Staining of Porous Substrate by
Joint Sealants
C1330-02(R2013)Cylindrical Sealant Backing for Use with Cold
Liquid Applied Sealants
C1521-13 Adhesion of
Installed Weatherproofing Sealant Joints
D217-10of
Lubricating Grease
D1056-14Specification for Flexible Cellular Materials-
Sponge or Expanded Rubber
E84-09 of Building
Materials
Sociant Waterproofing and Posteration Institute (SWPI)

- C. Sealant, Waterproofing and Restoration Institute (SWRI). The Professionals' Guide
- D. Environmental Protection Agency (EPA):40 CFR 59(2014).....National Volatile Organic Compound Emission

```
Standards for Consumer and Commercial Products
```

PART 2 - PRODUCTS

2.1 SEALANTS:

- A. Exterior Sealants:
 - Vertical surfaces, provide non-staining ASTM C920, Type S or M, Grade NS, Class 25. Use NT.
 - Horizontal surfaces, provide ASTM C920, Type S or M, Grade P, Class
 25, Use T.
 - 3. Provide location(s) of exterior sealant as follows:
 - Joints formed where frames and subsills of windows, doors, louvers, and vents adjoin masonry, concrete, or metal frames.
 Provide sealant at exterior surfaces of exterior wall penetrations.
 - b. Metal to metal.
 - c. Masonry to masonry or stone.
 - d. N/A
 - e. N/A.
 - f. Masonry expansion and control joints.
 - g. Wood to masonry.
 - h. Masonry joints where shelf angles occur.
 - i. Voids where items penetrate exterior walls.

- j. Metal reglets, where flashing is inserted into masonry joints, and where flashing is penetrated by coping dowels.
- B. Floor Joint Sealant:
 - 1. ASTM C920, Type S or M, Grade P, Class 25. Use T.
 - 2. Provide location(s) of floor joint sealant as follows.
 - a. Seats of metal thresholds exterior doors.
 - b. Control and expansion joints in floors, slabs, ceramic tile, and walkways.
- C. Interior Sealants:
 - VOC Content of Interior Sealants: Sealants and sealant primers used inside the weatherproofing system are to comply with the following limits for VOC content when calculated according to 40 CFR 59, (EPA Method 24):
 - a. Architectural Sealants: 250 g/L.
 - b. Sealant Primers for Nonporous Substrates: 250 g/L.
 - c. Sealant Primers for Porous Substrates: 775 g/L.
 - Vertical and Horizontal Surfaces: ASTM C920, Type S or M, Grade NS, Class 25. Use NT.
 - 3. N/A.
 - 4. Provide location(s) of interior sealant as follows:
 - a. Typical narrow joint 6 mm, (1/4 inch) or less at walls and adjacent components.
 - b. Perimeter of doors, windows, access panels which adjoin concrete or masonry surfaces.
 - c. Interior surfaces of exterior wall penetrations.
 - d. Joints at masonry walls and columns, piers, concrete walls or exterior walls.
 - e. N/A.
 - f. Exposed isolation joints at top of full height walls.
 - g. Joints between bathtubs and ceramic tile; joints between shower receptors and ceramic tile; joints formed where nonplanar tile surfaces meet.
 - h. Joints formed between tile floors and tile base cove; joints between tile and dissimilar materials; joints occurring where substrates change.
 - i. Behind escutcheon plates at valve pipe penetrations and showerheads in showers.
- D. Acoustical Sealant:

- Conforming to ASTM C919; flame spread of 25 or less; and a smoke developed rating of 50 or less when tested in accordance with ASTM E84. Acoustical sealant have a consistency of 250 to 310 when tested in accordance with ASTM D217; remain flexible and adhesive after 500 hours of accelerated weathering as specified in ASTM C734; and be non-staining.
- 2. Provide location(s) of acoustical sealant as follows:
 - a. Exposed acoustical joint at sound rated partitions.
 - b. Concealed acoustic joints at sound rated partitions.
 - c. Joints where item pass-through sound rated partitions.

2.2 COLOR:

- A. Sealants used with exposed masonry are to match color of mortar joints.
- B. Sealants used with unpainted concrete are to match color of adjacent concrete.
- C. Color of sealants for other locations to be light gray or aluminum, unless otherwise indicated in construction documents.

2.3 JOINT SEALANT BACKING:

- A. General: Provide sealant backings of material and type that are nonstaining; are compatible with joint substrates, sealants, primers, and other joint fillers; and are approved for applications indicated by sealant manufacturer based on field experience and laboratory testing.
- B. Cylindrical Sealant Backings: ASTM C1330, of type indicated below and of size and density to control sealant depth and otherwise contribute to producing optimum sealant performance:
 - 1. Type C: Closed-cell material with a surface skin.
- C. Elastomeric Tubing Sealant Backings: Neoprene, butyl, EPDM, or silicone tubing complying with ASTM D1056 or synthetic rubber (ASTM C509), nonabsorbent to water and gas, and capable of remaining resilient at temperatures down to minus 32 degrees C (minus 26 degrees F). Provide products with low compression set and of size and shape to provide a secondary seal, to control sealant depth, and otherwise contribute to optimum sealant performance.
- D. Bond-Breaker Tape: Polyethylene tape or other plastic tape recommended by sealant manufacturer for preventing sealant from adhering to rigid, inflexible joint-filler materials or joint surfaces at back of joint where such adhesion would result in sealant failure. Provide selfadhesive tape where applicable.

2.4 WEEPS:

- A. Weep/Vent Products: Provide the following unless otherwise indicated or approved.
 - Round Plastic Tubing: Medium-density polyethylene, 10 mm (3/8-inch)
 OD by thickness of stone or masonry veneer.

2.5 FILLER:

- A. Mineral fiberboard: ASTM C612, Class 1.
- B. Thickness same as joint width.
- C. Depth to fill void completely behind back-up rod.

2.6 PRIMER:

- A. As recommended by manufacturer of caulking or sealant material.
- B. Stain free type.

2.7 CLEANERS-NON POROUS SURFACES:

A. Chemical cleaners compatible with sealant and acceptable to manufacturer of sealants and sealant backing material. Cleaners to be free of oily residues and other substances capable of staining or harming joint substrates and adjacent non-porous surfaces and formulated to promote adhesion of sealant and substrates.

PART 3 - EXECUTION

3.1 INSPECTION:

- A. Inspect substrate surface for bond breaker contamination and unsound materials at adherent faces of sealant.
- B. Coordinate for repair and resolution of unsound substrate materials.
- C. Inspect for uniform joint widths and that dimensions are within tolerance established by sealant manufacturer.

3.2 PREPARATIONS:

- A. Prepare joints in accordance with manufacturer's instructions and SWRI (The Professionals' Guide).
- B. Clean surfaces of joint to receive caulking or sealants leaving joint dry to the touch, free from frost, moisture, grease, oil, wax, lacquer paint, or other foreign matter that would tend to destroy or impair adhesion.
 - Clean porous joint substrate surfaces by brushing, grinding, blast cleaning, mechanical abrading, or a combination of these methods to produce a clean, sound substrate capable of developing optimum bond with joint sealants.

- Remove loose particles remaining from above cleaning operations by vacuuming or blowing out joints with oil-free compressed air. Porous joint surfaces include but are not limited to the following:
 a. Concrete.
 - b. Masonry.
 - c. Unglazed surfaces of ceramic tile.
- 3. Remove laitance and form-release agents from concrete.
- 4. Clean nonporous surfaces with chemical cleaners or other means that do not stain, harm substrates, or leave residues capable of interfering with adhesion of joint sealants. Nonporous surfaces include but are not limited to the following:
 - a. Metal.
 - b. Glass.
 - c. Porcelain enamel.
 - d. Glazed surfaces of ceramic tile.
- C. Do not cut or damage joint edges.
- D. Apply non-staining masking tape to face of surfaces adjacent to joints before applying primers, caulking, or sealing compounds.
 - 1. Do not leave gaps between ends of sealant backings.
 - 2. Do not stretch, twist, puncture, or tear sealant backings.
 - 3. Remove absorbent sealant backings that have become wet before sealant application and replace them with dry materials.
- E. Apply primer to sides of joints wherever required by compound manufacturer's printed instructions or as indicated by pre-construction joint sealant substrate test.
 - Apply primer prior to installation of back-up rod or bond breaker tape.
 - Use brush or other approved means that will reach all parts of joints. Avoid application to or spillage onto adjacent substrate surfaces.

3.3 BACKING INSTALLATION:

- A. Install backing material, to form joints enclosed on three sides as required for specified depth of sealant.
- B. Where deep joints occur, install filler to fill space behind the backing rod and position the rod at proper depth.
- C. Cut fillers installed by others to proper depth for installation of backing rod and sealants.

- D. Install backing rod, without puncturing the material, to a uniform depth, within plus or minus 3 mm (1/8 inch) for sealant depths specified.
- E. Where space for backing rod does not exist, install bond breaker tape strip at bottom (or back) of joint so sealant bonds only to two opposing surfaces.

3.4 SEALANT DEPTHS AND GEOMETRY:

- A. At widths up to 6 mm (1/4 inch), sealant depth equal to width.
- B. At widths over 6 mm (1/4 inch), sealant depth 1/2 of width up to 13 mm (1/2 inch) maximum depth at center of joint with sealant thickness at center of joint approximately 1/2 of depth at adhesion surface.

3.5 INSTALLATION:

- A. General:
 - Apply sealants and caulking only when ambient temperature is between 5 degrees C and 38 degrees C (40 degrees and 100 degrees F).
 - Do not install polysulfide base sealants where sealant may be exposed to fumes from bituminous materials, or where water vapor in continuous contact with cementitious materials may be present.
 - 3. Do not install sealant type listed by manufacture as not suitable for use in locations specified.
 - 4. Apply caulking and sealing compound in accordance with manufacturer's printed instructions.
 - 5. Avoid dropping or smearing compound on adjacent surfaces.
 - 6. Fill joints solidly with compound and finish compound smooth.
 - 7. Tool exposed joints to form smooth and uniform beds, with slightly concave surface conforming to joint configuration per Figure 5A in ASTM C1193 unless shown or specified otherwise in construction documents. Remove masking tape immediately after tooling of sealant and before sealant face starts to "skin" over. Remove any excess sealant from adjacent surfaces of joint, leaving the working in a clean finished condition.
 - 8. Finish paving or floor joints flush unless joint is otherwise detailed.
 - 9. Apply compounds with nozzle size to fit joint width.
 - Test sealants for compatibility with each other and substrate. Use only compatible sealant. Submit test reports.
 - 11. Replace sealant which is damaged during construction process.

- B. Weeps: Place weep holes and vents in joints where moisture may accumulate, including at base of cavity walls, above shelf angles, at all flashing, and as indicated on construction documents.
 - 1. Use round plastic tubing to form weep holes.
 - Space weep holes formed from plastic tubing not more than 406 mm (16 inches) o.c.
 - 3. Trim tubing material used in weep holes flush with exterior wall face after sealant has set.
 - C. For application of sealants, follow requirements of ASTM C1193 unless specified otherwise. Take all necessary steps to prevent three-sided adhesion of sealants.
 - D. Interior Sealants: Where gypsum board partitions are of sound rated, fire rated, or smoke barrier construction, follow requirements of ASTM C919 only to seal all cut-outs and intersections with the adjoining construction unless specified otherwise.
 - Apply a 6 mm (1/4 inch) minimum bead of sealant each side of runners (tracks), including those used at partition intersections with dissimilar wall construction.
 - 2. Coordinate with application of gypsum board to install sealant immediately prior to application of gypsum board.
 - Partition intersections: Seal edges of face layer of gypsum board abutting intersecting partitions, before taping and finishing or application of veneer plaster-joint reinforcing.
 - 4. Openings: Apply a 6 mm (1/4 inch) bead of sealant around all cutouts to seal openings of electrical boxes, ducts, pipes and similar penetrations. To seal electrical boxes, seal sides and backs.
 - 5. Control Joints: Before control joints are installed, apply sealant in back of control joint to reduce flanking path for sound through control joint.

3.6 FIELD QUALITY CONTROL:

- A. Field-Adhesion Testing: Field-test joint-sealant adhesion to joint substrates according to Method A, Field-Applied Sealant Joint Hand Pull Tab, in Appendix X1 in ASTM C1193 or Method A, Tail Procedure, in ASTM C1521.
 - Extent of Testing: Test completed elastomeric sealant joints as follows:
 - a. Perform 10 tests for first 305 m (1000 feet) of joint length for each type of elastomeric sealant and joint substrate.

- b. Perform one test for each 305 m (1000 feet) of joint length thereafter or one test per each floor per elevation. //
- B. Inspect joints for complete fill, for absence of voids, and for joint configuration complying with specified requirements. Record results in a field adhesion test log.
- C. Inspect tested joints and report on following:
 - Whether sealants in joints connected to pulled-out portion failed to adhere to joint substrates or tore cohesively. Include data on pull distance used to test each type of product and joint substrate.
 - 2. Compare these results to determine if adhesion passes sealant manufacturer's field-adhesion hand-pull test criteria.
 - 3. Whether sealants filled joint cavities and are free from voids.
 - 4. Whether sealant dimensions and configurations comply with specified requirements.
- D. Record test results in a field adhesion test log. Include dates when sealants were installed, names of persons who installed sealants, test dates, test locations, whether joints were primed, adhesion results and percent elongations, sealant fill, sealant configuration, and sealant dimensions.
- E. Repair sealants pulled from test area by applying new sealants following same procedures used to originally seal joints. Ensure that original sealant surfaces are clean and new sealant contacts original sealant.
- F. Evaluation of Field-Test Results: Sealants not evidencing adhesive failure from testing or noncompliance with other indicated requirements, will be considered satisfactory. Remove sealants that fail to adhere to joint substrates during testing or to comply with other requirements. Retest failed applications until test results prove sealants comply with indicated requirements.

3.7 CLEANING:

- A. Fresh compound accidentally smeared on adjoining surfaces: Scrape off immediately and rub clean with a solvent as recommended by manufacturer of the adjacent material or if not otherwise indicated by the caulking or sealant manufacturer.
- B. Leave adjacent surfaces in a clean and unstained condition.

- - - E N D - - -

SECTION 08 11 13 HOLLOW METAL DOORS AND FRAMES

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - Hollow metal doors hung in hollow metal frames at interior and exterior locations.
 - Hollow metal door frames for wood doors and borrowed lights at interior locations.
 - 3. Glazed openings and louvers in hollow metal doors.

1.2 RELATED REQUIREMENTS

- A. Frames fabricated of structural steel: Section 05 50 00, METAL FABRICATIONS.
- B. N/A.
- C. N/A.
- D. Door Hardware: Section 08 71 00, DOOR HARDWARE.
- E. Glazing: Section 08 80 00, GLAZING.
- F. N/A.
- G. N/A.
- H. N/A.

1.3 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- B. American National Standard Institute (ANSI):
 - 1. A250.8-2014 Standard Steel Doors and Frames.
- C. ASTM International (ASTM):
 - A240/A240M-15b Chromium and Chromium-Nickel Stainless Steel Plate, Sheet, and Strip for Pressure Vessels and for General Applications.
 - A653/A653M-15 Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip.
 - 3. A1008/A1008M-15 Steel, Sheet, Cold-Rolled, Carbon, Structural, High Strength Low Alloy and High Strength Low Alloy with Improved Formability, Solution Hardened, and Bake Hardenable.
 - 4. B209-14 Aluminum and Aluminum-Alloy Sheet and Plate.
 - 5. B209M-14 Aluminum and Aluminum-Alloy Sheet and Plate (Metric).
 - B221-14 Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Profiles, and Tubes.

- B221M-13 Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Profiles, and Tubes (Metric).
- D3656/D3656M-13 Insect Screening and Louver Cloth Woven from Vinyl Coated Glass Yarns.
- 9. E90-09 Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions and Elements.
- D. Federal Specifications (Fed. Spec.):
 - 1. L-S-125B Screening, Insect, Nonmetallic.
- E. Master Painters Institute (MPI):
 - 1. No. 18 Primer, Zinc Rich, Organic.
- F. National Association of Architectural Metal Manufacturers (NAAMM): 1. AMP 500-06 - Metal Finishes Manual.
- G. National Fire Protection Association (NFPA):
 - 1. 80-16 Fire Doors and Other Opening Protectives.
- H. UL LLC (UL):
 - 1. 10C-09 Positive Pressure Fire Tests of Door Assemblies.
 - 2. 1784-15 Air Leakage Tests of Door Assemblies and Other Opening Protectives.

1.4 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Coordination of Submittals: Hollow metal frame submittals will be reviewed concurrently with door hardware, and wood door submittals. Review will not begin until all submittals have been received and are determined to be complete.
- C. Submittal Drawings:
 - 1. Show size, configuration, and fabrication and installation details.
- D. Manufacturer's Literature and Data:
 - 1. Description of each product.
 - 2. Include schedule showing each door and frame requirements fire label and smoke control label for openings. Fire rated doors and frames, showing conformance with NFPA 80 and Underwriters Laboratory, Inc. (UL), or Intertek Testing Services (ITS) or Factory Mutual (FM) fire rating requirements.
 - 3. Installation instructions.
- E. Certificate confirming that exterior door complies with Energy Star criteria for North-Central climate zone.
- F. Sustainable Construction Submittals:

- Recycled Content: Identify post-consumer and pre-consumer recycled content percentage by weight.
- G. Test reports: Certify each product complies products comply with specifications.
 - 1. Sound rated door.
- H. Qualifications: Substantiate qualifications comply with specifications.1. Manufacturer with project experience list.

1.5 QUALITY ASSURANCE

- A. Manufacturer Qualifications:
 - 1. Regularly manufactures specified products.
 - 2. Manufactured specified products with satisfactory service on five similar installations for minimum five years.
 - a. Project Experience List: Provide contact names and addresses for completed projects.

1.6 DELIVERY

- A. Fasten temporary steel spreaders across the bottom of each door frame before shipment.
- B. Deliver products in manufacturer's original sealed packaging.
- C. Mark packaging, legibly. Indicate manufacturer's name or brand, type, production run number, and manufacture date.
- D. Prior to shipment label each door and frame to show location, size, door swing and other pertinent information.
- E. Before installation, return or dispose of products within distorted, damaged, or opened packaging.

1.7 STORAGE AND HANDLING

- A. Store products indoors in dry, weathertight, conditioned facility.
- B. Protect products from rust and damage during handling and construction operations.

1.8 WARRANTY

A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."

PART 2 - PRODUCTS

2.1 SYSTEM PERFORMANCE

A. Design hollow metal doors and frames complying with specified performance:

1. Fire Doors and Frames: UL 10C; NFPA 80 labeled.

a. Fire Ratings: See drawings.

- 2. Stair Doors: Temperature rise rated fire doors.
- 3. Smoke Control Doors and Frames: UL 1784; NFPA 80 labeled, maximum 0.15424 cu. m/s/sq. m (3.0 cfm/sf) at 24.9 Pa (0.10 inches water gage) pressure differential.
- 4. Sound Rated Doors and Frames: Minimum 45 sound transmission class (STC) when tested according to ASTM E90.
- 5. Thermal Transmittance: 0.32 U-value, maximum at exterior doors.
- 6. Thermal Resistance: 3.125 R-value, minimum at exterior doors.

2.2 MATERIALS

- A. N/A.
- B. Sheet Steel: ASTM A1008/A1008M, cold-rolled for panels (face sheets) of doors.
- C. Galvanized Sheet Steel: ASTM A653 for doors and frames for exterior use and for rooms with showers.
- D. N/A.
- E. N/A.
- F. N/A.

2.3 PRODUCTS - GENERAL

- A. Basis of Design: Section 09 06 00, SCHEDULE FOR FINISHES.
- B. Provide hollow metal doors and frames from one manufacturer.
- C. Sustainable Construction Requirements:
 - 1. Steel Recycled Content: 30 percent total recycled content, minimum.
 - 2. N/A.
 - 3. N/A.
- D. Anchors, Fastenings and Accessories: Fastenings anchors, clips connecting members and sleeves from zinc coated steel.
- E. Prime Paint: Paint that meets or exceeds the requirements of A250.8.

2.4 HOLLOW METAL DOORS

- A. Hollow Metal Doors: ANSI A250.8; 44 mm (1-3/4 inches) thick. See drawings for sizes and designs.
 - Interior Doors: Level 1 and Physical Performance Level C, standard duty; Model 2, seamless.
 - 2. N/A.
 - 3. N/A.

- Exterior Doors: Level 3 and Physical Performance Level A, extra-heavy duty; Model 2, seamless.
- 5. N/A.

B. Door Faces:

- 1. Interior Doors: Sheet.
- Exterior Doors: Galvanized sheet steel minimum Z120 or ZF120 (G40 or A40) coating.
- 3. Exterior Doors: Comply with criteria for Energy Star rating for North-Central region. U-Factor shall not be greater than 0.32; SHGC shall not be greater than 0.40. Core construction may be polyurethane, polystyrene, or mineral fiberboard.
- C. Door Cores:
 - Interior Doors: // Kraft paper honeycomb // or // vertical steel stiffeners //.
 - 2. Exterior Doors: // Polystyrene // or // polyurethane //.
 - 3. Fire Doors: Manufacturer's standard complying with specified fire rating performance.

2.5 HOLLOW METAL FRAMES

- A. Hollow Metal Frames: (NO KNOCK-DOWN FRAMES ALLOWED.) ANSI A250.8; face welded. See drawings for sizes and designs.
 - 1. ANSI A250.8, 1.3 mm (0.053 inch) thick sheet steel, types and styles as shown or scheduled.
 - 2. Frames shall be delivered to the site fully prepared for the installation of hardware, and with reinforcing and anchors in place.
 - Frames for exterior doors and doors to bathrooms with showers: Fabricate from 1.7 mm (0.067 inch) thick galvanized steel conforming to ASTM A525.
 - 4. Frames for labeled fire rated doors.
 - a. Comply with NFPA 80. Test by Underwriters Laboratories, Inc., Intertek Testing Services, or Factory Mutual.
 - b. Fire rated labels of approving laboratory permanently attached to frames as evidence of conformance with these requirements.
 Provide labels of metal or engraved stamp, with raised or incised markings.
 - 5. Frames shall be welded. Knocked-down frames are not acceptable.

2.6 LOUVERS

- A. Louver Style: permitting free ventilation.
 - 1. Provide insect screen and wire guards at exterior doors.
- B. Louver Construction: Sheet metal matching door faces.
 - 1. Interior Door Louvers: 0.8 mm (0.032 inch) thick.
 - 2. Exterior Door Louvers: 1.3 mm (0.053 inch) inch thick.
- C. Screen Frames: Extruded or tubular aluminum.

2.7 FABRICATION

- A. Hardware Preparation: ANSI A250.8; for hardware specified in Section 08 71 00, DOOR HARDWARE.
- B. Hollow Metal Door Fabrication:
 - Close top edge of exterior doors flush and seal to prevent water intrusion.
 - 2. Fill spaces between vertical steel stiffeners with insulation.
- C. Fire and Smoke Control Doors:
 - 1. Close top and vertical edges flush.
 - Apply steel astragal to active leaf at pair and double egress doors.
 a. Exception: Where vertical rod exit devices are specified for both leaves swinging in same direction.
 - 3. Fire and Smoke Control Door Clearances: NFPA 80.
- D. Custom Metal Hollow Doors:
 - Provide custom hollow metal doors where nonstandard steel doors are shown on drawings.
 - a. Provide door sizes, design, materials, construction, gages, and finish as specified for standard steel doors.
 - 2. N/A.
 - 3. N/A.
- E. N/A
- F. Transom Panel Fabrication:
 - 1. Fabricate panels as specified for doors.
 - 2. Fabricate bottom edge with rabbet stop where no transom bar occurs.
- G. Hollow Metal Frame Fabrication:
 - 1. Fasten mortar guards to back of hardware reinforcements.
 - Concealed Closers in Head Frame: Provide 1 mm (0.042 inch) thick steel removable stop sections for access to concealed face plates and control valves, except when cover plates are furnished with closer.
 - 3. Terminated Stops: ANSI A250.8.

- 4. Borrowed Light and Panel Opening Frames:
 - Provide integral stop on exterior, corridor, or secure side of door.
 - Design rabbet width and depth to receive glazing material or panel shown on drawings.
- 5. Two Piece Frames:
 - One piece unequal leg finished rough buck sub-frames as shown, drilled for anchor bolts.
 - b. Unequal leg finished frames formed to fit subframes and secured to subframe legs with countersunk, flat head screws, spaced 300 mm (12 inches) on center at head and jambs on both sides.
 - c. Preassemble at factory for alignment.
- 6. Frame Anchors:
 - a. Floor anchors:
 - Provide extension type floor anchors to compensate for depth of floor fills.
 - Provide 1.3 mm (0.053 inch) thick steel clip angles welded to jamb and drilled to receive floor fasteners.
 - 3) Provide 50 mm by 50 mm by 9 mm (2 inch by 2 inch by 3/8 inch) clip angle for lead lined frames, drilled for floor fasteners.
 - Provide mullion 2.3 mm (0.093 inch) thick steel channel anchors, drilled for two floor fasteners and frame anchor screws.
 - Provide continuous 1 mm (0.042 inch) thick steel rough bucks drilled for floor fasteners and frame anchor screws for sill sections.
 - a) Space floor bolts50 mm (24 inches) on center.
 - b. Jamb anchors:
 - 1) Place anchors on jambs:
 - a) Near top and bottom of each frame.
 - b) At intermediate points at maximum 600 mm (24 inches) spacing.
 - 2) Form jamb anchors from steel minimum 1 mm (0.042 inch) thick.
 - 3) Anchors set in masonry: Provide adjustable anchors designed for friction fit against frame and extended into masonry minimum 250 mm (10 inches). Provide one of following types:
 a) Wire Loop Type: 5 mm (3/16 inch) diameter wire.

- b) T-Shape type.
- c) Strap and stirrup type: Corrugated or perforated sheet steel.
- Anchors for stud partitions: Provide tabs for securing anchor to sides of studs. Provide one of the following:
 - a) Welded type.
 - b) Lock-in snap-in type.
- 5) Anchors for frames set in prepared openings:
 - a) Steel pipe spacers 6 mm (1/4 inch) inside diameter, welded to plate reinforcing at jamb stops, or hat shaped formed strap spacers 50 mm (2 inches) wide, welded to jamb near stop.
 - b) Drill jamb stop and strap spacers for 6 mm (1/4 inch) flat head bolts to pass through frame and spacers.
 - c) Two piece frames: Subframe or rough buck drilled for 6 mm (1/4 inch) bolts.
- Anchors for observation windows and other continuous frames set in stud partitions.
 - a) Weld clip anchors to sills and heads of continuous frames over 1200 mm (4 feet) long.
 - b) Space maximum 600 mm (24 inches) on centers.
- Modify frame anchors to fit special frame and wall construction.
- Provide special anchors where shown on drawings and where required to suit application.
- H. Sound Rated Door Frames:
 - 1. Seals: Integral continuous gaskets on frames.
- I. Louver Fabrication:
 - 1. Fabricate louvers as complete units.
 - 2. Weld stationary blades to frames.
 - 3. Factory install louvers in door cutouts, welded to door.
- J. Louver Screen Fabrication:
 - 1. Fabricate frame to hold wire fabric in channel with retaining bar anchor and to mount on surface of door with screws.
 - 2. Do not lap frame over louver opening.
 - Miter frame corners and join by concealed mechanical fastenings extending about 57 mm (2-1/4 inches) into ends of each member.
 - 4. Drill frame and doors for screw attachment:

- a. Space screws 50 mm (2 inches) from end of each leg of frame and maximum 300 mm (12 inches) on center.
- 5. Insect Screens: Fasten insect screens to interior side of doors with retaining bar against door and not exposed to view.
- 6. Wire Guards: Fasten wire guard to exterior side of door with retaining bar against door and not exposed to view.

2.8 FINISHES

- A. Steel and Galvanized Steel: ANSI A250.8; shop primed.
 - 1. N/A.
- B. Finish exposed surfaces after fabrication.
- C. Aluminum Anodized Finish: NAAMM AMP 500.
 - 1. N/A.
 - Color Anodized Finish: AA-C22A42 or AA-C22A44; Class I Architectural, 0.018 mm (0.7 mil) thick.
 - 3. N/A.
 - 4. N/A.

2.9 ACCESSORIES

- A. Primers: ANSI A250.8.
- B. Barrier Coating: ASTM D1187/D1187M.
- C. Welding Materials: AWS D1.1/D1.1M, type to suit application.
- D. Clips Connecting Members and Sleeves: Match door faces.
- E. Fasteners: Galvanized steel.
 - 1. Metal Framing: Steel drill screws.
 - 2. Masonry and Concrete: Expansion bolts and power actuated drive pins.
- F. Anchors: Galvanized steel.
- G. Galvanizing Repair Paint: MPI No. 18.
- H. N/A.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Examine and verify substrate suitability for product installation.
- B. Protect existing construction and completed work from damage.
- C. Apply barrier coating to metal surfaces in contact with cementitious materials to minimum 0.7 mm (30 mils) dry film thickness.

3.2 INSTALLATION - GENERAL

A. Install products according to manufacturer's instructions and approved submittal drawings.

- When manufacturer's instructions deviate from specifications, submit proposed resolution for Contracting Officer's Representative consideration.
- 2. Install fire doors and frames according to NFPA 80.
- 3. Install smoke control doors and frames according to NFPA 105.

3.3 FRAME INSTALLATION

- A. Apply barrier coating to concealed surfaces of frames built into masonry.
- B. Plumb, align, and brace frames until permanent anchors are set.
 - 1. Use triangular bracing near each corner on both sides of frames with temporary wood spreaders at midpoint.
 - Use wood spreaders at bottom of frame when shipping spreader is removed.
 - Where construction permits concealment, leave shipping spreaders in place after installation, otherwise remove spreaders when frames are set and anchored.
 - Remove wood spreaders and braces when walls are built and jamb anchors are secured.
- C. Floor Anchors:
 - 1. Anchor frame jambs to floor with two expansion bolts.
 - a. Lead Lined Frames: Use 9 mm (3/8 inch) diameter bolts.
 - b. Other Frames: Use 6 mm (1/4 inch) diameter bolts.
 - 2. Power actuated drive pins are acceptable to secure frame anchors to concrete floors.
- D. Jamb Anchors:
 - 1. Masonry Walls:
 - a. Embed anchors in mortar.
 - b. Fill space between frame and masonry with grout or mortar as walls are built.
 - 2. Metal Framed Walls: Secure anchors to sides of studs with two fasteners through anchor tabs.
 - 3. Prepared Masonry and Concrete Openings:
 - a. Direct Securement: 6 mm (1/4 inch) diameter expansion bolts through spacers.
 - b. Subframe or Rough Buck Securement:
 - 6 mm (1/4 inch) diameter expansion bolts on 600 mm (24 inch) centers.
 - 2) Power activated drive pins on 600 mm (24 inches) centers.

- c. Secure two-piece frames to subframe or rough buck with machine screws on both faces.
- E. Frames for Sound Rated Doors: Fill frames with insulation.
- F. Lead Lined Frames:
 - 1. Extend jambs and anchor with clip angles to structure above.
 - Fasteners to Concrete: Minimum two, 9 mm (3/8 inch) diameter expansion bolts.
 - b. Connection to Structural Steel: Welded.
- G. Touch up damaged factory finishes.
 - 1. Repair galvanized surfaces with galvanized repair paint.
 - 2. Repair painted surfaces with touch up primer.

3.4 DOOR INSTALLATION

- A. Install doors plumb and level.
- B. Adjust doors for smooth operation.
- C. Touch up damaged factory finishes.
 - 1. Repair galvanized surfaces with galvanized repair paint.
 - 2. Repair painted surfaces with touch up primer.

3.5 CLEANING

A. Clean exposed door and frame surfaces. Remove contaminants and stains.

3.6 PROTECTION

- A. Protect doors and frames from construction operations.
- B. Remove protective materials immediately before acceptance.
- C. Repair damage.

- - - E N D - - -

SECTION 08 14 00 INTERIOR WOOD DOORS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Interior flush wood doors transparent finish.
 - a. Fire rated doors.
 - b. Smoke rated doors.
 - c. Acoustical doors.
 - d. N/A.
 - 2. N/A.

1.2 RELATED REQUIREMENTS

- A. Paints and Coatings and Composite Wood and Agrifiber VOC Limits: Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- B. Door Hardware including hardware location (height): Section 08 71 00, DOOR HARDWARE.
- C. Installation of Doors and Hardware: Section 08 11 13, HOLLOW METAL DOORS AND FRAMES Section 08 71 00, DOOR HARDWARE.
- D. Door Finish: Section 09 06 00, SCHEDULE FOR FINISHES.
- E. Metal door frames: Section 08 11 13, HOLLOW METAL DOORS AND FRAMES.

1.3 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- B. American National Standards Institute/Window and Door Manufacturers Association (ANSI/WDMA):
 - 1. I.S. 1A-13 Architectural Wood Flush Doors.
 - 2. I.S. 6A-13 Interior Architectural Stile and Rails Doors.
- C. ASTM International (ASTM):
 - 1. E90-09 Laboratory Measurements of Airborne Sound Transmission Loss of Building Partitions and Elements.
- D. National Fire Protection Association (NFPA):
 - 1. 80-16 Fire Doors and Other Opening Protectives.
 - 2. 252-12 Fire Tests of Door Assemblies.
- E. UL LLC (UL):
 - 1. 10C-09 Positive Pressure Fire Tests of Door Assemblies.
- F. Window and Door Manufacturers Association (WDMA):
 - 1. TM 7-14 Cycle-Slam Test.
 - 2. TM 8-14 Hinge Loading Test.

3. TM 10-14 - Screw Holding Capacity.

1.4 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Submittal Drawings:
 - 1. Show size, configuration, and fabrication and installation details.
 - 2. Include details of glazing and louvers.
 - Indicate project specific requirements not included in Manufacturer's Literature and Data submittal.
 - 4. Show types every door in project and schedule location in building.
 - Indicate type, grade, finish and size; include detail of glazing, sound gasketing, and pertinent details.
- C. Manufacturer's Literature and Data:
 - 1. Description of each product.
 - 2. Fire rated doors showing conformance with NFPA 80.
- D. Coordination of Submittals: Wood door submittals will be reviewed concurrently with hollow metal doors and frames and door hardware submittals. Review will not begin until all submittals have been received and are determined to be complete.
- E. Samples:
 - Corner section of flush veneered door 300 mm (12 inches) square, showing details of construction, labeled to show grade and type number and conformance to specified standard.
 - Veneer sample 200 mm by 275 mm (8 inch by 11 inch) by 11 6 mm (1/4 inch) showing specified wood species sanded to receive a transparent finish. Factory finish veneer sample where the prefinished option is accepted.
- F. Sustainable Construction Submittals:
 - 1. Low Pollutant-Emitting Materials:
 - a. Show volatile organic compound types and quantities.
- G. Test Reports: Indicate products comply with specifications.
 - 1. Screw Holding Capacity Test.
 - 2. Cycle-Slam Test.
 - 3. Hinge-Loading Test.
- H. Operation and Maintenance Data:
 - 1. Care instructions for each exposed finish product.

1.5 QUALITY ASSURANCE

- A. Manufacturer Qualifications:
 - 1. Regularly and presently manufactures specified products.
 - 2. Manufactures specified products with satisfactory service on five similar installations for minimum five years.

1.6 DELIVERY

- A. Deliver products in manufacturer's original sealed packaging.
 - 1. Minimum 0.15 mm (6 mil) polyethylene bags or cardboard packaging to remain unbroken during delivery and storage.
- B. Mark packaging, legibly. Indicate manufacturer's name or brand, type, finish, and manufacture date.
 - 1. Identify door opening corresponding to Door Schedule.
- C. Before installation, return or dispose of products within distorted, damaged, or opened packaging.

1.7 STORAGE AND HANDLING

- A. Store products indoors in dry, weathertight conditioned facility.1. Store doors according to ANSI/WDMA I.S. 1A.
- B. Protect products from damage during handling and construction operations.

1.8 FIELD CONDITIONS

- A. Environment:
 - Product Temperature: Minimum 21 degrees C (70 degrees F) for minimum
 48 hours before installation.
 - Work Area Ambient Temperature Range: 21 to 27 degrees C (70 to 80 degrees F) continuously, beginning 48 hours before installation.
 - 3. Install products when building is permanently enclosed and when wet construction is completed, dried, and cured.
 - a. Comply with door manufacturer's instructions for relative humidity.

1.9 WARRANTY

- A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."
- B. Manufacturer's Warranty: Warrant interior factory finished flush wood doors against material and manufacturing defects.
 - 1. Warranty Period: Lifetime of original installation.
 - Specified STC RATING for sound retardant rated door assembly in place.

PART 2 - PRODUCTS

2.1 PRODUCTS - GENERAL

- A. Basis of Design: Section 09 06 00, SCHEDULE FOR FINISHES.
- B. Provide each product from one manufacturer.
- C. Sustainable Construction Requirements:
 - Low Pollutant-Emitting Materials: Comply with VOC limits specified in Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS for the following products:
 - a. Paints and coatings.
 - b. Composite wood and agrifiber.

2.2 FLUSH WOOD DOORS

- A. General:
 - 1. ANSI/WDMA I.S. 1A, Extra Heavy Duty.
 - 2. Adhesive: Type II.
 - 3. Core: Structural composite lumber, except when mineral core is required for fire rating.
 - 4. Thickness: 44 mm (1-3/4 inches).

B. Faces:

- 1. ANSI/WDMA I.S. 1A.
- 2. One species throughout project unless scheduled or otherwise shown.
- 3. Transparent Finished Faces: Premium Grade. rotary cut, white birch.
 - a. AA Grade face veneer.
 - b. Match face veneers for doors for uniform effect of color and grain at joints.
 - c. Door Edges: Same species as door face veneer, except maple is acceptable for stile face veneer on birch doors.
 - d. N/A.
- Painted Finishes: Custom Grade, mill option close grained hardwood, premium or medium density overlay.
- 5. Factory prepare and finish doors.
- C. Wood For Stops, Louvers, Muntins and Moldings For Flush Doors Required to Have Transparent Finish:
 - Solid wood of same species as face veneer, except maple is acceptable on birch doors.
 - 2. Glazing:
 - a. On non-fire-rated doors, use applied wood stops nailed tightly on room side and attached on opposite side with flathead,

countersunk wood screws, spaced approximately 125 mm (5 inches) on center.

b. N/A

3. N/A

- D. Fire-Rated Wood Doors:
 - 1. Fire Resistance Rating:
 - a. B Label: 1-1/2 hours.
 - b. C Label: 3/4 hour.
 - 2. Labels:
 - a. Comply with NFPA 252, UL 10C, and labeled by qualified testing and inspection agency showing fire resistance rating.
 - b. Metal labels with raised or incised markings.
 - 3. Performance Criteria for Stiles of Doors Utilizing Standard Mortise Leaf Hinges:
 - a. Hinge Loading: WDMA TM 8. Average of 10 test samples for Extra Heavy Duty doors.
 - b. Direct Screw Withdrawal: WDMA TM 10 for Extra Heavy Duty doors. Average of 10 test samples using a steel, fully threaded #12 wood screw.
 - c. Cycle-Slam: 1,000,000 cycles with no loose hinge screws or other visible signs of failure when tested according to WDMA TM 7.
 - 4. Hardware Reinforcement:
 - a. Provide fire and smoke rated doors with hardware reinforcement blocking.
 - b. Size of lock blocks as required to secure hardware specified.
 - c. Top, Bottom and Intermediate Rail Blocks: Minimum 125 mm (5 inches) by full core width.
 - d. Reinforcement blocking in compliance with labeling requirements.
 - e. Mineral material similar to core is not acceptable.
 - 5. Other Core Components: Manufacturer's standard as allowed by labeling requirements.
 - 6. Glazed Vision Panel Frame: Steel approved for use in labeled doors.
 - 7. Astragal: Steel type for pairs of doors.
- E. Smoke Barrier Doors:
 - 1. Glazed Vision Panel Frame: Steel approved for use in labeled doors.
 - Astragal: Steel type for pairs of doors, including double egress doors.
- F. Sound Rated Doors:

- Fabricated as specified for flush wood doors with additional construction requirements to comply with specified sound transmission class (STC).
- 2. STC Rating of door assembly in place when tested according to ASTM E90 by independent acoustical testing laboratory minimum 40.
- 3. Accessories:
 - a. Frame Gaskets and Automatic Door Bottom Seal: As specified in Section 08 71 00, DOOR HARDWARE.
- 4. N/A.
- G. N/A.

2.3 FABRICATION

- A. Factory machine interior wood doors to receive hardware, bevels, undercuts, cutouts, accessories and fitting for frame.
 - 1. Factory fit fire rated doors according to NFPA 80.
- B. Rout doors for hardware using templates and location heights specified in Section 08 71 00, DOOR HARDWARE.
- C. Factory fit doors to frame, bevel lock edge of doors 3 mm (1/8 inch) for each 50 mm (2 inches) of door thickness // undercut where shown //.
- D. Clearances between Doors and Frames and Floors:
 - 1. Fire Rated Doors: Comply with NFPA 80.
 - a. Doors with Automatic Bottom Seal: Maximum clearance 10 mm (3/8 inch) at threshold.
 - b. Other Door Bottoms: Maximum 3 mm (1/8 inch) clearance at the jambs, heads, and meeting stiles, and a 19 mm (3/4 inch) clearance at bottom, except as otherwise specified.
 - 2. Door Jambs, Heads, and Meeting Stiles: Maximum 3 mm (1/8 inch).
- E. Provide cutouts for glazed and louver openings.
- F. Finish surfaces, including both faces, top and bottom and edges of the doors smooth to touch.
- G. Identify each door on top edge.
 - Mark with stamp, brand or other indelible mark, giving manufacturer's name, door's trade name, construction of door, date of manufacture and quality.
 - 2. Mark door or provide separate certification including name of inspection organization.
 - 3. Identify door manufacturing standard, including glue type.
 - 4. Identify veneer and quality certification.
 - 5. Identification of preservative treatment for stile and rail doors.

2.4 FINISHES

- A. Field Finished Doors: Seal top and bottom edges of doors with two coats of catalyzed polyurethane or water resistant sealer.
- B. Factory Transparent Finish:
 - 1. Factory finish flush wood doors.
 - ANSI/WDMA I.S. 1A Section F-3 Finish System Descriptions for System 5, Conversion Varnish or System 7, Catalyzed Vinyl.
 - b. Use stain when required to produce finish specified in Section09 06 00, SCHEDULE FOR FINISHES.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Examine and verify substrate suitability for product installation.
 - 1. Verify door frames are properly anchored.
 - Verify door frames are plumb, square, in plane, and within tolerances for door installation.
- B. Protect existing construction and completed work from damage.
- C. Install astragal on active leaf of pair of smoke doors and one leaf of double egress smoke doors.

3.2 INSTALLATION

- A. Install products according to manufacturer's instructions and approved submittal drawings.
 - 1. Install fire rated doors according to NFPA 80.
 - When manufacturer's instructions deviate from specifications, submit proposed resolution for Contracting Officer's Representative consideration.

3.3 PROTECTION

- A. After installation, place shipping container over door and tape in place.
 - 1. Do not apply tape to door faces and edges.
- B. Provide protective covering over exposed hardware in addition to covering door.
- C. Maintain covering in good condition until removal is directed by Contracting Officer's Representative.

- - E N D - -

08 14 00 - 7

SECTION 08 31 13 ACCESS DOORS AND FRAMES

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Access doors and panels installed in walls and ceilings.

1.2 RELATED REQUIREMENTS

- A. Wire Mesh and Screen Access Doors: Section 05 50 00, METAL FABRICATIONS.
- B. Lock Cylinders: Section 08 71 00, DOOR HARDWARE.
- C. Field Painting: Section 09 91 00, PAINTING.
- D. Finish Color: Section 09 06 00, SCHEDULE FOR FINISHES.
- E. Access Doors for Control or Drain Valves: 21 13 16 DRY PIPE SPRINKLER SYSTEMS.
- F. Access Doors for Plumbing Valves: Section 21 40 00, PLUMBING FIXTURES.
- G. Locations of Access Doors for Ductwork Cleanouts: Section 23 31 00, HVAC DUCTS AND CASINGS.

1.3 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- B. American Welding Society (AWS):
 - 1. D1.3/D1.3M-08 Structural Welding Code Sheet Steel.
- C. ASTM International (ASTM):
 - A653/A653M-15 Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Sip Process.
 - A1008/A1008M-15 Steel, Sheet, Cold-Rolled, Carbon, Structural, High-Strength Low-Alloy, High-Strength Low-Alloy with Improved Formability, Solution Hardened, and Baked Hardenable.
 - A666-15 Annealed or Cold-Worked Austenitic Stainless Steel sheet, Strip, Plate, and Flat Bar.
 - 4. E119-15 Fire Test of Building Construction and Materials.
- D. National Fire Protection Association (NFPA):
 - 1. 80-16 Fire Doors and Other Opening Protectives.
 - 2. 251-12 Fire Tests of Door Assemblies.
- E. National Association of Architectural Metal Manufacturers (NAAMM):
 - 1. AMP 500-06 Metal Finishes Manual.
- F. UL LLC (UL):
 - 1. Listed Online Certifications Directory.

- 2. 10B-08 Standard for Fire Tests of Door Assemblies.
- 3. 263-11 Fire Tests of Building Construction and Materials.

1.4 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Submittal Drawings:
 - 1. Show size, configuration, and fabrication and installation details.
- C. Manufacturer's Literature and Data:
 - 1. Description of each product.
 - 2. Installation instructions.
- D. Sustainable Construction Submittals:
 - 1. Recycled Content: Identify post-consumer and pre-consumer recycled content percentage by weight.

1.5 DELIVERY

- A. Deliver products in manufacturer's original sealed packaging.
- B. Mark packaging, legibly. Indicate manufacturer's name or brand, type, color, production run number, and manufacture date.
- C. Before installation, return or dispose of products within distorted, damaged, or opened packaging.

1.6 STORAGE AND HANDLING

- A. Store products indoors in dry, weathertight facility.
- B. Protect products from damage during handling and construction operations.

1.7 FIELD CONDITIONS

- A. Field Measurements: Verify field conditions affecting access door fabrication and installation. Show field measurements on Submittal Drawings.
 - Coordinate field measurement and fabrication schedule to avoid delay.

1.8 WARRANTY

A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."

PART 2 - PRODUCTS

2.1 MATERIALS

A. Steel Sheet: ASTM A1008/A1008M.

- B. Galvanized Steel: ASTM A 653/A 653M.
- C. Stainless Steel: ASTM A666; Type 302 or Type 304.

2.2 PRODUCTS - GENERAL

- A. Basis of Design: Section 09 06 00, SCHEDULE FOR FINISHES.
- B. Provide each product from one manufacturer.
- C. Sustainable Construction Requirements:
 - Steel Access Doors Recycled Content: 30 percent total recycled content, minimum.
 - 2. Stainless Steel Access Doors Recycled Content: 70 percent total recycled content, minimum.

2.3 ACCESS DOORS, FIRE-RATED

- A. Door Construction:
 - 1. Ceiling Access Door Construction: ASTM E119 or UL 263.
 - 2. Wall Access Doors: NFPA 252 or UL 10B.
- B. Label: Class B opening according to UL 10B or test by another nationally recognized laboratory. 1 hour fire-rated, with maximum temperature rise of 120 degrees C (216 degrees F).
- C. Door Panel: Minimum 0.9 mm (0.0359 inch) thick steel, with mineral-fiber insulation core, insulated sandwich type construction.
- D. Frame: Minimum 1.5 mm (0.0598 inch) thick steel sheet, depth and configuration to suit material and construction type where installed.
 - Frame Flange: Provide at units installed in concrete, masonry, or gypsum board.
 - 2. Exposed Joints in Flange: Weld and grind smooth.
 - 3. N/A.
- E. Provide automatic closing device.
- F. Hinge: Continuous steel hinge with stainless steel pin.
- G. Lock: Self-latching, mortise type with provision for fitting flush a standard screw-in type lock cylinder.
 - 1. Lock cylinder specified in Section 08 71 00, DOOR HARDWARE.
 - 2. Latch release device operable from inside of door.
- H. Anchors for Fire-Rated Access Doors: Comply with requirements of applicable fire test.

2.4 ACCESS DOORS, FLUSH PANEL, NON-RATED

- A. Door Panel:
 - 1. 1.9 mm (0.07 inch) thick steel sheet.
 - 2. Reinforce to maintain flat surface.

- B. Frame:
 - 1. 1.5 mm (0.06 inch) thick steel sheet, depth and configuration to suit material and construction type where installed.
 - 2. Frame Flange: Provide at units installed in concrete, masonry, and gypsum board.
 - 3. Exposed Joints in Flange: Weld and grind smooth.
 - 4. N/A.
- C. Hinge:
 - 1. Concealed spring hinge, 175 degrees of opening.
 - 2. Removable hinge pin to allow removal of door panel from frame.
- D. Lock:
 - 1. Flush, screwdriver-operated cam lock.
 - 2. N/A

2.5 ACCESS DOOR, RECESSED PANEL, NON-RATED

- A. Door Panel:
 - 1.2 mm (0.05 inch) thick steel sheet to form a 25 mm (1 inch) deep recessed pan to accommodate installation of acoustical units and other materials where shown in walls and ceiling.
 - 2. Reinforce to prevent sagging.
- B. Frame:
 - 1. 1.5 mm (0.06 inch) thick steel sheet of depth and configuration to suit installation in suspension system of ceiling or wall framing.
 - 2. Extend sides of frame to protect edge of acoustical units when door panel is in open position.
 - Provide shims, bushings, clips and other devices necessary for installation.
- C. Hinge: Continuous steel hinge with stainless steel pin, or concealed hinge.
- D. Lock:
 - 1. Flush screwdriver-operated cam lock.
 - 2. Plastic sleeve or stainless steel grommet to protect hole made in acoustical unit for screwdriver access to lock.
 - 3. n/a.

2.6 FABRICATION - GENERAL

A. Size: Minimum 600 mm (24 inches) square door unless otherwise shown or required to suit opening in suspension system of ceiling.

- B. Component Fabrication: Straight, square, flat and in same plane where required.
 - Exposed Edges: Slightly rounded, without burrs, snags and sharp edges.
 - 2. Exposed Welds: Continuous, ground smooth.
 - 3. Welding: AWS D1.3/D1.3M.
- C. Locks and Non-Continuous Hinges: Provide in numbers required to maintain alignment of door panel with frame. For fire-rated doors, provide hinges and locks as required by fire test.
- D. Anchoring: Make provisions in frame for anchoring to adjacent construction. Provide anchors in size, number and location on four sides to secure access door to substrate. Provide anchors as required by fire test.

2.7 FINISHES

- A. Steel Paint Finish:
 - Powder-Coat Finish: Manufacturer's standard two-coat finish system consisting of the following:
 - a. One coat primer.
 - b. One coat thermosetting topcoat.
 - c. Dry-film Thickness: 0.05 mm (2 mils) minimum.
 - d. Color: Refer to Section 09 06 00, SCHEDULE FOR FINISHES.
- B. N/A.

2.8 ACCESSORIES

- A. Fasteners: Type and size recommended by access door manufacturer, to suit application.
 - 1. N/A.
 - 2. Other Access Doors: Galvanized steel fasteners.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Examine and verify substrate suitability for product installation.
 - Verify access door locations and sizes provide required maintenance access to installed building services components.
- B. Protect existing construction and completed work from damage.

3.2 INSTALLATION - GENERAL

A. Install products according to manufacturer's instructions and approved submittal drawings.

- When manufacturer's instructions deviate from specifications, submit proposed resolution for Contracting Officer's Representative consideration.
- B. Install access doors and panels permitting access to service valves, traps, dampers, cleanouts, and other mechanical, electrical and conveyor control items concealed in walls and partitions, and concealed above gypsum board and plaster ceilings.
- C. Install fire rated access door according to NFPA 80.
- D. Install fire-rated doors in fire-rated partitions and ceilings.
- E. Install flush access panels in partitions and in gypsum board and plaster ceilings.
- F. N/A.

3.3 ACCESS DOOR AND FRAME INSTALLATION

- A. Wall Installations: Install access doors in openings with sides vertical.
- B. Ceiling Installations: Install access doors parallel to ceiling suspension grid or room partitions.
- C. Frames without Flanges: Install frame flush with surrounding finish surfaces.
- D. Frames with Flanges: Overlap opening, with face uniformly spaced from finish surface.
- E. Recessed Panel Access Doors: Install with face of surrounding materials flush with door panel installed finish.
- F. Secure frames to adjacent construction with fasteners.
- G. Install type, size and quantity of anchoring device suitable for material surrounding opening to maintain alignment, and resist displacement, during normal use of access door.
- H. Field Painting Primed Access Doors: Comply with the requirements of Section 09 91 00, PAINTING.

3.4 ADJUSTMENT

- A. Adjust hardware so door panel opens freely.
- B. Adjust door when closed so door panel is centered in frame.

- - E N D - -

SECTION 08 51 13 ALUMINUM WINDOWS

PART 1 - GENERAL

1.1 SUMMARY

- A. This section specifies thermally broken commercial aluminum windows of type and size shown, complete with hardware, related components and accessories.
- B. Types: Single hung windows

1.2 DEFINITIONS

- A. Accessories: Mullions, staff beads, casings, closures, trim, moldings, panning systems, sub-sills, clips anchors, fasteners, weatherstripping, insect screens and other necessary components required for fabrication and installation of window units.
- B. Uncontrolled Water: Water not drained to the exterior, or water appearing on the room side of the window.

1.3 RELATED REQUIREMENTS

- A. Sealing Joints: Section 07 92 00, JOINT SEALANTS.
- B. N/A.
- C. Glazing: Section 08 80 00, GLAZING.
- D. Color of finish: Section 09 06 00, SCHEDULE FOR FINISHES.

1.4 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- B. American Architectural Manufacturers Associations (AAMA):
 - 1. AAMA/WDMA/CSA 101/I.S.2/A440-11 Windows, Doors, and Skylights.
 - 2. AAMA 505-09 Dry Shrinkage and Composite Performance Thermal Cycle Test Procedures.
 - 3. AAMA 2605-13 Performance Requirements and Test Procedures for Superior Performing Organic Coatings on Aluminum Extrusions and Panels.
 - 4. AAMA TIR A8-08 Structural Performance of Composite Thermal Barrier Framing System.
- C. American Society of Civil Engineers/Structural Engineering Institute (ASCE/SEI):
 - 1.7-10 Minimum Design Loads for Buildings and Other Structures.
- D. American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE):

- 1.90.1-13 Energy Standard for Buildings Except Low-Rise Residential Buildings.
- E. ASTM International (ASTM):
 - 1. B209-14 Aluminum and Aluminum-Alloy Sheet and Plate.
 - 2. B209M-14 Aluminum and Aluminum-Alloy Sheet and Plate (Metric).
 - 3. B221-14 Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Profiles, and Tubes.
 - 4. B221M-13 Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Profiles, and Tubes (Metric).
 - 5.E283-04(2012) Determining Rate of Air Leakage Through Exterior Windows, Curtain Walls, and Doors Under Specified Pressure Differences Across the Specimen.
 - 6.E331-00(2009) Water Penetration of Exterior Windows, Skylights, Doors, and Curtain Walls by Uniform Static Air Pressure Difference.

1.5 PREINSTALLATION MEETINGS

- A. Conduct preinstallation meeting at project site minimum 30 days before beginning Work of this section.
 - 1. Required Participants:
 - a. Contracting Officer's Representative.
 - b. N/A.
 - c. N/A
 - d. Contractor.
 - e. Installer.
 - f. N/A
 - Meeting Agenda: Distribute agenda to participants minimum 3 days before meeting.
 - a. Installation schedule.
 - b. Installation sequence.
 - c. Preparatory work.
 - d. Protection before, during, and after installation.
 - e. Installation.
 - f. Transitions and connections to other work.
 - g. Other items affecting successful completion.
 - 3. Document and distribute meeting minutes to participants to record decisions affecting installation.

1.6 SUBMITTAL

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Shop Drawings:
 - 1. Minimum of 1/2 full scale for each type of window on project.
 - Identifying parts of window units by name and kind of metal or material, show construction, locking systems, mechanical operators, trim, installation and anchorages.
 - 3. Include glazing details and standards for factory glazed units.
- C. Manufacturer's Literature and Data:
 - 1. Window.
 - 2. Sash locks, keepers, key, and other accessories.
- D. Certificates:
 - 1. Certificates as specified in paragraph QUALITY ASSURANCE.
 - 2. Indicating manufacturers and installers qualifications.
 - Manufacturer's Certification that windows delivered to project are identical to windows tested.
- E. Test Reports:
 - 1. Air Infiltration Test:
 - a. Complete testing in accordance with ASTM E 283, at a static air pressure of 1.57 lb PSF.
 - b. Resultant air infiltration shall not exceed .26 cfm/ft.
 - 2. Water Resistance Test:
 - a. Complete testing in accordance with ASTM E 331 and ASTM E 547, at a static pressure difference of 5.25 PSF (DH-C35) 6.00 PSF (DH-HC40) 7.50 PSF (DH-HC50).
 - b. There shall be no uncontrolled water leakage.
 - 3. Thermal Transmittance (U-Factor):
 - a. Thermal testing is to be conducted in accordance with the National Fenestration Rating Council, Inc., NFRC 100 procedure.
 - b. Maximum U-Factor is to be .32.
 - 4. Solar Heat Gain Coefficient (SHGC):
 - a. Complete calculations and furnish certified values in accordance with NFRC 200 procedure. The specified Window and Glass combination shall not have a SHGC of greater than .40.
 - 5. Air Leakage:

- a. Testing is to be conducted in accordance with NFRC 400 procedure.
- b. The maximum Air Leakage value for Single Hung windows shall not exceed .3.
- F. Samples: Provide 150 mm (six-inch) length samples showing finishes, specified.

1.7 QUALITY ASSURANCE

- A. Manufacturer Qualifications:
 - 1. Regularly manufactures specified products.
 - 2. Manufactured specified products with satisfactory service on five similar installations for minimum five years.
 - a. Provide contact names and addresses for completed projects when requested by Contracting Officer's Representative.
- B. Quality Certified Labels or Certificates:
 - 1. AAMA Label affixed to each window indicating compliance with specification.
 - 2. Certificates in lieu of label with copy of test report maximum 4 years old from independent testing laboratory and certificate signed by window manufacturer stating that windows provided comply with specified requirements and AAMA/WDMA/CSA 101/I.S.2/A440 for type of window specified.
 - 3. Energy Star label to confirm compliance with Energy Star criteria for North-Central climate zone.
- C. Approval will be based on submission of certification by Contractor that:
 - Manufacturer regularly and presently manufactures the specified windows as one of its principal products.
 - Installer has technical qualifications, experience, trained personnel and facilities to install specified items.
- D. Provide each type of window produced from one source of manufacture.

1.8 STORAGE AND HANDLING

- A. Protect windows from damage during handling and construction operations before, during and after installation.
- B. Store windows under cover, setting upright.
- C. Do not stack windows flat.
- D. Do not lay building materials or equipment on windows.

1.9 WARRANTY

- A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."
- B. Manufacturer's Warranty: Warrant windows against material and manufacturing defects.

1. Warranty Period: 10 years.

PART 2 - PRODUCTS

2.1 SYSTEM PERFORMANCE

- A. Design windows complying with specified performance:
 - Load Resistance: ASCE/SEI 7 Design or criteria as indicated on Drawings.
 - a. Performance Grade: AAMA/WDMA/CSA 101/I.S.2/A440 required to resist maximum positive and negative wind load.
 - Thermal Transmittance: Maximum U-value W/sq. m/degree K (Btu/sq. ft./hr./degree F).
 - (Dea/bq: re./m./acgree r/.
 - a. Insulating Glass Windows: U-2.8 (U-0.5).
 - b. Dual Glazed Windows: U-4.0 (U-0.7), or as required by ASHRAE 90.1.
 - 3. Condensation Resistance Factor (CRF): NFRC 500 Minimum CRF of C 50.
 - 4. Water Resistance: ASTM E331; No uncontrolled penetration at 390 Pa
 (8.00 psf), minimum, pressure differential.
 - 5. Air Infiltration Resistance: ASTM E283; 0.5 L/s/sq. m

(0.1 cfm/sq. ft.), maximum at 300 Pa (6.24 psf), minimum, pressure differential.

- B. Provide the following operation types for locations indicated on the Drawings.
 - 1. Hung Windows: Single hung.
 - Performance Class and Grade: AAMA/WDMA/CSA 101/I.S.2/A440, minimum.
 - Provide units with tilt-in feature permitting both sides of both sash to be cleaned from interior.
 - Restrict sash tilting without use of maintenance release mechanism and removable locking handle.
 - 2) Finger operated tilt latches not acceptable.
 - 2. Casement Windows:
 - Performance Class and Grade: AAMA/WDMA/CSA 101/I.S.2/A440, minimum.

1) N/A.

b. N/A.

- c. N/A.
- d. N/A.

2.2 MATERIALS

A. Aluminum Extrusions: ASTM B221M (ASTM B221); 6063 alloy, T6 temper.

B. N/A.

2.3 PRODUCTS - GENERAL

- A. N/A.
- B. Provide windows from one manufacturer.
- C. Sustainable Construction Requirements:

1. Aluminum Recycled Content: 80 total recycled content, minimum.

2.4 ALUMINUM WINDOWS

- A. Frames and Sashes: Aluminum extrusions, AAMA/WDMA/CSA 101/I.S.2/A440.
- B. Thermal-Break Window Construction:
 - 1. Manufacturer's Standard.
 - 2. Low conductance thermal barrier.
 - 3. Capable of structurally holding sash in position and together.
 - 4. Thermal Break Assemblies: Tested according to AAMA TIR A8 and AAMA 505.
 - 5. Design location of thermal break so that, in closed position, outside air does not come in direct contact with interior frame of window.
- C. Mullions: Match window units.
- D. Provide anchors and other related accessories required for installation.

2.5 GLAZING

- A. Glass and Glazing: As specified in Section 08 80 00, GLAZING.1. Factory glaze windows.
 - 2. Weep holes through glazed areas are not acceptable.

2.6 INSECT SCREENING

- A. Screen Mesh: 18 by 18, AAMA/WDMA/CSA 101/I.S.2/A440.1. Screen Cloth: fiberglass, charcoal color.
- B. Frame: Aluminum, match window unit finish type and color, unless otherwise indicated.

2.7 HARDWARE

- A. Locks: Two position locking bolts or cam type tamperproof custodial locks with a single point control located not higher than 1500 mm (60 inches) from floor level. Locate locking devices in vent side rail. Provide concealed or nonremovable fastenings for locks and keepers.
- B. Locking Device Strikes: Locate adjustable strikes in frame jamb. Fabricate strikes from Type 304 stainless steel or white bronze.
- C. Fabricate hinges of noncorrosive metal. Hinges may be either fully concealed when window is closed or semi-concealed with exposed knuckles and hospital tips. Surface mounted hinges are not acceptable.
- D. Guide Blocks: Fabricate guide blocks of injection molded nylon. Install guide block fully concealed in vent/frame sill.
- E. Hardware for Emergency Ventilation of Windows:
 - 1. Provide windows with hold open linkage.
 - Provide hold open hardware for maximum 150 mm (6 inches) of window opening with adjustable friction shoe to provide resistance when closing window.
 - 3. Handles: Removable type.
- F. Hardware for Maintenance Opening of Windows: Opening beyond limit stop position accomplished by maintenance key captured by release device when window is in open position.
 - Design operating device to prevent opening with standard tools, coins or bent wire devices.
 - 2.N/A.
- G. Weather Stripping: AAMA/WDMA/CSA 101/I.S.2/A440; leaf type weather-stripping is not acceptable.
- H. Provide wrenches, keys, or removable locking operating handles, as specified to operate windows.
 - Provide one emergency ventilating operating handle for every four windows.
 - 2. Provide maintenance or window washer operating handles as required.

2.8 FABRICATION

- A. Fabricate windows to comply specified performance class and grade.
 - 1. Assemble frame and sash so fasteners are concealed when window is closed.
 - 2. Attach locking and hold-open devices to windows with concealed fasteners.

- 3. Where extrusion wall thickness is less than 3 mm (0.125 inch) thick, provide backup plates or similar reinforcements for fasteners.
- 4. Use stainless steel fasteners to secure Venetian blind hanger clips, vent guide blocks, friction adjuster, and limit opening device.

B. Aluminum Trim:

- 1. Trim includes casings, closures, and panning.
- 2. Fabricate to shapes shown, minimum 1.6 mm (0.062 inch) thick.
- 3. Extruded or formed sections, straight, true, and smooth on exposed surfaces.
- Exposed external corners mitered and internal corners coped; fitted with hairline joints.
- 5. Reinforce 1.6 mm (0.062 inch) thick members with minimum 3 mm (1/8 inch) thick aluminum.
- Except for strap anchors, provide reinforcing for fastening near ends and spaced maximum 300 mm (12 inches) on center.
- 7. Design to allow unrestricted expansion and contraction of members and window frames.
- 8. Secure to window frames with machine screws or expansion rivets.
- 9. Exposed screws, fasteners or pop rivets are not acceptable on exterior of casing or trim cover system.
- C. Aluminum Subsills and Stools:
 - 1. Fabricate to shapes shown, minimum 2 mm (0.080 inch) thick extrusion.
 - 2. One piece full length of opening with concealed anchors.
 - Sills turned up back edge minimum 6 mm (1/4 inch). Front edge provide with drip.
 - 4. Sill back edge behind face of window frame. Do not extend to interior surface or bridge thermal breaks.
 - 5. Do not perforate for anchorage, clip screws, or other requirements.

2.9 THERMAL AND CONDENSATION PERFORMANCE

- A. Condensation Resistance Factor (CRF): Minimum CRF of C 50.
- B. Thermal Transmittance:
 - 1. Maximum U value class for insulating glass windows: not greater than 32 (U \leq 0.32).
- C. Solar Heat Gain Coefficient (SHGC): SHGC shall comply with State or local energy code requirement but not greater than 0.40.

2.10 FINISHES

A. Finish window units according to NAAMM AMP 500 series.

- B. Anodized Aluminum:
 - 1. Clear Anodized Finish: AA-C22A41; Class I Architectural, 0.018 mm
 (0.7 mil) thick.
 - 2. Color Anodized Finish: AA-C22A42 or AA-C22A44; Class I Architectural, 0.018 mm (0.7 mil) thick.
- C. Aluminum Paint finish:
 - Fluorocarbon Finish: AAMA 2605; 70 percent fluoropolymer resin,
 2-coat system.
 - 2. Color: Refer to Section 09 06 00, SCHEDULE FOR FINISHES.
- D. Hardware: Finish hardware exposed when window is in closed position to match window.

2.11 ACCESSORIES

A. Fasteners: AAMA/WDMA/CSA 101/I.S.2/A440; non-magnetic stainless steel.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Examine and verify substrate suitability for product installation.1. Verify openings are within acceptable tolerances.
- B. Protect existing construction and completed work from damage.
- C. N/A.

3.2 INSTALLATION, GENERAL

- A. Install products according to manufacturer's instructions and approved submittal drawings.
 - When manufacturer's instructions deviate from specifications, submit proposed resolution for Contracting Officer's Representative consideration.
- B. Where type, size or spacing of fastenings for securing window accessories or equipment to building construction is not shown or specified, provide expansion or toggle bolts or screws, as best suited to construction material.
 - 1. Provide bolts or screws minimum 6 mm (1/4 inch) in diameter.
 - 2. Sized and spaced to resist tensile and shear loads imposed.
 - 3. Do not install exposed fasteners on exterior, except when unavoidable for application of hardware.
 - Provide non-magnetic stainless steel Phillips flat-head machine screws for exposed fasteners, where required, or special tamper-proof fasteners.

5. Locate fasteners to avoid disturbing window thermal break.

- C. Set windows plumb, level, true, and in alignment; without warp or rack of frames or sash.
- D. Anchor windows on four sides with anchor clips or fin trim.
 - 1. Do not allow anchor clips to bridge thermal breaks.
 - 2. Use separate clips for both sides of thermal breaks.
 - 3. Make connections to allow for thermal and other movements.
 - 4. Do not allow building load to bear on windows.
 - Use manufacturer's standard clips at corners and maximum 600 mm (24 inches) on center.
 - 6. Where fin trim anchorage is indicated build into adjacent construction, anchoring at corners and maximum 600 mm (24 inches) on center.
- E. Sills and Stools:
 - Set in bed of mortar or other compound to fully support, true to line shown.
 - 2. Do not extend sill to inside window surface or past thermal break.
 - 3. Leave space for sealants at ends and to window frame unless indicated otherwise.

3.3 MULLIONS CLOSURES, TRIM, AND PANNING

- A. Cut mullion full height of opening and anchor directly to window frame on both sides.
- B. Closures, Trim, and Panning: External corners mitered and internal corners coped, fitted with hairline, tightly closed joints.
 - 1. Secure to concrete and solid masonry with expansion bolts, expansion rivets, split shank drive bolts, or powder actuated drive pins.
 - 2. Toggle bolt to hollow masonry units.
 - 3. Screw to wood and metal.
- C. Fasten except for strap anchors, near ends and corners and maximum 300 mm (12 inches) on center.
- D. Seal units following installation to provide weathertight system.

3.4 ADJUSTING

A. Adjust ventilating sash and hardware to provide tight fit at contact points, and at weather-stripping for smooth operation and weathertight closure.

3.5 FIELD TESTING

- A. Field Tests: Performed by testing laboratory specified in Section 01 45 29, TESTING LABORATORY SERVICES.
- B. Test Method: AAMA 502.
- C. Test Specimen:
 - Include window assembly and construction. Affix test chamber to interior side of test specimen and the conduct testing using positive static air pressure (Test method A).
 - 2. Test specimens to be selected by the Contracting Officer's Representative after windows have been installed according to the drawings and specification.

3.6 CLEANING

- A. Lubricate hardware and moving parts.
- B. Remove excess glazing and sealant compounds.
- C. Clean exposed aluminum and glass surfaces. Remove contaminants and stains.
- D. Keep windows locked except while adjusting and testing.

- - E N D - -

086250 GENERAL REQUIREMENTS ATTACHMENT A TUBULAR DAYLIGHTING DEVICE

PART 1 GENERAL

1.1 SECTION INCLUDES

- A. Tubular daylighting device, consisting of roof dome, reflective tube, and diffuser assembly; configuration as indicated on the drawings.
- B. Accessories.

1.2 RELATED SECTIONS

- A. Section 073113 Asphalt Shingles: Flashing of skylight base.
- B. Section 076000 Flashing: Metal flashings.
- C. Section 262726 Wiring Devices.
- D. Section 260923– Lighting Controls.

1.3 REFERENCES

- A. ASTM B 209 Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate.
- B. ASTM E 84 Standard Test Method for Surface Burning Characteristics of Building Materials; 2008a.
- C. ASTM A 463/A 463M Standard Specification for Steel Sheet, Aluminum Coated, by the Hot Dip Process; 2006.
- D. ASTM A 653/A 653M Standard Specification for Steel Sheet, Zinc Coated (Galvanized), by the Hot Dip Process; 2007.
- E. ASTM E 283 Test Method for Rate of Air Leakage Through Exterior Windows, Curtain Walls, and Doors Under Specified Pressure Differences Across the Specimen; 2004.
- F. ASTM E 308 Standard Practice for Computing the Colors of Objects by Using the CIE System; 2006.

Project #613-15-128 Renovations to Building 305A&B 086250

- G. ASTM E 330 Structural Performance of Exterior Windows, Curtain Walls and Doors; 2002.
- H. ASTM E 547 Test Method for Water Penetration of Exterior Windows, Skylights, Doors and Curtain walls by Cyclic Air Pressure Difference; 2000.
- I. ASTM E 1886 Standard Test Method for Performance of Exterior Windows, Curtain Walls, Doors, and Impact Protective Systems Impacted by Missile(s) and Exposed to Cyclic Pressure Differentials.
- J. ASTM E 1996 Standard Specification for Performance of Exterior Windows, Curtain Walls, Doors, and Impact Protective Systems Impacted by Windborne Debris in Hurricane
- K. ASTM D 635 Test Method for Rate of Burning and/or Extent of Time of Burning of Self-Supporting Plastics in a Horizontal Position; 2006.
- L. ASTM D-1929 Test Method for Ignition Properties of Plastics; 1996 (2001).
- M. UL 181 Factory Made Air Ducts and Air Connectors
- N. ICC AC-16 Acceptance Criteria for Plastic Skylights; 2008.

1.4 PERFORMANCE REQUIREMENTS

- A. Completed tubular daylighting device assemblies shall be capable of meeting the following performance requirements:
 - 1. Air Infiltration Test: Air infiltration will not exceed 0.30 cfm/sf aperture with a pressure delta of 1.57 psf across the tube when tested in accordance with ASTM E 283.
 - 2. Water Resistance Test: No uncontrolled water leakage at 10.5 psf pressure differential with water rate of 5 gallons/hour/sf when tested in accordance with ASTM E 547.
 - 3. Uniform Load Test:
 - a. No breakage, permanent damage to fasteners, hardware parts, or damage to make daylighting system inoperable or cause excessive permanent deflection of any section when tested at a Positive Load of 150 psf (7.18 kPa) or Negative Load of 70 psf (3.35 kPa).
 - b. All units shall be tested with a safety factor of (3) for positive pressure and (2) for negative pressure, acting normal to plane of roof in accordance with ASTM E 330.

1.5 SUBMITTALS

- A. Submit under provisions of Section 01300.
- B. Product Data: Manufacturer's data sheets on each product to be used, including:
 - 1. Preparation instructions and recommendations.
 - 2. Storage and handling requirements and recommendations.
 - 3. Installation methods.
- C. Shop Drawings. Submit shop drawings showing layout, profiles and product components, including anchorage, flashings and accessories.
- D. Verification Samples: As requested by COTR.
- E. Test Reports: Independent testing agency or evaluation service reports verifying compliance with specified performance requirements.

1.6 QUALITY ASSURANCE

- A. Manufacturer Qualifications: Engaged in manufacture of tubular daylighting devices for minimum 15 years.
- 1.7 DELIVERY, STORAGE, AND HANDLING
 - A. Store products in manufacturer's unopened packaging until ready for installation.
 - B. Store and dispose of solvent-based materials, and materials used with solventbased materials, in accordance with requirements of local authorities having jurisdiction.

1.8 PROJECT CONDITIONS

- A. Maintain environmental conditions (temperature, humidity, and ventilation) within limits recommended by manufacturer for optimum results. Do not install products under environmental conditions outside manufacturer's absolute limits.
- 1.9 WARRANTY
 - A. Daylighting Device: Manufacturer's standard warranty for 10 years.
 - B. Electrical Parts: Manufacturer's standard warranty for 5 years, unless otherwise indicated.

PART 2 PRODUCTS

2.1 TUBULAR DAYLIGHTING DEVICES

- A. Tubular Daylighting Devices General : Transparent roof-mounted skylight dome and self-flashing curb, reflective tube, and ceiling level diffuser assembly, transferring sunlight to interior spaces; complying with ICC AC-16.
- B. Penetrating Ceiling, 21 inch (530 mm) Daylighting System:
 - 1. Roof Dome Assembly: Transparent, UV and impact resistant dome with flashing base supporting dome and top of tube.
 - a. Glazing: Type DA, 0.143 inch (3.7 mm) minimum thickness injection molded acrylic classified as CC2 material; UV inhibiting (100 percent UV C, 100 percent UV B and 98.5 percent UV C), impact modified acrylic blend.
 - 2. Reflector, made of aluminum sheet, thickness 0.015 inch (0.4 mm positioned in the dome to capture low angle sunlight.
 - 3. Roof Flashing Base:
 - One Piece: One piece, seamless, leak-proof flashing functioning as base support for dome and top of tube. Sheet steel, corrosion resistant conforming to ASTM A 653/A 653M or ASTM A 463/A 463M, 0.028 inch (0.7 mm) thick.
 - 1) Base Style: Type F8, Self mounted, 8 inches (203 mm) high.
 - 4. Flashing Insulator: Type FI, Thermal isolation material for use under flashing.
 - 5. Tube Ring: Attached to top of base section; 0.090 inch (2.3 mm) nominal thickness injection molded high impact PVC; to prevent thermal bridging between base flashing and tubing and channel condensed moisture out of tubing.
 - 6. Dome Seal: Adhesive backed weatherstrip 0.63 inch (16 mm) tall by 0.28 inch (7 mm).
 - 7. Reflective Tubes: Aluminum sheet, thickness 0.018 inch (0.5 mm).
 - a. General:
 - Interior Finish: high reflectance specular finish on exposed reflective surface. Specular reflectance for visible spectrum (400 nm to 760 nm) greater than 99 percent. Total solar spectrum reflectance (400 nm to 2500 nm) less than 80.2 percent.

- 2) Color: a* and b* (defined by CIE L*a*b* color model) shall not exceed plus 2 or be less than minus 2 as determined in accordance to ASTM E 308.
- b. Top Tube Angle Adapter and Bottom Top Tube Angle Adapter Kit, :
 - 1) Reflective 45 degree adjustable top and bottom angle adapters (one each), 16 inches (406 mm) long
- c. Extension Tube:
 - 1) Reflective extension tube sections are 24 inches (610 mm) long
- 8. Diffuser Assemblies for Tubes Penetrating Ceilings: Ceiling mounted box transitioning from round tube to square ceiling assembly, supporting light transmitting surface at bottom termination of tube 23.8 inches by 23.8 inches (605 mm by 605 mm) square frame to fit standard suspended ceiling grids or hard ceilings.
 - a. Round to square transition box made of opaque polymeric material, classified as CC2, Class C, 0.110 inch (2.8 mm) thick.
 - b. Lens design to maximize light output and diffusion with extruded aluminum frame and EPDM foam seal to minimize condensation and bug, dirt and air infiltration per ASTM E 283. Visible Light Transmission shall be greater than 90 percent at 0.022 inch (0.6 mm) thick. Classified as CC2.
- 9. Accessories:
 - a. Wire Suspension Kit: Type E, Use the wire suspension kit when additional bracing to the structure is required.
 - b. Local Dimmer Control utilizing a butterfly baffle design of reflective material to minimize shadowing when in use. Provided with dimmer switch and cable.
 - Daylight Dimmer: Type D Electro-mechanically actuated daylight valve; for universal input voltages ranging between 90 and 277 V at 50 or 60 Hz; Maximum current draw of 50 ma per unit; controlled by low voltage, series Type T02: circuited, 4 conductor, 22 gauge cable; providing daylight output between 2 and 100 percent.
 - 2) Switch: Manufacturer-specific low voltage DC DP/DT switch (white) required to operate Daylight Dimmer. Note: A maximum of 10 units can be connected to one switch.
 - 3) Cable: Type CA, Two conductor, 22 gauge, low voltage cable (500 ft.) for multiple unit DC connection.

Project #613-15-128

Renovations to Building 305A&B 086250

2.2 ACCESSORIES

- A. Fasteners: Same material as metals being fastened, non-magnetic steel, noncorrosive metal of type recommended by manufacturer, or injection molded nylon.
- B. Suspension Wire: Steel, annealed, galvanized finish, size and type for application and ceiling system requirement.
- C. Sealant: Polyurethane or copolymer based elastomeric sealant as provided or recommended by manufacturer.

PART 3 EXECUTION

- 3.1 EXAMINATION
 - A. Do not begin installation until substrates have been properly prepared.
 - B. If substrate preparation is the responsibility of another installer, notify COTR of unsatisfactory preparation before proceeding.
- 3.2 PREPARATION
 - A. Clean surfaces thoroughly prior to installation.
 - B. Prepare surfaces using the methods recommended by the manufacturer for achieving the best result for the substrate under the project conditions.

3.3 INSTALLATION

- A. Install in accordance with manufacturer's printed instructions.
- B. After installation of first unit, field test to determine adequacy of installation. Conduct water test in presence of COTR, or their designated representative. Correct if needed before proceeding with installation of subsequent units.

3.4 PROTECTION

- A. Protect installed products until completion of project.
- B. Touch-up, repair or replace damaged products before Substantial Completion.

END OF SECTION

SECTION 08 71 00

DOOR HARDWARE

PART 1 - GENERAL

1.1 DESCRIPTION

A. Door hardware and related items necessary for complete installation and operation of doors.

1.2 RELATED WORK

- A. Caulking: Section 07 92 00 JOINT SEALANTS.
- B. Application of Hardware: Section 08 14 00, WOOD DOORS Section 08 11 13, HOLLOW METAL DOORS AND FRAMES.
- C. 08 14 73 INTERIOR SLIDING WOOD BARN DOORS AND FRAMES, Interior top hung sliding doors and frames.
- D. Aluminum Doors and Frames: Section 08 41 13 ALUMINUM FRAMED ENTRANCES AND STOREFRONTS
- E. Finishes: Section 09 06 00, SCHEDULE FOR FINISHES.
- F. Painting: Section 09 91 00, PAINTING.
- G. Card Readers: Contractor provided and installed.
- H. Electrical: Division 26, ELECTRICAL.
- I. Fire Detection: Section 28 31 00, FIRE DETECTION AND ALARM.

1.3 GENERAL

- A. All hardware shall comply with UFAS, (Uniform Federal Accessible Standards) unless specified otherwise.
- B. Provide rated door hardware assemblies where required by most current version of the International Building Code (IBC).
- C. Hardware for Labeled Fire Doors and Exit Doors: Conform to requirements of NFPA 80 for labeled fire doors and to NFPA 101 for exit doors, as well as to other requirements specified. Provide hardware listed by UL, except where heavier materials, large size, or better grades are specified herein under paragraph HARDWARE SETS. In lieu of UL labeling and listing, test reports from a nationally recognized testing agency may be submitted showing that hardware has been tested in accordance with UL test methods and that it conforms to NFPA requirements.
- D. Hardware for application on metal and wood doors and frames shall be made to standard templates. Furnish templates to the fabricator of these items in sufficient time so as not to delay the construction.
- E. The following items shall be of the same manufacturer, except as otherwise specified:
 - 1. Mortise locksets.
 - 2. Hinges for hollow metal and wood doors.

- 3. Surface applied overhead door closers.
- 4. Exit devices.
- 5. Floor closers.
- F. Basis of design. Acceptable manufacturer is <u>Corbin Russwin</u>. Cylinders shall be removable 7 pin IC large format type.

1.4 WARRANTY

- A. Automatic door operators shall be subject to the terms of FAR Clause 52.246-21, except that the Warranty period shall be two years in lieu of one year for all items except as noted below:
 - 1. Locks, latchsets, and panic hardware: 5 years.
 - 2. Door closers and continuous hinges: 10 years.

1.5 MAINTENANCE MANUALS

A. In accordance with Section 01 00 00, GENERAL REQUIREMENTS Article titled "INSTRUCTIONS", furnish maintenance manuals and instructions on all door hardware. Provide installation instructions with the submittal documentation.

1.6 SUBMITTALS

- A. Submittals shall be in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES. Submit 6 copies of the schedule per Section 01 33 23. Submit 2 final copies of the final approved schedules to VAMC Locksmith as record copies (VISN Locksmith if the VAMC does not have a locksmith).
- B. Hardware Schedule: Prepare and submit hardware schedule in the following form:

Hardware	Quantity	Size	Reference	Finish	Mfr.	Кеу	UL Mark	ANSI/BHMA
Item			Publication		Name	Control	(if	Finish
			Type No.		and	Symbols	fire	Designation
					Catalog		rated	
					No.		and	
							listed)	

- C. Samples and Manufacturers' Literature:
 - Samples: All hardware items (proposed for the project) that have not been previously approved by Builders Hardware Manufacturers Association shall be submitted for approval. Tag and mark all items with manufacturer's name, catalog number and project number.

- 2. Samples are not required for hardware listed in the specifications by manufacturer's catalog number, if the contractor proposes to use the manufacturer's product specified.
- D. Certificate of Compliance and Test Reports: Submit certificates that hardware conforms to the requirements specified herein. Certificates shall be accompanied by copies of reports as referenced. The testing shall have been conducted either in the manufacturer's plant and certified by an independent testing laboratory or conducted in an independent laboratory, within four years of submittal of reports for approval.

1.7 DELIVERY AND MARKING

A. Deliver items of hardware to job site in their original containers, complete with necessary appurtenances including screws, keys, and instructions. Tag one of each different item of hardware and deliver to COR for reference purposes. Tag shall identify items by Project Specification number and manufacturer's catalog number. These items shall remain on file in COR's office until all other similar items have been installed in project, at which time the COR will deliver items on file to Contractor for installation in predetermined locations on the project.

1.8 PREINSTALLATION MEETING

- A. Convene a preinstallation meeting not less than 30 days before start of installation of door hardware. Require attendance of parties directly affecting work of this section, including Contractor and Installer, Architect, Contracting Officer Representative (COR) and VA Locksmith, and Hardware Manufacturer's Representative. Review the following:
 - 1. Inspection of door hardware.
 - 2. Job and surface readiness.
 - 3. Coordination with other work.
 - 4. Protection of hardware surfaces.
 - 5. Substrate surface protection.
 - 6. Installation.
 - 7. Adjusting.
 - 8. Repair.
 - 9. Field quality control.
 - 10. Cleaning.

1.9 INSTRUCTIONS

A. Hardware Set Symbols on Drawings: Except for protective plates, door stops, mutes, thresholds and the like specified herein, hardware

requirements for each door are indicated on drawings by symbols. Symbols for hardware sets consist of letters (e.g., "HW") followed by a number. Each number designates a set of hardware items applicable to a door type.

B. Keying: All cylinders shall be keyed into existing Hospital System. Provide removable core cylinders that are removable only with a special key or tool without disassembly of knob or lockset. Cylinders shall be removable 7 pin IC large format type. The core shall be compatible with <u>Corbin Russwin</u> cores. Key-way shall be Corbin Russwin type 59A1. Additional keying information shall be furnished at a later date by the COR.

1.10 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. In text, hardware items are referred to by series, types, etc., listed in such specifications and standards, except as otherwise specified.
- B. American Society for Testing and Materials (ASTM): E2180-07(2017).....Standard Test Method for Determining the Activity of Incorporated Antimicrobial Agent(s) In Polymeric or Hydrophobic Materials
- C. American National Standards Institute/Builders Hardware Manufacturers Association (ANSI/BHMA):

A156.1-16Butts and Hinges
A156.2-17Bored and Pre-assembled Locks and Latches
A156.3-14 Auto Flush
Bolts
A156.4-13Door Controls (Closers)
A156.5-14Cylinders and Input Devices for Locks.
A156.6-15Architectural Door Trim
A156.8-15 Holders
A156.13-17Mortise Locks and Latches Series 1000
A156.14-13Sliding and Folding Door Hardware
A156.15-15Release Devices-Closer Holder, Electromagnetic
and Electromechanical
A156.16-13Auxiliary Hardware
A156.17-14Self-Closing Hinges and Pivots
A156.18-16Materials and Finishes
A156.21-14Thresholds

A156.22-12.....Door Gasketing and Edge Seal Systems
A156.23-10.....Electromagnetic Locks
A156.24-12....Delayed Egress Locking Systems
A156.25-07Electrified Locking Devices
A156.26-12.....Continuous Hinges
A156.29-12Exit Locks and Alarms
A156.30-14Electric Strikes and Frame Mounted Actuators
A156.36-16.....Auxiliary Locks
A250.8-03.....Standard Steel Doors and Frames
D. National Fire Protection Association (NFPA):
80-16.....Fire Doors and Other Opening Protectives

- 101-15.....Life Safety Code
- E. Underwriters Laboratories, Inc. (UL): Building Materials Directory (Latest Edition)

PART 2 - PRODUCTS

2.1 BUTT HINGES

- A. ANSI A156.1. Provide only three-knuckle hinges, except five-knuckle where the required hinge type is not available in a three-knuckle version (e.g., some types of swing-clear hinges). The following types of butt hinges shall be used for the types of doors listed, except where otherwise specified:
 - Exterior Doors: Type A2112/A5112 for doors 900 mm (3 feet) wide or less and Type A2111/A5111 for doors over 900 mm (3 feet) wide. Hinges for exterior outswing doors shall have non-removable pins. Hinges for exterior fire-rated doors shall be of stainless steel material.
 - 2. Interior Doors: Type A8112/A5112 for doors 900 mm (3 feet) wide or less and Type A8111/A5111 for doors over 900 mm (3 feet) wide. Hinges for doors exposed to high humidity areas (shower rooms, toilet rooms, kitchens, janitor rooms, etc. shall be of stainless steel material.
- B. Provide quantity and size of hinges per door leaf as follows:
 - 1. Doors up to 1210 mm (4 feet) high: 2 hinges.
 - Doors 1210 mm (4 feet) to 2260 mm (7 feet 5 inches) high: 3 hinges minimum.
 - 3. Doors greater than 2260 mm (7 feet 5 inches) high: 4 hinges.
 - 4. Doors up to 900 mm (3 feet) wide, standard weight: 114 mm x 114 mm

(4-1/2 inches x 4-1/2 inches) hinges.

- 5. Doors over 900 mm (3 feet) to 1065 mm (3 feet 6 inches) wide, standard weight: 127 mm x 114 mm (5 inches x 4-1/2 inches).
- 6. Doors over 1065 mm (3 feet 6 inches) to 1210 mm (4 feet), heavy weight: 127 mm x 114 mm (5 inches x 4-1/2 inches).
- 7. Provide heavy-weight hinges where specified.
 - At doors weighing 330 kg (150 lbs.) or more, furnish 127 mm (5 inch) high hinges.
- C. See Articles "MISCELLANEOUS HARDWARE" and "HARDWARE SETS" for pivots and hinges other than butts specified above and continuous hinges specified below.

2.2 CONTINUOUS HINGES

A. ANSI/BHMA A156.26, Grade 1-600.

1. Listed under Category N in BHMA's "Certified Product Directory."

- B. General: Minimum 0.120-inch- (3.0-mm-) thick, hinge leaves with minimum overall width of 4 inches (102 mm); fabricated to full height of door and frame and to template screw locations; with components finished after milling and drilling are complete
- C. Continuous, Barrel-Type Hinges: Hinge with knuckles formed around a Teflon-coated 6.35mm (0.25-inch) minimum diameter pin that extends entire length of hinge.
 - 1. Base Metal for Exterior Hinges: Stainless steel.
 - 2. Base Metal for Interior Hinges: Stainless steel.
 - 3. Base Metal for Hinges for Fire-Rated Assemblies: Stainless steel.
 - 4. Provide with non-removable pin (hospital tip option) at lockable outswing doors.
 - Where required to clear adjacent casing, trim, and wall conditions and allow full door swing, provide wide throw hinges of minimum width required.
 - 6. Provide with manufacturer's cut-outs for separate mortised power transfers and/or mortised automatic door bottoms where they occur.
 - 7. Where thru-wire power transfers are integral to the hinge, provide hinge with easily removable portion to allow easy access to wiring connections.
 - 8. Where models are specified that provide an integral wrap-around edge guard for the hinge edge of the door, provide manufacturer's adjustable threaded stud and machine screw mechanism to allow the door to be adjusted within the wrap-around edge guard.

2.3 DOOR CLOSING DEVICES

A. Closing devices shall be products of one manufacturer for each type specified.

2.4 OVERHEAD CLOSERS

- A. Conform to ANSI A156.4, Grade 1.
- B. Closers shall conform to the following:
 - The closer shall have minimum 50 percent adjustable closing force over minimum value for that closer and have adjustable hydraulic back check effective between 60 degrees and 85 degrees of door opening.
 - 2. Where specified, closer shall have hold-open feature.
 - 3. Size Requirements: Provide multi-size closers, sizes 1 through 6, except where multi-size closer is not available for the required application.
 - 4. Material of closer body shall be forged or cast.
 - 5. Arm and brackets for closers shall be steel, malleable iron or high strength ductile cast iron.
 - 6. Where closers are exposed to the exterior or are mounted in rooms that experience high humidity, provide closer body and arm assembly of stainless steel material.
 - 7. Closers shall have full size metal cover; plastic covers will not be accepted.
 - Closers shall have adjustable hydraulic back-check, separate valves for closing and latching speed, adjustable back-check positioning valve, and adjustable delayed action valve.
 - 9. Provide closers with any accessories required for the mounting application, including (but not limited to) drop plates, special soffit plates, spacers for heavy-duty parallel arm fifth screws, bull-nose or other regular arm brackets, longer or shorter arm assemblies, and special factory templating. Provide special arms, drop plates, and templating as needed to allow mounting at doors with overhead stops and/or holders.
 - 10.Closer arms or backcheck valve shall not be used to stop the door from overswing, except in applications where a separate wall, floor, or overhead stop cannot be used.
 - 11. Provide parallel arm closers with heavy duty rigid arm.
 - 12.Where closers are to be installed on the push side of the door, provide parallel arm type except where conditions require use of top jamb arm.
 - 13. Provide all surface closers with the same body attachment screw

pattern for ease of replacement and maintenance.

14. All closers shall have a 1 ½" (38mm) minimum piston diameter.

2.5 DOORSTOPS

- A. Conform to ANSI A156.16.
- B. Provide door stops wherever an opened door or any item of hardware thereon would strike a wall, column, equipment or other parts of building construction. For concrete, masonry or quarry tile construction, use lead expansion shields for mounting door stops.
- C. Where cylindrical locks with turn pieces or pushbuttons occur, equip wall bumpers Type L02251 (rubber pads having concave face) to receive turn piece or button.
- D. Provide floor stops (Type L02141 or L02161 in office areas; Type L02121 x 3 screws into floor elsewhere. Wall bumpers, where used, must be installed to impact the trim or the door within the leading half of its width. Floor stops, where used, must be installed within 4-inches of the wall face and impact the door within the leading half of its width.
- E. Where drywall partitions occur, use floor stops, Type L02141 or L02161 in office areas, Type L02121 elsewhere.
- F. Provide stop Type L02011, as applicable for exterior doors. At outswing doors where stop can be installed in concrete, provide stop mated to concrete anchor set in 76mm (3-inch) core-drilled hole and filled with quick-setting cement.
- G. Omit stops where floor mounted door holders are required and where automatic operated doors occur.
- H. Provide appropriate roller bumper for each set of doors (except where closet doors occur) where two doors would interfere with each other in swinging.
- I. Provide appropriate door mounted stop on doors in individual toilets where floor or wall mounted stops cannot be used.
- J. Provide overhead surface applied stop Type C02541, ANSI A156.8 on patient toilet doors in bedrooms where toilet door could come in contact with the bedroom door.
- K. Provide door stops on doors where combination closer magnetic holders are specified, except where wall stops cannot be used or where floor stops cannot be installed within 4-inches of the wall.
- L. Where the specified wall or floor stop cannot be used, provide concealed overhead stops (surface-mounted where concealed cannot be used).

2.6 OVERHEAD DOOR STOPS AND HOLDERS

A. Conform to ANSI Standard A156.8. Overhead holders shall be of sizes recommended by holder manufacturer for each width of door. Set overhead holders for 110 degree opening, unless limited by building construction or equipment. Provide Grade 1 overhead concealed slide type: stop-only at rated doors and security doors, hold-open type with exposed holdopen on/off control at all other doors requiring overhead door stops.

2.7 LOCKS AND LATCHES

- A. Conform to ANSI A156.2. Locks and latches for doors 45 mm (1-3/4 inch) thick or over shall have beveled fronts. Lock cylinders shall have not less than seven pins. Cylinders shall be removable 7 pin IC large format type, compatible with *Corbin Russwin* cores.
- B. Cylinders shall be furnished with construction removable cores and construction master keys.
- C. Cylinder shall be removable by special key or tool.
- D. Construct all cores so that they will be interchangeable into the core housings of all mortise locks, rim locks, cylindrical locks and any other type lock included in the Great Grand Master Key System.
- E. Disassembly of lever or lockset shall not be required to remove core from lockset. All locksets or latches on double doors with fire label shall have latch bolt with 19 mm (3/4-inch) throw unless shorter throw allowed by the door manufacturer's fire label.
- F. Provide temporary keying device or construction core or allow opening and closing during construction and prior to the installation of the final cores.
- G. In addition to above requirements, locks and latches shall comply with following requirements:
 - Mortise Lock and Latch Sets: Conform to ANSI/BHMA A156.13. Mortise locksets shall be series 1000, minimum Grade
 - 2. All locksets and latchsets shall have lever handles fabricated from cast stainless steel.
 - 3. Provide sectional (lever x rose) lever design matching VA standards. No substitute lever material shall be accepted. All locks and latchsets shall be furnished with 122.55 mm (4-7/8-inch) curved lip strike and wrought box. At outswing pairs with overlapping astragals, provide flat lip strip with 21mm (7/8-inch) lip-to-center dimension. Lock function F02 shall be furnished with emergency tools/keys for emergency entrance. All lock cases installed on lead 08 71 00-9

lined doors shall be lead lined before applying final hardware finish. Furnish armored fronts for all mortise locks.

- Where mortise locks are installed in high-humidity locations or where exposed to the exterior on both sides of the opening, provide non-ferrous mortise lock case.
- 5. Cylindrical Lock and Latch Sets: levers shall meet ADA (Americans with Disabilities Act) requirements. Cylindrical locksets shall be series 4000 Grade I.
- 6. All locks and latchsets shall be furnished with 122.55 mm (4-7/8inch) curved lip strike and wrought box. At outswing pairs with overlapping astragals, provide flat lip strip with 21mm (7/8-inch) lip-to-center dimension.
- 7. Provide lever design to match design selected by Architect or to match existing lever design.
- 8. Where two turn pieces are specified for lock F76, turn piece on inside knob shall lock and unlock inside knob, and turn piece on outside knob shall unlock outside knob when inside knob is in the locked position. (This function is intended to allow emergency entry into these rooms without an emergency key or any special tool).
- 9. Auxiliary locks shall be as specified under hardware sets and conform to ANSI A156.36.
- 10.Privacy locks in non-mental-health patient rooms shall have an inside thumb-turn for privacy and an outside thumb-turn for emergency entrance.

2.8 ELECTROMAGNETIC LOCKS

- A. ANSI/BHMA A156.23; electrically powered, of strength and configuration indicated; with electromagnet attached to frame and armature plate attached to door. Listed under Category E in BHMA's "Certified Product Directory."
 - Type: Full exterior or full interior, as required by application indicated.
 - 2. Strength Ranking: 1000 lbf (4448 N).
 - 3. Inductive Kickback Peak Voltage: Not more than V.
 - 4. Residual Magnetism: Not more than 4 lbf (18 N)to separate door from magnet.

2.9 ELECTRIC STRIKES

A. ANSI/ BHMA A156.31 Grade 1. Lock cylinders shall have not less than seven

pins.

B. General: Use fail-secure electric strikes at fire-rated doors.

2.10 KEYS

- A. STAMP ALL KEYS WITH CHANGE NUMBER AND KEY SET SYMBOL. FURNISH KEY BLANKS, VA WILL CUT KEYS.2.11 ARMOR PLATES, KICK PLATES, MOP PLATES AND DOOR EDGING
- B. Conform to ANSI Standard A156.6.
- C. Provide protective plates as specified below:
 - 1. Kick plates, mop plates and armor plates of metal, Type J100 series.
 - 2. Provide kick plates and mop plates where specified. Kick plates shall be 254 mm (10 inches) or 305 mm (12 inches) high. Mop plates shall be 152 mm (6 inches) high. Both kick and mop plates shall be minimum 1.27 mm (0.050 inches) thick.
 - 3. Provide kick and mop plates beveled on all 4 edges (B4E). On push side of doors where jamb stop extends to floor, make kick plates 38 mm (1-1/2 inches) less than width of door, except pairs of metal doors which shall have plates 25 mm (1 inch) less than width of each door. Extend all other kick and mop plates to within 6 mm (1/4 inch) of each edge of doors. Kick and mop plates shall butt astragals. For jamb stop requirements, see specification sections pertaining to door frames.
 - 4. Kick plates and/or mop plates are not required on following door sides:
 - a. Armor plate side of doors;
 - b. Exterior side of exterior doors;
 - c. Closet side of closet doors;
 - d. Both sides of aluminum entrance doors.
 - 5. Armor plates for doors are listed under Article "Hardware Sets". Armor plates shall be thickness as noted in the hardware set, 875 mm (35 inches) high and 38 mm (1-1/2 inches) less than width of doors, except on pairs of metal doors. Provide armor plates beveled on all 4 edges (B4E). Plates on pairs of metal doors shall be 25 mm (1 inch) less than width of each door. Where top of intermediate rail of door is less than 875 mm (35 inches) from door bottom, extend armor plates to within 13 mm (1/2 inch) of top of intermediate rail. On doors equipped with panic devices, extend armor plates to within 13 mm (1/2 inch) of panic bolt push bar.
 - 6. Provide stainless steel edge guards where so specified at wood

doors. Provide mortised type instead of surface type except where door construction and/or ratings will not allow.

- 7. Provide edge guards of bevel and thickness to match wood door.
- 8. Provide edge guards with factory cut-outs for door hardware that must be installed through or extend through the edge guard. Provide full- height edge guards except where door rating does not allow; in such cases, provide edge guards to height of bottom of typical lockset armor front.
- 9. Forward edge guards to wood door manufacturer for factory installation on doors.

2.11 EXIT DEVICES

- A. Conform to ANSI Standard A156.3. Exit devices shall be Grade 1; type and function are specified in hardware sets. Provide flush with finished floor strikes for vertical rod exit devices in interior of building. Trim shall have cast satin stainless steel lever handles of design similar to locksets, unless otherwise specified. Provide key cylinders for keyed operating trim and, where specified, cylinder dogging.
- B. Surface vertical rod panics shall only be provided less bottom rod; provide fire pins as required by exit device and door fire labels.
- C. Do not provide surface vertical rod panics at exterior doors.
- D. Concealed vertical rod panics shall be provided less bottom rod at interior doors, unless lockable or otherwise specified; provide fire pins as required by exit device and door fire labels.
- E. Where concealed vertical rod panics are specified at exterior doors, provide with both top and bottom rods.
- F. Where removable mullions are specified at pairs with rim panic devices, provide mullion with key-removable feature.
- G. At non-rated openings with panic hardware, provide panic hardware with key cylinder dogging feature.
- H. Exit devices for fire doors shall comply with Underwriters Laboratories, Inc., requirements for Fire Exit Hardware. Submit proof of compliance.

2.12 FLUSH BOLTS (AUTOMATIC)

A. Conform to ANSI A156.3. Dimension of flush bolts shall conform to ANSI A115. Bolts shall conform to Underwriters Laboratories, Inc., requirements for fire door hardware. Flush bolts shall automatically latch and unlatch. Furnish dustproof strikes conforming to ANSI A156.16 for bottom flush-bolt. Face plates for dustproof strike shall be rectangular and not less than 38 mm by 90 mm (1-1/2 by 3-1/2 inches).

B. At interior doors, provide auto flush bolts less bottom bolt, unless otherwise specified, except at wood pairs with fire-rating greater than 20 minutes; provide fire pins as required by auto flush bolt and door fire labels.

2.13 DOOR PULLS WITH PLATES

A. Conform to ANSI A156.6. Pull Type J401, 152 mm CTC (6 inches CTC) length by 19 mm (3/4 inches) diameter minimum with plate Type J302, 90 mm by 381 mm (3-1/2 inches by 15 inches), unless otherwise specified. Provide pull with projection of 57.2 mm (2 1/4 inches) minimum and a clearance of 38.1 mm (1 1/2 inches) minimum. Cut plates of door pull plate for cylinders, or turn pieces where required.

2.14 PUSH PLATES

A. Conform to ANSI A156.6. Metal, Type J302, 203 mm (8 inches) wide by 406.4 mm (16 inches) high. Provide metal Type J302 plates 102 mm (4 inches) wide by 406.4 mm (16 inches) high where push plates are specified for doors with stiles less than 203 mm (8 inches) wide. Cut plates for cylinders, and turn pieces where required.

2.15 COMBINATION PUSH AND PULL PLATES

A. Conform to ANSI 156.6. Type J303, stainless steel 3 mm (1/8 inch) thick, 80 mm (3-1/3 inches) wide by 800 mm (16 inches) high), top and bottom edges shall be rounded. Secure plates to wood doors with 38 mm (1-1/2 inch) long No. 12 wood screws. Cut plates for turn pieces, and cylinders where required. Pull shall be mounted down.

2.16 COORDINATORS

- A. Conform to ANSI A156.16. Coordinators, when specified for fire doors, shall comply with Underwriters Laboratories, Inc., requirements for fire door hardware. Coordinator may be omitted on exterior pairs of doors where either door will close independently regardless of the position of the other door. Coordinator may be omitted on interior pairs of non-labeled open where open back strike is used. Open back strike shall not be used on labeled doors. Paint coordinators to match door frames, unless coordinators are plated.
- B. Provide bar type coordinators, except where gravity coordinators are required at acoustic pairs.
- C. For bar type coordinators, provide filler bars for full width and, as required, brackets for push-side surface mounted closers, overhead

stops, and vertical rod panic strikes.

2.17 THRESHOLDS

- A. Conform to ANSI A156.21, mill finish extruded aluminum, except as otherwise specified. In existing construction, thresholds shall be installed in a bed of sealant with 20 stainless steel machine screws and expansion shields. In new construction, embed aluminum anchors coated with epoxy in concrete to secure thresholds. Furnish thresholds for the full width of the openings.
- B. For thresholds at elevators entrances see other sections of specifications.
- C. At exterior doors and any interior doors exposed to moisture, provide threshold with non-slip abrasive finish.
- D. Provide with miter returns where threshold extends more than 12 mm (0.5 inch) beyond face of frame.

2.18 AUTOMATIC DOOR BOTTOM SEAL AND RUBBER GASKET FOR LIGHT PROOF OR SOUND CONTROL DOORS

- A. Conform to ANSI A156.22.
- B. Provide mortise or under-door type, except where not practical.
- C. For mortise automatic door bottoms, provide type specific for door construction (wood or metal).

2.19 WEATHERSTRIPS (FOR EXTERIOR DOORS)

A. Conform to ANSI A156.22. Air leakage shall not to exceed 0.50 CFM per foot of crack length $(0.000774m^3/s/m)$.

2.20 MISCELLANEOUS HARDWARE

- A. Access Doors (including Sheet Metal, Screen and Woven Wire Mesh Types): Except for fire-rated doors and doors to Temperature Control Cabinets, equip each single or double metal access door with Lock Type E07213, conforming to ANSI A156.11. All doors shall have 7 pin key locks as directed. Ship lock prepaid to the door manufacturer. Hinges shall be provided by door manufacturer.
- B. Mutes: Conform to ANSI A156.16. Provide door mutes or door silencers Type L03011 or L03021, depending on frame material, of white or light gray color, on each steel or wood door frame, except at fire-rated frames, lead-lined frames and frames for sound-resistant, lightproof and electromagnetically shielded doors. Furnish 3 mutes for single doors and 2 mutes for each pair of doors, except double-acting doors. Provide 4 mutes or silencers for frames for each Dutch type door. Provide 2 mutes for each edge of sliding door which would contact door frame.

2.21 FINISHES

- A. Exposed surfaces of hardware shall have ANSI A156.18, finishes as specified below. Finishes on all hinges, pivots, closers, thresholds, etc., shall be as specified below under "Miscellaneous Finishes." For field painting (final coat) of ferrous hardware, see Section 09 91 00, PAINTING.
- B. 626 or 630: All surfaces on exterior and interior of buildings, except where other finishes are specified.
- C. Miscellaneous Finishes:
 - 1. Hinges --exterior doors: 626 or 630.
 - 2. Hinges --interior doors: 652 or 630.
 - 3. Pivots: Match door trim.
 - 4. Door Closers: Factory applied paint finish. Dull or Satin Aluminum color.
 - 5. Thresholds: Mill finish aluminum.
 - 6. Other primed steel hardware: 600.
- D. Hardware Finishes for Existing Buildings: U.S. Standard finishes shall match finishes of hardware in (similar) existing spaces except where otherwise specified.
- E. Anti-microbial Coating: All hand-operated hardware (levers, pulls, push bars, push plates, paddles, and panic bars) shall be provided with an anti-microbial/anti-fungal coating that has passed ASTM E2180 tests. Coating to consist of ionic silver (Ag+). Silver ions surround

bacterial cells, inhibiting growth of bacteria, mold, and mildew by blockading food and respiration supplies.

2.22 BASE METALS

A. Apply specified U.S. Standard finishes on different base metals as following:

Finish	Base Metal
630	Stainless steel

PART 3 - EXECUTION

3.1 HARDWARE HEIGHTS

- A. For existing buildings locate hardware on doors at heights to match existing hardware. The Contractor shall visit the site, verify location of existing hardware and submit locations to VA COR for approval.
- B. Hardware Heights from Finished Floor:
 - Exit devices centerline of strike (where applicable) 1024 mm (40-5/16 inches).
 - 2. Locksets and latch sets centerline of strike 1024 mm (40-5/16

inches).

- 3. Deadlocks centerline of strike 1219 mm (48 inches).
- 4. Hospital arm pull 1168 mm (46 inches) to centerline of bottom supporting bracket.
- 5. Centerline of door pulls to be 1016 mm (40 inches).
- 6. Push plates and push-pull shall be 1270 mm (50 inches) to top of plate.
- Push-pull latch to be 1024 mm (40-5/16 inches) to centerline of strike.
- 8. Locate other hardware at standard commercial heights. Locate push and pull plates to prevent conflict with other hardware.

3.2 INSTALLATION

A. Closer devices, including those with hold-open features, shall be equipped and mounted to provide maximum door opening permitted by building construction or equipment. Closers shall be mounted on side of door inside rooms, inside stairs, and away from corridors. At exterior doors, closers shall be mounted on interior side. Where closers are mounted on doors, they shall be mounted with sex nuts and bolts; foot shall be fastened to frame with machine screws.

В.	Hinge	Size	Requirements:
ъ.	IIIIIGC		require chieres.

Door Thickness	Door Width	Hinge Height
45 mm (1-3/4 inch)	900 mm (3 feet) and less	113 mm (4-1/2 inches)
45 mm (1-3/4 inch)	Over 900 mm (3 feet) but	125 mm (5 inches)
	not more than 1200 mm (4	
	feet)	
35 mm (1-3/8 inch)	Not over 1200 mm (4 feet)	113 mm (4-1/2 inches)
(hollow core wood		
doors)		

- C. Hinge leaves shall be sufficiently wide to allow doors to swing clear of door frame trim and surrounding conditions.
- D. Where new hinges are specified for new doors in existing frames or existing doors in new frames, sizes of new hinges shall match sizes of existing hinges; or, contractor may reuse existing hinges provided hinges are restored to satisfactory operating condition as approved by COR. Existing hinges shall not be reused on door openings having new doors and new frames. Coordinate preparation for hinge cut-outs and screw-hole locations on doors and frames.

08 71 00-16

E. Hinges Required Per Door:

Doors 1500 mm (5 ft) or less in height	2 butts
Doors over 1500 mm (5 ft) high and not over 2280 mm	3 butts
(7 ft 6 in) high	
Doors over 2280 mm (7 feet 6 inches) high	4 butts
Dutch type doors	4 butts
Doors with spring hinges 1370 mm (4 feet 6 inches) high	2 butts
or less	
Doors with spring hinges over 1370 mm (4 feet 6 inches)	3 butts

- F. Fastenings: Suitable size and type and shall harmonize with hardware as to material and finish. Provide machine screws and lead expansion shields to secure hardware to concrete, ceramic or quarry floor tile, or solid masonry. Fiber or rawl plugs and adhesives are not permitted. All fastenings exposed to weather shall be of nonferrous metal.
- G. After locks have been installed; show in presence of COR that keys operate their respective locks in accordance with keying requirements.

All keys, Master Key level and above shall be sent Registered Mail to the Medical Center Director along with the bitting list. Also, a copy of the invoice shall be sent to the COR for his records.) Installation of locks which do not meet specified keying requirements shall be considered sufficient justification for rejection and replacement of all locks installed on project.

3.3 FINAL INSPECTION

- A. Installer to provide letter to VA COR that upon completion, installer has visited the Project and has accomplished the following:
 - 1. Re-adjust hardware.
 - 2. Evaluate maintenance procedures and recommend changes or additions and instruct VA personnel.
 - 3. Identify items that have deteriorated or failed.
 - 4. Submit written report identifying problems.

3.4 DEMONSTRATION

A. Demonstrate efficacy of mechanical hardware and electrical, and electronic hardware systems, including adjustment and maintenance procedures, to satisfaction of Resident/Project Engineer and VA Locksmith.

3.5 HARDWARE SETS

A. Following sets of hardware correspond to hardware symbols shown on drawings. Only those hardware sets that are shown on drawings will be

required. Disregard hardware sets listed in specifications but not shown on drawings.

B. Hardware Consultant working on a project will be responsible for providing additional information regarding these hardware sets. The numbers shown in the following sets come from BHMA standards.

ELECTRIC HARDWARE ABBREVIATIONS LEGEND: ADO = Automatic Door Operator EMCH = Electro-Mechanical Closer-Holder MHO = Magnetic Hold-Open (wall- or floor-mounted) INTERIOR SINGLE DOORS HW-3G Each Door to Have: NON-RATED Hinges QUANTITY & TYPE AS REQUIRED 1 Office Lock F04 1 Wall Stop L02101 CONVEX 2 Sets Self-Adhesive Seals R0Y154 1 Closer (@ rated doors) C02011/C02021 HW-4EEach Door to Have: NON-RATED/RATED Hinges QUANTITY & TYPE AS REQUIRED F09 1 Utility Lock 1 Closer (@ rated doors) C02011/C02021 1 Closer (@ non-rated doors) CO2051/CO2061 1 Kick Plate J102 L02121 x 3 FASTENERS 1 Floor Stop 1 Threshold J32300 x 57 MM WIDTH (2-1/4 INCHES) 1 Sets Self-Adhesive Seals R0Y154 HW-5D

Each Door to Have:

NON-RATED

	Hinges	QUANT	CITY	Y &	TYPE 2	AS REĢ	QUI	IRED		
1	Storeroom Lock	F07								
1	Kick Plate	J102	(@	STO	ORAGE,	EVM,	&	HAC	ROOMS	ONLY)

08 71 00-18

1	Floor Stop (@ Inswing Doors)	L02121 x 3 FASTENERS
1	Wall Stop (@ Outswing Doors)	L02101 CONVEX
3	Silencers	L03011

HW-5G

Each Door to Have:

RATED/NON-RATED

	Hinges	QUANTITY & TYPE AS REQUIRED
1	Storeroom Lock	F07
1	Kick Plate	J102
1	Wall Stop	L02010 CONVEX
2	Sets Self-Adhesive Seals	R0Y154
1	Closer (@ rated doors)	C02011/C02021

INTERIOR DOUBLE DOORS

HW-8A

Each Aluminum Storefront Pair to Have:

HW-12C

Each [MHO] Pair Integrated Double Egress Doors to Have: RATED

ALL HARDWARE BY SECTION 08 17 10, INTEGRATED DOOR ASSEMBLIES

EXTERIOR SINGLE DOORS

HW-E1

Each Aluminum Storefront Door to Have:

NON-RATED

RATED

- 1 Continuous Hinge
- 1 Exit Device TYPE 8 F01
- 1 Push-button Combination Lock N3 A156.13 F07 G1 E06
- 1 Latch Protector (outswing dr)
- 1 Closer C02011/C02021
- 1 Kick Plate J102

08 71 00-19

1	Floor Stop	L02121 x 3 FASTNERS
1	Threshold (outswing door)	J32120 x SILICONE GASKET
1	Threshold (inswing door)	ALUMINUM, PER ARCHITECTURAL DETAIL
1	Door Sweep	R0Y416
1	Set Frame Seals	R0Y164
1	Drip	R0Y976

EXTERIOR DOUBLE DOORS

HW-E6

Each Pair to Have:

NON-RATED

2	Continuous Hinge	
1	Set Auto Flush Bolts	TYPE 25
1	Dust Proof Strike	L04021
1	Entry Lock	F11
1	Overlapping Astragal with	R0Y634 x R0Y154 x THRU-BOLTS
	Self-Adhesive Seal	
1	Coordinator	TYPE 21A
2	Closer	C02011/C02021
2	Kick Plate	J102
2	Floor Stop	L02121 x 3 FASTNERS
1	Threshold (outswing door)	J32120 x SILICONE GASKET
1	Threshold (inswing door)	ALUMINUM, PER ARCHITECTURAL DETAIL
2	Door Sweep	R0Y416
1	Set Frame Seals	R0Y164
1	Drip	R0Y976

HW-E9

Each Aluminum Storefront Pair to Have:

NON-RATED

2	Continuous Hinge	
1	Exit Device	TYPE 8 F01
1	Exit Device	TYPE 8 F12 LESS PULL
1	Key Cylinder	TYPE AS REQUIRED
2	Latch Protectors	
	(outswing dr.)	
1	Set Meeting Stile Astragals	R0Y834
2	Closer	C02011
2	Kick Plate	J102
2	Floor Stop	L02121 x (3) FASTNERS
1	Threshold	J32120 x SILICONE GASKET
2	Door Sweep	R0416
1	Set Frame Seals	R0Y164
1	Drip	R0Y976

RESIDENTIAL UNIT SINGLE DOORS

HW-R1

Each Door to Have:

NON-RATED/RATED

- Guestroom Card Lock BY OTHER SECTION.
 Mortised lock with selflatching Tubular Levers. Systems Thumb turn and key lock CL100
- 1 Remainder of hardware by Barn Door manufacturer

HW-R2A

Each Door to Have:

- 1 Mortised lock with self- AD Systems CL100 Latching Tubular Lever. Thumb Turn and Key lock
- 1 Remainder of hardware by Barn Door Manufacturer.

HW-R2B

Each Door to Have:

NON-RATED

RATED

	Hinges	QUANTITY & TYPE AS REQUIRED
1	Latchet	F75
1	Floor Stop	L02121 x 3 FASTENERS
1	Sets Self-Adhesive Seals	R0Y154

HW-R4

Each Door to Have:

	Hinges	QUANTITY & TYPE AS REQUIRED
1	Classroom Lock	F84
1	Closer	C02011/C02021
1	Base Stop	L02031 x 3 FASTENERS
1	Set Self-Adhesive Seals	R0Y154

HW-SH-3D

Each [AC, EL, REX, DPS] Door to Have:

RATED

1	Continuous Hinge	x INTEGRAL HINGE GUARD CHANNEL			
		X ADJUSTA-SCREWS X 4-THRUWIRE			
		TRANSFER X IN-HINGE ACCESS PANEL			
1	Electrified Lock	F07 (E01-REX, E06) 24VDC			
1	Power Supply	REGULATED, FILTERED, 24VDC, AMPERAGE			
		AS REQUIRED			
1	Closer	C02011/C02021			
1	Armor Plate	J101 x 1.275 MM (0.050 INCH) THICKNESS			
1	Edge Guard (@ Wood Doors)	J208M / J211 (VERIFY), CUT: HARDWARE			
1	Threshold	J32300 x 57 MM WIDTH (2-1/4 INCHES)			
1	Auto Door Bottom	R0Y346 - HEAVY DUTY			
2	Sets Self-Adhesive Seals	R0Y154			
1	Alarm Contact				
120VAC POWER, CONDUIT, AND WIRING BY DIVISION 26.					
CA	CARD READER BY DIVISION 28.				

HW-SH-5

Each [AC, EL, REX, DPS] Pair to Have:

RATED

5 REQUIRED					
QUIRED					
) 24VDC					
ED, 24VDC, AMPERAGE					
DOMS ONLY)					
ERS					
Magnetic Hold Opens					
120VAC POWER, CONDUIT, AND WIRING BY DIVISION 26.					

Each [AC, EL, REX, DPS] Pair to Have:

RATED

	Hinges	QUANTITY & TYPE AS REQUIRED				
1	Transfer Hinge	4-WIRE TYPE AS REQUIRED				
1	Electrified Lock	F07 (E01-REX, E06) 24VDC				
1	Power Supply	REGULATED, FILTERED, 24VDC, AMPERAGE				
		AS REQUIRED				
1	Coordinator	TYPE 21A				
2	Closers	C02011/C02021				
2	Kick Plates	J102 (@ STORAGE ROOMS ONLY)				
2	Floor Stops	L02121 x 3 FASTENERS				
1	Set Self-Adhesive Seals	R0Y154				
2	Alarm Contacts					
12	OVAC POWER, CONDUIT, AND WIRIN	G BY DIVISION 26.				
CAI	CARD READER BY DIVISION 28.					

HW-SH-5A

HW-SH-5B

Each [AC, EL, REX, DPS] Pair to Have:

RATED

	Hinges	QUANTITY & TYPE AS REQUIRED				
	5	QOMMITIL & IILE NO KEQUIKED				
1	Transfer Hinge	4-WIRE TYPE AS REQUIRED				
1	Electrified Lock	F07 (E01-REX, E06) 24VDC				
1	Power Supply	REGULATED, FILTERED, 24VDC, AMPERAGE				
		AS REQUIRED				
1	Coordinator	TYPE 21A				
1	Overlapping Astragal with	ROY634 X ROY154 X THRU-BOLTS				
	Self-Adhesive Seal					
2	Closers	C02011/C02021				
2	Kick Plates	J102 (@ STORAGE ROOMS ONLY)				
2	Floor Stops	L02121 x 3 FASTENERS				
1	Set Self-Adhesive Seals	R0Y154				
2	Alarm Contacts					
2	Magnetic Hold Opens					
120	120VAC POWER, CONDUIT, AND WIRING BY DIVISION 26.					
CAF	CARD READER BY DIVISION 28.					

- - - E N D - - -

SECTION 08 80 00 GLAZING

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies glass, plastic, related glazing materials and accessories. Glazing products specified apply to factory or field glazed items.

1.2 RELATED WORK

- A. Factory glazed by manufacturer in following units:
 - 1. Mirrors: Section 10 28 00, TOILET, BATH, AND LAUNDRY ACCESSORIES.
 - 2. Single Hung Aluminum Windows: Section 08 51 13, ALUMINUM WINDOWS.

1.3 LABELS

- A. Temporary labels:
 - Provide temporary label on each light of glass identifying manufacturer or brand and glass type, quality and nominal thickness.
 - Label in accordance with NFRC (National Fenestration Rating Council) label requirements.
 - 3. Temporary labels shall remain intact until glass is approved by Contracting Officer.

B. Permanent labels:

- 1. Locate in corner for each pane.
- Label in accordance with ANSI Z97.1 and SGCC (Safety Glass Certification Council) label requirements.
 - a. Tempered glass.
 - b. Laminated glass or have certificate for panes without permanent label.
 - c. Organic coated glass.

1.4 PERFORMANCE REQUIREMENTS

- A. Glass Thickness:
 - 1. Glass shall have a nominal thickness of not less than 6 mm ($\frac{14}{4}$ inch).
 - Select thickness of exterior glass to withstand dead loads and wind loads acting normal to plane of glass at design pressures calculated in accordance with ASCE 7 and other applicable codes.
 - 3. Test in accordance with ASTM E 1300.

1.5 SUBMITTALS

- A. In accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Certificates:
 - 1. Certificates stating that safety glass, meets requirements for safety glazing material as specified in ANSI Z97.1.
 - 2. Certificate on shading coefficient.
 - 3. Certificate on "R" value when value is specified.
- C. Warranty: Submit written guaranty, conforming to General Condition requirements, and to "Warranty of Construction" Article in this Section.
- D. Manufacturer's Literature and Data:
 - 1. Glass, each kind required.
 - 2. Insulating glass units.
 - 3. Elastic compound for metal sash glazing.
 - 4. Putty, for wood sash glazing.
 - 5. Glazing cushion.
 - 6. Sealing compound.
- E. Samples:
 - 1. Size: 150 mm by 150 mm (6 inches by 6 inches).
 - 2. Tinted glass.

1.6 DELIVERY, STORAGE AND HANDLING

- A. Delivery: Schedule delivery to coincide with glazing schedules so minimum handling of crates is required. Do not open crates except as required for inspection for shipping damage.
- B. Storage: Store cases according to printed instructions on case, in areas least subject to traffic or falling objects. Keep storage area clean and dry.
- C. Handling: Unpack cases following printed instructions on case. Stack individual windows on edge leaned slightly against upright supports with separators between each.

1.7 WARRANTY

- A. Warranty: Conform to terms of "Warranty of Construction", FAR clause 52.246-21, except extend warranty period for the following:
 - 1. Insulating glass units to remain sealed for 10 years.
 - 2. Laminated glass units to remain laminated for 5 years.

1.8 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only.
- B. American National Standards Institute (ANSI):

Z97.1-09.....Safety Glazing Material Used in

Building - Safety Performance Specifications

and Methods of Test.

C. American Society for Testing and Materials (ASTM):

C864-05..... Seal Gaskets,

Setting Blocks, and Spacers

C920-11.....Elastomeric Joint Sealants

C1036-06.....Flat Glass

C1048-12..... Heat-Treated Flat Glass-Kind HS, Kind FT Coated and Uncoated Glass.

E2190-10.....Insulating Glass Unit

- D. National Fenestration Rating Council (NFRC)
- E. Safety Glazing Certification Council (SGCC) 2012: Certified Products Directory (Issued Semi-Annually).
- F. Glass Association of North America (GANA): Glazing Manual (Latest Edition) Sealant Manual (2009)
- G. American Society of Civil Engineers (ASCE): ASCE 7-10.....Wind Load Provisions

PART 2 - PRODUCT

2.1 GLASS

- A. Use thickness stated unless specified otherwise in assemblies.
- B. Clear Glass:
 - 1. ASTM C1036, Type I, Class 1, Quality q3.
 - 2. Thickness, 6 mm (1/4 inch) unless indicated otherwise.

2.2 HEAT-TREATED GLASS

- A. Clear Heat Strengthened Glass:
 - 1. ASTM C1048, Kind HS, Condition A, Type I, Class 1, Quality q3.
 - 2. Thickness, 6 mm (1/4 inch).
- B. Tinted Heat Strengthened Glass:
 - 1. ASTM C1048, Kind HS, Condition A, Type I, Class 2, Quality q3.
 - 2. Color: Bronze.

- 3. Thickness, 6 mm (1/4 inch).
- C. Tempered Glass:
 - 1. ASTM C1048, Kind FT, Condition A, Type I, Class 1, Quality q3.
 - 2. Thickness, 6 mm (1/4 inch) unless Low E coating is specified.
 - 3. Glass Type G-1: Clear tempered glass.
 - 4: Glass Type G-2: Bronze tinted tempered glass.
- D. Low-E Tempered Glass:
 - 1. ASTM C1048, Kind FT, Condition C, Type I, Class 1, Quality q3 with low emissivity pyrolytic coating having an E of 0.15.
 - 2. Apply coating to third surface of insulating glass units.
 - 3. Thickness, 4.8 mm (3/16 inch).

2.3 INSULATING GLASS UNITS

- A. Provide factory fabricated, hermetically sealed glass unit consisting of two panes of glass separated by a dehydrated air space and comply with ASTM E2190.
- B. Energy efficiency:
 - 1. Exterior light of all units shall be Low E glass.
 - Maximum U value insulating glass units shall not be greater than 32 (U < 0.32).
- C. Assemble units using glass types specified.
- D. Sealed Edge Units (SEU):
 - 1. Insulating Glass Type IG-1 (Typical Aluminum Window)
 - a. Outboard Lite
 - 1. Glass type: Heat strengthened.
 - 2. Glass Tint: Bronze.
 - 3. Nominal Thickness: 6 mm (1/4 inch).
 - b. Spacer
 - 1. Nominal Thickness: 19 mm (11/16 inch).
 - 2. Gas Fill: (Air or 90% Argon)
 - c. Inboard Lite
 - 1. Glass Type: Heat strengthened.
 - 2. Glass Tint: Clear; Low-E.
 - 3. Nominal Thickness: 4.8 mm (3/16 inch).
 - 4. Glass Strength: (Annealed, Heat-Strengthened, Tempered)
 - 5. Coating Orientation: Exterior face.
 - 2. Insulating Glass Type IG-2 (Bathroom and Toilet Windows)
 - a. Outboard Lite
 - 1. Glass type: Heat strengthened.

- 2. Glass Tint: Bronze.
- 3. Nominal Thickness: 6 mm (1/4 inch).
- b. Spacer
 - 1. Nominal Thickness: 19 mm (11/16 inch).
 - 2. Gas Fill: (Air or 90% Argon).
- c. Inboard Lite
 - 1. Glass Type: Heat strengthened.
 - 2. Glass Tint: Frosted; Low-E.
 - 3. Nominal Thickness: 4.8 mm (3/16 inch).
 - 4. Coating Orientation: Exterior face.

2.4 GLAZING ACCESSORIES

- A. As required to supplement the accessories provided with the items to be glazed and to provide a complete installation. Ferrous metal accessories exposed in the finished work shall have a finish that will not corrode or stain while in service.
- B. Setting Blocks: ASTM C864:
 - 1. Channel shape; having 6 mm (1/4 inch) internal depth.
 - 2. Shore a hardness of 80 to 90 Durometer.
 - 3. Block lengths: 50 mm (two inches) except 100 to 150 mm (four to six inches) for insulating glass.
 - 4. Block width: Approximately 1.6 mm (1/16 inch) less than the full width of the rabbet.
 - 5. Block thickness: Minimum 4.8 mm (3/16 inch). Thickness sized for rabbet depth as required.
- C. Spacers: ASTM C864:
 - 1. Channel shape having a 6 mm (1/4 inch) internal depth.
 - 2. Flanges not less 2.4 mm (3/32 inch) thick and web 3 mm (1/8 inch) thick.
 - 3. Lengths: One to 25 to 76 mm (one to three inches).
 - 4. Shore a hardness of 40 to 50 Durometer.
- D. Sealing Tapes:
 - Semi-solid polymeric based material exhibiting pressure-sensitive adhesion and withstanding exposure to sunlight, moisture, heat, cold, and aging.
 - 2. Shape, size and degree of softness and strength suitable for use in glazing application to prevent water infiltration.
- E. Glazing Sealants: ASTM C920, silicone neutral cure:
 - 1. Type S.

- 2. Class 25
- 3. Grade NS.
- 4. Shore A hardness of 25 to 30 Durometer.
- 5. Color: Clear.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Verification of Conditions:
 - Examine openings for glass and glazing units; determine they are proper size; plumb; square; and level before installation is started.
 - 2. Verify that glazing openings conform with details, dimensions and tolerances indicated on manufacturer's approved shop drawings.
- B. Advise Contractor of conditions which may adversely affect glass and glazing unit installation, prior to commencement of installation: Do not proceed with installation until unsatisfactory conditions have been corrected.
- C. Verify that wash down of adjacent masonry is completed prior to erection of glass and glazing units to prevent damage to glass and glazing units by cleaning materials.

3.2 PREPARATION

- A. For sealant glazing, prepare glazing surfaces in accordance with GANA-02 Sealant Manual.
- B. Determine glazing unit size and edge clearances by measuring the actual unit to receive the glazing.
- C. Shop fabricate and cut glass with smooth, straight edges of full size required by openings to provide GANA recommended edge clearances.
- D. Verify that components used are compatible.
- E. Clean and dry glazing surfaces.
- F. Prime surfaces scheduled to receive sealants, as determined by preconstruction sealant-substrate testing.

3.3 INSTALLATION - GENERAL

- A. Install in accordance with GANA-01 Glazing Manual and GANA-02 Sealant Manual unless specified otherwise.
- B. Glaze in accordance with recommendations of glazing and framing manufacturers, and as required to meet the Performance Test Requirements specified in other applicable sections of specifications.
- C. Set glazing without bending, twisting, or forcing of units.

- D. Do not allow glass to rest on or contact any framing member.
- E. Glaze doors and operable sash, in a securely fixed or closed and locked position, until sealant, glazing compound, or putty has thoroughly set. Factory glaze operable windows.
- F. Tempered Glass: Install with roller distortions in horizontal position unless otherwise directed.
- G. Insulating Glass Units:
 - 1. Glaze in compliance with glass manufacturer's written instructions.
 - 2. When glazing gaskets are used, they shall be of sufficient size and depth to cover glass seal or metal channel frame completely.
 - 3. Do not use putty or glazing compounds.
 - 4. Do not grind, nip, cut, or otherwise alter edges and corners of fused glass units after shipping from factory.
 - 5. Install with tape or gunnable sealant in wood sash.

3.4 REPLACEMENT AND CLEANING

- A. Clean new glass surfaces removing temporary labels, paint spots, and defacement after approval by Contracting Officer.
- B. Replace cracked, broken, and imperfect glass, or glass which has been installed improperly.
- C. Leave glass, putty, and other setting material in clean, whole, and acceptable condition.

3.5 PROTECTION

A. Protect finished surfaces from damage during erection, and after completion of work. Strippable plastic coatings on colored anodized finish are not acceptable.

- - - E N D - - -

SECTION 08 90 00 LOUVERS AND VENTS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies fixed wall louvers.

1.2 RELATED WORK

- A. Flashing: Section 07 60 00, FLASHING AND SHEET METAL.B. Color of finish: Section 09 06 00, SCHEDULE FOR FINISHES.
- B. Lintel: Section 05 50 00, METAL FABRICATIONS.D. Sealants: Section 07 92 00, JOINT SEALANTS.
- C. Brick: Section 04 20 00, UNIT MASONRY.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Shop Drawings:

Each type, showing material, finish, size of members, method of assembly, and installation and anchorage details.

- C. Manufacturer's Literature and Data:
 - 1. Each type of louver and vent.
- D. Samples: Finish color on aluminum.

1.4 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. The Master Painters Institute (MPI):
 - Approved Product List September 2011
- C. American Society for Testing and Materials (ASTM): A167-99(R2009).....Stainless and Heat-Resisting Chromium - Nickel Steel Plate, Sheet, and Strip B221-08....Aluminum and Aluminum Alloy Extruded Bars, Rods, Wire, Shapes, and Tubes B221M-07....Aluminum and Aluminum Alloy Extruded Bars,

Rods, Wire Shapes, and Tubes

- D. National Association of Architectural Metal Manufacturers (NAAMM): AMP 500-06.....Metal Finishes Manual
- E. National Fire Protection Association (NFPA):

90A-09.....Installation of Air Conditioning and Ventilating Systems

- - Architectural Extrusions and Panels
- G. Air Movement and Control Association, Inc. (AMCA): 500-L-07.....Testing Louvers

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Aluminum, Extruded: ASTM B221/B221M.
- B. Stainless Steel: ASTM A167, Type 302B.
- C. Fasteners: Fasteners for securing louvers and wall vents to adjoining construction, except as otherwise specified or shown, shall be toggle or expansion bolts, of size and type as required for each specific type of installation and counties condition
 - of installation and service condition.
 - Where type, size, or spacing of fasteners is not shown or specified, submit shop drawings showing proposed fasteners, and method of installation.
 - 2. Fasteners for louvers, louver frames, and wire guards shall be of stainless steel or aluminum.

2.2 EXTERIOR WALL LOUVERS

- A. General:
 - 1. Provide fixed type louvers of size and design shown.
 - Heads, sills and jamb sections shall have formed caulking slots or be designed to retain caulking. Head sections shall have exterior drip lip, and sill sections an integral water stop.
 - 3. Furnish louvers with sill extension or separate sill as shown.
 - 4. Frame shall be mechanically fastened or welded construction with welds dressed smooth and flush.
- B. Performance Characteristics:
 - Weather louvers shall have a minimum of 50 percent free area and shall pass 119 mm/min (350 fpm) free area velocity at a pressure drop not exceeding 0.007kPA (0.03 inch) water gage when tested per AMCA Standard 500-L.
 - 2. Louvers shall bear AMCA certified rating seals for air performance and water penetration ratings.
- C. Aluminum Louvers:

- General: Frames, blades and sills; 2 mm (0.081-inch) thick extruded aluminum. Blades shall be standard type and have reinforcing bosses.
- Louvers, fixed: Make frame sizes 13 mm (1/2-inch) smaller than openings. Single louvers frames shall not exceed 1700 mm (66 inches) wide. When openings exceed 1700 mm (66 inches), provide twin louvers separated by mullion members.

2.3 CLOSURE ANGLES AND CLOSURE PLATES

- A. Fabricate from 2 mm (0.074-inch) thick stainless steel or aluminum.
- B. Provide continuous closure angles and closure plates on inside head, jambs and sill of exterior wall louvers.
- C. Secure angles and plates to louver frames with screws, and to masonry or concrete with fasteners as specified.

2.4 SCREEN

A. Provide aluminum insect screen on interior of louver.

2.5 FINISH

- A. In accordance with NAAMM Metal Finishes Manual: AMP 500-505
- B. Aluminum Louvers:
 - 1.

Organic Finish: AAMA 2605 (Fluorocarbon coating).

- a. Conform to AAMA 605.2.
- b. Factory apply coating following cleaning and pretreatment.
- c. Dry film thickness: Approximately 1.2 mils (0.03 mm) when baked at 232° C (450° F) for 10 minutes.
- 2. Color: Match existing brick.

2.6 PROTECTION

- A. Provide protection for aluminum against galvanic action wherever dissimilar materials are in contact, by painting the contact surfaces of the dissimilar material with a heavy coat of bituminous paint (complete coverage), or by separating the contact surfaces with a performed synthetic rubber tape having pressure sensitive adhesive coating on one side.
- B. Isolate the aluminum from plaster, concrete and masonry by coating aluminum with zinc-chromate primer.
- C. Protect finished surfaces from damage during fabrication, erection, and after completion of the work.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Set work accurately, in alignment and where shown. Items shall be plumb, level, free of rack and twist, and set parallel or perpendicular as required to line and plane of surface.
- B. Furnish setting drawings and instructions for installation of anchors and for the positioning of items having anchors to be built into masonry construction. Provide temporary bracing for such items until masonry is set.
- C. Provide anchoring devices and fasteners as shown and as necessary for securing louvers to building construction as specified. Power actuated drive pins may be used, except for removal items and where members would be deformed or substrate damaged by their use.
- D. Set wall louvers in masonry walls during progress of the work. If wall louvers are not delivered to job in time for installation in prepared openings, make provision for later installation. Set in cast-in-place concrete in prepared openings.

3.2 CLEANING AND ADJUSTING

- A. After installation, all exposed prefinished and plated items and all items fabricated from stainless steel and aluminum shall be cleaned as recommended by the manufacturer and protected from damage until completion of the project.
- B. All movable parts, including hardware, shall be cleaned and adjusted to operate as designed without binding or deformation of the members, so as to be centered in the opening of frame, and where applicable, to have all contact surfaces fit tight and even without forcing or warping the components

- - - E N D - - -

SECTION 09 06 00 SCHEDULE FOR FINISHES

PART I - GENERAL

1.1 DESCRIPTION

A. This section contains a coordinated system in which requirements for materials specified in other sections shown are identified by abbreviated material names and finish codes in the room finish schedule or shown for other locations.

1.2 MANUFACTURERS

A. Manufacturer's trade names and numbers used herein are only to identify colors, finishes, textures and patterns. Products of other manufacturer's equivalent to colors, finishes, textures and patterns of manufacturers listed that meet requirements of technical specifications will be acceptable upon approval in writing by contracting officer for finish requirements.

1.3 SUBMITALS

- A. Submit in accordance with SECTION 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES-provide quadruplicate samples for color approval of materials and finishes specified in this section.
- B. In order to coordinate appearance of finish materials and finishes that may vary from those indentified in this Section 09 06 00, SCHEDULE FOR FINISHES, finishes will be reviewed only after all submittals for all finish materials have been received.

1.4 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in text by basic designation only.
- B. MASTER PAINTING INSTITUTE: (MPI)

2012..... Architectural Painting Specification Manual

PART 2- PRODUCTS

2.1 DIVISION 05 - METALS

Item	Finish	
Loose Lintels	Paint to match brick color; Gloss Level 5	
Steel Ladders	PNT-6; Gloss Level 5.	
Steel Pipe Railings and Gates (not on Steel Stairs)	PNT-5; Gloss Level 6.	

A. SECTION 05 50 00, METAL FABRICATIONS

2.2 DIVISION 06 WOOD - PLASTICS, AND COMPOSITES

A. SECTION 06 20 00, FINISH CARPENTRY

1. CABINETS AND COUNTERS						
Component/Finish Code	Material		ALTERNATE MANUFACTURERS			
		Manufacturer	Finish	Color		
Countertop SSM-1	SSM-1 Solid ALKEMI SSM-1 Surface Recycled SSM-2 Surface Dupont / Corian Surface rtical face(s) Plastic Laminate Lamin-art		Classic	Natural 10	Vetrazzo Cosentino	
Countertop SSM-2			Standard	Pine	Formica LG	
Vertical Surface(s) PL-1			Textured w/ Oyster Shield	#2102-T O/S Royal Pewter	Formica Wilson Art	
Pulls	Stainless Steel	Topex #FH007128912X12	Satin Stainless	Satin Stainless	Hafele Sugatsune	

2. VANITIES Component/Finish Code	Material		BASIS OF DESIGN		ALTERNATE MANUFACTURERS
		Manufacturer	Finish	Color	
Countertop SSM-2	Recycled Solid Surface	Dupont / Corian	Standard	Pine	Formica LG
Vertical Surface(s) PL-1	Plastic Laminate	Lamin-art	Textured w/ Oyster Shield	#2102-T O/S Royal Pewter	Formica Wilson Art
Base PL-1	Plastic Laminate	Lamin-art	Textured w/ Oyster Shield	#2102-T O/S Royal Pewter	Formica Wilson Art

2.3 DIVISION 08 - OPENINGS

A. SECTION 08 11 13, HOLLOW METAL DOORS AND FRAMES

Component	Color of Paint Type and Gloss	
Door	PNT-6; Gloss Level 5	
Frame	Match adjacent wall; Gloss Level 5	

B. SECTION 08 14 00, WOOD DOORS

Component/Finish	BASIS	OF DESIGN	ALTERNATIVE	
Code	Manufacturer	Finish/Color	MANUFACTURER	
Wood Doors WD-1	VT Architectural Wood Doors	Cherry Veneer / Clear Finish CL07	Algoma Mowhawk	

C. SECTION 08 31 13, ACCESS DOORS AND FRAMES

Material	Finish/Color	
Steel	PNT-7; Gloss Level 5	

2.4 DIVISION 09 - FINISHES

ſ

A. SECTION 09 30 13, CERAMIC TILING

1. CERAMIC MOSAIC TILE (FT)							
Component/Finish							
Code	Size	Pattern	Manufacturer	Product Name / Color	ALTERNATE MANUFACTURERS		
Ceramic Floor Tile / CT-1	12" x 12"	Quarter Turn	Dal Tile	Fabrique / Gris Linen	Crossville Mosaic Tile Co.		
Grout (w/CT-1)	n/a	n/a	Mapei	11 Sahara Beige	Laticrete Custom Building Products		
Ceramic Wall Tile / CT-2	2″ x 2″ Mosaic	n/a	Dal Tile	Fabrique / Crème Linen	Crossville Mosaic Tile Co.		
Grout (w/CT-2)	n/a	n/a	Mapei	77 Frost	Laticrete Custom Building Products		

B. SECTION 09 51 00, ACOUSTICAL CEILINGS

1. ACOUSTIC	1. ACOUSTICAL CEILINGS						
Component/Finish	Component	Size	BASIS OF DESIGN		ALTERNATE MANUFACTURERS		
Code	component	5126	Manufacturer Product Name / Color				
Acoustic Ceiling Tile / ACT-1	Acoustic Ceiling Tile	24" x 24" x ¾"	Armstrong	Ultima Beveled Tegular, 1912 / White	USG Ceiling Plus		

Ceiling Grid / n/a	Suspension System	2' x 2'	Armstrong	Interlude XL HRC 9/16", XL6120HRC / White	USG Ceiling Plus
-----------------------	----------------------	---------	-----------	--	---------------------

C. SECTION 09 65 19, RESILIENT TILE FLOORING

1. RESILIENT TILE FLOORING

Finish Code	Component	Size		ALTERNATE	
			Manufacturer	Product Name / Color	MANUFACTURERS
VCT-1	Vinyl Composition Tile	12" x 12"	Armstrong	Excelon / 51836 Shelter White	Mannington Tarkett
LVT-1	Luxury Vinyl Tile	4" x 36" Plank	Tajima	Naturals LVT / WAA 5113 KOTO	Shaw Armstrong
LVT-2	Luxury Vinyl Tile	18" x 18" Tile	Tajima	Carbon / MAE 3036	Shaw Armstrong

D. SECTION 09 65 13, RESILIENT BASE

1. RESILIENT BASE

Finish Code	demo en ent	Size		ALTERNATE	
Finish Code Componen		Size	Manufacturer	Product Name / Color	MANUFACTURERS
RB-1	Rubber Base	4" (height)	Roppe	Pewter 178	Mannington Allstate Johnsonite

E. SECTION 09 68 00, CARPET (CP)

1. CARPET					
Finish		BASIS OF DESIGN		ALTERNATE	
Component	Size	Manufacturer	Product Name / Color / Pattern	MANUFACTURERS	
Carpet Tile	24" x 24"	Bentley Prince Street	Roadside Attractions 8RD300220T / Minister's Tree House 802141 / Monolithic	Masland Shaw	
Carpet Tile	24" x 24"	Shaw	Dissolve 59566; Ashen Metal 66505 / Monolithic	Bentley Prince Street Masland	
-	Component Carpet Tile	Component Size Carpet Tile 24" x 24"	Component Size Manufacturer Carpet Tile 24" x 24" Bentley Prince Street	Component Size Manufacturer Product Name / Color / Pattern Carpet Tile 24" x 24" Bentley Prince Street Roadside Attractions 8RD300220T / Minister's Tree House 802141 / Monolithic Carpet Tile 24" x 24" Shaw Dissolve 59566; Ashen Metal	

2. CARPET EDGE STRIP			
Finish Code	Material	Manufacturer	Mfg. Color Name/No.
n/a	Metal	Schluter	Rondec, Stainless Steel / RO80E & EV/RO80E, 5/16"
n/a	Vinyl	Roppe	#50 tile/carpet joiner 7/32" / 114 Lunar Dust

F. SECTION 09 91 00, PAINT AND COATINGS

MPI Gloss and Sheen Standards

		Gloss @60	Sheen @85
Gloss Level 1	a traditional matte finish-flat	max 5 units, and	max 10 units
Gloss Level 2	a high side sheen flat-"a velvet-like"	max 10 units, and	
	finish		10-35 units
Gloss Level 3	a traditional "egg-shell like" finish	10-25 units, and	10-35 units

Gloss Level 4	a "satin-like" finish	20-35 units, and
Gloss Level 5	a traditional semi-gloss	35-70 units
Gloss Level 6	a traditional gloss	70-85 units
Gloss level 7	a high gloss	more than 85 units

	Gloss	BASIS	OF DESIGN	ALTERNATIVE
Paint code		Manufacturer	Mfg. Color Name/No.	MANUFACTURERS
PNT-1	Gloss Level 3, Typical / Egg-shell Gloss Level 5 / Semi-gloss where noted Gloss Level 1 / Ceiling	Sherwin Williams	Natural Choice / SW 7011	Benjamin Moore, Glidden, MAB, Pratt & Lambert
PNT-2	Gloss Level 3, Typical / Egg-shell Gloss Level 5 / Semi-gloss where noted	Sherwin Williams	Svelte Sage / SW 6164	Benjamin Moore, Glidden, MAB, Pratt & Lambert
PNT-3	Gloss Level 3, Typical / Egg-shell Gloss Level 5 / Semi-gloss where noted	Sherwin Williams	Bagel / SW 6114	Benjamin Moore, Glidden, MAB, Pratt & Lambert
PNT-4	Gloss Level 3, Typical / Egg-shell	Sherwin Williams	Granite Peak / SW 6250	Benjamin Moore, Glidden, MAB, Pratt & Lambert
PNT-5	Gloss Level 6 / Traditional Gloss	Sherwin Williams	Granite Peak / SW 6250	Benjamin Moore, Glidden, MAB, Pratt & Lambert
PNT-6	Gloss Level 5 / Traditional Semi-gloss	Sherwin Williams	Granite Peak / SW 6250	Benjamin Moore, Glidden, MAB, Pratt & Lambert
PNT-7	Gloss Level 5 / Traditional Semi-gloss	Sherwin Williams	Natural Choice / SW 7011	Benjamin Moore, Glidden, MAB, Pratt & Lambert

min. 35 units

PART III EXECUTION

3.1 FINISH SCHEDULES & MISCELLANEOUS ABBREVIATIONS

FINISH SCHEDULE & MISCELLANEOUS ABBREVIATIONS				
Term	Abbreviation			
Acoustical Ceiling Tile	ACT			
Carpet Tile	CPT			
Ceramic Tile	СТ			
Gypsum Wallboard	GWB			
Luxury Vinyl Tile	LVT			
Material	MAT			
Paint	PNT			
Plastic Laminate	PL			
Rubber Base	RB			
Solid Surface Counter	SSC/SSM			
Vinyl Composition Tile	VCT			
Wood	WD			

3.2 FINSIH SCHEDULE SYMBOLS

Symbol Definition

** Same finish as adjoining walls

3.3 ROOM FINISH SCHEDULE

- A. Match adjoining or existing similar surfaces colors, textures or patterns where disturbed or damaged by alterations or new work when not scheduled. When installing new or patching finishes in existing spaces that are not being renovated, new finishes shall match existing in appearance and quality and shall be extended to nearest change in plane or other logical location as approved by the Contracting Officer.
- B. ROOM FINISH SCHEDULE: Refer to Drawing AI 100.

--- E N D---

SECTION 09 29 00 GYPSUM BOARD

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies installation and finishing of interior and exterior gypsum board.

1.2 RELATED WORK

- A. Installation of steel framing members for walls, partitions, furring, soffits, and ceilings: Section 09 22 16, NON-STRUCTURAL METAL FRAMING.
- B. Sound deadening board: Section 07 21 13, THERMAL INSULATION.
- C. Acoustical Sealants: Section 07 92 00, JOINT SEALANTS.
- D. Cementitious backer board for ceramic tile in showers: Section 09 30 13, CERAMIC/PORCELAIN TILING.

1.3 TERMINOLOGY

- A. Definitions and description of terms shall be in accordance with ASTM C11, C840, and as specified.
- B. Underside of Structure Overhead: In spaces where steel trusses or bar joists are shown, the underside of structure overhead shall be the underside of the floor or roof construction supported by the trusses or bar joists.
- C. "Yoked": Gypsum board cut out for opening with no joint at the opening (along door jamb or above the door).

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Cornerbead and edge trim.
 - 2. Finishing materials.
 - 3. Laminating adhesive.
 - 4. Gypsum board, each type.
 - 5. Joint compound.
 - 6. Joint tape.
 - 7. Fire rated assemblies.
 - 8. Verification of compliance with requirements for recycled materials.
- C. Test Results:
 - 1. Fire rating test, each fire rating required for each assembly.

2. Sound rating test.

1.5 DELIVERY, IDENTIFICATION, HANDLING AND STORAGE

A. In accordance with the requirements of ASTM C840.

1.6 ENVIRONMENTAL CONDITIONS

A. In accordance with the requirements of ASTM C840.

1.7 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society for Testing And Materials (ASTM):
- C11-08..... Terminology Relating to Gypsum and Related Building Materials and Systems C475-02.....Joint Compound and Joint Tape for Finishing Gypsum Board C840-08..... Application and Finishing of Gypsum Board C919-08.....Sealants in Acoustical Applications C954-07.....Steel Drill Screws for the Application of Gypsum Board or Metal Plaster Bases to Steel Stud from 0.033 in. (0.84mm) to 0.112 in. (2.84mm) in thickness C1002-07.....Steel Self-Piercing Tapping Screws for the Application of Gypsum Panel Products or Metal Plaster Bases to Wood Studs or Steel Studs C1047-05..... Accessories for Gypsum Wallboard and Gypsum Veneer Base C1177-06.....Glass Mat Gypsum Substrate for Use as Sheathing C1658-06.....Glass Mat Gypsum Panels C1396-06.....Gypsum Board E84-08..... of Building Materials C. Underwriters Laboratories Inc. (UL): Latest Edition.....Fire Resistance Directory D. Inchcape Testing Services (ITS):
 - Latest Editions.....Certification Listings

PART 2 - PRODUCTS

2.1 GYPSUM BOARD FOR INTERIOR USE

- A. Gypsum Board: ASTM C1396, Type X, 16 mm (5/8 inch) thick unless shown otherwise. Products shall contain a minimum of 20 percent recycled gypsum.
- B. Moisture Resistant Gypsum Backing Board: ASTM C620, Type X, 16 mm (5/8 inch) thick.

2.2 GLASS MAT PANELS FOR EXTERIOR SHEATHING AND SOFFITS

- A. Panel Size: Provide in maximum lengths and widths available that will minimize joints in each area and correspond with support system indicated.
- B. ASTM C1177, Type X.
 - Flame Spread and Smoke Developed: 0/0 when tested in accordance with ASTM E 84.
 - 2. Surface Material: Glass mat.
 - 3. Flexural Strength: 80 pounds (36 g).
 - 4. Permeance: Not greater than 23 perms when tested in accordance with ASTM E 84.
 - 5. R Value: 1.12 per inch of thickness.
 - 6. Core: 5/8 inch (15.9 mm), Type X.

2.3 ACCESSORIES

- A. ASTM C1047, except form of 0.39 mm (0.015 inch) thick zinc coated steel sheet.
- B. Flanges not less than 22 mm (7/8 inch) wide with punchouts or deformations as required to provide compound bond.

2.4 FASTENERS

- A. ASTM C1002 and ASTM C840, except as otherwise specified.
- B. ASTM C954, for steel studs thicker than 0.04 mm (0.33 inch).
- C. Select screws of size and type recommended by the manufacturer of the material being fastened. Fasteners used in damp interior locations and all exterior locations shall be galvanized.
- D. For fire rated construction, type and size same as used in fire rating test.
- E. Clips: Zinc-coated (galvanized) steel; gypsum board manufacturer's standard items.

2.5 FINISHING MATERIALS AND LAMINATING ADHESIVE

A. ASTM C475 and ASTM C840. Free of antifreeze, vinyl adhesives, preservatives, biocides and other VOC. Adhesive shall contain a maximum VOC content of 50 g/l.

PART 3 - EXECUTION

3.1 GYPSUM BOARD HEIGHTS

- A. Extend all layers of gypsum board from floor to underside of structure overhead on following partitions and furring:
 - 1. Two sides of partitions:
 - a. Fire rated partitions.
 - b. Sound rated partitions.
 - c. Full height partitions shown (FHP).
 - d. Corridor partitions.
 - 2. One side of partitions or furring:
 - a. Inside of exterior wall furring or stud construction.
 - b. Room side of room without suspended ceilings.
 - c. Furring for pipes and duct shafts, except where fire rated shaft wall construction is shown.
 - Extend all layers of gypsum board construction used for fireproofing of columns from floor to underside of structure overhead, unless shown otherwise.
- B. In locations other than those specified, extend gypsum board from floor to heights as follows:
 - 1. Not less than 100 mm (4 inches) above suspended acoustical ceilings.
 - 2. At ceiling of suspended gypsum board ceilings.
 - 3. At existing ceilings.

3.2 INSTALLING GYPSUM BOARD

- A. Coordinate installation of gypsum board with other trades and related work.
- B. Install gypsum board in accordance with ASTM C840, except as otherwise specified.
- C. Moisture and Mold-Resistant Assemblies: Provide and install moisture and mold-resistant glass mat gypsum wallboard products with moistureresistant surfaces complying with ASTM C1658 where shown and in locations which might be subject to moisture exposure during construction. At a minimum, install moisture and mold resistant assemblies in the following locations:

- 1. In toilet rooms and bathrooms.
- 2. Behind and next to clothes washer and laundry sink.
- 3. Behind sink in kitchen area.
- D. Use gypsum boards in maximum practical lengths to minimize number of end joints.
- E. Bring gypsum board into contact, but do not force into place.
- F. Ceilings:
 - 1. For single-ply construction, use perpendicular application.
 - 2. For two-ply assembles:
 - a. Use perpendicular application.
 - b. Apply face ply of gypsum board so that joints of face ply do not occur at joints of base ply with joints over framing members.
 - 3. When gypsum board is fastened directly to existing framing, provide framing between existing members for fastening of gypsum board edges that are perpendicular to framing members. Supplemental framing shall not be more than 2400 mm (8 feet) on center.
- G. Walls:
 - When gypsum board is installed parallel to framing members, space fasteners 300 mm (12 inches) on center in field of the board, and 200 mm (8 inches) on center along edges.
 - When gypsum board is installed perpendicular to framing members, space fasteners 300 mm (12 inches) on center in field and along edges.
 - 3. Stagger screws on abutting edges or ends.
 - 4. For single-ply construction, apply gypsum board with long dimension either parallel or perpendicular to framing members as required to minimize number of joints except gypsum board shall be applied vertically over "Z" furring channels.
 - 5. For two-ply gypsum board assemblies, apply base ply of gypsum board to assure minimum number of joints in face layer. Apply face ply of wallboard to base ply so that joints of face ply do not occur at joints of base ply with joints over framing members.
 - No offset in exposed face of walls and partitions will be permitted because of single-ply and two-ply or three-ply application requirements.
- H. Acoustical or Sound Rated Partitions, Fire and Smoke Partitions:

- Cut gypsum board for a space approximately 3 mm to 6 mm (1/8 to 1/4 inch) wide around partition perimeter.
- 2. Coordinate for application of caulking or sealants to space prior to taping and finishing.
- 3. For sound rated partitions, use sealing compound (ASTM C919) to fill the annular spaces between all receptacle boxes and the partition finish material through which the boxes protrude to seal all holes and/or openings on the back and sides of the boxes. STC minimum values as shown.
- I. Electrical and Telecommunications Boxes:
 - 1. Seal annular spaces between electrical and telecommunications receptacle boxes and gypsum board partitions.
- J. Exterior Soffits and Ceilings: Apply exterior soffit board panels perpendicular to supports, with end joints staggered and located over supports.
 - 1. Install with 1/4-inch (6.4-mm) open space where panels abut other construction or structural penetrations.
 - 2. Fasten with corrosion-resistant screws at 8-inches (203mm) o.c.
 - 3. Apply joint tape over joints and embed in setting type joint compound.
 - 4. Skim coat surface with setting type joint compound for smooth finish suitable for painting.
- K. Accessories:
 - Set accessories plumb, level and true to line, neatly mitered at corners and intersections, and securely attach to supporting surfaces as specified.
 - 2. Install in one piece, without the limits of the longest commercially available lengths.
 - 3. Corner Beads:
 - a. Install at all vertical and horizontal external corners and where shown.
 - b. Use screws only. Do not use crimping tool.
 - 4. Edge Trim (casings Beads):
 - a. Where gypsum board terminates against dissimilar materials and at perimeter of openings, except where covered by flanges, casings or permanently built-in equipment.
 - b. Where shown.

3.3 INSTALLING GYPSUM SHEATHING

- A. Install in accordance with ASTM C840, except as otherwise specified or shown.
- B. Use screws of sufficient length to secure sheathing to framing.
- C. Space screws 9 mm (3/8 inch) from ends and edges of sheathing and 200 mm (8 inches) on center. Space screws a maximum of 200 mm (8 inches) on center on intermediate framing members.
- D. Apply 600 mm by 2400 mm (2 foot by 8 foot) sheathing boards horizontally with tongue edge up.
- E. Apply 1200 mm by 2400 mm or 2700 mm (4 ft. by 8 ft. or 9 foot) gypsum sheathing boards vertically with edges over framing.

3.4 FINISHING OF GYPSUM BOARD

- A. Finish joints, edges, corners, and fastener heads in accordance with ASTM C840. Use Level 4 finish for al finished areas open to public view.
- B. Before proceeding with installation of finishing materials, assure the following:
 - 1. Gypsum board is fastened and held close to framing or furring.
 - 2. Fastening heads in gypsum board are slightly below surface in dimple formed by driving tool.
- C. Finish joints, fasteners, and all openings, including openings around penetrations, on that part of the gypsum board extending above suspended ceilings to seal surface of non decorated fire rated and sound rated gypsum board construction. After the installation of hanger rods, hanger wires, supports, equipment, conduits, piping and similar work, seal remaining openings and maintain the integrity of the fire rated and sound rated construction.

3.5 REPAIRS

- A. After taping and finishing has been completed, and before decoration, repair all damaged and defective work, including nondecorated surfaces.
- B. Patch holes or openings 13 mm (1/2 inch) or less in diameter, or equivalent size, with a setting type finishing compound or patching plaster.
- C. Repair holes or openings over 13 mm (1/2 inch) diameter, or equivalent size, with 16 mm (5/8 inch) thick gypsum board secured in such a manner as to provide solid substrate equivalent to undamaged surface.
- D. Tape and refinish scratched, abraded or damaged finish surfaces including cracks and joints in non decorated surface to provide smoke

tight construction fire protection equivalent to the fire rated construction and STC equivalent to the sound rated construction. $- - - E \ N \ D - - -$

SECTION 09 30 13 CERAMIC/PORCELAIN TILING

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies ceramic tile, marble thresholds, and waterproofing membranes for thin-set applications.

1.2 RELATED WORK

- A. Sealing of joints where specified: Section 07 92 00, JOINT SEALANTS.
- B. Color, texture and pattern of field tile and trim shapes, size of field tile, trim shapes, and color of grout specified: Section 09 06 00, SCHEDULE FOR FINISHES.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. In order to coordinate appearance of finish materials and finishes that may vary from those indentified in Section 09 06 00, SCHEDULE FOR FINISHES, finishes will be reviewed only after all submittals for all finish materials have been received.
- C. Samples:
 - 1. Tile and trim: Each type, each color, each size.
- D. Product Data:
 - 1. Each type of tile, marked to show each type, size, and shape required.
 - 2. Elastomeric membrane and bond coat.
 - 3. Cementitious backer unit.
 - 4. Leveling compound.
 - 5. Latex-Portland cement mortar and grout.
 - 6. Organic adhesive.
 - 7. Slip resistant tile.
 - 8. Waterproofing isolation membrane.

E. Certification:

- 1. Master grade, ANSI A137.1.
- 2. Manufacturer's certificates indicating that the following materials comply with specification requirements:
 - a. Cementitious backer unit.
 - b. Elastomeric membrane and bond coat.
 - c. Latex-Portland cement mortar and grout.

- d. Leveling compound.
- e. Organic adhesive.
- f. Waterproof isolation membrane.
- g. Factory mounted tile suitability for application in wet area specified under 2.1 with list of successful in-service performance locations.

1.4 DELIVERY AND STORAGE

- A. Deliver materials in containers with labels legible and intact and grade-seals unbroken.
- B. Store material to prevent damage or contamination.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in text by basic designation only.
- B. American National Standards Institute (ANSI):

A108.1A-11..... Installation of Ceramic Tile in the Wet-Set Method with Portland Cement Mortar

- A108.1B-11.....Installation of Ceramic Tile on a Cured Portland Cement Mortar Setting Bed with dry-Set or latex-Portland Cement Mortar
- A108.1C-11.....Contractors Option; Installation of Ceramic Tile in the Wet-Set method with Portland Cement Mortar or Installation of Ceramic Tile on a Cured Portland Cement Mortar Setting Bed with Dry-Set or Latex-Portland Cement Mortar

A137.1-08.....Ceramic Tile

C. American Society For Testing And Materials (ASTM):

A185-07..... Steel Welded Wire Fabric, Plain, for Concrete Reinforcing

- C109/C109M-11.....Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2 inch. or [50-mm] Cube Specimens)
- C241-09.....Abrasion Resistance of Stone Subjected to Foot Traffic
- C348-08.....Standard Test Method for Flexural Strength of Hydraulic-Cement Mortars
- C979-10.....Pigments for Integrally Colored Concrete

C1002-07.....Steel Self-Piercing Tapping Screws for the Application of Panel Products C1028-07.....Determining the Static Coefficient of Friction of Ceramic Tile and Other Like Surfaces by the Horizontal Dynamometer Pull Meter Method C1325-08.....Non-Asbestos Fiber-Mat Reinforced Cementitious Backer Units D4397-10....Standard Specification for Polyethylene Sheeting for Construction, Industrial and Agricultural Applications D5109-99(R2004)....Standard Test Methods for Copper-Clad Thermosetting Laminates for Printed Wiring Boards D. Marble Institute of America (MIA): Design Manual III-2007

E. Tile Council of America, Inc. (TCA): 2007......Handbook for Ceramic Tile Installation

PART 2 - PRODUCTS

2.1 TILE

- A. Comply with ANSI A137.1, Standard Grade, except as modified:
 - 1. Inspection procedures listed under the Appendix of ANSI A137.1.
 - 2. Abrasion Resistance Classification:
 - a. Tested in accordance with values listed in Table 1, ASTM C 1027.
 - b. Class V, 12000 revolutions for floors in Corridors, Kitchens, Storage including Refrigerated Rooms
 - c. Class IV, 6000 revolutions for remaining areas.
 - 3. Slip Resistant Tile for Floors:
 - a. Coefficient of friction, when tested in accordance with ASTM C1028, required for level of performance:
 - 1) Not less than 0.7 (wet condition) for bathing areas.
 - 2) Not less than 0.8 on ramps for wet and dry conditions.
 - Not less than 0.6, except 0.8 on ramps as stated above, for wet and dry conditions for other areas.
 - b. Tile Having Abrasive Grains:
 - 1. Unglazed Ceramic Mosaic Tile: Abrasive grains throughout body of the tile.
 - 2. Quarry Tile: Abrasive grains uniformly embedded in face at rate of approximately 7.5 percent of surface area.

- 4. Do not use back mounted tiles in showers unless certified by manufacturer as noted in paragraph 1.3.
- 5. Factory Blending: For tile with color variations, within the ranges selected during sample submittals blend tile in the factory and package so tile units taken from one package show the same range in colors as those taken from other packages and match approved samples.
- 6. Factory-Applied Temporary Protective Coating:
 - a. Protect exposed face surfaces (top surface) of tile against adherence of mortar and grout by pre-coating with a continuous film of petroleum paraffin wax, applied hot.
 - b. Do not coat unexposed tile surfaces.
- B. Unglazed Ceramic Mosaic Tile: Nominal 6 mm (1/4 inch) thick with cushion edges.
- C. Glazed Wall Tile: Cushion edges, glazing, as specified in Section 09 06 00, SCHEDULE FOR FINISHES.
- D. Trim Shapes:
 - 1. Conform to applicable requirements of adjoining floor and wall tile.
 - Use slip resistant trim shapes for horizontal surfaces of showers.3. Use trim shapes sizes conforming to size of adjoining field wall tile unless detailed or specified otherwise in Section 09 06 00, SCHEDULE FOR FINISHES.
 - 4. Internal and External Corners:
 - a. Square internal and external corner joints are not acceptable.
 - b. External corners including edges: Use bullnose shapes.
 - c. Internal corners: Use cove shapes.
 - d. Base to floor internal corners: Use special shapes providing integral cove vertical and horizontal joint.
 - e. Base to floor external corners: Use special shapes providing bullnose vertical edge with integral cove horizontal joint. Use stop at bottom of openings having bullnose return to wall.
 - f. Wall top edge internal corners: Use special shapes providing integral cove vertical joint with bullnose top edge.
 - g. Wall top edge external corners: Use special shapes providing bullnose vertical and horizontal joint edge.

2.2 CEMENTITIOUS BACKER UNITS

- A. Use in showers or wet areas.
- B. ASTM C1325.

- C. Use cementitious backer units in maximum available lengths.
- D. Thickness shall match adjacent gypsum board.

2.3 JOINT MATERIALS FOR CEMENTITIOUS BACKER UNITS

- A. Reinforcing Tape: Vinyl coated woven glass fiber mesh tape, open weave,
 50 mm (2 inches) wide. Tape with pressure sensitive adhesive backing
 will not be permitted.
- B. Tape Embedding Material: Latex-Portland cement mortar complying with ANSI A108.1.
- C. Joint material, including reinforcing tape, and tape embedding material, shall be as specifically recommended by the backer unit manufacturer.

2.4 FASTENERS

- A. Screws for Cementitious Backer Units.
 - 1. Standard screws for gypsum board are not acceptable.
 - Minimum 11 mm (7/16 inch) diameter head, corrosion resistant coated, with washers.
 - 3. ASTM C954 for steel 1 mm (0.033 inch) thick.
 - 4. ASTM C1002 for steel framing less than 0.0329 inch thick.
- B. Washers: Galvanized steel, 13 mm (1/2 inch) minimum diameter.

2.5 SETTING MATERIALS OR BOND COATS

- A. Conform to TCA Handbook for Ceramic Tile Installation.
- B. Latex-Portland Cement Mortar: ANSI A108.1.
 - 1. For wall applications, provide non-sagging, latex-Portland cement mortar complying with ANSI A108.1.
 - Prepackaged Dry-Mortar Mix: Factory-prepared mixture of Portland cement; dry, redispersible, ethylene vinyl acetate additive; and other ingredients to which only water needs to be added at Project site.
- C. Elastomeric Waterproofing Membrane and Bond Coat:
 - 1. TCA F122-02.
 - 2. ANSI A108.1.
 - 3. One component polyurethane, liquid applied material having the following additional physical properties:
 - a. Hardness: Shore "A" between 40-60.
 - b. Elongation: Between 300-600 percent.
 - c. Tensile strength: Between 40-60 psig.
 - d. No volatile compounds.
 - 4. Coal tar modified urethanes are not acceptable.

- D. Waterproofing Isolation Membrane:
 - 1. Sheet System TCA F122-02.
 - 2. Optional System to elastomeric waterproof membrane.
 - 3. Composite sheet consisting of ASTM D5109, Type II, Grade I Chlorinated Polyethylene (CM) sheet reinforced on both sides with a non-woven polyester fiber.
 - 4. Designed for use in wet areas as an isolation and positive waterproofing membranes for thin-set bonding of sheet to substrate and thin-set bonding of ceramic and porcelain tile or marble to sheet. Suited for both horizontal and vertical applications.
 - 5. Conform to the following additional physical properties:

Property	Units	Results	Test Method
Hardness Shore A	Points	70-80	ASTM D2240 (10 Second Reading)
Shrinkage	Percent	5 maximum	ASTM D1204
Brittleness		No crack remains flexible at temperature-37 degrees C (-25 degrees F)	ASTM D2497 13 mm (1/2- inch) Mandrel Bend
Retention of Properties after Heat Aging	Percent of original	80 Tensile 80 Breaking 80 Elongation	ASTM D3045, 90 degrees C (194 degrees F) for 168 hours

- 6. Manufacturer's standard sheet size with prefabricated or preformed inside and outside corners.
- Sheet manufacturer's solvent welding liquid or xylene and edge sealant.

2.6 GROUTING MATERIALS

- A. Coloring Pigments:
 - Pure mineral pigments, limeproof and nonfading, complying with ASTM C979.
 - 2. Add coloring pigments to grout by the manufacturer.
 - 3. Job colored grout is not acceptable.
 - 4. Use is required in Commercial Portland Cement Grout, Dry-Set Grout, and Latex-Portland Cement Grout.
- B. White Portland Cement Grout:
 - 1. ANSI A108.1.

- 2. Use one part white Portland cement to one part white sand passing a number 30 screen.
- 3. Color additive not permitted.
- C. Commercial Portland Cement Grout: ANSI A108.1 color as specified.
- D. Dry-Set Grout: ANSI A108.1 color as specified.
- E. Latex-Portland Cement Grout: ANSI A108.1 color as specified.
 - 1. Unsanded grout mixture for joints 3.2 mm (1/8 inch) and narrower.
 - 2. Sanded grout mixture for joints 3.2 mm (1/8 inch) and wider.
- F. Chemical-Resistant Grout:
 - 1. Epoxy grout, ANSI A108.1.
 - 2. Furan grout, ANSI A108.1.

2.7 PATCHING AND LEVELING COMPOUND

- A. Portland cement base, polymer-modified, self-leveling compound, manufactured specifically for resurfacing and leveling concrete floors. Products containing gypsum are not acceptable.
- B. Shall have minimum following physical properties:
 - 1. Compressive strength 25 MPa (3500 psig) per ASTM C109/C109M.
 - 2. Flexural strength 7 MPa (1000 psig) per ASTM C348 (28 day value).
 - 3. Tensile strength 600 psi per ANSI 118.7.
 - 4. Density 1.9.
- C. Capable of being applied in layers up to 38 mm (1-1/2 inches) thick without fillers and up to 100 mm (four inches) thick with fillers, being brought to a feather edge, and being trowelled to a smooth finish.
- D. Primers, fillers, and reinforcement as required by manufacturer for application and substrate condition.
- E. Ready for use in 48 hours after application.

2.8 MARBLE

- A. Soundness Classification in accordance with MIA Design Manual III Groups.
- B. Thresholds:
 - 1. Group A, Minimum abrasive hardness (Ha) of 10.0 per ASTM C241.
 - 2. Honed finish on exposed faces.
 - 3. Thickness and contour as shown.
 - Fabricate from one piece without holes, cracks, or open seams; full depth of wall or frame opening by full width of wall or frame

opening; 19 mm (3/4-inch) minimum thickness and 6 mm (1/4-inch) minimum thickness at beveled edge.

- 5. Set not more than 13 mm (1/2-inch) above adjoining finished floor surfaces, with transition edges beveled on a slope of no greater than 1:2. On existing floor slabs provide 13 mm (1/2-inch) above ceramic tile surface with bevel edge joint top flush with adjacent floor.
- One piece full width of door opening. Notch thresholds to match profile of door jambs.

2.9 WATER

A. Clean, potable and free from salts and other injurious elements to mortar and grout materials.

2.10 CLEANING COMPOUNDS

- A. Specifically designed for cleaning masonry and concrete and which will not prevent bond of subsequent tile setting materials including patching and leveling compounds and elastomeric waterproofing membrane and coat.
- B. Materials containing acid or caustic material not acceptable.

2.11 FLOOR MORTAR BED REINFORCING

A. ASTM A185 welded wire fabric without backing, MW3 x MW3 (2 x 2-W0.5 x W0.5).

2.12 POLYETHYLENE SHEET

- A. Polyethylene sheet conforming to ASTM D4397.
- B. Nominal thickness: 0.15 mm (six mils).
- C. Use sheet width to minimize joints.

PART 3 - EXECUTION

3.1 ENVIRONMENTAL REQUIREMENTS

- A. Maintain ambient temperature of work areas at not less than 16 degree C (60 degrees F), without interruption, for not less than 24 hours before installation and not less than three days after installation.
- B. Maintain higher temperatures for a longer period of time where required by manufacturer's recommendation and ANSI Specifications for installation.
- C. Do not install tile when the temperature is above 38 degrees C (100 degrees F).
- D. Do not install materials when the temperature of the substrate is below 16 degrees C (60 degrees F).

E. Do not allow temperature to fall below 10 degrees C (50 degrees F) after fourth day of completion of tile work.

3.2 ALLOWABLE TOLERANCE

- A. Variation in plane of sub-floor, including concrete fills leveling compounds and mortar beds:
 - Not more than 1 in 500 (1/4 inch in 10 feet) from required elevation where Portland cement mortar setting bed is used.
 - Not more than 1 in 1000 (1/8 inch in 10 feet) where dry-set Portland cement, and latex-Portland cement mortar setting beds and chemicalresistant bond coats are used.
- B. Variation in Plane of Wall Surfaces:
 - Not more than 1 in 400 (1/4 inch in eight feet) from required plane where Portland cement mortar setting bed is used.
 - Not more than 1 in 800 (1/8 inch in eight feet) where dry-set or latex-Portland cement mortar or organic adhesive setting materials is used.

3.3 SURFACE PREPARATION

A. Patching and Leveling:

- 1. Mix and apply patching and leveling compound in accordance with manufacturer's instructions.
- 2. Fill holes and cracks and align concrete floors that are out of required plane with patching and leveling compound.
 - a. Thickness of compound as required to bring finish tile system to elevation shown.
 - b. Float finish except finish smooth for elastomeric waterproofing.
- 3. Apply patching and leveling compound to concrete and masonry wall surfaces that are out of required plane.
- Apply leveling coats of material compatible with wall surface and tile setting material to wall surfaces, other than concrete and masonry that are out of required plane.
- B. Mortar Bed for Slopes to Drains:
 - 1. Slope compound to drain where drains are shown.
 - Install mortar bed in depressed slab sloped to drains not less than
 1 in 200 (1/16 inch per foot).
 - 3. Allow not less than 50 mm (2 inch) depression at edge of depressed slab.
 - 4. Screed for slope to drain and float finish.

- 5. Cure mortar bed for not less than seven days. Do not use curing compounds or coatings.
- C. Walls:
 - 1. In showers or other wet areas cover studs with polyethylene sheet.
 - 2. Apply patching and leveling compound to concrete and masonry surfaces that are out of required plane.
 - 3. Apply leveling coats of material compatible with wall surface and tile setting material to wall surfaces, other than concrete and masonry that are out of required plane.
- D. Existing Floors and Walls:
 - 1. Remove existing floor finishes and adhesive. Follow applicable safety requirements of ANSI A10.20.

3.4 CEMENTITIOUS BACKER UNITS

- A. Remove polyethylene wrapping from cementitious backer units and separate to allow for air circulation. Allow moisture content of backer units to dry down to a maximum of 35 percent before applying joint treatment and tile.
- B. Install in accordance with ANSI A108.1 except as specified otherwise.
- C. Install units horizontally or vertically to minimize joints with end joints over framing members. Units with rounded edges; face rounded edge away from studs to form a V joint for joint treatment.
- D. Secure cementitious backer units to each framing member with screws spaced not more than 200 mm (eight inches) on center and not closer than 13 mm (1/2 inch) from the edge of the backer unit or as recommended by backer unit manufacturer. Install screws so that the screw heads are flush with the surface of the backer unit.
- E. Where backer unit joins shower pans or waterproofing, lap backer unit over turned up waterproof system. Install fasteners only through top one-inch of turned up waterproof systems.
- F. Do not install joint treatment for seven days after installation of cementitious backer unit.
- G. Joint Treatment:
 - Fill horizontal and vertical joints and corners with latex-Portland cement mortar. Apply fiberglass tape over joints and corners and embed with same mortar.
 - Leave 6 mm (1/4 inch) space for sealant at lips of tubs, sinks, or other plumbing receptors.

3.5 MARBLE

- A. Secure thresholds and stools in position with minimum of two stainless steel dowels.
- B. Set in latex-Portland cement mortar bond coat.
- C. Set threshold to finish 12mm (1/2 inch) above ceramic tile floor unless shown otherwise, with bevel edge joint top flush with adjacent floor similar to TCA detail TR611-02.

3.6 CERAMIC TILE - GENERAL

- A. Comply with ANSI A108 series of tile installation standards in "Specifications for Installation of Ceramic Tile" applicable to methods of installation.
- B. Comply with TCA Installation Guidelines:
- C. Installing Mortar Beds for Floors:
 - Install mortar bed to not damage cleavage or waterproof membrane; 32 mm (1-1/2 inch) minimum thickness.
 - 2. Install floor mortar bed reinforcing centered in mortar fill.
 - 3. Screed finish to level plane or slope to drains where shown, float finish.
 - 4. For thin set systems cure mortar bed not less than seven days. Do not use curing compounds or coatings.
 - 5. For tile set with Portland cement paste over plastic mortar bed coordinate to set tile before mortar bed sets.
- D. Setting Beds or Bond Coats:
 - 1. Set floor tile in elastomeric bond coat over elastomeric membrane ANSI 108. 13, TCA System F122 where scheduled and where shown.
 - 2. Set tile installed over gypsum board and gypsum plaster in organic adhesive, ANSI A108.1, TCA System W242-02.
 - Set trim shapes in same material specified for setting adjoining tile.
- E. Workmanship:
 - Lay out tile work so that no tile less than one-half full size is used. Make all cuts on the outer edge of the field. 2. Set tile firmly in place with finish surfaces in true planes. Align tile flush with adjacent tile unless shown otherwise.
 - 3. Form intersections and returns accurately.
 - 4. Cut and drill tile neatly without marring surface.
 - 5. Cut edges of tile abutting penetrations, finish, or built-in items:

- a. Fit tile closely around electrical outlets, piping, fixtures and fittings, so that plates, escutcheons, collars and flanges will overlap cut edge of tile.
- b. Seal tile joints water tight as specified in Section 07 92 00, JOINT SEALANTS, around electrical outlets, piping fixtures and fittings before cover plates and escutcheons are set in place.
- Completed work shall be free from hollow sounding areas and loose, cracked or defective tile.
- 7. Remove and reset tiles that are out of plane or misaligned.
- 8. Floors:
 - a. Align finish surface of new tile work flush with other and existing adjoining floor finish where shown.
 - b. In areas where floor drains occur, slope to drains.
 - c. Shove and vibrate tiles over 200 mm (8 inches) square to achieve full support of bond coat.
- 9. Walls:
 - a. Cover walls and partitions, including pilasters, furred areas, and freestanding columns from floor to ceiling, or from floor to nominal wainscot heights shown with tile.
 - b. Finish reveals of openings with tile, except where other finish materials are shown or specified.
- 10. Joints:
 - a. Keep all joints in line, straight, level, perpendicular and of even width unless shown otherwise.
 - b. Make joints 2 mm (1/16 inch) wide.
- 11. Back Buttering: For installations indicated below, obtain 100 percent mortar coverage by complying with applicable special requirements for back buttering of tile in referenced ANSI A108 series of tile installation standards:
 - a. Tile wall installations in wet areas, including showers, tub enclosures, laundries and swimming pools.
 - b. Tile installed with chemical-resistant mortars and grouts.
 - c. Tile wall installations composed of tiles 200 by 200 mm (8 by 8 inches or larger.
 - d. Exterior tile wall installations.

3.7 PORCELAIN TILE INSTALLED WITH LATEX PORTLAND CEMENT BONDONG MORTAR

A. Due to the denseness of porcelain tile use latex Portland cement bonding mortar that meets the requirements of ANSI A108.1.Bonding mortars shall be mixed in accordance with manufacturer's instructions. Improper liquid ratios and dwell time before placement of bonding mortar and tile shall affect bond.

3.8 THIN SET CERAMIC AND PORCELAIN TILE INSTALLED WITH DRY-SET PORTLAND CEMENT AND LATEX-PORTLAND CEMENT MORTAR

- A. Installation of Tile: ANSI A108.1, except as specified otherwise.
- B. Slope tile work to drains not less than 1 in 100 (1/8 inch per foot).

3.9 GROUTING

- A. Grout Type and Location:
 - 1. Grout for glazed wall and base tile, latex-Portland cement grout, dry-set grout, or commercial Portland cement grout.
- B. Workmanship:
 - 1. Install and cure grout in accordance with the applicable standard.

3.10 CLEANING

- A. Thoroughly sponge and wash tile. Polish glazed surfaces with clean dry cloths.
- B. Methods and materials used shall not damage or impair appearance of tile surfaces.
- C. The use of acid or acid cleaners on glazed tile surfaces is prohibited.
- D. Clean tile grouted with epoxy, furan and commercial Portland cement grout and tile set in elastomeric bond coat as recommended by the manufacturer of the grout and bond coat.

3.11 PROTECTION

- A. Keep traffic off tile floor, until grout and setting material is firmly set and cured.
- B. Where traffic occurs over tile floor, cover tile floor with not less than 9 mm (3/8 inch) thick plywood, wood particle board, or hardboard securely taped in place. Do not remove protective cover until time for final inspection. Clean tile of any tape, adhesive and stains.

- - - E N D - - -

SECTION 09 51 00 ACOUSTICAL CEILINGS

PART 1- GENERAL

1.1 DESCRIPTION

- A. Metal ceiling suspension system for acoustical ceilings.
- B. Acoustical units.

1.2 RELATED WORK

A. Color, pattern, and location of each type of acoustical unit: Section 09 06 00, SCHEDULE FOR FINISHES.

1.3 SUBMITTAL

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. In order to coordinate appearance of finish materials and finishes that may vary from those indentified in Section 09 06 00, SCHEDULE FOR FINISHES, finishes will be reviewed only after all submittals for all finish materials have been received.
- C. Samples:
 - 1. Acoustical units, each type, with label indicating conformance to specification requirements.
- D. Manufacturer's Literature and Data:
 - 1. Ceiling suspension system, each type, showing complete details of installation.
 - 2. Acoustical units, each type.
- E. Manufacturer's Certificates: Acoustical units, each type, in accordance with specification requirements.

1.4 DEFINITIONS

- A. Standard definitions as defined in ASTM C634.
- B. Terminology as defined in ASTM E1264.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in the text by basic designation only.
- B. American Society for Testing and Materials (ASTM): A641/A641M-03.....Zinc-coated (Galvanized) Carbon Steel Wire C423-07.....Sound Absorption and Sound Absorption Coefficients by the Reverberation Room Method

C634-02 (E2007)	.Standard Terminology Relating to Environmental
	Acoustics
C635-04	.Metal Suspension Systems for Acoustical Tile
	and Lay-in Panel Ceilings
C636-06	.Installation of Metal Ceiling Suspension
	Systems for Acoustical Tile and Lay-in Panels
E84-07	.Surface Burning Characteristics of Building
	Materials
E413-04	Classification for Rating Sound Insulation.
E1264-(R2005)	.Classification for Acoustical Ceiling Products

PART 2- PRODUCTS

2.1 METAL SUSPENSION SYSTEM

- A. ASTM C635, heavy-duty system, except as otherwise specified.
 - Ceiling suspension system members may be fabricated from either of the following unless specified otherwise.
 - a. Galvanized cold-rolled steel, bonderized.
 - b. Extruded aluminum.
 - 2. Use same construction for cross runners as main runners. Use of lighter-duty sections for cross runners is not acceptable.
- B. Exposed grid suspension system for support of lay-in panels:
 - Exposed grid width not less than 22 mm (7/8 inch) with not less than 8 mm (5/16 inch) panel bearing surface.
 - Fabricate wall molding and other special molding from the same material with same exposed width and finish as the exposed grid members.
 - 3. On exposed metal surfaces apply baked-on enamel flat texture finish in color to match adjacent acoustical units unless specified otherwise in Section 09 06 00, SCHEDULE FOR FINISHES.

2.2 PERIMETER SEAL

- A. Vinyl, polyethylene or polyurethane open cell sponge material having density of 1.3 plus or minus 10 percent, compression set less than 10 percent with pressure sensitive adhesive coating on one side.
- B. Thickness as required to fill voids between back of wall molding and finish wall.
- C. Not less than 9 mm (3/8 inch) wide strip.

2.3 WIRE

- A. ASTM A641.
- B. For wire hangers: Minimum diameter 2.68 mm (0.1055 inch).
- C. For bracing wires: Minimum diameter 3.43 mm (0.1350 inch).

2.4 ANCHORS AND INSERTS

- A. Use anchors or inserts to support twice the loads imposed by hangers attached thereto.
- B. Hanger Inserts:
 - Fabricate inserts from steel, zinc-coated (galvanized after fabrication).
 - 2. Nailing type option for wood forms:
 - a. Upper portion designed for anchorage in concrete and positioning lower portion below surface of concrete approximately 25 mm (one inch).
 - b. Lower portion provided with not less than 8 mm (5/16 inch) hole to permit attachment of hangers.
- C. Clips:
 - 1. Galvanized steel.
 - 2. Designed to rigidly secure framing members together.
 - Designed to sustain twice the loads imposed by hangers or items supported.
- D. Tile Splines: ASTM C635.

2.5 ACOUSTICAL UNITS

- A. General:
 - Ceiling Tile shall meet minimum 37% bio-based content in accordance with USDA Bio-Preferred Product requirements.
 - 2. ASTM E1264, weighing 3.6 kg/m² (3/4 psf) minimum for mineral fiber panels or tile.
 - 3. Class A Flame Spread: ASTM 84
 - Minimum NRC (Noise Reduction Coefficient): 0.55 unless specified otherwise: ASTM C423.
 - 5. Minimum CAC (Ceiling Attenuation Class): 40-44 range unless specified otherwise: ASTM E413.
 - 6. Manufacturers standard finish, minimum Light Reflectance (LR) coefficient of 0.75 on the exposed surfaces, except as specified otherwise in Section 09 06 00, SCHEDULE FOR FINISHES.
 - Lay-in panels: Sizes as shown, with edges as indicated on Finish Schedule.

- B. Type III Units Mineral base with water-based painted finish less than 10 g/l VOC, Form 2 - Water felted, minimum 16 mm (5/8 inch) thick. Mineral base to contain minimum 65 percent recycled content.
- C. Type IV Units Mineral base with membrane-faced overlay, Form 2 -Water felted, minimum 16 mm (5/8 inch) thick. Apply over the paint coat on the face of the unit a poly (vinyl) chloride overspray having a flame spread index of 25 or less when tested in accordance with ASTM E84.

PART 3 EXECUTION

3.1 CEILING TREATMENT

- A. Treatment of ceilings shall include sides and soffits of ceiling beams, furred work 600 mm (24 inches) wide and over, and vertical surfaces at changes in ceiling heights unless otherwise shown. Install acoustic tiles after wet finishes have been installed and solvents have cured.
- B. Lay out acoustical units symmetrically about center lines of each room or space unless shown otherwise on reflected ceiling plan.
- C. Moldings:
 - Install metal wall molding at perimeter of room, column, or edge at vertical surfaces.
 - Install special shaped molding at changes in ceiling heights and at other breaks in ceiling construction to support acoustical units and to conceal their edges.
- D. Perimeter Seal:
 - Install perimeter seal between vertical leg of wall molding and finish wall, partition, and other vertical surfaces.
 - 2. Install perimeter seal to finish flush with exposed faces of horizontal legs of wall molding.

3.2 CEILING SUSPENSION SYSTEM INSTALLATION

- A. General:
 - Install metal suspension system for acoustical tile and lay-in panels in accordance with ASTM C636, except as specified otherwise.
 - 2. Use direct or indirect hung suspension system or combination thereof as defined in ASTM C635.
 - 3. Support a maximum area of 1.48 m² (16 sf) of ceiling per hanger.
 - Prevent deflection in excess of 1/360 of span of cross runner and main runner.

- 5. Provide extra hangers, minimum of one hanger at each corner of each item of mechanical, electrical and miscellaneous equipment supported by ceiling suspension system not having separate support or hangers.
- 6. Provide not less than 100 mm (4 inch) clearance from the exposed face of the acoustical units to the underside of ducts, pipe, conduit, secondary suspension channels, concrete beams or joists; and steel beam or bar joist unless furred system is shown,
- 7. Use main runners not less than 1200 mm (48 inches) in length.
- Install hanger wires vertically. Angled wires are not acceptable except for seismic restraint bracing wires.
- B. Direct Hung Suspension System:
 - 1. As illustrated in ASTM C635.
 - Support main runners by hanger wires attached directly to the structure overhead.
 - Maximum spacing of hangers, 1200 mm (4 feet) on centers unless interference occurs by mechanical systems. Use indirect hung suspension system where not possible to maintain hanger spacing.
- C. Indirect Hung Suspension System:
 - 1. As illustrated in ASTM C635.
 - 2. Space carrying channels for indirect hung suspension system not more than 1200 mm (4 feet) on center. Space hangers for carrying channels not more than 2400 mm (8 feet) on center or for carrying channels less than 1200 mm (4 feet) or center so as to insure that specified requirements are not exceeded.
 - 3. Support main runners by specially designed clips attached to carrying channels.

3.3 ACOUSTICAL UNIT INSTALLATION

- A. Cut acoustic units for perimeter borders and penetrations to fit tight against penetration for joint not concealed by molding.
- B. Install lay-in acoustic panels in exposed grid with not less than 6 mm (1/4 inch) bearing at edges on supports.
 - 1. Install tile to lay level and in full contact with exposed grid.
 - 2. Replace cracked, broken, stained, dirty, or tile not cut for minimum bearing.
- C. Trim edge of cut tiles to match profile of uncut tiles.

3.4 CLEAN-UP AND COMPLETION

A. Replace damaged, discolored, dirty, cracked and broken acoustical units. B. Leave finished work free from defects.

- - - E N D - - -

SECTION 09 65 13 RESILIENT BASE AND ACCESSORIES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies rubber base and its installation.

1.2 RELATED WORK

- A. Color and texture: Section 09 06 00, SCHEDULE FOR FINISHESS.
- B. Resilient Tile Flooring: Section 09 65 19, RESILIENT TILE FLOORING.
- C. Carpet: Section 09 68 00, CARPETING.
- D. Gypsum board substraight: Section 09 29 00, GYPSUM BOARD.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. In order to coordinate appearance of finish materials and finishes that may vary from those indentified in Section 09 06 00, SCHEDULE FOR FINISHES, finishes will be reviewed only after all submittals for all finish materials have been received.
- C. Manufacturer's Literature and Data:
 - 1. Description of each product.
 - Base and stair material manufacturer's recommendations for adhesives.
 - 3. Application and installation instructions.
- D. Samples:
 - 1. Base: 150 mm (6 inches) long, each type and color.

1.4 DELIVERY

- A. Deliver materials to the site in original sealed packages or containers, clearly marked with the manufacturer's name or brand, type and color, production run number and date of manufacture.
- B. Materials from containers which have been distorted, damaged or opened prior to installation will be rejected.

1.5 STORAGE

- A. Store materials in weather tight and dry storage facility.
- B. Protect material from damage by handling and construction operations before, during, and after installation.

1.6 APPLICABLE PUBLICATIONS

- A. The publication listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society for Testing and Materials (ASTM): F1861-08.....Resilient Wall Base

PART 2 - PRODUCTS

2.1 GENERAL

A. Use only products by the same manufacturer and from the same production run.

2.2 RESILIENT BASE

A. ASTM F1861, 3 mm (1/8 inch) thick, 100 mm (4 inches) high, rubber, Group 2-layered. Style B-cove.

2.3 ADHESIVES

- A. Use products recommended by the material manufacturer for the conditions of use.
- B. Use low-VOC adhesive during installation. Water based adhesive with low VOC is preferred over solvent based adhesive.

PART 3 - EXECUTION

3.1 PROJECT CONDITIONS

- A. Maintain temperature of materials above 21° C (70 $^\circ F),$ for 48 hours before installation.
- B. Maintain temperature of rooms where work occurs, between 21° C and 27° C $(70^{\circ}F$ and $80^{\circ}F)$ for at least 48 hours, before, during, and after installation.
- C. Do not install materials until building is permanently enclosed and wet construction is complete, dry, and cured.

3.2 INSTALLATION REQUIREMENTS

- A. The respective manufacturer's instructions for application and installation will be considered for use when approved by the Contracting Officer's Technical Representative (COTR).
- B. Submit proposed installation deviation from this specification to the COTR indicating the differences in the method of installation.
- C. The COTR reserves the right to have test portions of material installation removed to check for non-uniform adhesion and spotty adhesive coverage.

3.3 PREPARATION

- A. Examine surfaces on which material is to be installed.
- B. Fill cracks, pits, and dents with leveling compound.
- C. Level to 3 mm (1/8 inch) maximum variation in 610 mm (2 feet).
- D. Do not use adhesive for leveling or filling.
- E. Grind, sand, or cut away protrusions; grind high spots.
- F. Clean substrate area of oil, grease, dust, paint, and deleterious substances.
- G. Substrate area dry and cured. Perform manufacturer's recommended bond and moisture test.
- H. Preparation of existing installation:
 - 1. Remove existing base and adhesive.
 - 2. Do not use solvents to remove adhesives.
 - 3. Prepare substrate as specified.

3.4 BASE INSTALLATION

- A. Location:
 - Unless otherwise specified or shown, where base is scheduled, install base over toe space of base of casework, lockers, laboratory, pharmacy furniture island cabinets and where other equipment occurs.
 - 2. Extend base scheduled for room into adjacent closet, alcoves, and around columns.
- B. Application:
 - 1. Apply adhesive uniformly with no bare spots.
 - 2. Set base with joints aligned and butted to touch for entire height.
 - Before starting installation, layout base material to provide the minimum number of joints with no strip less than 600 mm (24 inches) length.
 - a. Short pieces to save material will not be permitted.
 - b. Locate joints as remote from corners as the material lengths or the wall configuration will permit.
- C. Form corners and end stops as follows:
 - 1. Score back of outside corner.
 - 2. Score face of inside corner and notch cove.
- D. Roll base for complete adhesion.

3.5 CLEANING AND PROTECTION

- A. Clean all exposed surfaces of base and adjoining areas of adhesive spatter before it sets.
- B. Keep traffic off resilient material for at least 72 hours after installation.
- C. Clean and polish materials in the following order:
 - After two weeks, scrub resilient base materials with a minimum amount of water and a mild detergent. Leave surfaces clean and free of detergent residue. Polish resilient base to a gloss finish.
- D. When construction traffic is anticipated, cover tread materials with reinforced kraft paper and plywood or hardboard properly secured and maintained until removal is directed by the COTR.
- E. Where protective materials are removed and immediately prior to acceptance, replace damaged materials and re-clean resilient materials. Damaged materials are defined as having cuts, gouges, scrapes or tears and not fully adhered.

- - - E N D - - -

SECTION 09 65 19 RESILIENT TILE FLOORING

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the installation of solid vinyl tile flooring, vinyl composition tile flooring, and accessories.

1.2 RELATED WORK

- A. Color and pattern and location in room finish schedule: Section 09 06 00, SCHEDULE FOR FINISHES.
- B. Resilient Base: Section 09 65 13, RESILIENT BASE AND ACCESSORIES.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. In order to coordinate appearance of finish materials and finishes that may vary from those indentified in Section 09 06 00, SCHEDULE FOR FINISHES, finishes will be reviewed only after all submittals for all finish materials have been received.
- C. Manufacturer's Literature and Data:
 - 1. Description of each product.
 - Resilient material manufacturers' recommendations for adhesives, underlayment, primers and polish.
 - 3. Application and installation instructions.
- D. Samples:
 - 1. Tile: 300 mm by 300 mm (12 inches by 12 inches) for each type, pattern and color.
 - 2. Edge Strips: 150 mm (6 inches) long, each type.
 - 3. Feature Strips: 150 mm (6 inches) long.
- E. Shop Drawings:
 - Layout of patterns shown on the drawings and in Section 09 06 00, SCHEDULE FOR FINISHES.
 - 2. Edge strip locations showing types and detail cross sections.
- F. Test Reports:
 - 1. Abrasion resistance: Depth of wear for each tile type and color and volume loss of tile, certified by independent laboratory.
 - 2. Tested per ASTM F510.

1.4 DELIVERY

- A. Deliver materials to the site in original sealed packages or containers, clearly marked with the manufacturer's name or brand, type and color, production run number and date of manufacture.
- B. Materials from containers which have been distorted, damaged or opened prior to installation will be rejected.

1.5 STORAGE

- A. Store materials in weathertight and dry storage facility.
- B. Protect from damage from handling, water, and temperature.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society for Testing and Materials (ASTM):

D4078-02 (2008).....Water Emulsion Floor Finish

E648-10.....Critical Radiant Flux of Floor Covering Systems Using a Radiant Energy Source

E662-09.....Specific Optical Density of Smoke Generated by Solid Materials

E1155-96 (R2008).....Determining Floor Flatness and Floor Levelness Numbers

- F510-93 (R 2008).....Resistance to Abrasion of Resilient Floor Coverings Using an Abrader with a Grit Feed Method
- F710-08.....Preparing Concrete Floors to Receive Resilient Flooring

F1066-04 (R2010).....Vinyl Composition Floor Tile

F1344-10.....Rubber Floor Tile

F1700-04 (R2010).....Solid Vinyl Floor Tile

C. Resilient Floor Covering Institute (RFCI):

IP #2.....Installation Practice for Vinyl Composition Tile (VCT)

D. Federal Specifications (Fed. Spec.):
 SS-T-312.....Tile Floor: Asphalt, Rubber, Vinyl and Vinyl
 Composition

PART 2 - PRODUCTS

2.1 GENERAL

- A. Furnish product type, materials of the same production run and meeting following criteria.
- B. Use adhesives, underlayment, primers and polish recommended by the floor resilient material manufacturer.
- C. Critical Radiant Flux: 0.45 watts per sq. cm or more, Class I, per ASTM E 648.
- D. Smoke density: Less than 450 per ASTM E662.

2.1 WOOD AND STONE VISUAL VINYL PLANK & TILES

- A. Federal Specifications SS T-312B.
- B. Type IV, Composition C1.

C. Wear layer thickness of 0.6mm or greater and supported by a high strength vinyl backing.

D. Edges are slightly beveled to prevent chipping and damage.

2.2 VINYL COMPOSITION TILE

- A. ASTM F1066, Composition 1, Class I (solid color) or Class 2 (through pattern) as scheduled, 300 mm (12 inches) square, 3 mm (1/8 inch) thick.
- B. Color and pattern uniformly distributed throughout thickness.

2.3 ADHESIVES

- A. Comply with applicable regulations regarding toxic and hazardous materials Green Seal (GS-36) for commercial adhesive.
- B. Use low-VOC adhesive during installation. Water based is preferred over solvent based adhesives.

2.4 PRIMER

A. As recommended by the adhesive and tile manufacturer.

2.5 LEVELING COMPOUND

- A. Provide cementitious products with latex or polyvinyl acetate resins in the mix.
- B. Determine the type of underlayment selected for use by the condition to be corrected.

2.6 POLISH AND CLEANERS

- A. Cleaners RFCI CL-1.
- B. Polish: ASTM D4078.

2.7 EDGE STRIPS

A. 28 mm (1-1/8 inch) wide unless shown otherwise.

- B. Bevel from maximum thickness to minimum thickness for flush joint unless shown otherwise.
- C. Resilient Edge Strip or Reducer Strip: Fed. Specs. SS-T-312, Solid vinyl.

PART 3 - EXECUTION

3.1 PROJECT CONDITIONS

- A. Maintain temperature of materials a minimum of 22 $^{\circ}\text{C}$ (70 $^{\circ}\text{F},)$ for 48 hours before installation.
- B. Maintain temperature of rooms where work occurs between 21 °C and 27 °C (70 °F and 80 °F), for at least 48 hours, before, during and after installation.
- C. Do not install flooring until building is permanently enclosed and wet construction in or near areas to receive tile materials is complete, dry and cured.

3.2 SUBFLOOR PREPARATION

- A. Verify that concrete slabs comply with ASTM F710. At existing slabs, determine levelness by F-number method in accordance with ASTM E1155. Overall value shall not exceed as follows: FF30/FL20
- B. Correct conditions which will impair proper installation.
- C. Fill cracks, joints and other irregularities in concrete with leveling compound:
 - 1. Do not use adhesive for filling or leveling purposes.
 - Trowel to smooth surface free of trowel marks, pits, dents, protrusions, cracks or joints.
- D. Clean floor of oil, paint, dust, and deleterious substances: Leave floor dry and cured free of residue from existing curing or cleaning agents.
- E. Perform additional subfloor preparation to obtain satisfactory adherence of flooring if subfloor test patches allows easy removal of tile.

3.3 INSTALLATION

- A. Install in accordance with manufacturer's instructions for application and installation unless specified otherwise.
- B. Mix tile from at least two containers. An apparent line either of shades or pattern variance will not be accepted.

- C. Tile Layout:
 - 1. If layout is not shown on drawings, lay tile symmetrically about center of room or space with joints aligned.
 - 2. No tile shall be less than 150 mm (6 inches) and of equal width at walls.
 - 3. Place tile pattern in the same direction; do not alternate tiles.
- D. Trim tiles to touch for the length of intersections at pipes and vertical projections, seal joints at pipes with waterproof cement.
- E. Application:
 - 1. Apply adhesive uniformly with no bare spots.
 - a. Conform to RFC1-TM-6 for joint tightness and for corner intersection unless layout pattern shows random corner intersection.
 - b. More than 5 percent of the joints not touching will not be accepted.
 - Roll tile floor with a minimum 45 kg (100 pound) roller. No exceptions.
 - 3. The Contracting Officer's Technical Representative (COTR) may have test tiles removed to check for non-uniform adhesion, spotty adhesive coverage, and ease of removal. Install new tile for broken removed tile.
- F. Installation of Edge Strips:
 - Locate edge strips under center line of doors unless otherwise shown.
 - 2. Set resilient edge strips in adhesive. Anchor metal edge strips with anchors and screws specified.
 - 3. Where tile edge is exposed, butt edge strip to touch along tile edge.
 - 4. Where thin set ceramic tile abuts resilient tile, set edge strip against floor file and against the ceramic tile edge.

3.4 CLEANING AND PROTECTION

- A. Clean adhesive marks on exposed surfaces during the application of resilient materials before the adhesive sets. Exposed adhesive is not acceptable.
- B. Keep traffic off resilient material for a minimum 72 hours after installation.
- C. Clean and polish materials in the following order:

1. For the first two weeks sweep and damp mopped only.

- After two weeks, scrub resilient materials with a minimum amount of water and a mild detergent. Leave surface clean and free of detergent residue.
- 3. Apply polish to the floors in accordance with the polish manufacturer's instructions.
- D. When construction traffic occurs over tile, cover resilient materials with reinforced kraft paper properly secured and maintained until removal is directed by COTR. At entrances and where wheeled vehicles or carts are used, cover tile with plywood, hardboard, or particle board over paper, secured and maintained until removal is directed by COTR.
- E. When protective materials are removed and immediately prior to acceptance, replace any damage tile, re-clean resilient materials, lightly re-apply polish and buff floors.

3.6 LOCATION

- A. Unless otherwise specified or shown, install tile flooring, on floor under areas where casework, laboratory and pharmacy furniture and other equipment occurs, except where mounted in wall recesses.
- B. Extend tile flooring for room into adjacent closets and alcoves.

- - - E N D - - -

SECTION 09 68 00 CARPETING

PART 1 - GENERAL

1.1 DESCRIPTION

A. Section specifies carpet, edge strips, adhesives, and other items required for complete installation.

1.2 RELATED WORK

- A. Color and texture of carpet and edge strip: Section 09 06 00, SCHEDULE FOR FINISHES.
- B. Resilient wall base: Section 09 65 13, RESILIENT BASE AND ACCESSORIES.

1.3 QUALITY ASSURANCE

- A. Carpet installed by mechanics certified by the Floor Covering Installation Board.
- B. Certify and label the carpet that it has been tested and meets criteria of CRI IAQ Carpet Testing Program for indoor air quality.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. In order to coordinate appearance of finish materials and finishes that may vary from those indentified in Section 09 06 00, SCHEDULE FOR FINISHES, finishes will be reviewed only after all submittals for all finish materials have been received.
- C. Product Data:
 - Manufacturer's catalog data and printed documentation stating physical characteristics, durability, resistance to fading and flame resistance characteristics for each type of carpet material and installation accessory.
 - Manufacturer's printed installation instructions for the carpet, including preparation of installation substrate, seaming techniques and recommended adhesives and tapes.
 - Manufacturer's certificate verifying carpet containing recycled materials include percentage of recycled materials as specified.
- D. Samples:
 - Carpet: "Production Quality" samples 300 x 300 mm (12 x 12 inches) of carpets, showing quality, pattern and color specified in Section 09 06 00, SCHEDULE FOR FINISHES.

- 2. Floor Edge Strip (Molding): 150 mm (6 inches) long of each color and type specified.
- 3. Base Edge Strip (Molding): 150 mm (6 inches) long of each color specified.
- E. Shop Drawings: Installers layout plan showing seams and cuts for sheet carpet and carpet module.
- F. Maintenance Data: Carpet manufacturer's maintenance instructions describing recommended type of cleaning equipment and material, spotting and cleaning methods and cleaning cycles.

1.5 DELIVERY AND STORAGE

- A. Deliver carpet in manufacturer's original wrappings and packages clearly labeled with manufacturer's name, brand, name, size, dye lot number and related information.
- B. Deliver adhesives in containers clearly labeled with manufacturer's name, brand name, number, installation instructions, safety instructions and flash points.
- C. Store in a clean, dry, well ventilated area, protected from damage and soiling. Maintain storage space at a temperature above 16 degrees C (60 degrees F) for 2 days prior to installation.

1.6 ENVIRONMENTAL REQUIREMENTS

A. Areas in which carpeting is to be installed shall be maintained at a temperature above 16 degrees C (60 degrees F) for 2 days before installation, during installation and for 2 days after installation. A minimum temperature of 13 degrees C (55 degrees F) shall be maintained thereafter for the duration of the contract. Traffic or movement of furniture or equipment in carpeted area shall not be permitted for 24 hours after installation. Other work which would damage the carpet shall be completed prior to installation of carpet.

1.7 WARRANTY

A. Carpet and installation subject to terms of "Warranty of Construction" FAR clause 52.246-21, except that warranty period is extended to two years.

1.8 APPLICABLE PUBLICATIONS

- A. Publication listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only.
- B. American National Standards Institute (ANSI): ANSI/NSF 140-10.....Sustainable Carpet Assessment Standard

C. American Association of Textile Chemists and Colorists (AATCC): AATCC 16-04.....Colorfastness to Light AATCC 129-10.....Colorfastness to Ozone in the Atmosphere under High Humidities AATCC 134-11.....Electric Static Propensity of Carpets AATCC 165-08.....Colorfastness to Crocking: Textile Floor Conerings-AATCC Crockmeter Method D. American Society for Testing and Materials (ASTM): ASTM D1335-05.....Tuft Bind of Pile Yarn Floor Coverings ASTM D3278-96 (R2004)...Flash Point of Liquids by Small Scale Closed-Cup Apparatus ASTM D5116-10.....Determinations of Organic Emissions from Indoor Materials/Products ASTM D5252-05.....Operation of the Hexapod Tumble Drum Tester ASTM D5417-05..... Operation of the Vettermann Drum Tester ASTM E648-10.....Critical Radiant Flux of Floor-Covering Systems Using a Radiant Heat Energy Source E. The Carpet and Rug Institute (CRI):

CRI 104-11.....Installation of Commercial Carpet

PART 2 - PRODUCTS

2.1 CARPET

- A. Physical Characteristics:
 - Carpet free of visual blemishes, streaks, poorly dyed areas, fuzzing of pile yarn, spots or stains and other physical and manufacturing defects.
 - 2. Manufacturers standard construction commercial carpet:
 - a. Broadloom; maximum width to minimum use
 - b. Modular Tile: 660 mm (24 inches) square tile.
 - Provide static control to permanently control static build upto less than 2.0 kV when tested at 20 percent relative humidity and 21 degrees C (70 degrees F) in accordance with AATCC 134.
 - 4. Pile Height: Maximum 3.25 mm (0.10 inch).
 - 5. Pile Fiber: Nylon with recycled content 25 percent minimum branded (federally registered trademark).
 - 6. Pile Type: Level Loop.
 - 7. Backing materials: Manufacturer's unitary backing designed for gluedown installation using recovered materials.

- 8. Appearance Retention Rating (ARR): Carpet shall be tested and have the minimum 3.5-4.0 Severe ARR when tested in accordance with either the ASTM D 5252 (Hexapod) or ASTM D 5417 (Vettermann) test methods using the number of cycles for short and long term tests as specified.
- 9. Tuft Bind: Minimum force of 40 N (10 lb) required to pull a tuft or loop free from carpet backing. Test per ASTM D1335.
- Colorfastness to Crocking: Dry and wet crocking and water bleed, comply with AATCC 165 Color Transference Chart for colors, minimum class 4 rating.
- 11. Colorfastness to Ozone: Comply with AATCC 129, minimum rating of 4 on the AATCC color transfer chart.
- Delamination Strength: Minimum of 440 N/m (2.5 lb/inch) between secondary backing.
- 13. Flammability and Critical Radiant Flux Requirements:
 - a. Test Carpet in accordance with ASTM E 648.
 - b. Class I: Not less than 0.45 watts per square centimeter.
- 14. Density: Average Pile Yarn Density (APYD):
 - a. Minimum APYD 6000.
- 15. VOC Limits: Use carpet and carpet adhesive that comply with the following limits for VOC content when tested according to ASTM D 5116:
 - a. Carpet, Total VOCs: 0.5 mg/sq.m x hr.
 - b. Carpet, 4-PC (4-Phenylcyclohexene): 0.05 mg/sq.m x hr.
 - c. Carpet, Formaldehyde: 0.05 mg/sq.m x hr.
 - d. Carpet, Styrene: 0.4 mg/sq.m x hr.
 - e. Adhesive, Total VOCs: 10.00 mg/sq.m x hr.
 - f. Adhesive, Formaldehyde: 0.05 mg/sq.m x hr.
 - g. Adhesive, 2-Ethyl-1-Hexanol: 3.00 mg/sq.m x hr.
- B. Shall meet platinum level of ANSI/NSF 140.
- C. Color, Texture, and Pattern: As specified in Section 09 06 00, SCHEDULE FOR FINISHES.

2.2 ADHESIVE

- A. Waterproof, resistant to cleaning solutions, steam and water, nonflammable, complies with air-quality standards as specified. Adhesives flashpoint minimum 60 degrees C (140 degrees F), complies with ASTM D 3278.
- B. Seam Adhesives: Waterproof, non-flammable and non-staining.

2.3 SEAMING TAPE

- A. Permanently resistant to carpet cleaning solutions, steam, and water.
- B. Recommended by carpet manufacturer.

2.4 EDGE STRIPS (MOLDING)

- A. Metal:
 - 1. Hammered surface aluminum, pinless, clamp down type designed for the carpet being installed.
 - 2. Floor flange not less than 38 mm (1-/2 inches) wide, face not less than 16 mm (5/8 inch) wide.
 - Finish: Clear anodic coating unless specified otherwise in Section 09 06 00, SCHEDULE FOR FINISHES.
- B. Vinyl Edge Strip:
 - 1. Beveled floor flange minimum 50 mm (2 inches) wide.
 - 2. Beveled surface to finish flush with carpet for tight joint and other side to floor finish.
 - 3. Color as specified in Section 09 06 00, SCHEDULE FOR FINISHES.

2.5 LEVELING COMPOUND

- A. Provide Portland cement based polymer modified with latex or polyvinyl acetate resin manufactured specifically for resurfacing and leveling wood subfloors. Products containing gypsum are not acceptable.
- B. Determine the type of underlayment selected for use by condition to be corrected.

PART 3 - EXECUTION

3.1 SURFACE PREPARATION

- A. Examine surfaces on which carpeting is to be installed.
- B. Clean floor of oil, waxy films, paint, dust and deleterious substances that prevent adhesion, leave floor dry and cured, free of residue from curing or cleaning agents.
- C. Correct conditions which will impair proper installation, including trowel marks, pits, dents, protrusions, cracks or joints.
- D. Fill cracks, joints depressions, and other irregularities in subfloor with leveling compound.
 - 1. Do not use adhesive for filling or leveling purposes.
 - Trowel to smooth surface free of trowel marks, pits, dents, protrusions, cracks or joint lines.
- E. Test new subfloor prior to adhesive application for moisture and surface alkalinity per CRI 104 Section 6.3.1 or per ASTM E1907.

3.2 CARPET INSTALLTION

- A. Do not install carpet until work of other trades including painting is complete and dry.
- B. Install in accordance with CRI 104 direct glue down installation.
 - 1. Relax carpet in accordance with Section 6.4.
 - 2. Comply with indoor air quality recommendations noted in Section 6.5.
 - 3. Maintain temperature in accordance with Section 15.3.
- C. Secure carpet to subfloor of spaces with adhesive applied as recommended by carpet manufacturer.
- D. Follow carpet manufacturer's recommendations for matching pattern and texture directions.
- E. Cut openings in carpet where required for installing equipment, pipes, outlets, and penetrations.
 - 1. Bind or seal cut edge of sheet carpet and replace flanges or plates.
 - 2. Use additional adhesive to secure carpets around pipes and other vertical projections.
- F. Broadloom Carpet:
 - 1. Install per CRI 104, Section 8.
 - Lay broadloom carpet lengthwise in longest dimension of space, with minimum seams, uniformly spaced to provide a tight smooth finish, free from movement when subjected to traffic.
 - Use tape-seaming method to join sheet carpet edges. Do not leave visible seams.
- G. Carpet Modules:
 - 1. Install per CRI 104, Section 13, Adhesive Application.
 - 2. Lay carpet modules with pile in same direction unless specified other wise in Section 09 06 00, SCHEDULE FOR FINISHES.
 - 3. Install carpet modules so that cleaning methods and solutions do not cause dislocation of modules.
 - 4. Lay carpet modules uniformly to provide tight flush joints free from movement when subject to traffic.

3.3 EDGE STRIPS INSTALLATION

- A. Install edge strips over exposed carpet edges adjacent to uncarpeted finish flooring.
- B. Anchor metal strips to floor with suitable fasteners. Apply adhesive to edge strips, insert carpet into lip and press it down over carpet.
- C. Anchor vinyl edge strip to floor with adhesive apply adhesive to edge strip and insert carpet into lip and press lip down over carpet.

3.4 PROTECTION AND CLEANING

- A. Remove waste, fasteners and other cuttings from carpet floors.
- B. Vacuum carpet and provide suitable protection. Do not use polyethylene film.
- C. Do not permit traffic on carpeted surfaces for at least 48 hours after installation. Protect the carpet in accordance with CRI 104.
- D. Do not move furniture or equipment on unprotected carpeted surfaces.
- E. Just before final acceptance of work, remove protection and vacuum carpet clean.

- - - E N D - - -

SECTION 09 91 00 PAINTING

PART 1-GENERAL

1.1 DESCRIPTION

- A. Section specifies field painting.
- B. Section specifies prime coats which may be applied in shop under other sections.
- C. Painting includes shellacs, stains, varnishes, coatings specified, and striping or markers and identity markings.

1.2 RELATED WORK

- A. Shop prime painting of steel and ferrous metals: Division 05 METALS, Division 08 - OPENINGS, Division 10 - SPECIALTIES, Division 21 - FIRE SUPPRESSION, Division 22 - PLUMBING, Division 23 - HEATING, VENTILATION AND AIR-CONDITIONING, Division 26 - ELECTRICAL, Division 27 -COMMUNICATIONS, and Division 28 - ELECTRONIC SAFETY AND SECURITY sections.
- B. Prefinished flush doors with transparent finishes: Section 08 14 00, WOOD DOORS.
- C. Type of Finish, Color, and Gloss Level of Finish Coat: Section 09 06 00, SCHEDULE FOR FINISHES.
- D. Wood window stools and shelves: Section 06 20 00, FINISH CARPENTRY.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. In order to coordinate appearance of finish materials and finishes that may vary from those indentified in Section 09 06 00, SCHEDULE FOR FINISHES, finishes will be reviewed only after all submittals for all finish materials have been received.
- C. Manufacturer's Literature and Data: Before work is started, or sample panels are prepared, submit manufacturer's literature, the current Master Painters Institute (MPI) "Approved Product List" indicating brand label, product name and product code as of the date of contract award, will be used to determine compliance with the submittal requirements of this specification. The Contractor may choose to use subsequent MPI "Approved Product List", however, only one list may be used for the entire contract and each coating system is to be from a single manufacturer. All coats on a particular substrate must be from a single manufacturer. No variation from the MPI "Approved Product List" where applicable is acceptable.

- D. Sample Panels:
 - 1. After painters' materials have been approved and before work is started submit sample panels showing each type of finish and color specified.
 - Panels to show color: Composition board, 100 by 250 by 3 mm (4 inch by 10 inch by 1/8 inch).
 - 3. Panel to show transparent finishes: Wood of same species and grain pattern as wood approved for use, 100 by 250 by 3 mm (4 inch by 10 inch face by 1/4 inch) thick minimum, and where both flat and edge grain will be exposed, 250 mm (10 inches) long by sufficient size, 50 by 50 mm (2 by 2 inch) minimum or actual wood member to show complete finish.
 - 4. Attach labels to panel stating the following:
 - a. Federal Specification Number or manufacturers name and product number of paints used.
 - b. Specification code number specified in Section 09 06 00, SCHEDULE FOR FINISHES.
 - c. Product type and color.
 - d. Name of project.
 - 5. Strips showing not less than 50 mm (2 inch) wide strips of undercoats and 100 mm (4 inch) wide strip of finish coat.
- E. Sample of identity markers if used.
- F. Manufacturers' Certificates indicating compliance with specified requirements:
 - Manufacturer's paint substituted for Federal Specification paints meets or exceeds performance of paint specified.

1.4 DELIVERY AND STORAGE

- A. Deliver materials to site in manufacturer's sealed container marked to show following:
 - 1. Name of manufacturer.
 - 2. Product type.
 - 3. Batch number.
 - 4. Instructions for use.
 - 5. Safety precautions.
- B. In addition to manufacturer's label, provide a label legibly printed as following:
 - 1. Federal Specification Number, where applicable, and name of material.
 - 2. Surface upon which material is to be applied.
 - 3. If paint or other coating, state coat types; prime, body or finish.

- C. Maintain space for storage, and handling of painting materials and equipment in a neat and orderly condition to prevent spontaneous combustion from occurring or igniting adjacent items.
- D. Store materials at site at least 24 hours before using, at a temperature between 18 and 30 degrees C (65 and 85 degrees F).

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by basic designation only.
- B. American Conference of Governmental Industrial Hygienists (ACGIH): ACGIH TLV-BKLT-2012....Threshold Limit Values (TLV) for Chemical Substances and Physical Agents and Biological Exposure Indices (BEIS)

ACGIH TLV-DOC-2012.....Documentation of Threshold Limit Values and Biological Exposure Indices, (Seventh Edition)

- C. American National Standards Institute (ANSI): A13.1-07.....Scheme for the Identification of Piping Systems
- D. American Society for Testing and Materials (ASTM): D260-86.....Boiled Linseed Oil
- E. Commercial Item Description (CID): A-A-1555.....Water Paint, Powder (Cementitious, White and

Colors) (WPC) (cancelled)

A-A-3120.....Paint, For Swimming Pools (RF) (cancelled)

F. Federal Specifications (Fed Spec):

TT-P-1411A.....Paint, Copolymer-Resin, Cementitious (For

Waterproofing Concrete and Masonry Walls) (CEP)

- G. Master Painters Institute (MPI):
 - No. 5-12..... Exterior Alkyd Wood Primer
 - No. 7-12..... Exterior Oil Wood Primer
 - No. 8-12.....Exterior Alkyd, Flat MPI Gloss Level 1 (EO)
 - No. 11-12..... Exterior Latex, Semi-Gloss (AE)
 - No. 22-12.....Aluminum Paint, High Heat (up to 590% 1100F)

(HR)

- No. 31-12.....Polyurethane, Moisture Cured, Clear Gloss (PV)
- No. 36-12.....Knot Sealer
- No. 45-12.....Interior Primer Sealer
- No. 46-12.....Interior Enamel Undercoat
- No. 47-12.....Interior Alkyd, Semi-Gloss, MPI Gloss Level 5 (AK)

No.	50-12	 .Interior	Latex	Primer	Sea	ler

- No. 54-12......Interior Latex, Semi-Gloss, MPI Gloss Level 5 (LE)
- No. 71-12.....Polyurethane, Moisture Cured, Clear, Flat (PV)
- No. 90-12..... Interior Wood Stain, Semi-Transparent (WS)
- No. 94-12.....Exterior Alkyd, Semi-Gloss (EO)
- No. 95-12..... Fast Drying Metal Primer
- No. 114-12.....Interior Latex, Gloss (LE) and (LG)
- No. 135-12.....Non-Cementitious Galvanized Primer
- No. 138-12.....Interior High Performance Latex, MPI Gloss Level 2 (LF)

No. 139-12.....Interior High Performance Latex, MPI Gloss Level 3

```
(LL)
```

H. Steel Structures Painting Council (SSPC): SSPC SP 1-04 (R2004)....Solvent Cleaning SSPC SP 2-04 (R2004)....Hand Tool Cleaning SSPC SP 3-04 (R2004)....Power Tool Cleaning

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Exterior Alkyd Wood Primer: MPI 5.
- B. Exterior Oil Wood Primer: MPI 7.
- C. Exterior Alkyd, Flat (EO): MPI 8.
- D. Exterior Latex, Semi-Gloss (AE): MPI 11.
- E. High Heat Resistant Coating (HR): MPI 22.
- F. Polyurethane, Moisture Cured, Clear Gloss (PV): MPI 31
- G. Knot Sealer: MPI 36.
- H. Interior Primer Sealer: MPI 45.
- I. Interior Enamel Undercoat: MPI 46.
- J. Interior Alkyd, Semi-Gloss (AK): MPI 47.
- K. Interior Latex Primer Sealer: MPI 50.
- L. Interior Latex, Semi-Gloss, MPI Gloss Level 5 (LE): MPI 54.
- M. Polyurethane, Moisture Cured, Clear, Flat (PV): MPI 71
- N. Interior Wood Stain, Semi-Transparent (WS): MPI 90.
- O. Exterior Alkyd, Semi-Gloss (EO): MPI 94.
- P. Fast Drying Metal Primer: MPI 95.
- Q. Interior latex, Gloss (LE) and (LG): MPI 114.
- R. Waterborne Galvanized Primer: MPI 134.
- S. Non-Cementitious Galvanized Primer: MPI 135.

- T. Interior High Performance Latex, MPI Gloss Level 2(LF): MPI 138.
- U. Interior High Performance Latex, MPI Gloss Level 3 (LL): MPI 139.

2.2 PAINT PROPERTIES

- A. Use ready-mixed (including colors).
- B. Where no requirements are given in the referenced specifications for primers, use primers with pigment and vehicle, compatible with substrate and finish coats specified.

2.3 REGULATORY REQUIREMENTS/QUALITY ASSURANCE

- A. Paint materials shall conform to the restrictions of the local Environmental and Toxic Control jurisdiction.
 - Volatile Organic Compounds (VOC): VOC content of paint materials shall not exceed 10g/l for interior latex paints/primers and 50g/l for exterior latex paints and primers.
 - 2. Lead-Base Paint:
 - a. Comply with Section 410 of the Lead-Based Paint Poisoning Prevention Act, as amended, and with implementing regulations promulgated by Secretary of Housing and Urban Development.
 - b. Regulations concerning prohibition against use of lead-based paint in federal and federally assisted construction, or rehabilitation of residential structures are set forth in Subpart F, Title 24, Code of Federal Regulations, Department of Housing and Urban Development.
 - c. For lead-paint removal, see Section 02 83 33.13, LEAD-BASED PAINT REMOVAL AND DISPOSAL.
 - 3. Asbestos: Materials shall not contain asbestos.
 - Chromate, Cadmium, Mercury, and Silica: Materials shall not contain zinc-chromate, strontium-chromate, Cadmium, mercury or mercury compounds or free crystalline silica.
 - 5. Human Carcinogens: Materials shall not contain any of the ACGIH-BKLT and ACGHI-DOC confirmed or suspected human carcinogens.
 - 6. Use high performance acrylic paints in place of alkyd paints, where possible.
 - VOC content for solvent-based paints shall not exceed 250g/l and shall not be formulated with more than one percent aromatic hydro carbons by weight.

PART 3 - EXECUTION

3.1 JOB CONDITIONS

- A. Safety: Observe required safety regulations and manufacturer's warning and instructions for storage, handling and application of painting materials.
 - Take necessary precautions to protect personnel and property from hazards due to falls, injuries, toxic fumes, fire, explosion, or other harm.
 - Deposit soiled cleaning rags and waste materials in metal containers approved for that purpose. Dispose of such items off the site at end of each days work.
- B. Atmospheric and Surface Conditions:
 - 1. Do not apply coating when air or substrate conditions are:
 - a. Less than 3 degrees C (5 degrees F) above dew point.
 - b. Below 10 degrees C (50 degrees F) or over 35 degrees C (95 degrees F), unless specifically pre-approved by the Contracting Officer and the product manufacturer. Under no circumstances shall application conditions exceed manufacturer recommendations.
 - 2. Maintain interior temperatures until paint dries hard.
 - 3. Do no exterior painting when it is windy and dusty.
 - 4. Do not paint in direct sunlight or on surfaces that the sun will soon warm.
 - 5. Apply only on clean, dry and frost free surfaces except as follows:
 - a. Apply water thinned acrylic and cementitious paints to damp (not wet) surfaces where allowed by manufacturer's printed instructions.
 - b. Dampened with a fine mist of water on hot dry days concrete and masonry surfaces to which water thinned acrylic and cementitious paints are applied to prevent excessive suction and to cool surface.
 - 6. Varnishing:
 - a. Apply in clean areas and in still air.
 - b. Before varnishing vacuum and dust area.
 - c. Immediately before varnishing wipe down surfaces with a tack rag.

3.2 SURFACE PREPARATION

A. Method of surface preparation is optional, provided results of finish painting produce solid even color and texture specified with no overlays.

- B. General:
 - Remove prefinished items not to be painted such as lighting fixtures, escutcheon plates, hardware, trim, and similar items for reinstallation after paint is dried.
 - Remove items for reinstallation and complete painting of such items and adjacent areas when item or adjacent surface is not accessible or finish is different.
 - 3. See other sections of specifications for specified surface conditions and prime coat.
 - 4. Clean surfaces for painting with materials and methods compatible with substrate and specified finish. Remove any residue remaining from cleaning agents used. Do not use solvents, acid, or steam on concrete and masonry.
- C. Wood:
 - 1. Sand to a smooth even surface and then dust off.
 - 2. Sand surfaces showing raised grain smooth between each coat.
 - 3. Wipe surface with a tack rag prior to applying finish.
 - Surface to receive transparent finish: Refer to paragraph "Transparent Finishes on Wood" below.
 - 5. Surface painted with an opaque finish:
 - a. Coat knots, sap and pitch streaks with MPI 36 (Knot Sealer) before applying paint.
 - b. Apply two coats of MPI 36 (Knot Sealer) over large knots.
 - c. After application of prime or first coat of stain, fill cracks, nail and screw holes, depressions and similar defects with wood filler paste. Sand the surface to make smooth and finish flush with adjacent surface.
 - d. Before applying finish coat, reapply wood filler paste if required, and sand surface to remove surface blemishes. Finish flush with adjacent surfaces.
 - Fill open grained wood such as oak, walnut, ash and mahogany with MPI 91 (Wood Filler Paste), colored to match wood color.
 - a. Thin filler in accordance with manufacturer's instructions for application.
 - b. Remove excess filler, wipe as clean as possible, dry, and sand as specified.

- D. Ferrous Metals:
 - Remove oil, grease, soil, drawing and cutting compounds, flux and other detrimental foreign matter in accordance with SSPC-SP 1 (Solvent Cleaning).
 - 2. Remove loose mill scale, rust, and paint, by hand or power tool cleaning, as defined in SSPC-SP 2 (Hand Tool Cleaning) and SSPC-SP 3 (Power Tool Cleaning). Exception: where high temperature aluminum paint is used, prepare surface in accordance with paint manufacturer's instructions.
 - 3. Fill dents, holes and similar voids and depressions in flat exposed surfaces of hollow steel doors and frames, access panels, roll-up steel doors and similar items specified to have semi-gloss or gloss finish with TT-F-322D (Filler, Two-Component Type, For Dents, Small Holes and Blow-Holes). Finish flush with adjacent surfaces.
 - a. This includes flat head countersunk screws used for permanent anchors.
 - b. Do not fill screws of item intended for removal such as glazing beads.
 - 4. Spot prime abraded and damaged areas in shop prime coat which expose bare metal with same type of paint used for prime coat. Feather edge of spot prime to produce smooth finish coat.
 - 5. Spot prime abraded and damaged areas which expose bare metal of factory finished items with paint as recommended by manufacturer of item.
- E. Zinc-Coated (Galvanized) Metal and Aluminum Surfaces Specified Painted:
 - 1. Clean surfaces to remove grease, oil and other deterrents to paint adhesion in accordance with SSPC-SP 1 (Solvent Cleaning).
 - 2. Spot coat abraded and damaged areas of zinc-coating which expose base metal on hot-dip zinc-coated items with MPI 18 (Organic Zinc Rich Coating). Prime or spot prime with MPI 134 (Waterborne Galvanized Primer) or MPI 135 (Non- Cementitious Galvanized Primer) depending on finish coat compatibility.
- F. Masonry and Concrete:
 - Clean and remove dust, dirt, oil, grease efflorescence, form release agents, laitance, and other deterrents to paint adhesion.
 - Use emulsion type cleaning agents to remove oil, grease, paint and similar products. Use of solvents, acid, or steam is not permitted.
 - 3. Remove loose mortar in masonry work.

- Replace mortar and fill open joints, holes, cracks and depressions with new mortar specified in Section 04 20 00, UNIT MASONRY. Do not fill weep holes. Finish to match adjacent surfaces.
- G. Gypsum Board:
 - Remove efflorescence, loose and chalking plaster or finishing materials.
 - 2. Remove dust, dirt, and other deterrents to paint adhesion.
 - 3. Fill holes, cracks, and other depressions with CID-A-A-1272A [Plaster, Gypsum (Spackling Compound) finished flush with adjacent surface, with texture to match texture of adjacent surface. Patch holes over 25 mm (1-inch) in diameter as specified in Section for plaster or gypsum board.

3.3 PAINT PREPARATION

- A. Thoroughly mix painting materials to ensure uniformity of color, complete dispersion of pigment and uniform composition.
- B. Do not thin unless necessary for application and when finish paint is used for body and prime coats. Use materials and quantities for thinning as specified in manufacturer's printed instructions.
- C. Remove paint skins, then strain paint through commercial paint strainer to remove lumps and other particles.
- D. Mix two component and two part paint and those requiring additives in such a manner as to uniformly blend as specified in manufacturer's printed instructions unless specified otherwise.
- E. For tinting required to produce exact shades specified, use color pigment recommended by the paint manufacturer.

3.4 APPLICATION

- A. Start of surface preparation or painting will be construed as acceptance of the surface as satisfactory for the application of materials.
- B. Unless otherwise specified, apply paint in three coats; prime, body, and finish. When two coats applied to prime coat are the same, first coat applied over primer is body coat and second coat is finish coat.
- C. Apply each coat evenly and cover substrate completely. The color of each coat shall be similar to but distinguishable from the previous coat.
- D. Allow not less than 48 hours between application of succeeding coats, except as allowed by manufacturer's printed instructions, and approved by Contracting Officer's Technical Representative (COTR).
- E. Finish surfaces to show solid even color, free from runs, lumps, brushmarks, laps, holidays, or other defects.

F. Apply by brush or roller except as otherwise specified.

3.5 PRIME PAINTING

- A. After surface preparation prime surfaces before application of body and finish coats, except as otherwise specified.
- B. Spot prime and apply body coat to damaged and abraded painted surfaces before applying succeeding coats.
- C. Additional field applied prime coats over shop or factory applied prime coats are not required except for exterior exposed steel apply an additional prime coat.
- D. Prime rebates for stop and face glazing of wood, and for face glazing of steel.
- E. Wood and Wood Particleboard:
 - 1. Use same kind of primer specified for exposed face surface.
 - a. Exterior wood: MPI 7 (Exterior Oil Wood Primer) for new construction and MPI 5(Exterior Alkyd Wood Primer) for repainting bare wood primer except where MPI 90 (Interior Wood Stain, Semi-Transparent (WS)) is scheduled.
 - b. Interior wood except for transparent finish: MPI 45 (Interior Primer Sealer) or MPI 46 (Interior Enamel Undercoat), thinned if recommended by manufacturer.
 - c. Transparent finishes as specified under Transparent Finishes.
 - 2. Apply two coats of primer MPI 7 (Exterior Oil Wood Primer) or MPI 5 (Exterior Alkyd Wood Primer) or sealer MPI 45 (Interior Primer Sealer) or MPI 46 (Interior Enamel Undercoat) to surfaces of wood doors, including top and bottom edges, which are cut for fitting or for other reason.
 - 3. Apply one coat of primer MPI 7 (Exterior Oil Wood Primer) or MPI 5 (Exterior Alkyd Wood Primer) or sealer MPI 45 (Interior Primer Sealer) or MPI 46 (Interior Enamel Undercoat) as soon as delivered to site to surfaces of unfinished woodwork, except concealed surfaces of shop fabricated or assembled millwork and surfaces specified to have varnish, stain or natural finish.
 - 4. Back prime and seal ends of exterior woodwork, and edges of exterior plywood specified to be finished.
- F. Metals except boilers, incinerator stacks, and engine exhaust pipes:
 - 1. Zinc-coated steel and iron: MPI 134 (Waterborne Galvanized Primer).
 - 2. Aluminum scheduled to be painted: MPI 95 (Fast Drying Metal Primer).

- G. Gypsum Board:
 - Primer: MPI 50(Interior Latex Primer Sealer) except use MPI 46 (Interior Enamel Undercoat) in shower and bathrooms.

3.6 EXTERIOR FINISHES

- A. Apply following finish coats where specified in Section 09 06 00, SCHEDULE FOR FINISHES.
- B. Wood:
 - Do not apply finish coats on surfaces concealed after installation, top and bottom edges of wood doors and sash, or on edges of wood framed insect screens.
 - 2. Two coats of MPI 11 (Exterior Latex, Semi-Gloss (AE)) on exposed surfaces, except where transparent finish is specified.
 - 3. Two coats of MPI 31 (Polyurethane, Moisture Cured, Clear Gloss (PV)) for transparent finish.
- C. Steel and Ferrous Metal:
 - Two coats of MPI 8 (Exterior Alkyd, Flat (EO)) or MPI 94 (Exterior Alkyd, Semi-Gloss (EO)) on exposed surfaces, except on surfaces over 94 degrees C (200 degrees F).
 - One coat of MPI 22 (High Heat Resistant Coating (HR)) on surfaces over 94 degrees K (200 degrees F).

3.7 INTERIOR FINISHES

- A. Apply following finish coats over prime coats in spaces or on surfaces specified in Section 09 06 00, SCHEDULE FOR FINISHES.
- B. Metal Work:
 - 1. Apply to exposed surfaces.
 - 2. Omit body and finish coats on surfaces concealed after installation except electrical conduit containing conductors over 600 volts.
 - 3. Ferrous Metal, Galvanized Metal, and Other Metals Scheduled:
 - a. Apply two coats of MPI 47 (Interior Alkyd, Semi-Gloss (AK)) unless specified otherwise.
- C. Gypsum Board:
 - One coat of MPI 46 (Interior Enamel Undercoat) plus one coat of MPI 139 (Interior High Performance Latex, MPI Gloss level 3 (LL)).
 - Two coats of MPI 138 (Interior High Performance Latex, MPI Gloss Level
 2 (LF)).
 - 3. One coat of MPI 46 (Interior Enamel Undercoat) plus one coat of MPI 54 (Interior Latex, Semi-Gloss, MPI Gloss Level 5 (LE)) or MPI 114 (Interior Latex, Gloss (LE) and (LG)).

D. Wood:

- 1. Sanding:
 - a. Use 220-grit sandpaper.
 - b. Sand sealers and varnish between coats.
 - c. Sand enough to scarify surface to assure good adhesion of subsequent coats, to level roughly applied sealer and varnish, and to knock off "whiskers" of any raised grain as well as dust particles.
- 2. Sealers:
 - a. Apply sealers specified except sealer may be omitted where pigmented, penetrating, or wiping stains containing resins are used.
 - b. Allow manufacturer's recommended drying time before sanding, but not less than 24 hours or 36 hours in damp or muggy weather.
 - c. Sand as specified.
- 3. Paint Finish:
 - a. One coat of MPI 46 (Interior Enamel Undercoat) plus one coat of MPI 47 (Interior Alkyd, Semi-Gloss (AK)) (SG).
- 4. Transparent Finishes on Wood Except Floors.
 - a. Natural Finish:
 - 1) One coat of sealer as written in 2.1 E.
 - Two coats of MPI 71 (Polyurethane, Moisture Cured, Clear Flat (PV) or MPI 31 (Polyurethane, Moisture Cured, Clear Gloss (PV).
 - b. Stain Finish:
 - 1) One coat of MPI 90 (Interior Wood Stain, Semi-Transparent (WS)).
 - 2) Use wood stain of type and color required to achieve finish specified. Do not use varnish type stains.
 - 3) One coat of sealer as written in above.
 - Two coats of MPI 31 (Polyurethane Moisture Cured, Clear Gloss (PV)).
- E. Concrete Floors: One coat of MPI 68 (Interior/ Exterior Latex Porch & Floor Paint, Gloss (FE)).
- F. Miscellaneous:
 - 1. Apply where specified in Section 09 06 00, SCHEDULE FOR FINISHES.
 - 2. MPI 1 (Aluminum Paint): Two coats of aluminum paint.

3.8 REFINISHING EXISTING PAINTED SURFACES

- A. Clean, patch and repair existing surfaces as specified under surface preparation.
- B. Remove and reinstall items as specified under surface preparation.

- C. Remove existing finishes or apply separation coats to prevent non compatible coatings from having contact.
- D. Patched or Replaced Areas in Surfaces and Components: Apply spot prime and body coats as specified for new work to repaired areas or replaced components.
- E. Except where scheduled for complete painting apply finish coat over plane surface to nearest break in plane, such as corner, reveal, or frame.
- F. Refinish areas as specified for new work to match adjoining work unless specified or scheduled otherwise.
- G. Coat knots and pitch streaks showing through old finish with MPI 36 (Knot Sealer) before refinishing.
- H. Sand or dull glossy surfaces prior to painting.
- I. Sand existing coatings to a feather edge so that transition between new and existing finish will not show in finished work.

3.9 PAINT COLOR

- A. Color and gloss of finish coats is specified in Section 09 06 00, SCHEDULE FOR FINISHES.
- B. For additional requirements regarding color see Articles, REFINISHING EXISTING PAINTED SURFACE and MECHANICAL AND ELECTRICAL FIELD PAINTING SCHEDULE.
- C. Coat Colors:
 - 1. Color of priming coat: Lighter than body coat.
 - 2. Color of body coat: Lighter than finish coat.
 - 3. Color prime and body coats to not show through the finish coat and to mask surface imperfections or contrasts.
- D. Painting, Caulking, Closures, and Fillers Adjacent to Casework:
 - 1. Paint to match color of casework where casework has a paint finish.
 - 2. Paint to match color of wall where casework is stainless steel, plastic laminate, or varnished wood.

3.10 BUILDING AND STRUCTURAL WORK FIELD PAINTING

- A. Painting and finishing of interior and exterior work except as specified under paragraph 3.10 B.
 - Painting and finishing of new and existing work including colors and gloss of finish selected is specified in Finish Schedule, Section 09 06 00, SCHEDULE FOR FINISHES.
 - 2. Painting of disturbed, damaged and repaired or patched surfaces when entire space is not scheduled for complete repainting or refinishing.
 - 3. Painting of ferrous metal and galvanized metal.

- B. Building and Structural Work not Painted:
 - 1. Prefinished items:
 - a. Casework, doors, elevator entrances and cabs, metal panels, wall covering, and similar items specified factory finished under other sections.
 - b. Factory finished equipment and pre-engineered metal building components such as metal roof and wall panels.
 - 2. Finished surfaces:
 - a. Hardware except ferrous metal.
 - b. Anodized aluminum, stainless steel, chromium plating, copper, and brass, except as otherwise specified.
 - c. Signs, fixtures, and other similar items integrally finished.
 - 3. Concealed surfaces:
 - a. Inside dumbwaiter, elevator and duct shafts, interstitial spaces, pipe basements, crawl spaces, pipe tunnels, above ceilings, attics, except as otherwise specified.
 - b. Inside walls or other spaces behind access doors or panels.
 - c. Surfaces concealed behind permanently installed casework and equipment.
 - 4. Moving and operating parts:
 - a. Shafts, chains, gears, mechanical and electrical operators, linkages, and sprinkler heads, and sensing devices.
 - b. Tracks for overhead or coiling doors, shutters, and grilles.
 - 5. Labels:
 - a. Code required label, such as Underwriters Laboratories Inc., Inchcape Testing Services, Inc., or Factory Mutual Research Corporation.
 - b. Identification plates, instruction plates, performance rating, and nomenclature.
 - 6. Galvanized metal:
 - a. Exterior chain link fence and gates, corrugated metal areaways, and gratings.
 - b. Gas Storage Racks.
 - c. Except where specifically specified to be painted.
 - 7. Metal safety treads and nosings.
 - 8. Gaskets.
 - 9. Concrete curbs, gutters, pavements, retaining walls, exterior exposed foundations walls and interior walls in pipe basements.

10. Face brick.

3.11 PROTECTION CLEAN UP, AND TOUCH-UP

- A. Protect work from paint droppings and spattering by use of masking, drop cloths, removal of items or by other approved methods.
- B. Upon completion, clean paint from hardware, glass and other surfaces and items not required to be painted of paint drops or smears.
- C. Before final inspection, touch-up or refinished in a manner to produce solid even color and finish texture, free from defects in work which was damaged or discolored.

- - - E N D - - -

SECTION 10 14 00 SIGNAGE

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies interior signage for room numbers, directional signs exterior signage, code required signs and temporary signs.
- B. This section specifies exterior signage.

1.2 RELATED WORK

- A. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS: Sustainable Design Requirements.
- B. Section 09 06 00, SCHEDULE FOR FINISHES: Color and Finish of Interior
- C. Division 26, ELECTRICAL Lighted EXIT signs for egress purposes are specified under and Electrical Work.

1.3 QUALITY ASSURANCE

- A. Manufacturer's Qualifications: Provide signage that is the product of one manufacturer, who has provided signage as specified for a minimum of three (3) years. Submit manufacturer's qualifications.
- B. Installer's Qualifications: Minimum three (3) years' experience in the installation of signage of the type as specified in this Section. Submit installer's qualifications.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 00, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.
- B. Sustainable Design Submittals, as described below:
 - Volatile organic compounds per volume as specified in PART 2 -PRODUCTS.
- C. Interior Sign Samples: Sign panels and frames, with letters and symbols, for each sign type.
 - 1. Sign Panel, 203 x 254 mm (8 x 10 inches), with letters.
 - Color samples of each color, 152 x 152 mm (6 x 6 inches. Show anticipated range of color and texture.
 - 3. Sample of typeface, arrow and symbols in a typical full size layout.
- D. Exterior Sign Samples: 152 x 152 mm (6 x 6 inches) samples of each color and material.
- E. Manufacturer's Literature:
 - Showing the methods and procedures proposed for the anchorage of the signage system to each surface type.

- 2. Manufacturer's printed specifications and maintenance instructions.
- F. Sign Location Plan, showing location, type and total number of signs required.
- G. Shop Drawings: Scaled for manufacture and fabrication of sign types. Identify materials, show joints, welds, anchorage, accessory items, mounting and finishes.
- H. Full size layout patterns for dimensional letters.
- I. Manufacturer's qualifications.
- J. Installer's qualifications.

1.5 DELIVERY AND STORAGE

- A. Deliver materials to job in manufacturer's original sealed containers with brand name marked thereon. Protect materials from damage.
- B. Package to prevent damage or deterioration during shipment, handling, storage and installation. Maintain protective covering in place and in good repair until removal is necessary.
- C. Deliver signs only when the site and mounting services are ready for installation work to proceed.
- D. Store products in dry condition inside enclosed facilities.

1.6 WARRANTY

A. Construction Warranty: Comply with FAR clause 52.246-21, "Warranty of Construction".

1.7 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Architectural Manufacturers Association (AAMA):

611-14..... Anodized Architectural Aluminum

2603-13.....Voluntary Specification, Performance Requirements and Test Procedures for Pigmented Organic Coatings on Aluminum Extrusions and Panels

- C. American National Standards Institute (ANSI): A117.1-09.....Accessible and Usable Buildings and Facilities
- D. ASTM International (ASTM): A36/A36M-19.....Carbon Structural Steel

A240/A240M-20.....Chromium and Chromium-Nickel Stainless Steel Plate, Sheet, and Strip for Pressure Vessels and for General Applications A666-15.....Annealed or Cold-Worked Austenitic Stainless Steel Sheet, Strip, Plate and Flat Bar A1011/A1011M-18a.....Steel, Sheet and Strip, Hot-Rolled, Carbon, Structural, High-Strength Low-Alloy, High-Strength Low-Alloy with Improved Formability, and Ultra-High Strength B36/B36M-18.....Brass Plate, Sheet, Strip, and Rolled Bar B152/B152M-19.....Copper Sheet, Strip, Plate, and Rolled Bar B209-14.....Aluminum and Aluminum-Alloy Sheet and Plate B209M-14.....Aluminum and Aluminum-Alloy Sheet and Plate (Metric) B221-14.....Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Shapes, and Tubes B221M-13.....Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Shapes, and Tubes (Metric) C1036-16.....Flat Glass C1048-18..... Heat-Treated Flat Glass-Kind HS, Kind FT Coated and Uncoated Glass C1349-17.....Architectural Flat Glass Clad Polycarbonate D1003-13..... Test Method for Haze and Luminous Transmittance of Transparent Plastics D4802-16.....Poly(Methyl Methacrylate) Acrylic Plastic Sheet E. Code of Federal Regulation (CFR): 40 CFR 59.....Determination of Volatile Matter Content, Water Content, Density Volume Solids, and Weight Solids of Surface Coating F. Federal Specifications (Fed Spec): MIL-PRF-8184F.....Plastic Sheet, Acrylic, Modified. MIL-P-46144C.....Plastic Sheet, Polycarbonate G. National Fire Protection Association (NFPA): 70-14.....National Electrical Code

PART 2 - PRODUCTS

2.1 SIGNAGE GENERAL

- A. Provide signs of type, size and design shown on the construction documents.
- B. Provide signs complete with lettering, framing and related components for a complete installation.
- C. Provide graphics items as completed units produced by a single manufacturer, including necessary mounting accessories, fittings and fastenings.
- D. Do not scale construction documents for dimensions. Verify dimensions and coordinate with field conditions. Notify Contracting Officer Representative (COR) of discrepancies or changes needed to satisfy the requirements of the construction documents.

2.2 INTERIOR SIGN MATERIALS

- A. Aluminum:
 - 1. Sheet and Plate: ASTM B209M (B209).
 - 2. Extrusions and Tubing: ASTM B221M (B221).
- B. Cast Acrylic Sheet: MIL-PRF-8184F; Type II, class 1, Water white nonglare optically clear. Matt finish water white clear acrylic shall not be acceptable.
- C. Polycarbonate: MIL-P-46144C; Type I, class 1.
- D. Vinyl: Premium grade 0.1 mm (0.004 inch) thick machine cut, having a pressure sensitive adhesive and integral colors.
- E. Adhesives:
 - Adhesives for Field Application: Mildew-resistant, nonstaining adhesive for use with specific type of panels, sheets, or assemblies; and for substrate application; as recommended in writing by signage manufacturer.
 - Adhesives to have VOC content of 50 g/L or less when calculated according to 40 CFR 59, (EPA Method 24).
- F. Typography: Comply with VA Signage Design Manual.
 - 1. Type Style: Helvetica Medium and Helvetica Medium Condensed. Initial caps or all caps, as indicated in Sign Message Schedule .
 - 2. Arrow: Comply with graphic standards in construction documents.
 - 3. Letter spacing: Comply with graphic standards in construction documents.

- 4. Letter spacing: Comply with graphic standards in construction documents.
- 5. Provide text, arrows, and symbols in size, colors, typefaces and letter spacing shown in construction documents. Text shall be a true, clean, accurate reproduction of typeface(s). Text shown in construction documents is for layout purposes only; final text for signs is listed in Sign Message Schedule .

2.3 INTERIOR SIGN TYPES

- A. Conform to the VA Signage Design Manual.
- B. Provide frame and insert and frame component system.
- C. Component System Signs:
 - 1. Provide interior sign system as follows:
 - a. Interchangeable system that allows for changes of graphic components of the installed sign, without changing sign in its entirety.
 - b. Provide sign system comprised of following primary components: Rail Back: Horizontal rails, spaced to allow for uniform, modular sizing of sign types.
 - 1) Rail Insert: Mount to back of Copy Panels to allow for attachment to Rail Back.
 - 2) Copy Panels: Fabricate of ABS phopolymer acrylic aluminum stainless steel materials to allow for different graphic needs.
 - 3) End Caps: Interlock to Rail Back to enclose and secure changeable Copy Panels.
 - 4) Joiners and Accent Joiners: To connect separate Rail Backs together.
 - 5) Top Accent Bars: To provide decorative trim cap that encloses the top of sign.
 - c. Provide rail back, rail insert and end caps in anodized extruded aluminum.
 - d. Provide signs in system that are convertible in the field to allow for enlargement from one (1) size to another in height and width through use of joiners or accent joiners, which connect rail back panels together blindly, providing a butt joint between copy panels. Connect accent joiners to rail backs with a visible

3~mm (1/8") horizontal rib, flush to the adjacent copy insert surfaces.

- e. Provide sign configurations as indicated on construction documents that vary in width from 228 mm (9 inches) to 2032 mm (80 inches), and have height dimensions of 50 mm (2 inches), 76 mm (3 inches), 152 mm (6 inches), 228 mm (9 inches) and 305 mm (12 inches). Height that can be increased beyond 305 mm (12 inches), by repeating height module in full or in part.
- Provide rail back functions as internal structural member of sign. Fabricate of 6063T5-extruded aluminum, anodized black.
 - a. Fabricate to accept an extruded aluminum or plastic insert on either side, depending upon sign type.
 - b. Provide components that are convertible in field to allow for connection to other rail back panels.
 - c. Provide mounting devices including wall mounting for screw-on applications , wall mounting with pressure sensitive tape and other mounting devices as needed.
- 3. Provide rail insert functions as mounting device for copy panels on to the rail back. The rail insert mounts to the back of the copy panel with adhesive suitable for attaching particular copy insert material.
 - a. Provide copy panels that slide or snap into the horizontal rail back.
- 4. Provide copy panels that accept various forms of copy and graphics, and attach to the rail back with the rail insert. Provide copy panels fabricated of ABS plastic with integral color or an acrylic lacquer finish photopolymer acrylic.
 - a. Provide copy panels that are interchangeable by sliding horizontally from either side of sign, and to other signs in system of equal or greater width or height.
 - b. Provide materials that are cleanable without use of special chemicals or cleaning solutions.
 - c. Copy Panel Materials.
 - ABS Inserts: 2.3 mm (.090 inches) extruded ABS plastic core with .07 mm (.003 inches) acrylic cap bonded during extrusion/texturing process.
 - a) Pressure bonded to extruded rail insert with adhesive.

- b) Background Color: Integral or painted in acrylic lacquer.
- c) Finished: Texture pattern.
- 2) Photopolymer Inserts: 3.2 mm (.125 inches) phenolic photo polymer with raised copy etched to 2.3 mm (.0937 inches), bonded to an ABS plastic or extruded aluminum insert with adhesive.

a) a) Background Color: Painted, acrylic enamel.

- 3) Changeable Paper/ Insert Holder: Extruded insert holder with integral rail insert for connection with structural back panel in 6063T5 aluminum with a black anodized finish.
 - a) Inserts into holder are paper with a clear 0.76 mm(.030 inches) textured cover.
 - b) Background Color: Painted, acrylic lacquer.
- 4) Acrylic 2 mm (.080 inches) non-glare acrylic.
 - a) Pressure bonded to extruded rail insert using adhesive.
 - b) Background Color: Painted in acrylic lacquer or acrylic enamel.
- 5) Extruded 6063T5 aluminum with a black anodized finish insert holder with integral rail insert for connection with structural back panel to hold 0.76 mm (.030 inches) textured polycarbonate insert and a sliding tile which mounts in the inset holder and slides horizontally.
- 5. End Caps: Extruded using 6063T5 aluminum with a black anodized finish. End caps interlock with rail back with clips to form an integral unit, enclosing and securing the changeable copy panels, without requiring tools for assembly.
 - a. Interchangeable to each end of sign and to other signs in signage system of equal height.
 - b. Provide mechanical fasteners that can be added to the end caps that will secure it to rail back to make sign tamper resistant.
- Joiners: Extruded using 6063T5 aluminum with a black anodized finish. Rail joiners connect rail backs together blindly, providing a butt joint between copy inserts.
- Accent Joiners: Extruded using 6063T5 aluminum with a mirror polished finish. Connect joiner and rail backs together with a visible 3 mm (.125 inches) horizontal rib, flush to the adjacent copy panel surfaces.

- 8. Top Accent Rail: Extruded rail using 6063T5 aluminum with a mirror polished finish that provides a 3.2 mm (.125 inches) high decorative trim cap. Cap butts flush to adjacent copy panel and encloses top of rail back and copy panel.
- 9. Typography:
 - a. Vinyl First Surface Copy (non-tactile): Applied vinyl copy.
 - b. Subsurface Copy Inserts: Textured 1 mm (.030 inches) clear polycarbonate face with subsurface applied vinyl copy.
 - 1) Spray face back with paint and laminated to extruded aluminum carrier insert.
 - c. Integral Tactile Copy Inserts: Phenolic photopolymer etched with
 2.3 mm (.0937 inches) raised copy.
 - d. Silk-screened First Surface Copy (non-tactile): Injection molded or extruded ABS plastic Aluminum insert with first surface applied enamel silk-screened copy.
- D. Tactile Sign:
 - Tactile sign made from a material that provides for letters, numbers and Braille to be integral with sign. Photopolymer etched metal, sandblasted phenolic or embossed material. Do not apply letters, numbers and Braille with adhesive.
 - Numbers, letters and Braille to be raised 0.8 mm (1/32 inches) from the background surface. The draft of the letters, numbers and Braille to be tapered, vertical and clean.
 - 3. Braille Dots: Conform with ANSI A117.1 for Braille position and layout; (a) Dot base diameter: 1.5 mm (.059 inches) (b) Inter-dot spacing: 2.3 mm (.090 inches) (c) Horizontal separation between cells: 6.0 mm (.241 inches) (d) Vertical separation between cells: 10.0 mm (.395 inches)
 - Paint assembly specified color. After painting, apply white or other specified color to surface of the numbers and letters. Apply protective clear coat sealant to entire sign.
 - 5. Finish: Eggshell, 11 to 19 degree on a 60 degree glossmeter.
- E. Provide cork or felt on bottom or mounting bracket when sign is mounted on counter or desk.
- F. For ceiling mounted signs, provide mounting hardware on the sign that allows for sign disconnection, removal, reinstallation, and reconnection.

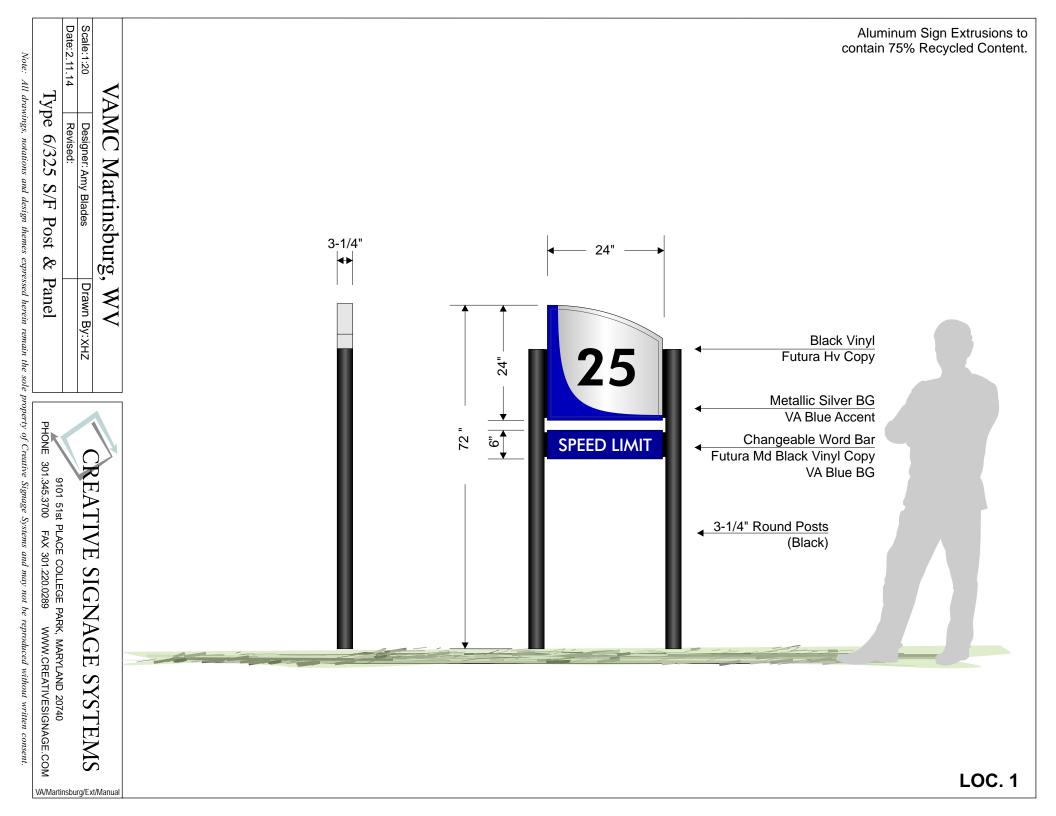
- G. Temporary Interior Signs:
 - Fabricated from 50 kg (110 pound) matte finished white paper cut to 101 mm (4 inch) wide by 305 mm (12 inch) long.
 - a. Punched 3.2 mm (.125 inch) hole with edge of hole spaced 13 mm(.5 inch) in from edge and centered on 101 mm (4 inch) side.
 - b. Reinforce hole on both sides with suitable material that prevents tie from pulling through hole.
 - c. Ties: Steel wire 0.3 mm (0.120 inch) thick attached to tag with twist leaving 152 mm (6 inch) long free ends.
 - Mark architectural room number on sign, with broad felt marker in clearly legible numbers or letters that identify room, corridor or space as shown on construction documents.
 - 3. Install temporary signs to rooms that have a room, corridor or space number. Attach to door frame, door knob or door pull.
 - a. Doors that do not require signs are: corridor doors in corridor with same number, folding doors or partitions, toilet doors, bathroom doors within and between rooms, closet doors within rooms, communicating doors in partitions between rooms with corridor entrance doors.
 - b. Replace and missing, damaged or illegible signs.
 - 4. Shop weld and grind exposed welds .

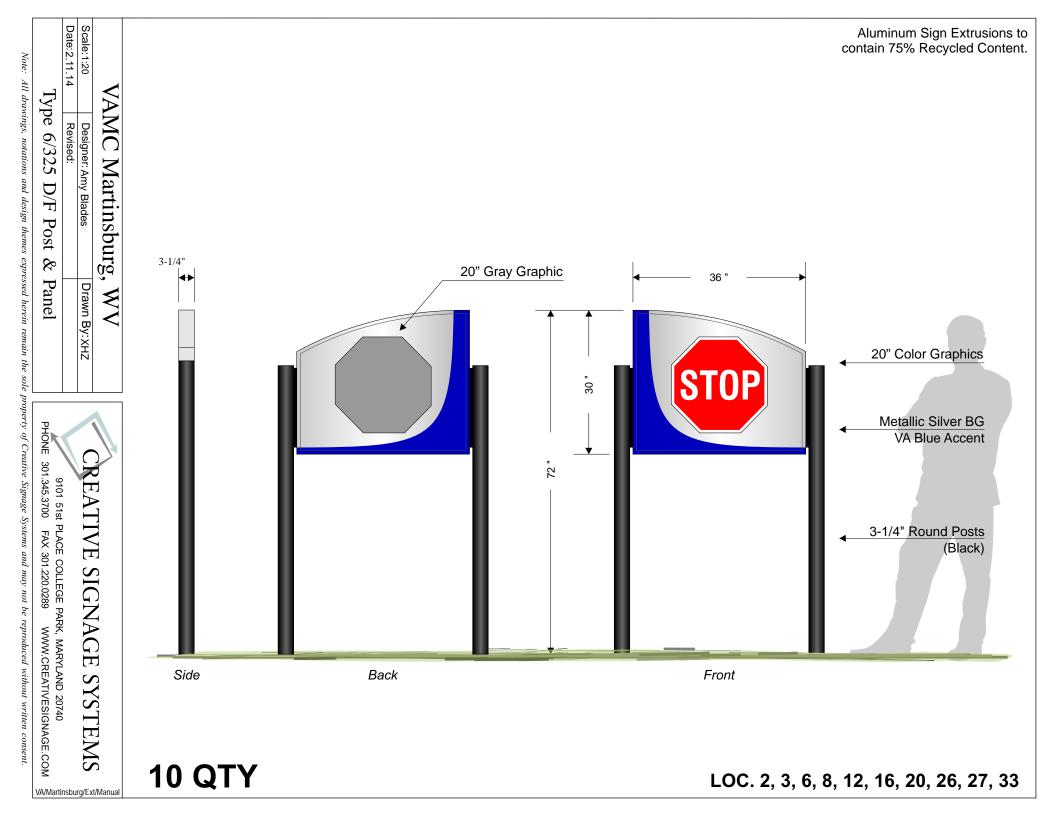
2.4 FABRICATION

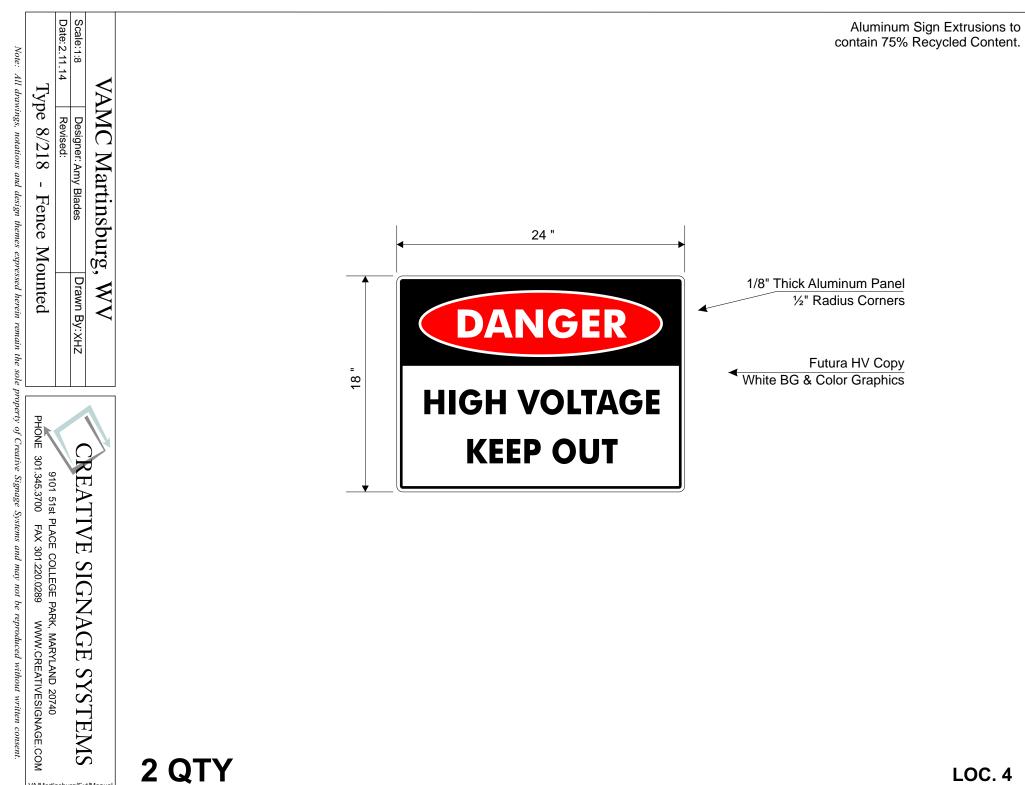
- A. Design interior signage components to allow for expansion and contraction for a minimum material temperature range of 38 degrees C (100 degrees F), without causing buckling, excessive opening of joints or over stressing of adhesives, welds and fasteners.
- B. Form work to required shapes and sizes, with true curve lines and angles. Provide necessary rebates, lugs and brackets for assembly of units. Provide concealed fasteners wherever possible.
- C. Shop fabricate so far as practicable. Fasten joints flush to conceal reinforcement, or weld joints, where thickness or section permits.
- D. Level and assemble contract surfaces of connected members so joints will be tight and practically unnoticeable, without applying filling compound.
- E. Signs: Fabricate with fine, even texture to be flat and sound.
 - Maintain lines and miters sharp, arises unbroken, profiles accurate and ornament true to pattern.

- 2. Plane surfaces to be smooth, flat and without oil-canning, free of rack and twist.
- 3. Maximum variation from plane of surface plus or minus 0.3 mm (0.015 inches). Restore texture to filed or cut areas.
- F. Finish extruded members to be free from extrusion marks. Fabricate square turns, sharp corners, and true curves.
- G. Finish hollow signs with matching material on all faces, tops, bottoms and ends. Miter edge joints to give appearance of solid material.
- H. Do not manufacture signs until final sign message schedule and location review has been completed by the COR and forwarded to contractor.
- Drill holes for bolts and screws. Mill smooth exposed ends and edges with corners slightly rounded.
- J. Form joints exposed to weather to exclude water.
- K. Movable Parts, Including Hardware: Cleaned and adjusted to operate as designed without binding or deformation of members. Center doors and covers in opening or frame.
 - 1. Align contact surfaces fit tight and even without forcing or warping components.
- L. Pre-assemble items in shop to minimize field splicing and assembly. Disassemble units only as necessary for shipping and handling limitations. Clearly mark units for re-assembly and coordinated installation.
- M. Prime painted surfaces as required. Apply finish coating of paint for complete coverage with no light or thin applications allowing substrate or primer to show.
 - Finish surface smooth, free of scratches, gouges, drips, bubbles, thickness variations, foreign matter and other imperfections.

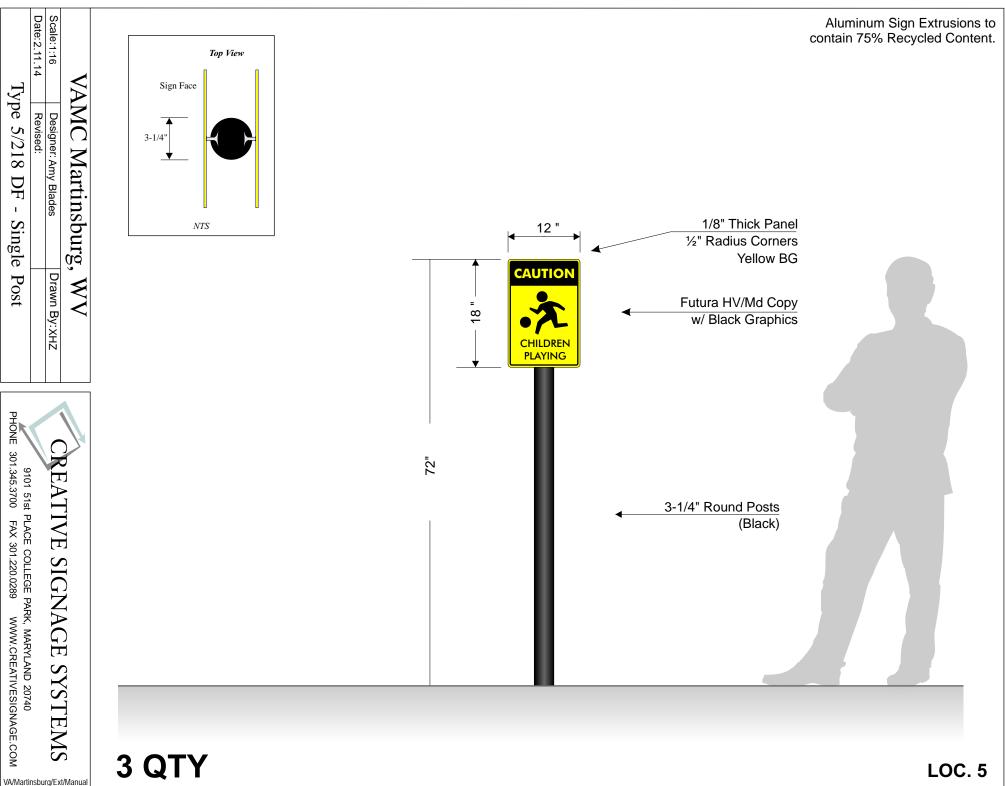
PART 3 - EXECUTION


3.1 INSTALLATION

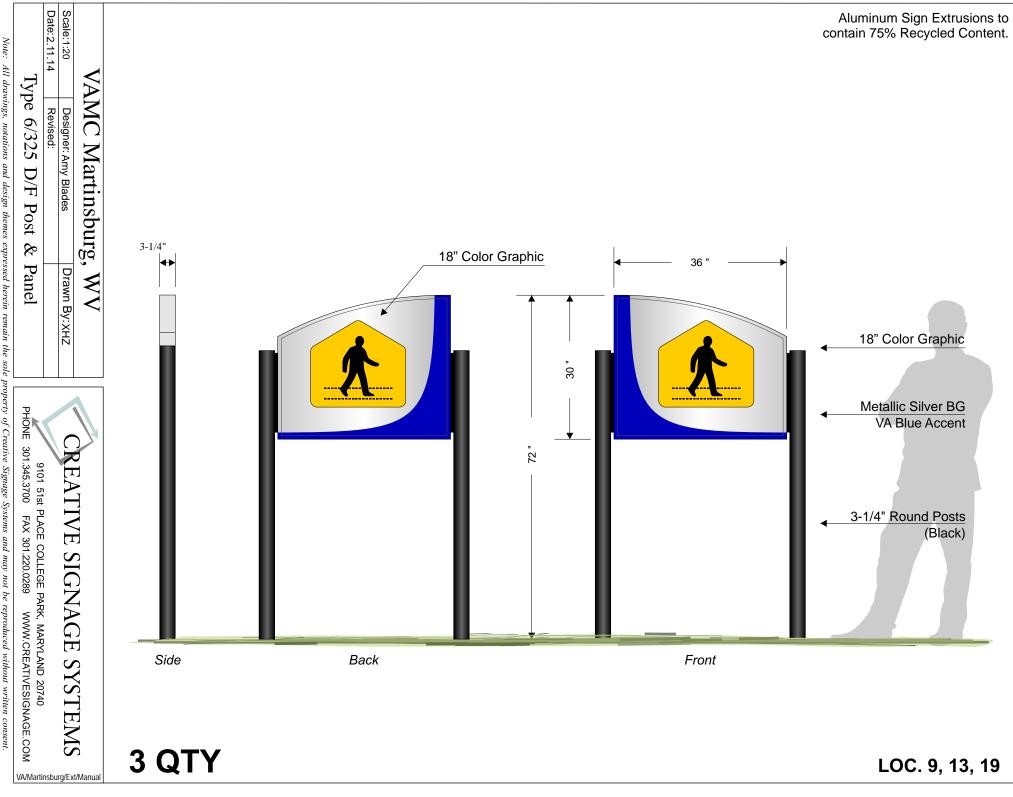

- A. Locate signs as shown on the construction documents
- B. Where not otherwise indicated conform to the VA Signage Design Manual for installation requirements.
- C. At each sign location there are no utility lines behind each sign location that will be affected by installation of signs.
 - Correct and repair damage done to utilities during installation of signs at no additional cost to Government.


- D. Provide inserts and anchoring devices which must be set in concrete or other material for installation of signs. Submit setting drawings, templates, instructions and directions for installation of anchorage devices, which may involve other trades.
- E. Refer to Sign Message Schedule for mounting method. Mount signs in proper alignment, level and plumb according to the Sign Location Plan and the dimensions given on elevation and Sign Location Plans. When exact position, angle, height or location is not clear, contact COR for resolution.
- F. When signs are installed on glass, provide blank glass back up to be placed on opposite side of glass exactly behind sign being installed. Provide blank glass back that is the same size as sign being installed.
- G. Touch up exposed fasteners and connecting hardware to match color and finish of surrounding surface.
- H. At completion of sign installation, clean exposed sign surfaces. Clean and repair adjoining or adjacent surfaces that became soiled or damaged as a result of installation of signs.

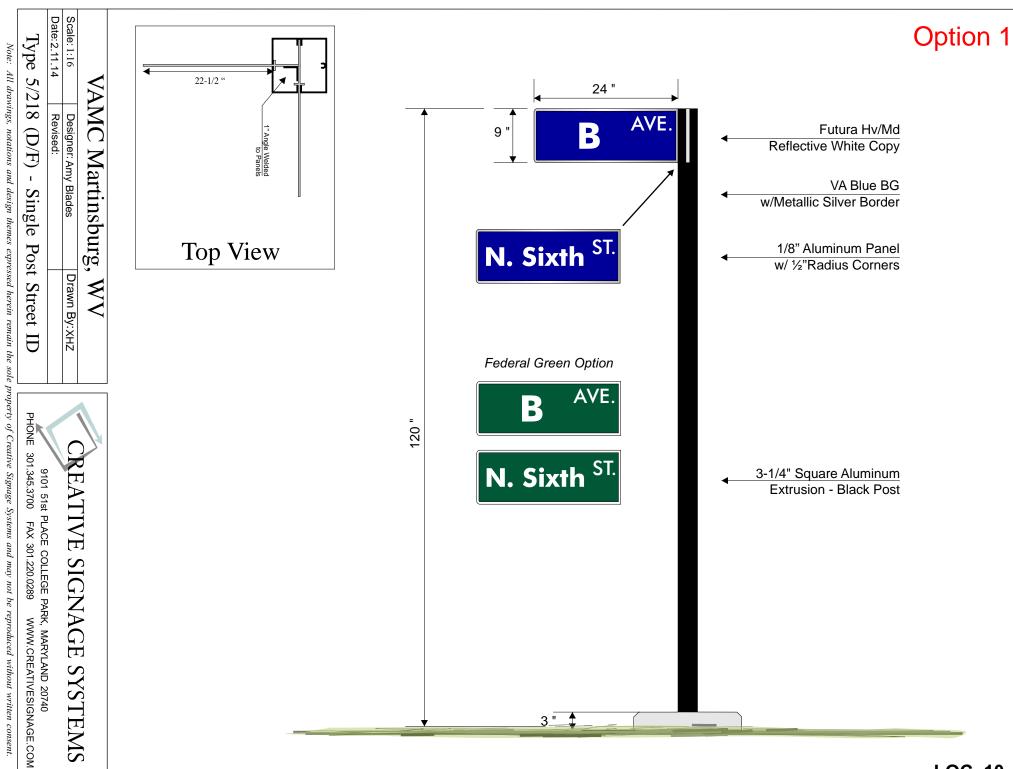
- - - END - - -


--- INTENTIONALLY BLANK ---

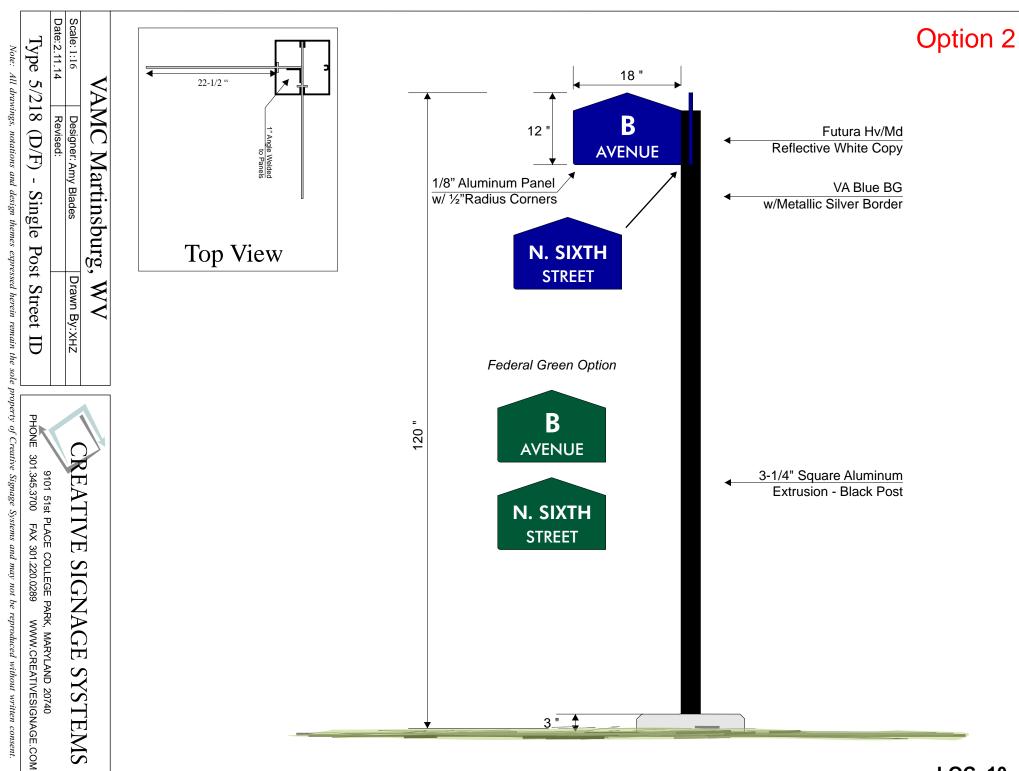


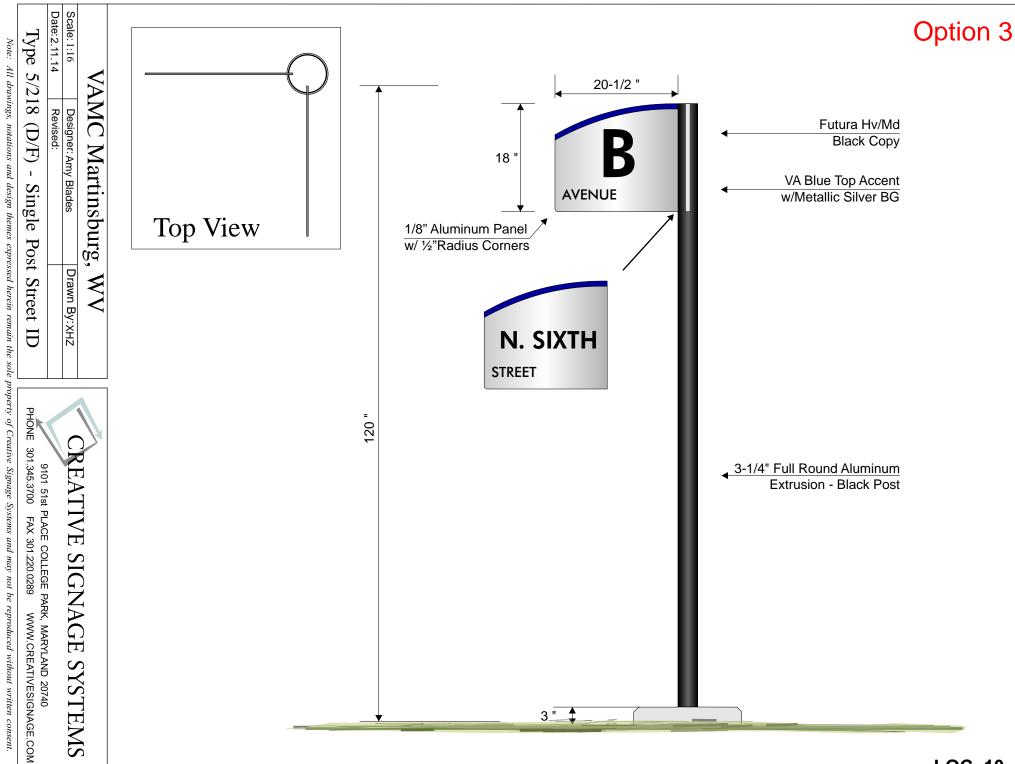


VA/Martinsburg/Ext/Manual



Note: All drawings, notations and design themes expressed herein remain the sole property of Creative Signage Systems and may not be reproduced without written consent.



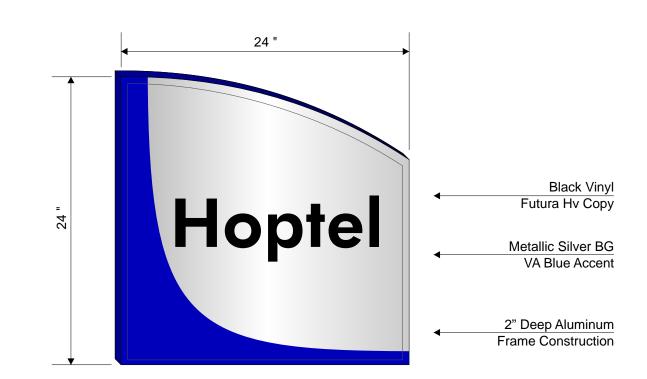

Note: All drawings, notations and design themes expressed herein remain the sole property of Creative Signage Systems and may not be reproduced without written consent.

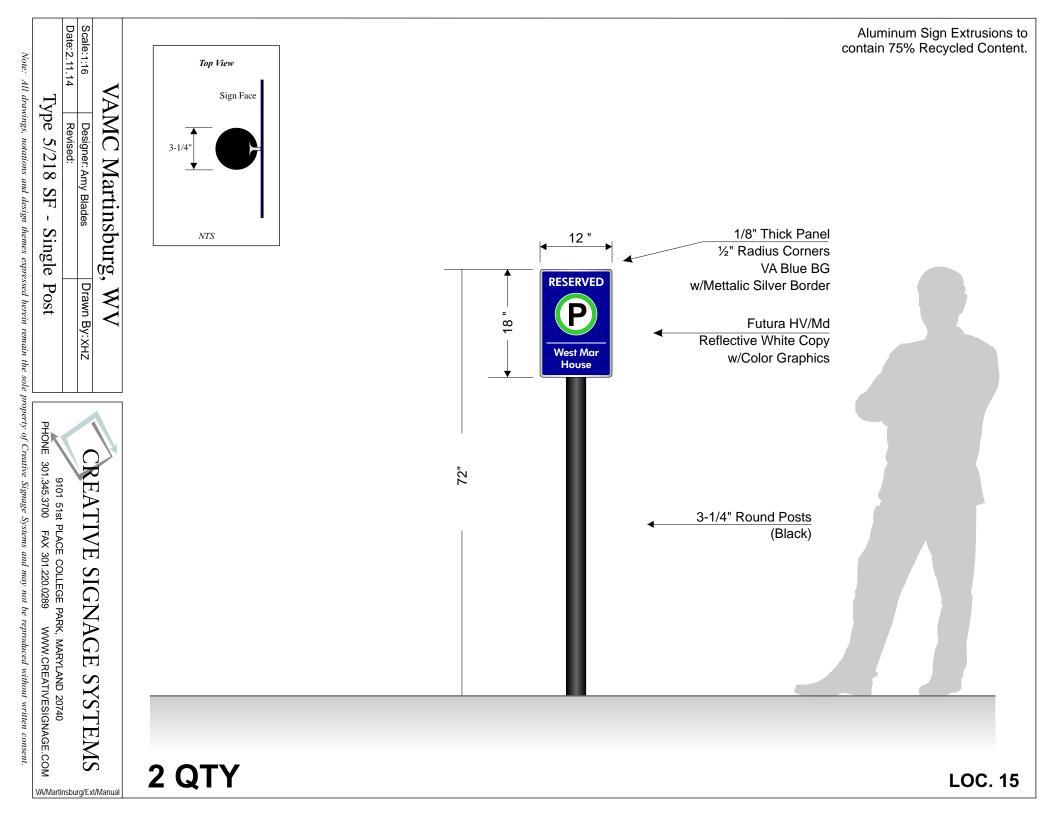
VA/Martinsburg/Ext/Manual

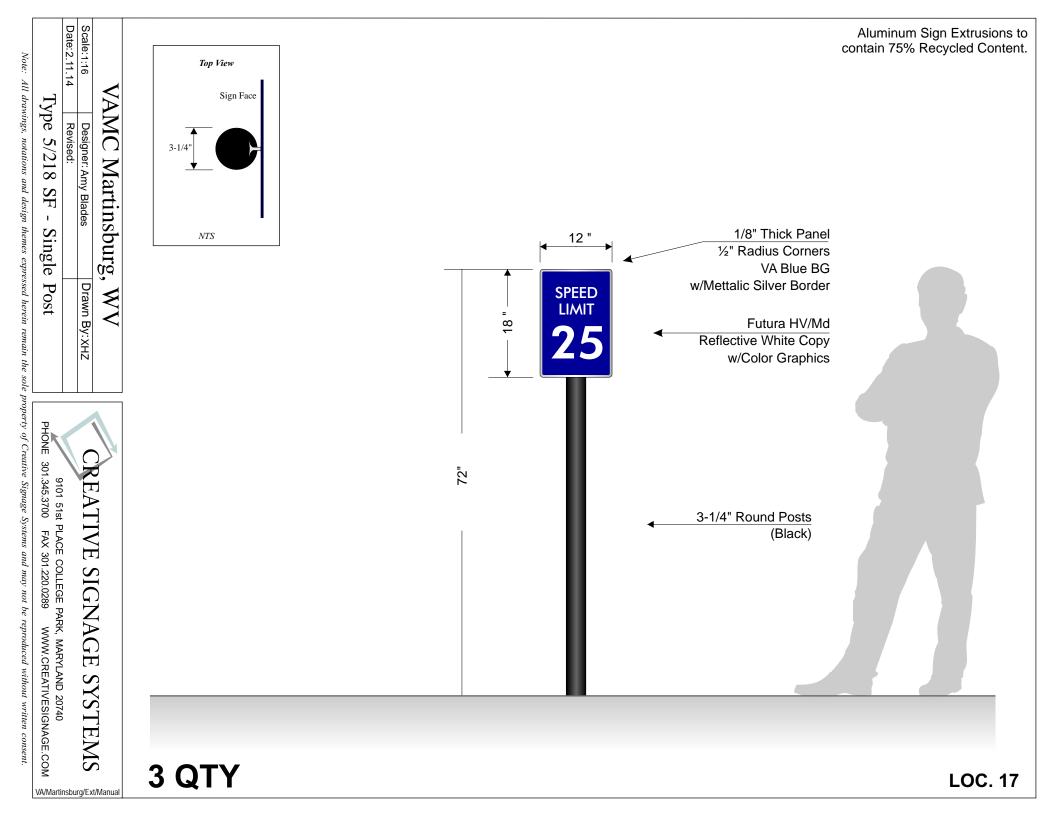
LOC. 10

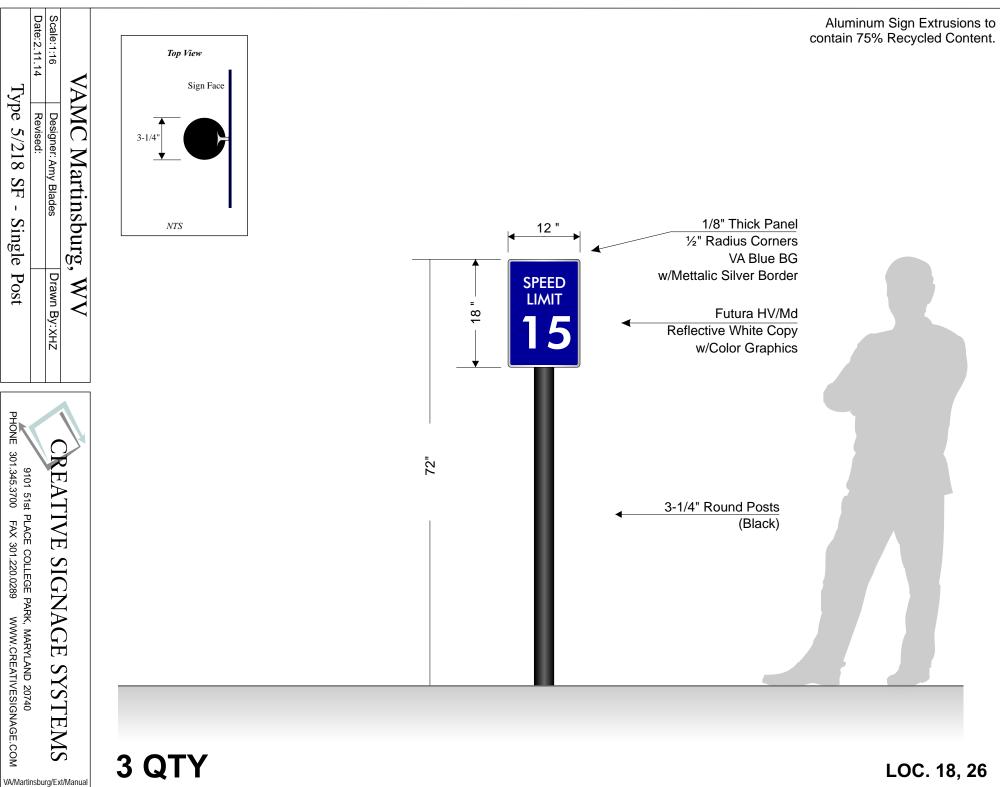
VA/Martinsburg/Ext/Manual

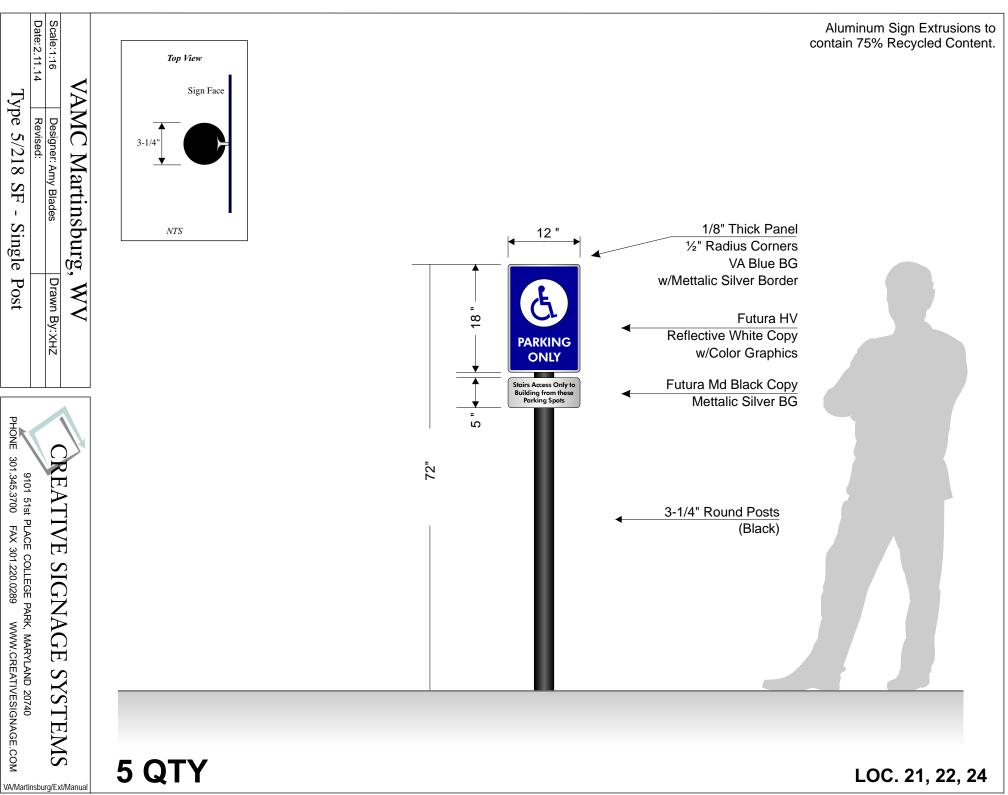
CREATIVE SIGNAGE SYSTEMS 9101 51st Place college park, maryland 20740 PHONE 301.345.3700 FAX 301.220.0289 WWW.CREATIVESIGNAGE.COM

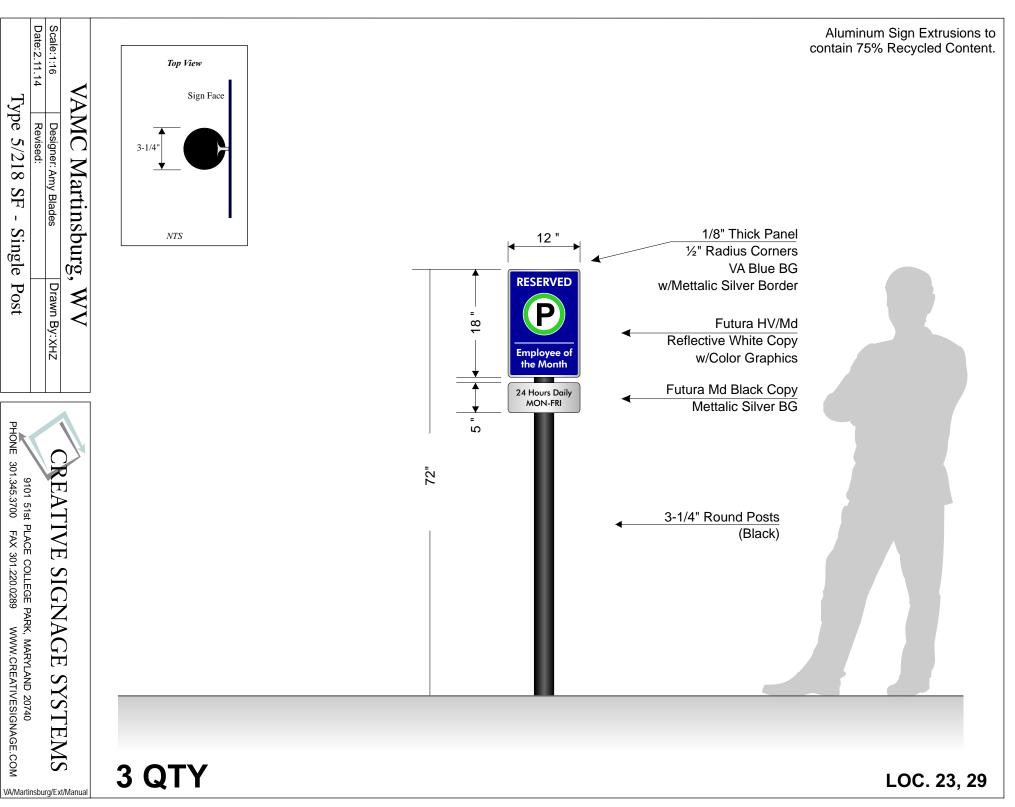

VA/Martinsburg/Ext/Manual

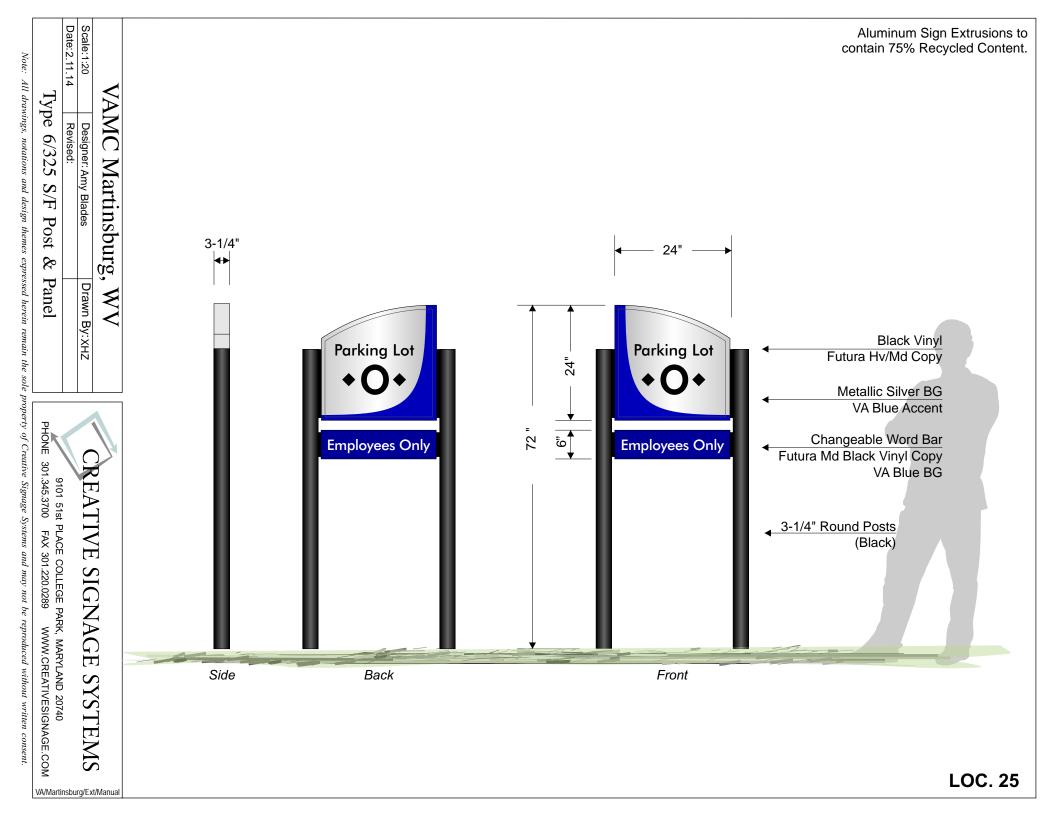

 VAMC Martinsburg, WV

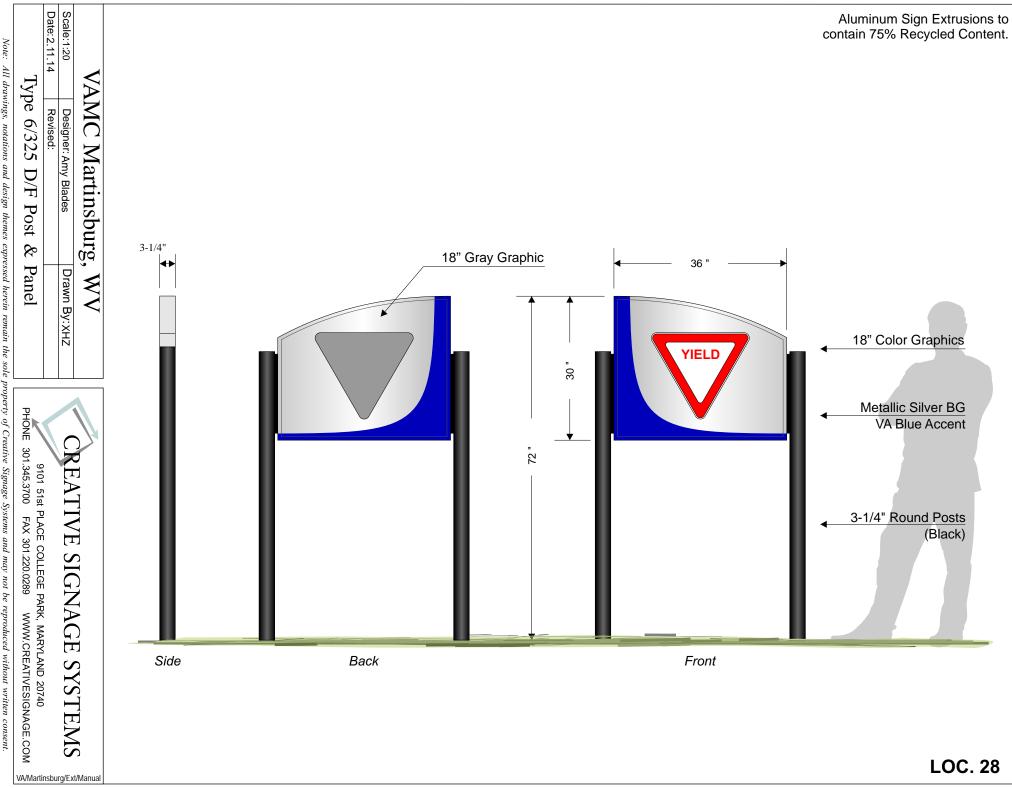

 Scale:1:20
 Designer: Amy Blades
 Drawn By:XHZ

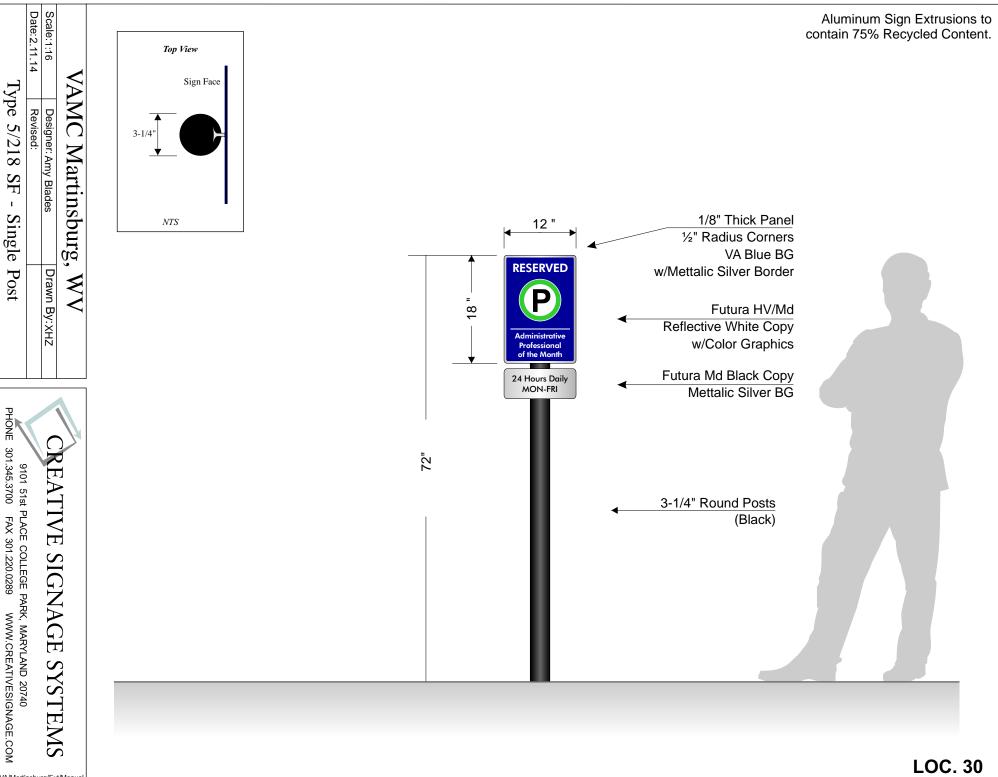

 Date:2.11.14
 Revised:
 Drawn By:XHZ

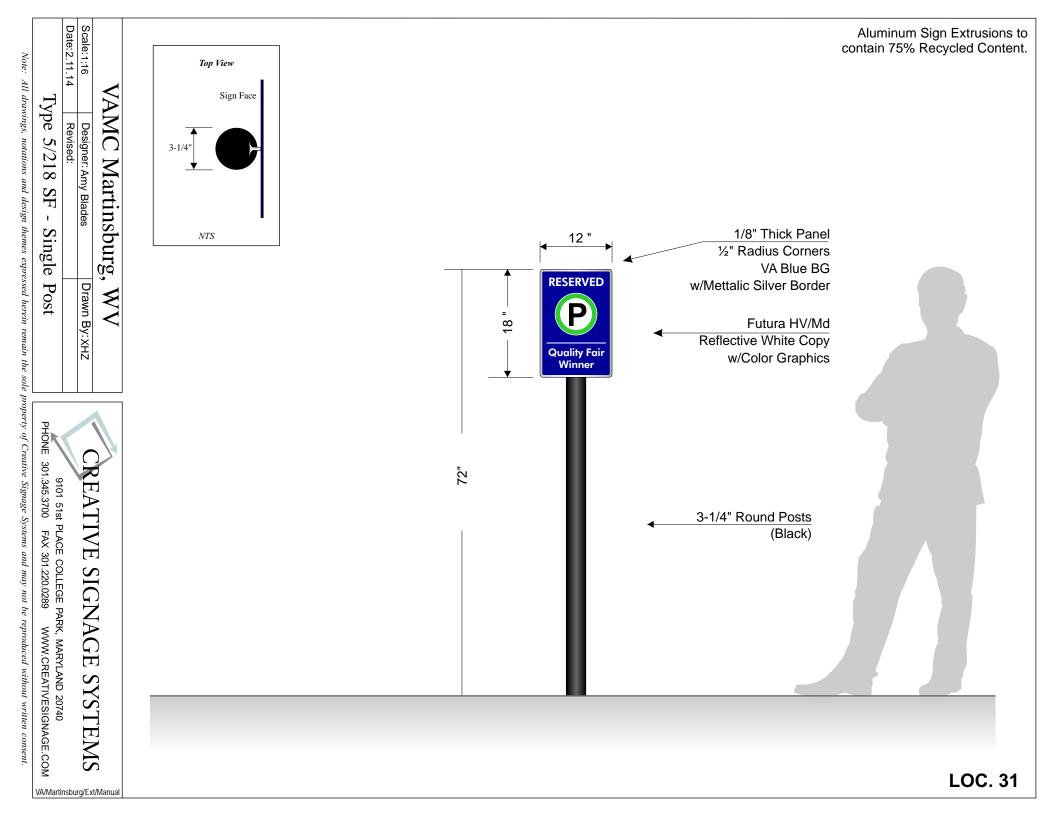

 Type
 8/225
 Wall Mounted

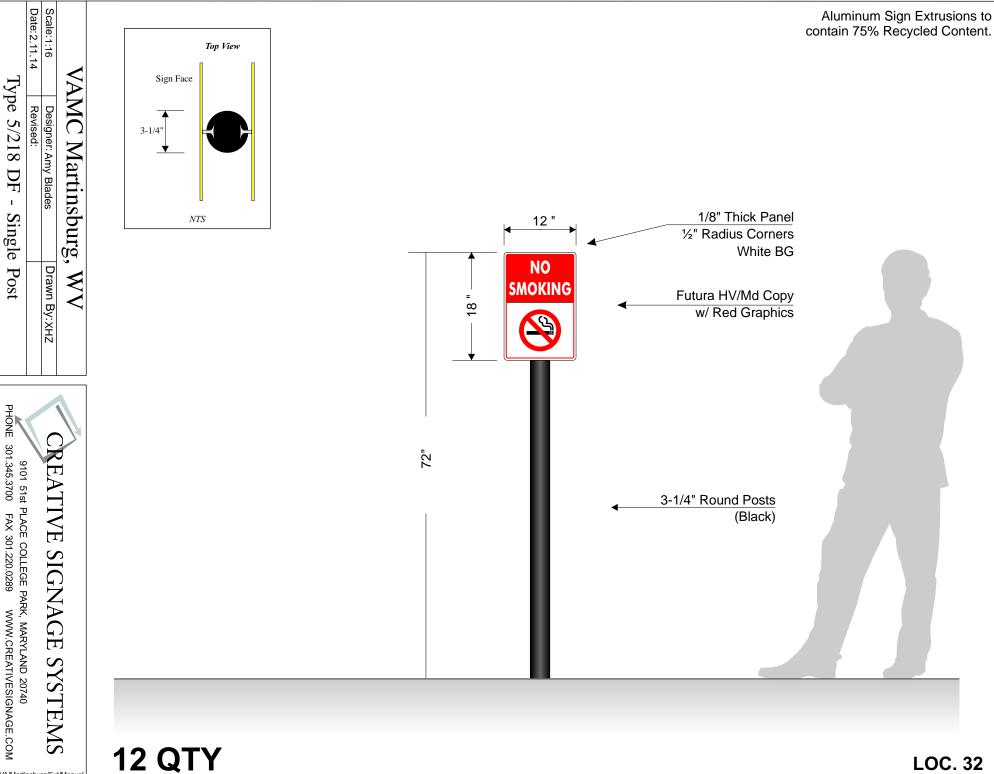


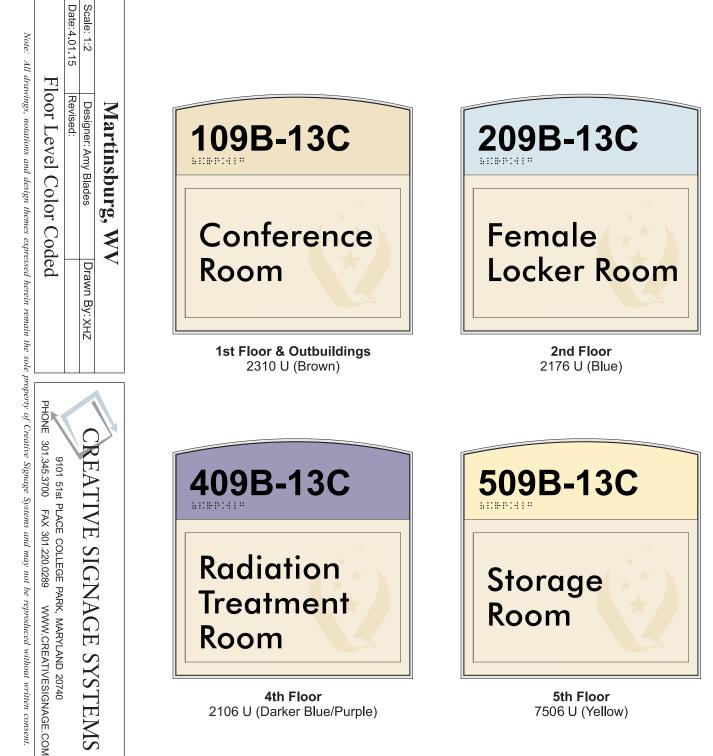


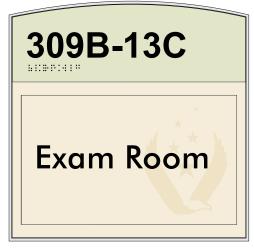




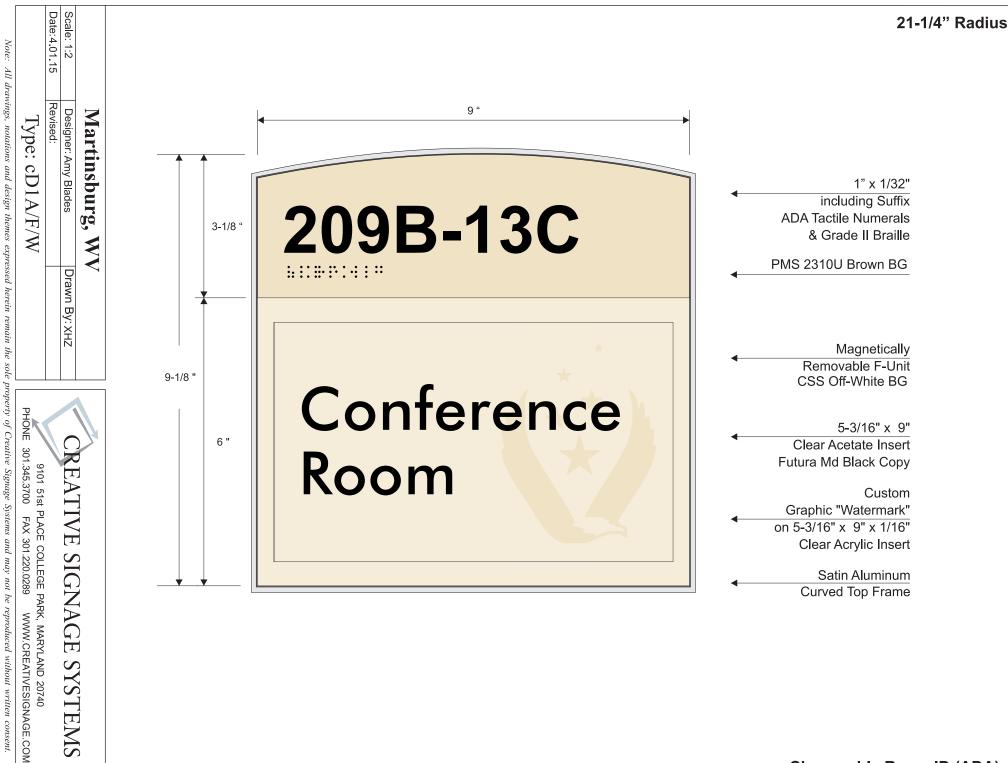


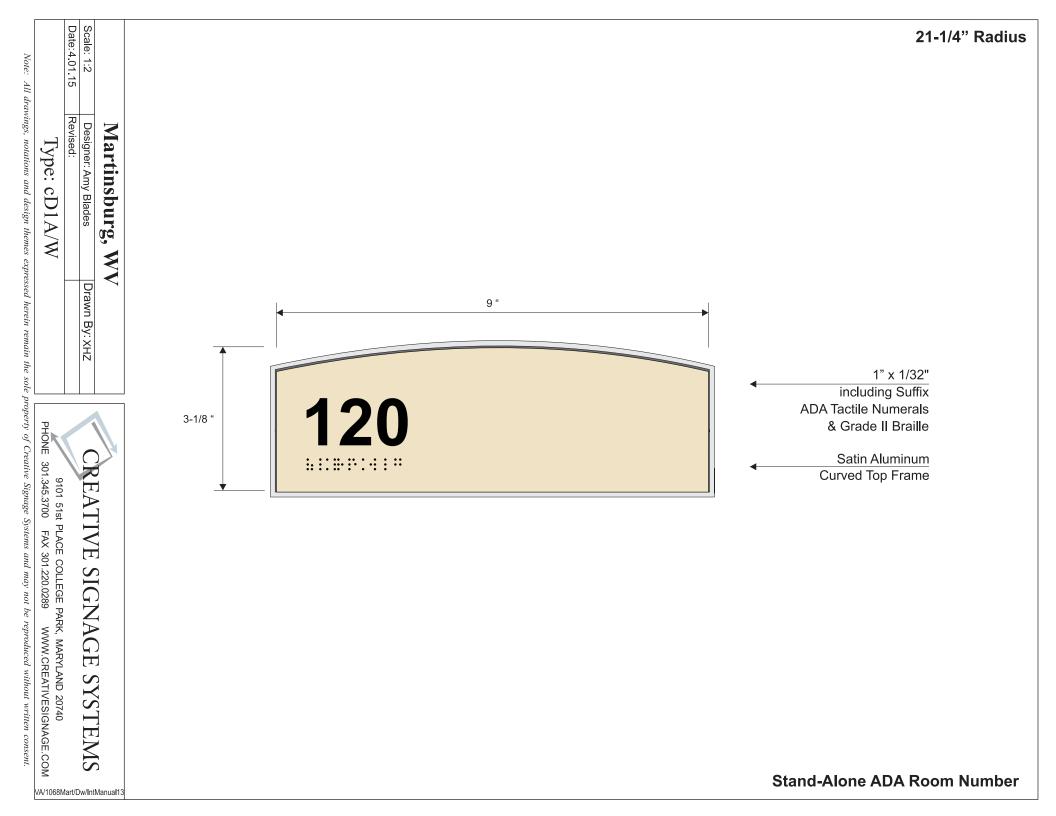


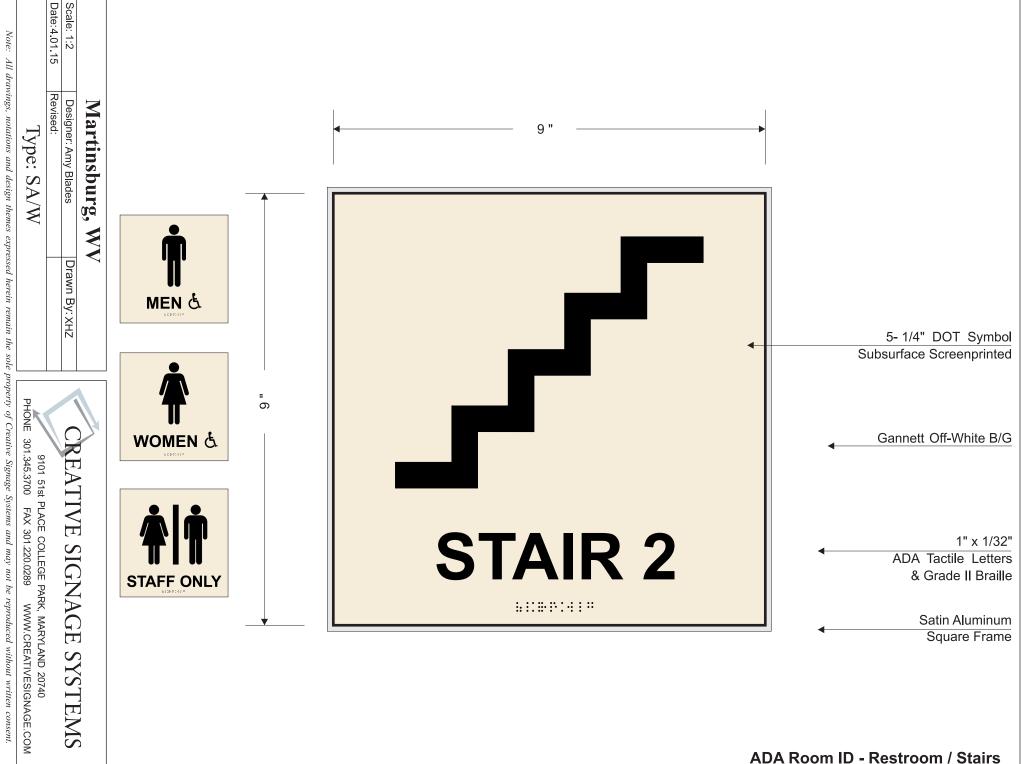




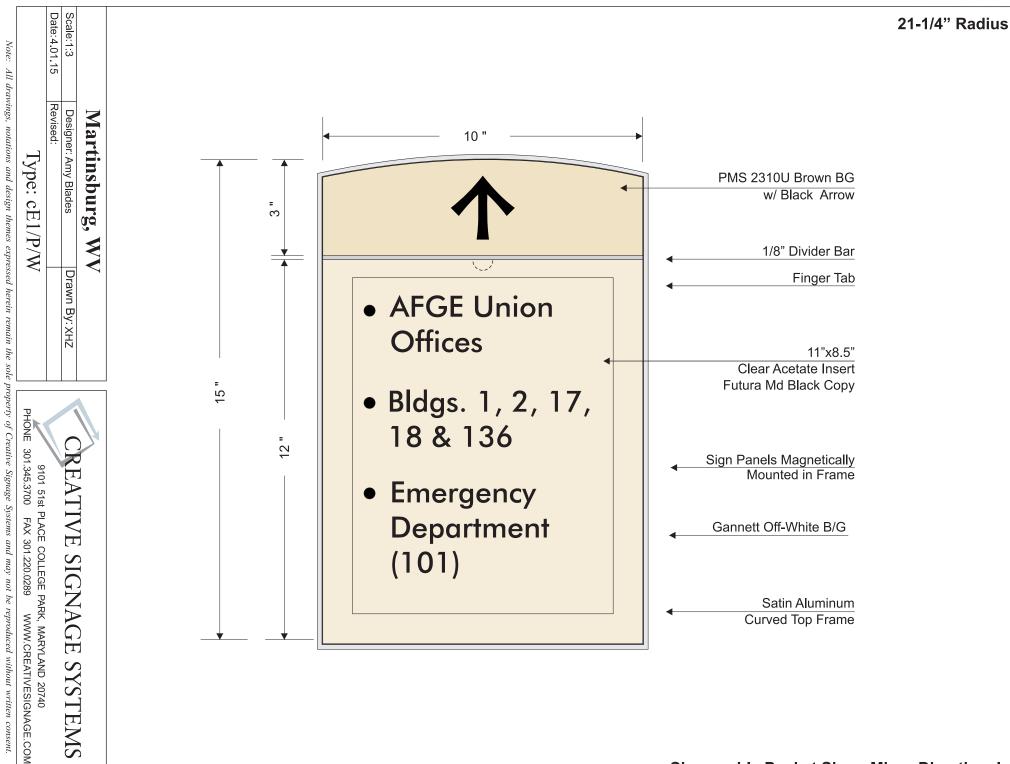
VA/Martinsburg/Ext/Manual

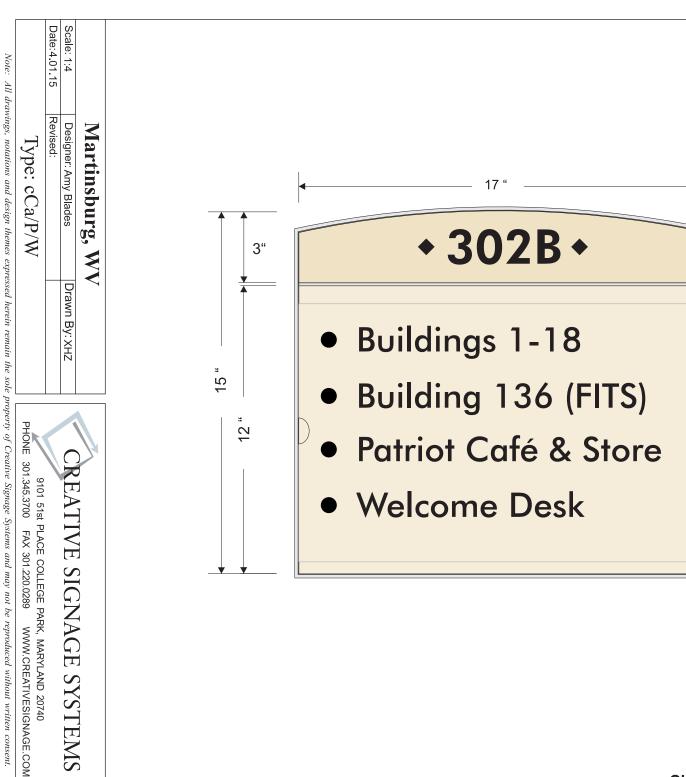

VA/1068Mart/Dw/IntManual1

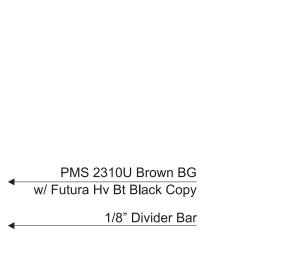

3rd Floor 5865C (Green)


609B-13C

6th Floor 7534 U (Gray)



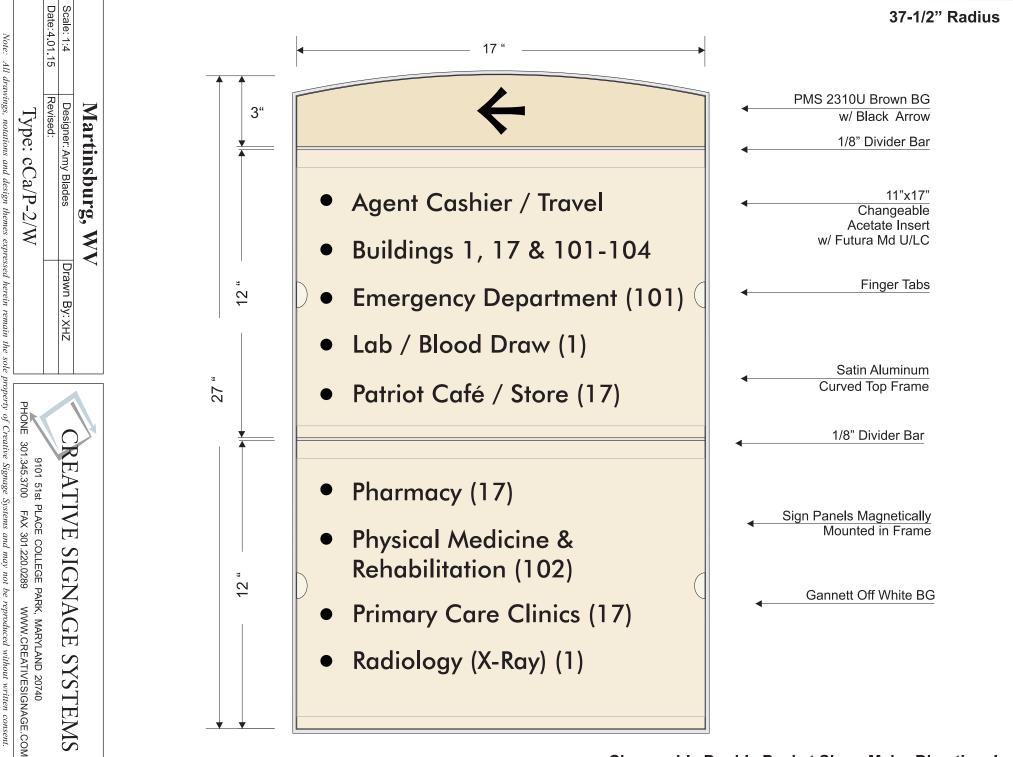

Changeable Room ID (ADA)



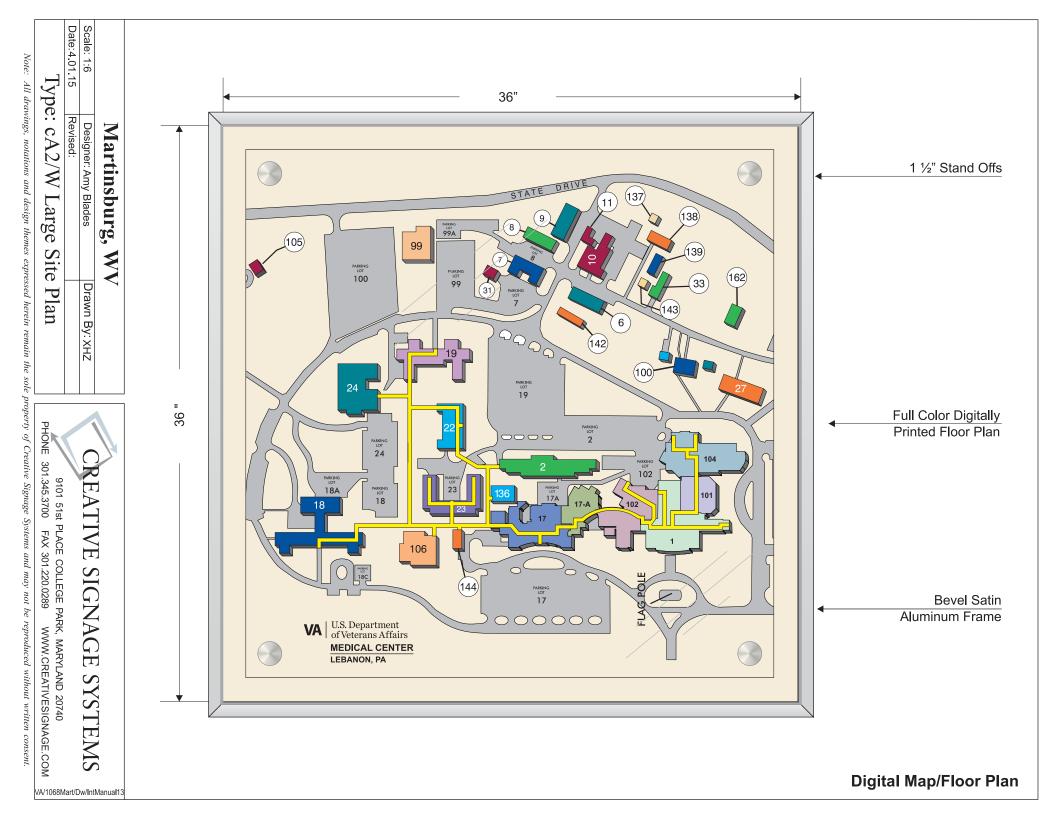
VA/1068Mart/Dw/IntManual1

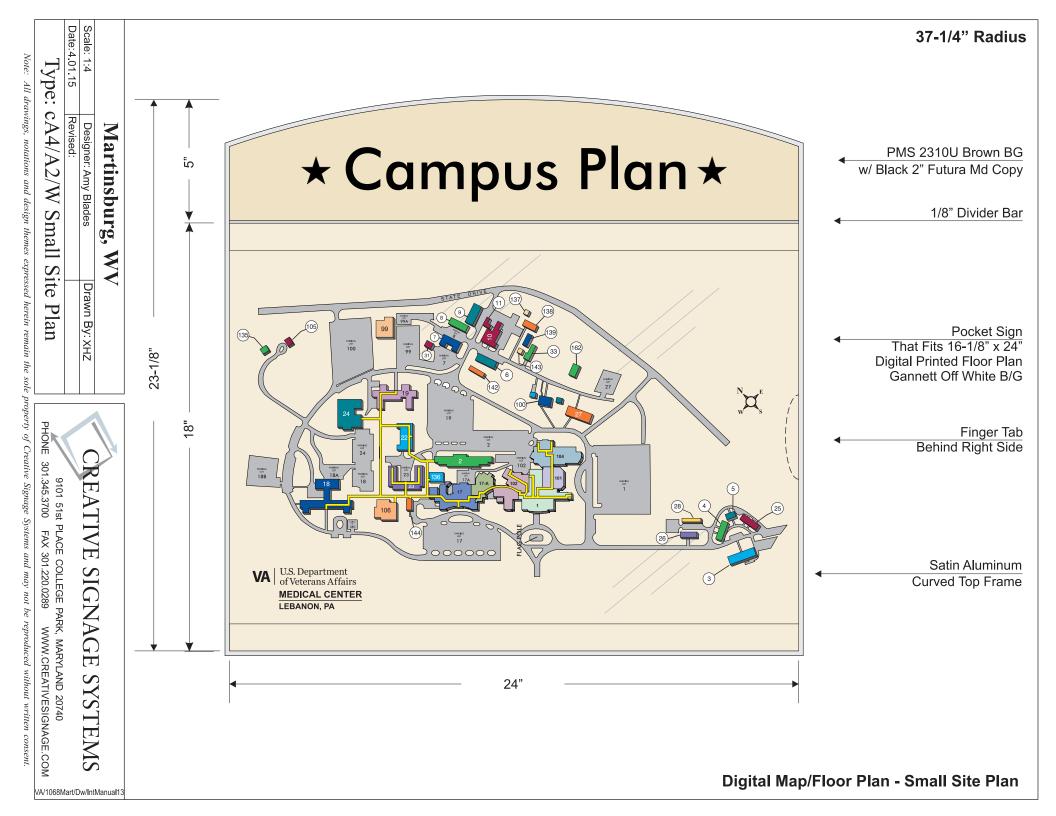
37-1/2" Radius

11"x17" Changeable Acetate Insert w/ Futura Md U/LC


Finger Tabs

Gannett Off White BG


Satin Aluminum **Curved Top Frame**


Changeable Pocket Sign - Major Directional

SYSTEMS



VA/1068Mart/Dw/IntManual

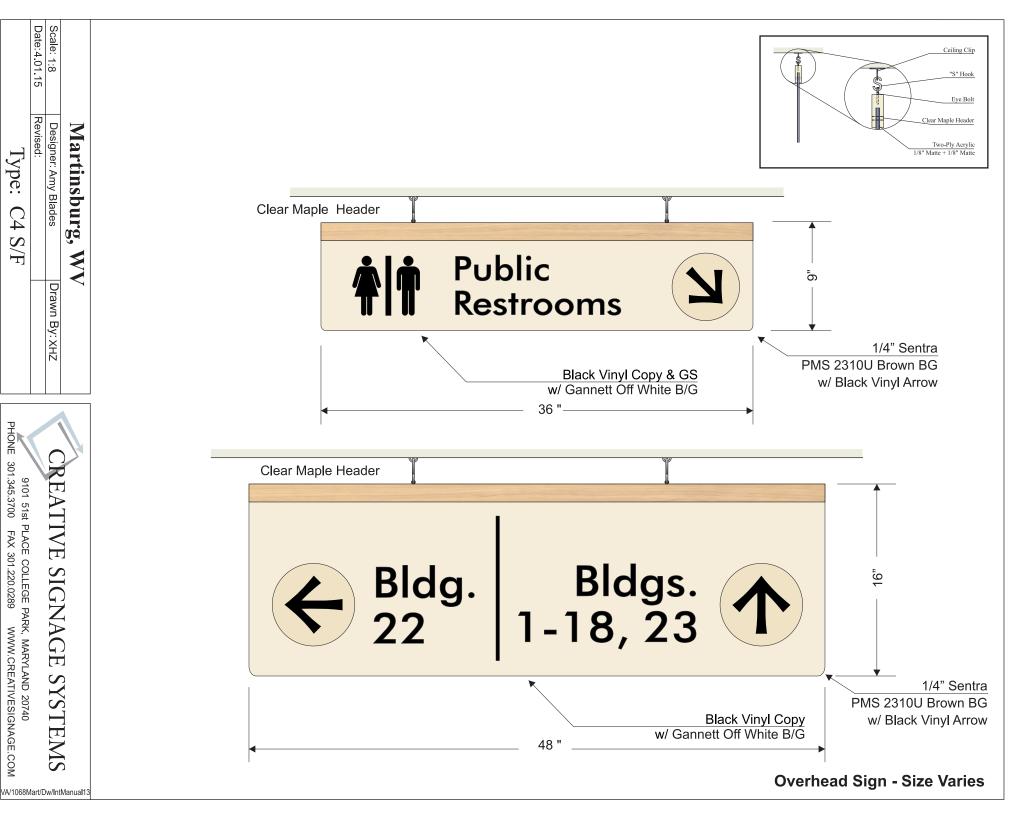
21-1/4" Radius

Martinsburg, WV

Department	В
 Agent Cashier / Travel 	
 Ambulatory Surgery 	•••••
 Audiology & Speech 	
Barber Shop	
Behavioral Health	
Business Office	
• C & P Clinic	
Canteen (Patriot Café)	
Cardio-Pulmonary	
 Chapel Community Living Center 	
Community Living Center CT Scan	
• CWT	
Dental Clinic	
Dermatology	

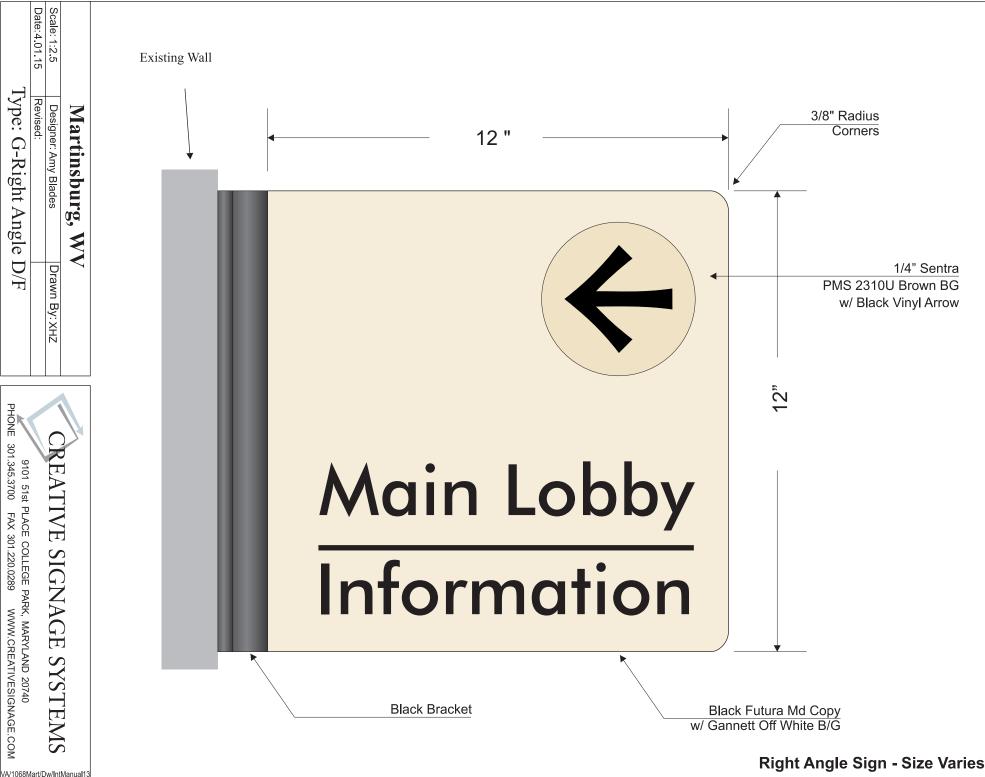
* N-R	*
Department	Bldg.
Neurology	1
Nuclear Medicine	17
OEF/OIF/OND	18
Patient Advocate	17
Patient Education	23
Patriot Vision (Optical Shop)	17
Pharmacy	17
Physical Rehab	102
Primary Care Teams	102
Prosthetics	102
Pulmonary Rehab	102
Radiology Service (X-Ray)	1
Recreation Therapy	19
Release of Information	17
Respiratory	17

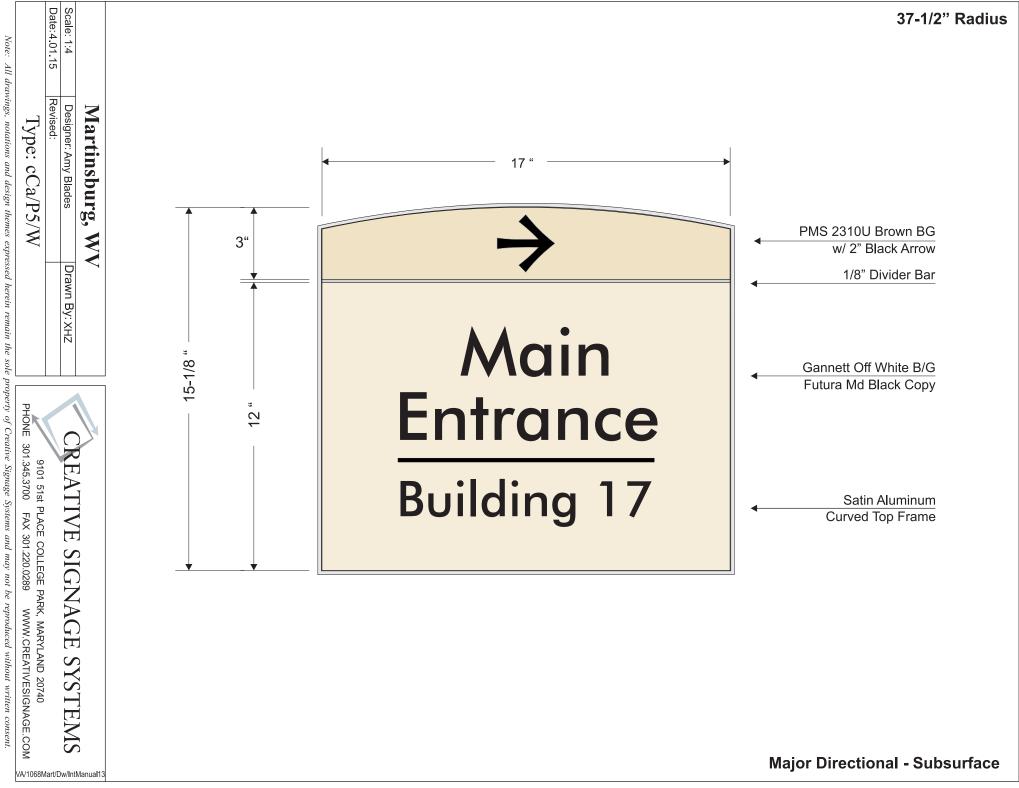
★S-Z	\star
Department	Bldg.
• Sleep Lab	1
Specimen Collection	1
Social Work Service	18
Surgical Clinics	17
Surgery / OR	1
• TBI / Polytrauma Clinic	23
Ultrasound	1
Urology Clinic	17
• Veterans Activity Center .	
• Veterans Rehab Center	23
• Veterans Svc. Organizatio	ons18
VISOR Programs	18
Voluntary Service	
Wheelchair Repair	23
Women's Clinic	17
YMCA at VA	

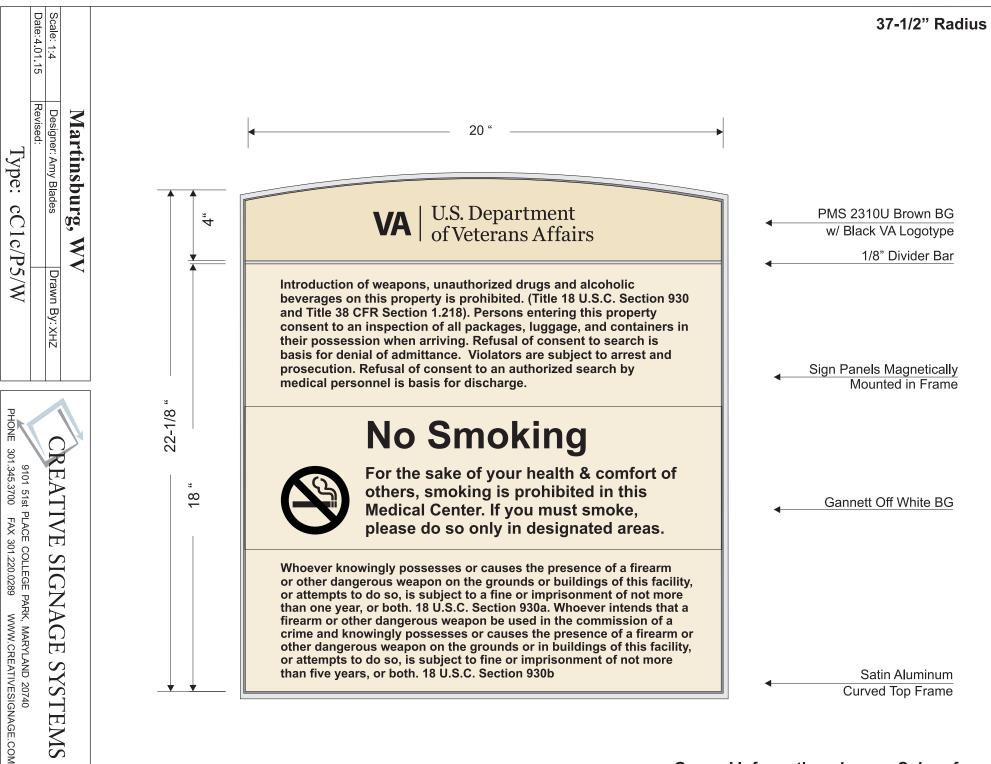

Changeable	Pocket Sigr	- Department	Listings
------------	--------------------	--------------	----------

↑ ↑		PMS 2310U Brown BG
4	★E-M★	w/ 2" Black Copy
↓ <u>↓</u>		1/8" Divider Bar
	Department Bldg. • Education	
	Education22 Eligibility17	Gannett Off White BG
	Emergency Department101	
	Employee Health23	
=	• Endoscopy1	47" - 44"
22-1/8 " 8 "	• Eye Clinic17	17" x 11"
22	Gymnasium24 Hospice1	Clear Acetate Insert
	Human Resources18	
	Inpatient Medical Units101 Intensive Care Unit	
	Laboratory/Blood Draw1	Easily Updatable Computer
	Library-Health Education22	Generated Insert
	Medical Clinics17	
	MOVE! Program144	
	• MRI Suite1	Satin Aluminum
	My Healthe Vet17	Curved Top Frame
* *		

►


— 12 " —


VA/1068Mart/Dw/IntManual13



Minor Directional - Subsurface

VA/1068Mart/Dw/IntManual1

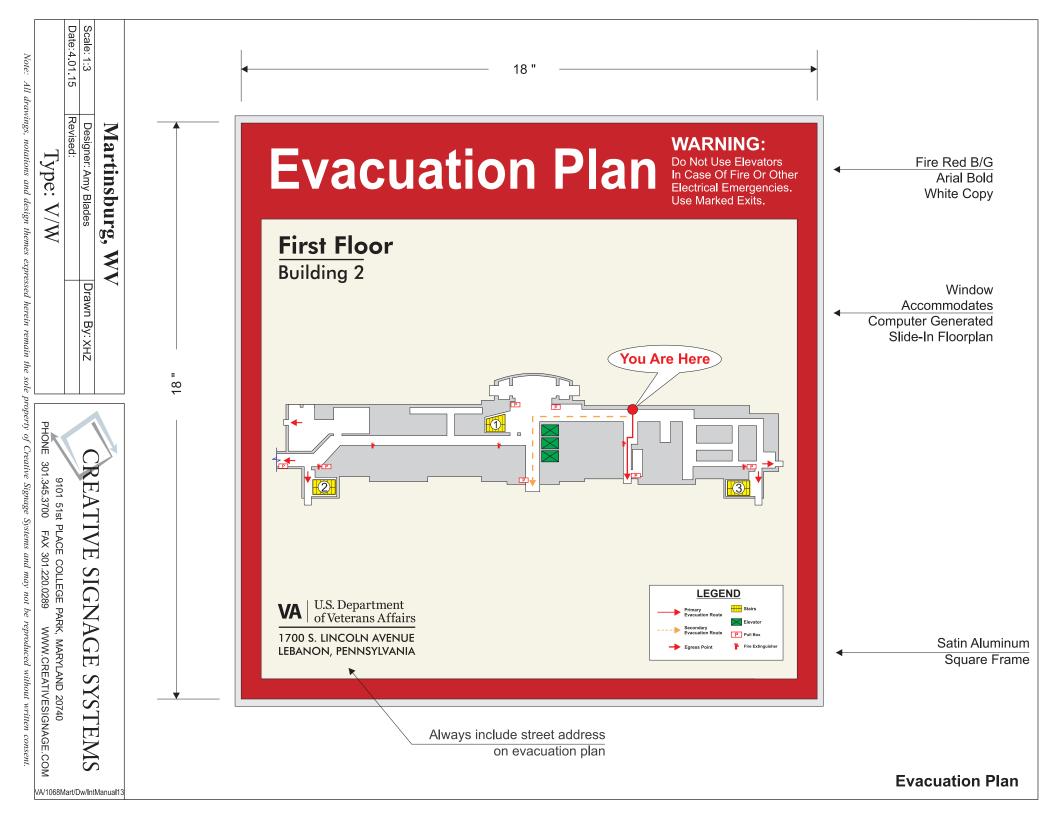
Note:

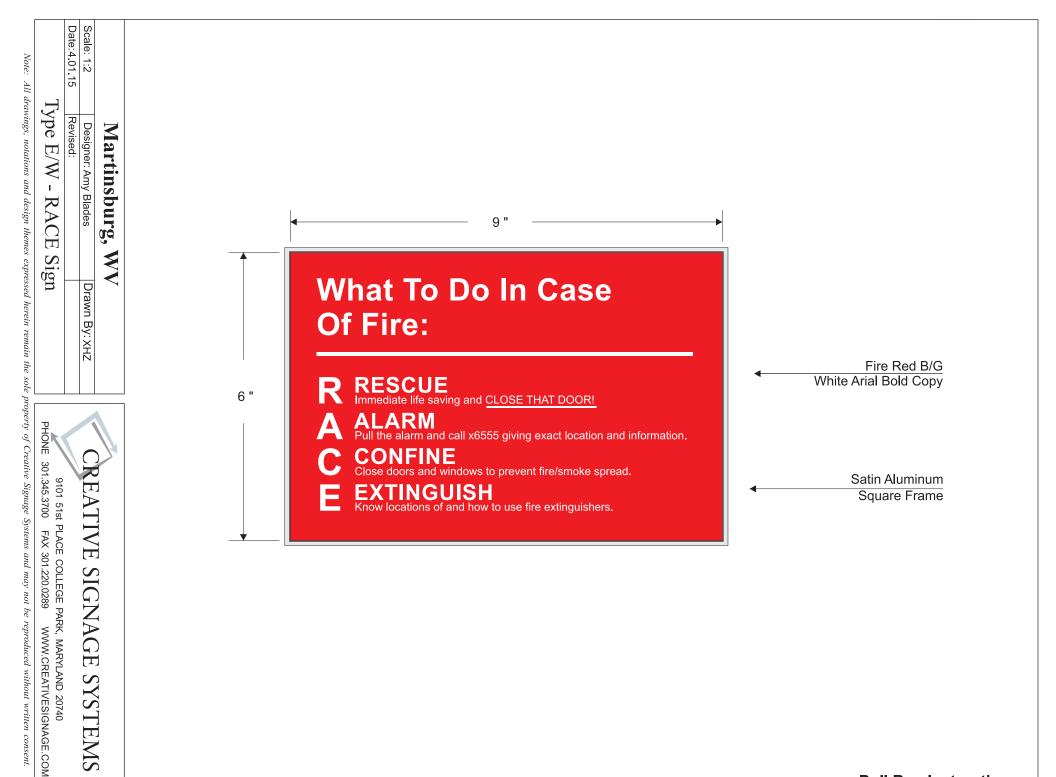
General Information - Large - Subsurface

CREATIVE SIGNAGE SYSTEMS

VA/1068Mart/Dw/IntManual1

	Martinsburg, WV	V
Scale: 1:4	Designer: Amy Blades	Drawn By: XHZ
Date:4.01.15	Revised:	
	Tome: MI_E	

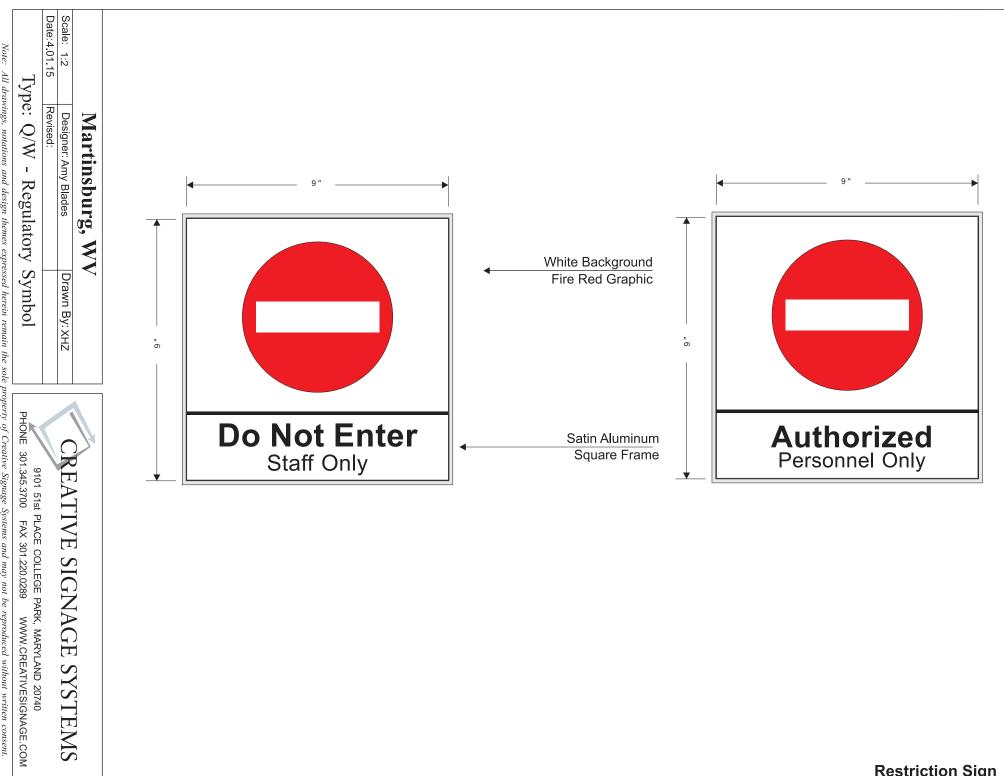



2-1/2 "

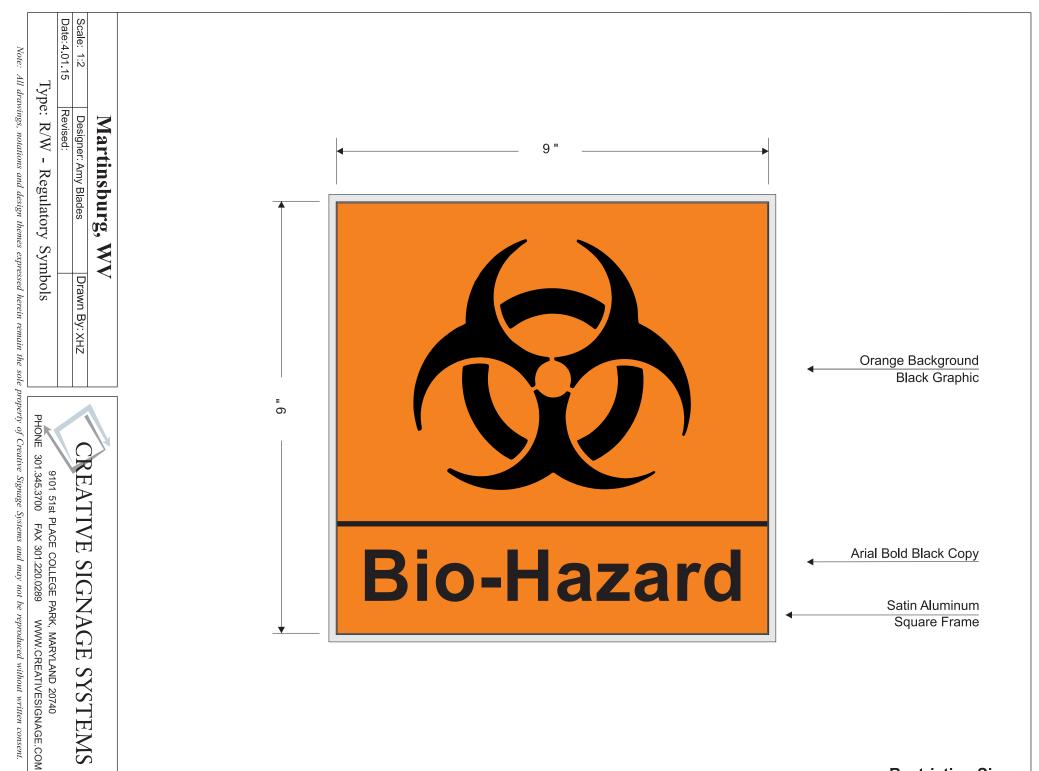
- 2

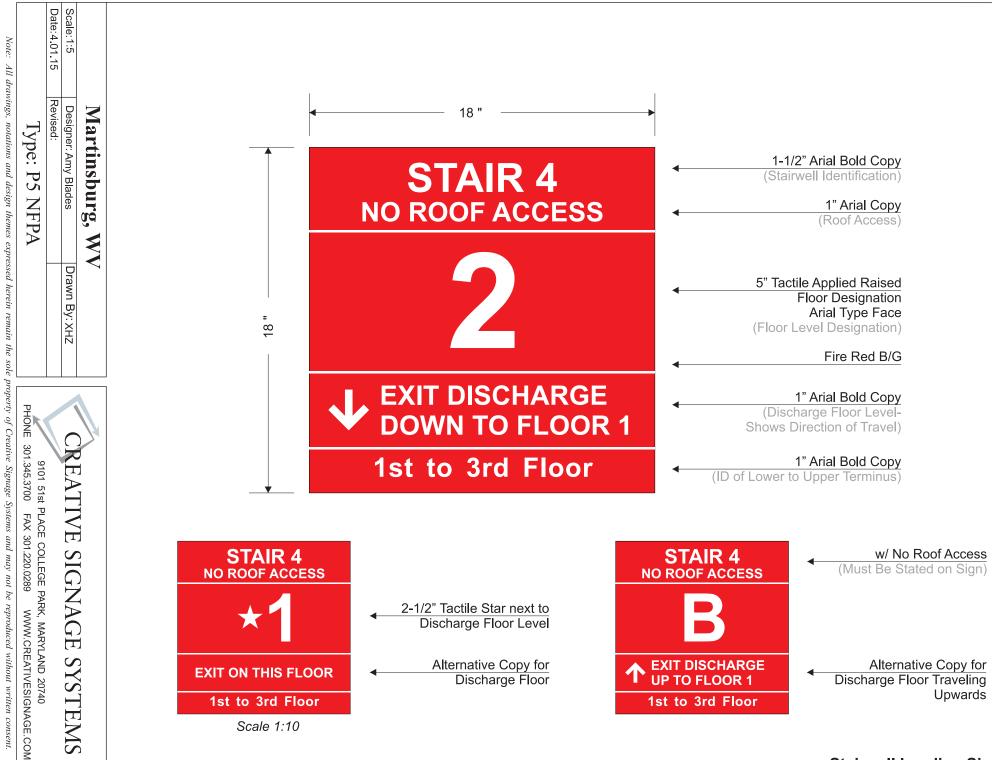
Cut-Out Satin Bronze Letters

Cut-Out Satin Aluminum Letters



VA/1068Mart/Dw/IntManual1


Pull Box Instructions



Restriction Sign

Stairwell Landing Sign

VA/1068Mart/Dw/IntManual1

SECTION 10 28 00 TOILET, BATH, AND LAUNDRY ACCESSORIES

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies manufactured items used in toilets and baths, and at sinks in related spaces.
- B. Items Specified:
 - 1. Paper towel dispenser.
 - 2. Toilet tissue dispenser.
 - 3. Grab Bars: (10800-1.DWG).
 - 4. Shower curtain rods: (10800-2.DWG) and (10800-3.DWG).
 - 5. Clothes hooks, robe or coat.
 - 6. Towel bars.
 - 7. Metal framed mirror: (10800-7.DWG).
 - 8. Shower seats.
 - 9. Soap dispenser.
 - 10. Soap dishes.

1.2 RELATED WORK

A. Ceramic toilet and bath accessories: Section 09 30 13, CERAMIC TILING

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Shop Drawings: For each product specified. Include installation and mounting details and support details for grab bars and diaper changing stations.
- C. Manufacturer's Literature and Data:
 - 1. All accessories specified.
 - Show type of material, gages or metal thickness in inches, finishes, and when required, capacity of accessories.
- D. Manufacturer's Certificates:
 - 1. Anodized finish as specified.

1.4 QUALITY ASSURANCE

A. Each product shall meet, as a minimum, the requirements specified, and shall be a standard commercial product of a manufacturer regularly presently manufacturing items of type specified.

- B. Each accessory type shall be the same and be made by the same manufacturer.
- C. Each accessory shall be assembled to the greatest extent possible before delivery to the site.
- D. Include additional features, which are not specifically prohibited by this specification, but which are a part of the manufacturer's standard commercial product.

1.5 PACKAGING AND DELIVERY

- A. Pack accessories individually to protect finish.
- B. Deliver accessories to the project only when installation work in rooms is ready to receive them.
- C. Deliver inserts and rough-in frames to site at appropriate time for building-in.
- D. Deliver products to site in sealed packages of containers; labeled for identification with manufacturer's name, brand, and contents.

1.6 STORAGE

- A. Store products in weathertight and dry storage facility.
- B. Protect from damage from handling, weather and construction operations before, during and after installation in accordance with manufacturer's instructions.

1.7 APPLICABLE PUBLICATIONS

- A. Publications listed below form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
- B. American Society for Testing and Materials (ASTM): A167-99(R2009).....Stainless and Heat-Resisting Chromium-Nickel Steel Plate, Sheet and Strip. A176-99(R2009).....Stainless and Heat-Resisting Chromium Steel Plate, Sheet, and Strip A269-10....Seamless and Welded Austenitic Stainless Steel Tubing for General Service A312/A312M-09....Seamless and Welded Austenitic Stainless Steel Pipes A653/A653M-10....Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process B221-08.....Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Shapes, and Tubes

B456-03(R2009).....Electrodeposited Coatings of Copper Plus Nickel Plus Chromium and Nickel Plus Chromium C1036-06.....Flat Glass C1048-04..... Heat-Treated Flat Glass-Kind HS, Kind FT Coated and Uncoated Glass D635-10.....Rate of Burning and/or Extent and Time of Burning of Self Supporting Plastics in a Horizontal Position F446-85(R2009).....Consumer Safety Specification for Grab Bars and Accessories Installed in the Bathing Area. C. The National Association of Architectural Metal Manufacturers (NAAMM): AMP 500 Series.....Metal Finishes Manual D. American Welding Society (AWS): D10.4-86 (R2000).....Welding Austenitic Chromium-Nickel Stainless Steel Piping and Tubing E. Federal Specifications (Fed. Specs.): A-A-3002.....Mirrors, Glass FF-S-107C (2).....Screw, Tapping and Drive FF-S-107C.....Screw, Tapping and Drive. WW-P-541E(1).....Plumbing Fixtures (Accessories, Land Use) Detail Specification

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Aluminum: ASTM B221, alloy 6063-T5 and alloy 6463-T5.
- B. Stainless Steel:
 - Plate or sheet: ASTM A167, Type 302, 304, or 304L, except ASTM A176 where Type 430 is specified, 0.0299-inch thick unless otherwise specified.
 - 2. Tube: ASTM A269, Alloy Type 302, 304, or 304L.
- C. Stainless Steel Tubing: ASTM A269, Grade 304 or 304L, seamless or welded.
- D. Stainless Steel Pipe: ASTM A312; Grade TP 304 or TP 304L.
- E. Steel Sheet: ASTM A653, zinc-coated (galvanized) coating designation G90.
- F. Glass:

1. ASTM C1036, Type 1, Class 1, Quality q2, for mirrors.

2.2 FASTENERS

- A. Exposed Fasteners: Stainless steel or chromium plated brass, finish to match adjacent surface.
- B. Concealed Fasteners: Steel, hot-dip galvanized (except in high moisture areas such as showers or bath tubs use stainless steel).
- C. Toggle Bolts: For use in hollow masonry or frame construction.
- D. Hex bolts: For through bolting on thin panels.
- E. Expansion Shields: Lead or plastic as recommended by accessory manufacturer for component and substrate for use in solid masonry or concrete. Use only where toggle bolts cannot be used.
- F. Screws:
 - 1. ASME B18.6.4.
 - 2. Fed Spec. FF-S-107, Stainless steel Type A.
- G. Adhesive: As recommended by manufacturer for products to be joined.

2.3 FINISH

- A. In accordance with NAAMM AMP 500 series.
- B. Anodized Aluminum:
 - 1. AA-C22A41 Chemically etched medium matte, with clear anodic coating, Class I Architectural, 0.7-mil thick.
- C. AA-M32 Mechanical finish.
 - 1. Chromium Plating: ASTM B456, satin or bright as specified, Service Condition No. SC2.
 - 2. Stainless Steel: NAAMM AMP 503, finish number 4.
 - 3. Ferrous Metal:
 - a. Shop Prime: Clean, pretreat and apply one coat of primer and bake.
 - b. Finish: Over primer apply two coats of alkyd or phenolic resin enamel, and bake.

2.4 FABRICATION - GENERAL

- A. Welding, AWS D10.4.
- B. Grind dress, and finish welded joints to match finish of adjacent surface.
- C. Form exposed surfaces from one sheet of stock, free of joints.
- D. Provide steel anchors and components required for secure installation.
- E. Form flat surfaces without distortion. Keep exposed surfaces free from scratches and dents. Reinforce doors to prevent warp or twist.
- F. Isolate aluminum from dissimilar metals and from contact with building materials as required to prevent electrolysis and corrosion.

- G. Hot-dip galvanized steel, except stainless steel, anchors and fastening devices.
- H. Shop assemble accessories and package with all components, anchors, fittings, fasteners and keys.
- I. Key items alike.
- J. Provide templates and rough-in measurements as required.
- K. Round and deburr edges of sheets to remove sharp edges.

2.5 PAPER TOWEL HOLDER (OWNER FURNISHED CONTRACTOR INSTALLED)

- A. Sofpull Translucent Smoke Dispenser (center pull). Georgia Pacific model #58204.
- B. Size 11.5"x9.25"x8.75" for rolls 7.8"x15".

2.6 TOILET TISSUE DISPENSERS (OWNER FURNISHED CONTRACTOR INSTALLED)

A. Side by side double roll bathroom dispenser. Georgia Pacific model #56784.

2.7 GRAB BARS

- A. Fed. Spec WW-P-541/8B, Type IV, bars, surface mounted, Class 2, grab bars and ASTM F446.
- B. Fabricate of stainless steel. Use only one type throughout the project.1. Stainless steel: Grab bars, flanges, mounting plates, supports, screws, bolts.
- C. Concealed mount, except grab bars mounted at floor, swing up and on shower.
- D. Bars:
 - Fabricate from 38 mm (1-1/2 inch) outside diameter tubing.
 a. Stainless steel, minimum 1.2 mm (0.0478 inch) thick.
 - 2. Fabricate in one continuous piece with ends turned toward walls, except swing up and where grab bars are shown continuous around three sides of showers, bars may be fabricated in two sections, with concealed slip joint between.
 - 3. Continuous weld intermediate support to the grab bar.
 - 4. Swing up bars manually operated. Designed to prevent bar from falling when in raised position.
- E. Flange for Concealed Mounting:
 - Minimum of 2.65 mm (0.1046 inch) thick, approximately 75 mm (3 inch) diameter by 13 mm (1/2 inch) deep, with provisions for not less than three set screws for securing flange to back plate.

- 2. Insert grab bar through center of the flange and continuously weld perimeter of grab bar flush to back side of flange.
- F. Flange for Exposed Mounting:
 - Minimum 5 mm (3/16 inch) thick, approximately 75 mm (3 inch) diameter.
 - 2. Insert grab bar through flange and continuously weld perimeter of grab bar flush to backside of flange.
 - 3. Where mounted on shower, provide three equally spaced, countersunk holes, sized to accommodate 5 mm (3/16 inch) diameter bolts.
 - 4. Where mounted on floor, provide four equally spaced holes, sized to accommodate 5 mm (3/8 inch) diameter bolts, not more than 5 mm (3/8 inch) from edge of flange.
- G. In lieu of providing flange for concealed mounting, and back plate as specified, grab rail may be secured by being welded to a back plate and be covered with flange.
- H. Back Plates:
 - 1. Minimum 2.65 mm (0.1046 inch) thick metal.
 - Fabricate in one piece, approximately 6 mm (1/4 inch) deep, with diameter sized to fit flange. Provide slotted holes to accommodate anchor bolts.
 - 3. Furnish spreaders, through bolt fasteners, and cap nuts, where grab bars are mounted on metal stud partitions.

2.8 SHOWER CURTAIN RODS

- A. Stainless steel tubing, ASTM A569, minimum 1.27 mm (0.050 inch) wall thickness, 32 mm (1 1/4 inch) outside diameter.
- B. Flanges, stainless steel rings, 66 mm (2 5/8 inch) minimum outside diameter, with 2 holes opposite each other for 6 mm (1/4 inch) stainless steel fastening bolts. Provide a set screw within the curvature of each flange for securing the rod.

2.9 CLOTHES HOOKS-ROBE OR COAT

- A. Fabricate hook units of stainless steel, using 6 mm (1/4 inch) minimum thick stock, with edges and corners rounded smooth to the thickness of the metal, or 3 mm (1/8 inch) minimum radius.
- B. Fabricate each unit as a double hook on a single shaft, integral with or permanently fastened to the wall flange, provided with concealed fastenings.

2.10 TOWEL BARS

A. Fed. Spec. WW-P-541/8B, Type IV, Bar, Surface mounted; Class 1, towel.

- B. Either stainless steel, or chromium plated copper alloy.
- C. Bar Length: 450 and 600 mm (18 and 24 inches) as shown.
- D. Finish of brackets or supports same as bar.

2.11 METAL FRAMED MIRRORS

- A. Fed. Spec. A-A-3002 metal frame; stainless steel, type 302 or 304.
- B. Mirror Glass:
 - 1. Minimum 6 mm (1/4 inch) thick.
 - 2. Set mirror in a protective vinyl glazing tape.
 - 3. Use tempered.
- C. Frames:
 - Channel or angle shaped section with face of frame not less than 9 mm (3/8 inch) wide. Fabricate with square corners.
 - 2. Use 0.9 mm (0.0359 inch) thick stainless steel.
 - 3. Filler:
 - a. Where mirrors are mounted on walls having ceramic tile wainscots not flush with wall above, provide fillers at void between back of mirror and wall surface.
 - b. Fabricate fillers from same material and finish as the mirror frame, contoured to conceal the void behind the mirror at sides and top.
 - 4. Attached Shelf for Mirrors:
 - a. Fabricate shelf of the same material and finish as the mirror frame.
 - b. Make shelf approximately 125 mm (five inches) in depth, and extend full width of the mirror.
 - c. Close the ends and the front edge of the shelf to the same thickness as the mirror frame width.
 - d. Form shelf for aluminum framed mirror as an integral part of the bottom frame member. Form stainless steel shelf with concealed brackets to attach to mirror frame.
- D. Mounting Bracket:
 - 1. Designed to support mirror tight to wall.
 - 2. Designed to retain mirror with concealed set screw fastenings.

2.12 SOAP DISPENSERS (OWNER FURNISHED CONTRACTOR INSTALLED)

A. Bacti-foam Soap Dispenser. Echo Lab model #92723188 for Bacti-foam Soap (#EL61806-499).

2.13 SHOWER SEATS

A. Hinged seats compliant with ADA Accessibility Guidelines.

- B. Roll-in Showers (nominal 762 mm x 1524 mm (30 x 60 inches)):
 - Frame: 18 gauge stainless steel tubing, 25 mm (1 inch) diameter) with 16 gauge support bracket.
 - 2. Seat: Solid phenolic, 13 mm (½ inch) thick; white.
 - 3. Capacity: 180 kg (400 lbs).
 - 4. Size: 724 mm (28½ inches) wide x 524 mm (13-5/8 inches) deep.
- C. Standard Showers (nominal 915 mm x 915 mm (36 x 36 inches)):
 - Frame: 18 gauge stainless steel tubing, 25 mm (1 inch) diameter) with 16 gauge support bracket.
 - 2. Seat: Solid phenolic, 13 mm (½ inch) thick; white.
 - 3. Capacity: 180 kg (400 lbs).
 - 4. Size: 876 mm (34½ inches) wide x 524 mm (20-5/8 inches) deep.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Before starting work notify Contracting Officer in writing of any conflicts detrimental to installation or operation of units.
- B. Verify with the Contracting Officer the exact location of accessories.

3.2 INSTALLATION

- A. Set work accurately, in alignment and where shown. Items shall be plumb, level, free of rack and twist, and set parallel or perpendicular as required to line and plane of surface.
- B. Toggle bolt to steel anchorage plates in frame partitions.
- C. Install accessories in accordance with the manufacturer's printed instructions and ASTM F446.
- D. Install accessories plumb and level and securely anchor to substrate.
- E. Install accessories in a manner that will permit the accessory to function as designed and allow for servicing as required without hampering or hindering the performance of other devices.
- F. Position and install dispensers, and other devices permitting ample clearance and ready access for maintenance as needed.
- G. Align mirrors, dispensers and other accessories even and level, when installed in battery.
- H. Install accessories to prevent striking by other moving, items or interference with accessibility.
- I. Ensure that shower seats have adequate blocking and support in walls.

3.3 CLEANING

A. After installation, clean as recommended by the manufacturer and protect from damage until completion of the project.

- - - E N D - - -

SECTION 10 44 13 FIRE EXTINGUISHER CABINETS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section covers fire extinguishers and recessed fire extinguisher cabinets.

1.2 RELATED WORK

- A. Metal stud framing systems: Section 09 22 16, NON-STRUCTURAL METAL FRAMING.
- B. Gypsum board: Section 09 29 00, GYPSUM BOARD.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data: Fire extinguisher and fire extinguisher cabinet including installation instruction and rough opening required.

1.4 APPLICATION PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Testing and Materials (ASTM): D4802-10.....Poly (Methyl Methacrylate) Acrylic Plastic Sheet

PART 2 - PRODUCTS

2.1 FIRE EXTINGUISHER CABINET

- A. Fully recessed type with flat trim.
- B. Trim: Approximately 8 x 38 mm (5/16 x $1\frac{1}{2}$ inches).
- C. Size: As required to accommodate specified fire extinguisher.
- D. Vision Panel: Vertical, approximately 1/3 the width of the door, full height.
- E. Handle: Wire type pull.

2.2 FABRICATION

- A. Form body of cabinet from 0.9 mm (0.0359 inch) thick sheet steel.
- B. Fabricate door and trim from 1.2 mm (0.0478 inch) thick type 304 stainless steel sheet with all face joints fully welded and ground smooth.

- Glaze doors with 6 mm (1/4 inch) thick ASTM D4802, clear acrylic sheet, Category B-1, Finish 1.
- 2. Design doors to open 180 degrees.
- 3. Provide continuous hinge, pull handle, and adjustable roller catch.

2.3 FINISH

- A. Finish interior of cabinet body with baked-on semigloss white enamel.
- B. Finish door and frame: #4 satin stainless steel.

2.4 FIRE EXTINGUISHERS

- A. Type: Multipurpose dry chemical.
- B. Size and Capacity: 6 lbs.; 3A:40BC.

PART 3 - EXECUTION

- A. Install fire extinguisher cabinets in prepared openings and secure in accordance with manufacturer's instructions.
- B. Install cabinet so that handle is not more than 1370 mm (54 inches) above finish floor.

- - - E N D - - -

SECTION 11 31 00 APPLIANCES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies kitchen appliances.

1.2 RELATED WORK

- A. For electrical connections and available voltages see electrical sections of the specifications and the drawings.
- B. For plumbing connections see the plumbing sections of the specifications and the drawings.

1.3 STANDARDS

- A. UL listed products.
- B. ADA compliant.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Shop Drawings: Showing installation details, methods of anchoring, and plumbing and electrical connections.
- C. Manufacturers Literature and Data: Instruction manuals and service manuals, including parts list. Proof of appliances being Energy Star qualified.
- D. Samples: Dishwasher manufacturer's full range of available exterior finishes.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Sheet Steel: Fed. Spec. QQ-S-698, cold rolled, commercial quality for cabinets.
- B. Stainless Steel: ASTM A167.

2.2 UNDERCOUNTER DISHWASHER

- A. Capacity: 14 place settings.
- B. Cycles: 4
- C. Features and Options:
 - 1. 4 hour delay wash.
 - 2. High temperature wash.
 - 3. High temperature rinse.
 - 4. Heated drying.
 - 5. Removable silverware basket.

- C. Utilities:
 - 1. Electrical: 120 V, 60 Hz, 20 amp.
 - 2. Water: 49°C (120°F), 138-862 kPa (20-120 psi).
- D. Noise Level: 52 dBA maximum.
- E. Finishes:
 - Exposed to view cabinet: Manufacturer's standard panels. Color to be selected from full range of available colors and will match Owner furnished appliances.
 - 2. Interior: Stainless steel.
- F. Energy Performance: Energy Star rated. Minimum Consortium for Energy Efficiency (CEE) rating: Tier 1.
- G. Controls: Front of door.
- H. Accessibility: Unit shall comply with ADA Accessibility Guidelines and shall fit under a 864 mm (34 inch) high counter.

2.3 RANGE HOOD

- A. Construction: Canopy style stainless steel and glass; wall mounted.
- B. Fan: 290 cfm centrifugal blower with variable speed control.
- C. Filter: Interchangeable and washable aluminum or stainless steel framed.
- D. Discharge: Through exterior wall with stainless steel cap and flap.
- E. Electrical: 120 V, 60 Hz, 20 amp.
- F. Lights: 1 fluorescent lamp.
- G. Energy Performance: Energy Star rated.
- H. Accessibility: Unit shall comply with ADA Accessibility Guidelines.

PART 3 - EXECUTION

3.1 GENERAL

- A. Install appliances in strict accordance with manufacturers' instructions.
- B. Before installation check the location, and fittings for services to the unit. Coordinate this work with the plumbing and electrical trades.

3.2 FASTENINGS AND ANCHORAGE

A. Fastenings and anchorage for securing appliances, except as otherwise specified, to adjoining construction shall be by toggle or expansion bolts, approximately 6 mm (1/4 inch) in diameter, or other appropriate size and type of fastenings as required for each specific type of installation. Space fastenings approximately 600 mm (24 inches) on center.

- B. Where type, size of spacing of fastenings is not shown or specified, submit shop drawings showing proposed fastenings and method of installation.
- C. Fastenings and anchorage for cabinets attached to metal stud partitions shall be as detailed on the drawings.
- D. Appliances shall not be anchored to wood ground strips.

- - - E N D - - -

SECTION 14 42 00 WHEELCHAIR LIFTS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the engineering, furnishing, and installation of the complete ready for operation vertical platform wheelchair lift as described herein and indicated on the Contract drawings.
- B. Items listed in the singular apply to each and every cartlift in this specification, except where noted.

1.2 RELATED WORK

- A. Section 01 33 23 SPECIFICATIONS AND DRAWINGS FOR CONSTRUCTION (FAR 52.236-21) and, SPECIAL NOTES (VAAR 852.236-91), in GENERAL CONDITIONS.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements that are common to more than one section.
- C. Section 26 05 21, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW): Low Voltage power and lighting wiring.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits for cables and wiring.

1.3 QUALIFICATIONS

- A. Approval by the Contracting Officer is required for products or services of proposed manufacturers, suppliers, and installers and shall be contingent upon submission by Contractor of certificates stating the following:
 - 1. Contractor is currently and regularly engaged in the installation of similar equipment as one of its principal products.
 - Contractor shall have five years of successful experience, trained supervisory personnel, and facilities to install equipment specified herein.
 - 3. Contractor shall submit a list of ten prior installations where all the equipment proposed for this project has performed satisfactorily under conditions of normal use.
- B. Approval of Contractor's equipment will be contingent upon their identifying a maintenance service provider that shall render services within four hours of receipt of notification, together with certification that the quantity and quality of replacement parts stock

is sufficient to warranty continued operation of the elevator installation.

- C. The Contractor shall provide and install only those types of safety devices that have been subjected to tests witnessed and certified by an independent professional testing laboratory that is not a subsidiary of the firm that manufactures supplies or installs the equipment.
- D. Welding at the project site shall be made by welders and welding operators who have previously qualified by test as prescribed in American Welding Society Publications AWS Dl.1 to perform the type of work required. VAMC shall require welding certificates be submitted for all workers employed in this capacity. A welding or hot work permit is required for each day and shall be obtained from the COTR of safety department. Request permit one day in advance.
- E. Electrical work shall be performed by Licensed Electricians as requirements by NEC. Certificates shall be submitted for all workers employed in this capacity.

1.4 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification. Cartlift installation shall meet the requirements of the latest editions published and adopted by the United States Department of Veterans Affairs on the date contract is signed.
- B. International Building Code (IBC)
- C. American Society of Mechanical Engineers (ASME): A17.1-2007.....Safety Code for Elevators and Escalators A18.1-2011....Safety Code for Platform Lifts and Stairway Chairlifts
- D. National Fire Protection Association: NFPA 70.....National Electrical Code (NEC) NFPA 101....Life Safety Code
- E. American Society for Testing and Materials (ASTM): A109/A109M-08.....Standard Specification for Steel, Strip, Carbon (0.25 Maximum Percent), Cold Rolled A653/A563M-11....Standard Specification for Steel Sheet, Zinc Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by Hot-Dip Process B209-10....Standard Specification for Aluminum and Aluminum Alloy Sheet and Plate

B221-12a.....Standard Specification for Aluminum and Aluminum Alloy Extruded Bars, Rods, Wire, Profiles and Tubes

F. Gauges:

For Sheet and Plate: U.S. Standard (USS)

For Wire: American Wire Gauge (AWG)

1.5 SUBMITTALS

- A. Submit in accordance with Specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES. Furnish information to evidence full compliance with contract requirements for proposed items. Such information shall include, as required: Manufacturer's Name, Trade Names, Model or Catalog Number, Nameplate Data (size, capacity, and rating) and corresponding specification reference (Federal or project specification number and paragraph). All submitted drawings and related lift material shall be forwarded to the Contracting Officer.
- B. Product Data: Manufacturer's data sheets on each product to be used, including:
 - 1.Submit manufacturer's installation instructions, including preparation, storage and handling requirements.
 - 2.Include complete description of performance and operating characteristics.
 - 3.Show maximum and average power demands.
- C. Shop Drawings:
 - 1. Show typical details of assembly, erection and anchorage.
 - 2. Include wiring diagrams for power, control, and signal systems.
 - 3.Show complete layout and location of equipment, including required clearances and coordination with shaftway.
- D. Selection Samples: For each finished product specified, provide two complete sets of color chips representing manufacturer's full range of available colors and patterns.
- E. Operating and maintenance manuals. Include maintenance schedule, troubleshooting guide, instructions for repairs, parts list and ordering instructions.

1.6 ADDITIONAL EQUIPMENT

A. Additional equipment required to operate the specified equipment manufactured and supplied for this installation shall be furnished and installed by the contractor. The cost of the equipment shall be included in the base bid.

B. Special equipment not required by specification, which would improve the operation, may be installed in conjunction with the specified equipment by the contractor at his option at no additional cost to the Government, provided prior approval is obtained from the Contracting Officer's Technical Representative.

1.7 PERFORMANCE STANDARDS

- A. The lift shall meet the highest standards of the industry and specifically the following:
 - Contract speed is high speed in either direction of travel with rated capacity load in the cartlift. Speed variation under all load conditions, regardless of direction of travel, shall not vary more than three (3) percent.
 - The controlled rate of change of acceleration and retardation of the car shall not exceed 0.1G per second and the maximum acceleration and retardation shall not exceed 0.2G per second.
 - 3. Starting, stopping, and leveling shall be smooth without appreciable steps of acceleration and deceleration.

1.8 DELIVERY, STORAGE AND HANDLING

- A. Store products in manufacturer's unopened packaging until ready for installation.
- B. Store components off the ground in a dry covered area, protected from adverse weather conditions.
- C. Do not used wheelchair lift for hoisting materials or personnel during construction.

1.9 WARRANTY

- A. Submit all labor and materials furnished in connection with lift system and installation to terms of "Warranty of Construction" articles of FAR clause 52.246-21. The One Year Warranty shall commence after final inspection, completion of performance test, and upon full acceptance of the installation and shall concur with the guarantee period of service.
- B. During warranty period if a device is not functioning properly or in accordance with specification requirements, or if in the opinion of the Contracting Officer's Technical Representative, excessive maintenance and attention must be employed to keep device operational, device shall be removed and a new device meeting all requirements shall be installed

as part of work until satisfactory operation of installation is obtained. Period of warranty shall start anew for such parts from date of completion of each new installation performed, in accordance with foregoing requirements.

C. Extended Warranty: Provide an extended manufacturer's warranty covering the wheelchair lift materials and workmanship for 2 years beyond the manufacturer's initial one year warranty.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Where cold rolled steel is permitted, it shall be low-carbon steel rolled to stretcher leveled standard flatness, complying with ASTM A109, galvanized in accordance with ASTM A653. Steel shall be powder coated baked enamel.
- B. Where aluminum is specified, provide aluminum sheet or extrusions in compliance with ASTM B209 or B221, respectively. Finish shall be fluouropolymer paint.

2.2 MANUFACTURED PRODUCTS

- A. Products shall be designed for commercial application and shall be designed and rated for outdoor use.
- B. Meet or exceed requirements of ANSI/ASME A18.1.
- C. Materials, devices and equipment furnished shall be of current production by manufacturers regularly engaged in the manufacture of such items. Items not meeting this requirement but meet technical specifications which can be established through reliable test reports or physical examination of representative samples will be considered.
- D. Manufacturers of equipment assemblies which include components made by others shall assume complete responsibility for the final assembled unit.
 - Individual components of assembled units shall be products of the same manufacturers.
 - 2. Parts which are alike shall be the product of a single manufacturer.
 - 3. Components shall be compatible with each other and with the total assembly for the intended service.
- E. Motor nameplates shall state manufacturers' name, rated horsepower, speed, volts, amperes and other characteristics required by NEMA

Standards and shall be securely attached to the item of equipment in a conspicuous location.

2.3 CAPACITY, SIZE, SPEED, AND TRAVEL

A. Wheelchair lift shall have the capacity to lift a live load, including the weight of the car and cables, at the speed specified in the following schedule:

Platform Size	914 mm x 1372 (36 x 54 inches)
Platform Configuration	Straight-through
Rated Load - kg(lb)	340 kg (750 lb.)
Contract Speed - m/s(fpm)	51 mm/second (10 fpm)
Total Travel - mm(ft)	Up to 1956 mm(6 feet - 5 inches)
	Field verification required prior
	to installation
Number of Stops	2
Number of Openings	2
Gate Type and Size	Hinged, 915 mm wide x 1040 mm
	high(36 x 42 inches), 90 degree
	swing
Platform Walls	1040 mm (42 inches) high

2.4 ELECTRICAL AND POWER

- A. Motor: 1 HP, 120VAC, 60 HZ, single phase, instant reversing.
- B. Battery backup for emergency lowering.
- C. Electrical disconnect.

2.5 CONTROLS

- A. Weather resistant constant pressure controls.
- B. Up/down paddle switch on platform and at landings; keyswitch alarm, and emergency stop.

2.6 SAFETY

- A. Safety interlock on gates.
- B. Grounded electrical system with upper, lower and final limit switches.
- C. Emergency stop, alarm and keyswitch.
- D. Tamper resistant interlocks.

- E. Pit stop limit switch.
- F. Non-skid safety plate platform.
- G. Solid handrail.

2.7 COVER

- A. Provide an all weather cover for the lift and tower. Cover shall be waterproof, washable, and remain flexible in temperatures as low as -18° C (0° F). It shall be sized and configured specifically for the lift provided.
- B. Warranty: Cover shall not crack or otherwise deteriorate in a manner that permits water to leak onto lift mechanisms for a period of three years.
- C. Color: As selected by the COTR from available colors.

PART 3-EXECUTION

3.1 EXAMINATION

- A. Do not begin installation until substrates have been properly prepared.
- B. Verify shaft and machine space are of correct size and within tolerances.
- C. Verify required landings and openings are of correct size and within tolerances.
- D. Verify electrical rough-in is at correct location.
- E. If substrate preparation is the responsibility of another installer, notify Architect of unsatisfactory preparation before proceeding.
- 3.2 PREPARATION
 - A. Clean surfaces thoroughly prior to installation.
 - B. Prepare surfaces using the methods recommended by the manufacturer for achieving the best result for the substrate under the project conditions.
- 3.3 INSTALLATION
 - A. Install lifts in accordance with applicable regulatory requirements including ASME A 17.1, ASME A 18.1 and the manufacturer's instructions.
 - B. Install lifts in accordance with applicable regulatory requirements including CSA B355, and manufacturer's instructions.
 - C. Install system components and connect to building utilities.
 - D. Accommodate equipment in space indicated.
 - E. Startup equipment in accordance with manufacturer's instructions.
 - F. Adjust for smooth operation.
- 3.4 FIELD QUALITY CONTROL

- A. Perform tests in compliance with ASME A 17.1 or A18.1 and as required by authorities having jurisdiction.
- B. Perform tests in compliance with CSA B355 and required by authorities having jurisdiction.
- C. Schedule tests with agencies and Owner and Contractor present.

3.5 INSTRUCTION OF VA PERSONNEL

- A. Provide competent instruction to VA personnel regarding the operation of equipment and accessories installed under this contract. Instruction shall commence after completion of all work and at the time and place directed by the Contracting Officer.
- B. Written instructions in triplicate relative to care, adjustments, and operation of all equipment and accessories shall be furnished and delivered to the Contracting Officer in independently bound folders. DVD recordings will also be acceptable. Written instructions shall include correct and legible wiring diagrams, nomenclature sheet of all electrical apparatus including location of each device, complete and comprehensive sequence of operation, complete replacement parts list with descriptive literature, and identification and diagrams of equipment and parts. Information shall also include electrical operation characteristics of all circuits, relays, timers, electronic devices, and related characteristics for all rotating equipment.
- C. Provide supplementary instruction for any new equipment that may become necessary because of changes, modifications or replacement of equipment or operation under requirements of paragraph entitled "Warranty of Construction".

3.6 PROTECTION

- A. Protect installed products until completion of project.
- B. Touch-up, repair or replace damaged products before Substantial Completion.

- - -E N D - - -

SECTION 21 05 11

COMMON WORK RESULTS FOR FIRE SUPPRESSION

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 21.
- B. Definitions:
 - 1. Exposed: Piping and equipment exposed to view in finished rooms.
 - 2. Option or optional: Contractor's choice of an alternate material or method.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 05 50 00, METAL FABRICATIONS.
- D. Section 07 84 00, FIRESTOPPING.
- E. Section 07 92 00, JOINT SEALANTS.
- F. Section 09 91 00, PAINTING.
- G. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS

1.3 QUALITY ASSURANCE

- A. Products Criteria:
 - Standard Products: Material and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture of the products for at least 3 years. See other specification sections for any exceptions.
 - Equipment Service: Products shall be supported by a service organization which maintains a complete inventory of repair parts and is located reasonably close to the site.
 - Multiple Units: When two or more units of materials or equipment of the same type or class are required, these units shall be products of one manufacturer.
 - 4. Assembled Units: Manufacturers of equipment assemblies, which use components made by others, assume complete responsibility for the final assembled product.
 - 5. Nameplates: Nameplate bearing manufacturer's name or identifiable trademark shall be securely affixed in a conspicuous place on equipment, or name or trademark cast integrally with equipment, stamped or otherwise permanently marked on each item of equipment.

- Asbestos products or equipment or materials containing asbestos shall not be used.
- B. Manufacturer's Recommendations: Where installation procedures or any part thereof are required to be in accordance with the recommendations of the manufacturer of the material being installed, printed copies of these recommendations shall be furnished to the COTR prior to installation. Installation of the item will not be allowed to proceed until the recommendations are received. Failure to furnish these recommendations can be cause for rejection of the material.
- C. Guaranty: In GENERAL CONDITIONS.
- D. Supports for sprinkler piping shall be in conformance with NFPA 13.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data: Submit under the pertinent section rather than under this section.
 - 1. Equipment and materials identification.
 - 2. Fire-stopping materials.
 - 3. Hangers, inserts, supports and bracing. Provide load calculations for variable spring and constant support hangers.
 - 4. Wall, floor, and ceiling plates.
- C. Coordination Drawings: Provide detailed layout drawings of all piping systems. Provide details of the following.
 - 1. Crawl space.
 - 2. Hangers, inserts, supports, and bracing.
 - 3. Pipe sleeves.
 - 4. Attic.
- D. Maintenance Data and Operating Instructions:
 - Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Article, INSTRUCTIONS, for systems and equipment.
 - Provide a listing of recommended replacement parts for keeping in stock supply, including sources of supply, for equipment. Include in the listing belts for equipment.

1.5 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.

B. American Society for Testing and Materials (ASTM): A36/A36M-2001.....Carbon Structural Steel A575-96.....Steel Bars, Carbon, Merchant Quality, M-Grades R (2002) E84-2003.....Standard Test Method for Burning

Characteristics of Building Materials

E119-2000.....Standard Test Method for Fire Tests of Building Construction and Materials

C. National Fire Protection Association (NFPA): 90A-96.....Installation of Air Conditioning and Ventilating Systems

101-97.....Life Safety Code

PART 2 - PRODUCTS

2.1 LIFTING ATTACHMENTS

Provide equipment with suitable lifting attachments to enable equipment to be lifted in its normal position. Lifting attachments shall withstand any handling conditions that might be encountered, without bending or distortion of shape, such as rapid lowering and braking of load.

2.2 EQUIPMENT AND MATERIALS IDENTIFICATION

- A. Use symbols, nomenclature and equipment numbers specified, shown on the drawings and shown in the maintenance manuals. Identification for piping is specified in Section 09 91 00, PAINTING.
- B. Interior (Indoor) Equipment: Engraved nameplates, with letters not less than 48 mm (3/16-inch) high of brass with black-filled letters, or rigid black plastic with white letters specified in Section 09 91 00, PAINTING permanently fastened to the equipment. Identify unit components such as coils, filters, fans, etc.
- C. Valve Tags and Lists:
 - Valve tags: Engraved black filled numbers and letters not less than 13 mm (1/2-inch) high for number designation, and not less than 6.4 mm(1/4-inch) for service designation on 19 gage 38 mm (1-1/2 inches) round brass disc, attached with brass "S" hook or brass chain.
 - 2. Valve lists: Typed or printed plastic coated card(s), sized 216 mm (8-1/2 inches) by 280 mm (11 inches) showing tag number, valve function and area of control, for each service or system. Punch sheets for a 3-ring notebook.

3. Provide detailed plan for each floor of the building indicating the location and valve number for each valve. Identify location of each valve with a color coded thumb tack in ceiling.

2.3 FIRESTOPPING

Section 07 84 00, FIRESTOPPING specifies an effective barrier against the spread of fire, smoke and gases where penetrations occur for piping.

2.4 GALVANIZED REPAIR COMPOUND

Mil. Spec. DOD-P-21035B, paint form.

2.5 PIPE PENETRATIONS

- A. Install sleeves during construction.
- B. To prevent accidental liquid spills from passing to a lower level, provide the following:
 - 1. For sleeves: Extend sleeve 25 mm (one inch) above finished floor and provide sealant for watertight joint.
 - For drilled penetrations: Provide 40 mm (1-1/2 inch) angle ring or square set in silicone adhesive around penetration.
- C. Penetrations are not allowed through beams or ribs, but may be installed in concrete beam flanges. Any deviation from this requirement must receive prior approval of COTR.
- D. Sheet Metal, Plastic, or Moisture-resistant Fiber Sleeves: Provide for pipe passing through floors, interior walls, and partitions, unless brass or steel pipe sleeves are specifically called for below.
- E. Sleeve Clearance: Sleeve through floors, walls, partitions, and beam flanges shall be one inch greater in diameter than external diameter of pipe. Sleeve for pipe with insulation shall be large enough to accommodate the insulation. Interior openings shall be caulked tight with fire stopping material and sealant to prevent the spread of fire, smoke, and gases.
- F. Sealant and Adhesives: Shall be as specified in Section 07 92 00, JOINT SEALANTS.

2.6 TOOLS AND LUBRICANTS

A. Furnish, and turn over to the COTR, special tools not readily available commercially, that are required for disassembly or adjustment of equipment and machinery furnished.

2.7 WALL, FLOOR AND CEILING PLATES

A. Material and Type: Chrome plated brass or chrome plated steel, one piece or split type with concealed hinge, with set screw for fastening

to pipe, or sleeve. Use plates that fit tight around pipes, cover openings around pipes and cover the entire pipe sleeve projection.

- B. Thickness: Not less than 2.4 mm (3/32-inch) for floor plates. For wall and ceiling plates, not less than 0.64 mm (0.025-inch) for up to 80 mm (3-inch pipe), 0.89 mm (0.035-inch) for larger pipe.
- C. Locations: Use where pipe penetrates floors, walls and ceilings in exposed locations, in finished areas only. Provide a watertight joint in spaces where brass or steel pipe sleeves are specified.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Coordinate location of piping, sleeves, inserts, hangers, and equipment. Locate piping, sleeves, inserts, hangers, and equipment clear of windows, doors, openings, light outlets, and other services and utilities. Follow manufacturer's published recommendations for installation methods not otherwise specified.
- B. Protection and Cleaning:
 - Equipment and materials shall be carefully handled, properly stored, and adequately protected to prevent damage before and during installation, in accordance with the manufacturer's recommendations and as approved by the COTR. Damaged or defective items in the opinion of the COTR, shall be replaced.
 - Close pipe openings with caps or plugs during installation. Tightly cover and protect equipment against dirt, water chemical, or mechanical injury. At completion of all work thoroughly exposed materials and equipment.
- C. Concrete and Grout: Use concrete and shrink compensating grout 25 MPa (3000 psi) minimum, specified in Section 03 30 00, CAST-IN-PLACE CONCRETE.
- D. Install gages, valves, and other devices with due regard for ease in reading or operating and maintaining said devices. Locate and position gages to be easily read by operator or staff standing on floor or walkway provided. Servicing shall not require dismantling adjacent equipment or pipe work.
- E. Work in Existing Building:
 - Perform as specified in Article, OPERATIONS AND STORAGE AREAS, Article, ALTERATIONS, and Article, RESTORATION of the Section 01 00 00, GENERAL REQUIREMENTS for relocation of existing equipment, alterations and restoration of existing building(s).

- 2. As specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, OPERATIONS AND STORAGE AREAS, make alterations to existing service piping at times that will least interfere with normal operation of the facility.
- 3. Cut required openings through existing masonry and reinforced concrete using diamond core drills. Use of pneumatic hammer type drills, impact type electric drills, and hand or manual hammer type drills, will be permitted only with approval of the COTR. Locate openings that will least effect structural slabs, columns, ribs or beams. Refer to the COTR for determination of proper design for openings through structural sections and opening layouts approval, prior to cutting or drilling into structure. After COTR's approval, carefully cut opening through construction no larger than absolutely necessary for the required installation.
- H. Inaccessible Equipment:
 - Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance, equipment shall be removed and reinstalled or remedial action performed as directed at no additional cost to the Government.
 - 2. The term "conveniently accessible" is defined as capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as motors, fans, pumps, belt guards, transformers, high voltage lines, piping, and ductwork.

3.2 OPERATING AND PERFORMANCE TESTS

- A. Prior to the final inspection, perform required tests as specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TESTS and submit the test reports and records to the COTR.
- B. Should evidence of malfunction in any tested system, or piece of equipment or component part thereof, occur during or as a result of tests, make proper corrections, repairs or replacements, and repeat tests at no additional cost to the Government.
- C. When completion of certain work or system occurs at a time when final control settings and adjustments cannot be properly made to make performance tests, then make performance tests for heating systems and for cooling systems respectively during first actual seasonal use of respective systems following completion of work.

3.3 INSTRUCTIONS TO VA PERSONNEL

Provide in accordance with Article, INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS.

– – – END**– – –**

SECTION 21 13 16 DRY-PIPE SPRINKLER SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Design, installation and testing shall be in accordance with NFPA 13.
- B. The design and installation of a hydraulically calculated automatic dry-pipe sprinkler system complete and ready for operation, for those locations as shown on the contract drawings.
- C. Modification of the existing dry-pipe sprinkler system as indicated on the drawings and as further required by these specifications.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Section 33 10 00, WATER UTILITIES.
- C. Section 07 84 00, FIRESTOPPING.
- D. Section 09 91 00, PAINTING.
- E. Section 22 05 23, GENERAL-DUTY VALVES FOR PLUMBING PIPING.
- F. Section 28 31 00, FIRE DETECTION AND ALARM.

1.3 DESIGN CRITERIA

- A. Design Basis Information: Provide design, materials, equipment, installation, inspection, and testing of the automatic sprinkler system in accordance with the requirements of NFPA 13.
 - Perform hydraulic calculations in accordance with NFPA 13 utilizing the Area/Density method, including all applicable design area increases.
 - Sprinkler Protection: Sprinkler hazard classifications shall be in accordance with NFPA 13. The hazard classification examples of uses and conditions identified in the Annex of NFPA 13 shall be mandatory. Request clarification from the Government for any hazard classification not identified.
 - 3. Dry-pipe Sprinkler System Volume:
 - a. Contractor shall indicate the calculated volume of each system on the sprinkler system shop drawings.
 - b. For dry-pipe sprinkler systems with volumes greater than 1893 L (500 gal) up to 2839 L (750 gal), provide a quick opening device unless water delivery time calculations indicate the quick opening devices is not required.

- c. For dry-pipe sprinkler systems with volumes greater than 2839 L (750 gal), provide calculations for water delivery time. Calculations shall demonstrate compliance with NFPA 13.
- 4. Nitrogen Generator Plant: Coordinate sizing of nitrogen generator and air compressor with the nitrogen generator manufacturer.
- 5. Hydraulic Calculations: Calculated demand including hose stream requirements shall fall no less than 10 percent below the available water supply curve.
- 6. Water Supply: Base water supply on a flow test of:
 - b. Elevation Static Test Gauge _____ m
 - (_____ ft)

a. Location ____

- c. Elevation Residual Test Gauge _____ m (_____ ft)
- d. Static pressure: _____ kPa (_____ psi)
- e. Residual pressure: _____ kPa (_____ psi)
- f. Flow: _____ L/s (_____ gpm)
- g. Date: _____ Time _____
- Provide seismic protection in accordance with NFPA 13. Contractor shall submit load calculations for sizing of sway bracing for systems that are required to be protected against damage from earthquakes.

1.4 SUBMITTALS

A. Submit as one package in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. Prepare detailed working drawings that are signed by a NICET Level III or Level IV Sprinkler Technician or stamped by a Registered Professional Engineer licensed in the field of Fire Protection Engineering. As the Government review is for technical adequacy only, the installer remains responsible for correcting any conflicts with other trades and building construction that arise during installation. Partial submittals will not be accepted. Material submittals shall be approved prior to the purchase or delivery to the job site. Suitably bind submittals in notebooks or binders and provide an index referencing the appropriate specification section. In addition to the hard copies, provide submittal items in Paragraphs 1.4(A)1 through 1.4(A)5 electronically in pdf format on a compact disc or as directed by the COR. Submittals shall include, but not be limited to, the following:

- 1. Qualifications:
 - a. Provide a copy of the installing contractors fire sprinkler and state contractor's license.
 - b. Provide a copy of the NICET certification for the NICET Level III or Level IV Sprinkler Technician who prepared and signed the detailed working drawings unless the drawings are stamped by a Registered Professional Engineer licensed in the field of Fire Protection Engineering.
 - c. Provide documentation showing that the installer has been actively and successfully engaged in the installation of commercial automatic sprinkler systems for the past ten years.
- Drawings: Submit detailed 1:100 (1/8 inch) scale (minimum) working drawings conforming to the Plans and Calculations chapter of NFPA 13. Drawings shall include graphical scales that allow the user to determine lengths when the drawings are reduced in size. Include a plan showing the piping to the water supply test location.
- 3. Manufacturer's Data Sheets: Provide data sheets for all materials and equipment proposed for use on the system. Include listing information and installation instructions in data sheets. Where data sheets describe items in addition to those proposed to be used for the system, clearly identify the proposed items on the sheet.
- 4. Calculation Sheets:
 - a. Submit hydraulic calculation sheets in tabular form conforming to the requirements and recommendations of the Plans and Calculations chapter of NFPA 13.
 - b. For dry-pipe sprinkler systems with volumes more than 2838 L (750 gal), submit calculations for dry-pipe system water delivery time in accordance with NFPA 13.
 - c. Submit calculations of loads for sizing of sway bracing in accordance with NFPA 13.
- 5. Valve Charts: Provide a valve chart that identifies the location of each control valve. Coordinate nomenclature and identification of control valves with COR. Where existing nomenclature does not exist, the chart shall include no less than the following: Tag ID No., Valve Size, Service (control valve, main drain, aux. drain, inspectors test valve, etc.), and Location.
- 6. Final Document Submittals: Provide as-built drawings, testing and maintenance instructions in accordance with the requirements in

Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. In addition, submittals shall include, but not be limited to, the following:

- a. A complete set of as-built drawings showing the installed system with the specific interconnections between the system switches and the fire alarm equipment. Provide a complete set in the formats as follows. Submit items 2 and 3 below on a compact disc or as directed by the COR.
 - 1) One full size (or size as directed by the COR) printed copy.
 - 2) One complete set in electronic pdf format.
 - 3) One complete set in AutoCAD format or a format as directed by the COR.
- b. Material and Testing Certificate: Upon completion of the sprinkler system installation or any partial section of the system, including testing and flushing, provide a copy of a completed Material and Testing Certificate as indicated in NFPA 13. Certificates shall be provided to document all parts of the installation.
- c. Operations and Maintenance Manuals that include step-by-step procedures required for system startup, operation, shutdown, and routine maintenance and testing. The manuals shall include the manufacturer's name, model number, parts list, and tools that should be kept in stock by the owner for routine maintenance, including the name of a local supplier, simplified wiring and controls diagrams, troubleshooting guide, and recommended service organization, including address and telephone number, for each item of equipment.
- d. One paper copy of the Material and Testing Certificates and the Operations and Maintenance Manuals above shall be provided in a binder. In addition, these materials shall be provided in pdf format on a compact disc or as directed by the COR.
- e. Provide one additional copy of the Operations and Maintenance Manual covering the system in a flexible protective cover and mount in an accessible location adjacent to the riser or as directed by the COR.

1.5 QUALITY ASSURANCE

A. Installer Reliability: The installer shall possess a valid State ofWest Virginia fire sprinkler contractor's license. The installer shall

have been actively and successfully engaged in the installation of commercial automatic sprinkler systems for the past ten years.

B. Materials and Equipment: All equipment and devices shall be of a make and type listed by UL or approved by FM, or other nationally recognized testing laboratory for the specific purpose for which it is used. All materials, devices, and equipment shall be approved by the VA. All materials and equipment shall be free from defect. All materials and equipment shall be new unless specifically indicated otherwise on the contract drawings.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. National Fire Protection Association (NFPA):
 - 13-[].....Installation of Sprinkler Systems
 25-[]....Inspection, Testing, and Maintenance of Water-Based Fire Protection Systems
 101-[]....Life Safety Code

1

- 170-[].....Fire Safety Symbols
- C. Underwriters Laboratories, Inc. (UL): Fire Protection Equipment Directory [
- D. Factory Mutual Engineering Corporation (FM):
 Approval Guide []
- PART 2 PRODUCTS

2.1 GENERAL

Dry-pipe sprinkler systems shall comply with the requirements of NFPA 13.

2.2 PIPING & FITTINGS

- A. Piping and fittings for private underground water mains shall be in accordance with NFPA 13.
 - Pipe and fittings from inside face of building 300 mm (12 in.) above finished floor to a distance of approximately 1500 mm (5 ft.) outside building: Ductile Iron, flanged fittings and 316 stainless steel bolting.
- B. Piping and fittings for sprinkler systems shall be in accordance with NFPA 13.
 - Plain-end pipe fittings with locking lugs or shear bolts are not permitted.

- 2. Piping sizes 50 mm (2 inches) and smaller shall be black steel Schedule 40 with threaded end connections.
- Piping sizes 65 mm (2 ½ inches) and larger shall be black steel Schedule 10 with grooved connections. Grooves in Schedule 10 piping shall be rolled grooved only.

2.3 VALVES

- A. General:
 - 1. Valves shall be in accordance with NFPA 13.
 - Do not use quarter turn ball valves for 50 mm (2 inch) or larger drain valves.
- B. Control Valve:
 - 1. Shall be a manually operated outside stem and yoke (OS&Y) type.
- C. Dry-pipe Valve:
 - 1. Shall be a latching differential type.
 - Shall be complete with trim piping, valves, fittings, pressure gauges, priming water fill cup, velocity drip check, drip cup, and other ancillary components as required for proper operation.
 - For dry-pipe sprinkler systems with volumes more than 1893 L (500 gal), provide a quick opening device unless water delivery time calculations have proven no quick opening device is required.
 - 4. Shall be capable of external reset.
- D. Check Valve:
 - 1. Shall be of the swing type with a flanged cast iron body and flanged inspection plate.
- E. Automatic Ball Drips: Cast brass 20 mm (3/4 inch) in-line automatic ball drip with both ends threaded with iron pipe threads. //
- F. Backflow Preventer: Provide backflow preventer in accordance with Section 22 05 23, GENERAL-DUTY VALVES FOR PLUMBING PIPING. Provide means to forward flow test the backflow preventer in accordance with NFPA 13.//

2.4 FIRE DEPARTMENT SIAMESE CONNECTION N/A

Α.

2.5 SPRINKLERS

A. All sprinklers shall be FM approved. All sprinklers shall be either upright type, dry pendent type, or dry sidewall type. Provide FM Approved quick response sprinklers in all areas, except that standard response sprinklers shall be provided in freezers, refrigerators, elevator hoist ways, elevator machine rooms, and generator rooms.

- B. Temperature Ratings: In accordance with NFPA 13 except that sprinklers in elevator shafts and elevator machine rooms shall be no less than intermediate temperature rated and sprinklers in generator rooms shall be no less than high temperature rated.
- C. Provide sprinkler guards in accordance with NFPA 13 and when the elevation of the head is less than 7 feet 6 inches above finished floor. The sprinkler guard shall be listed or approved for use with the corresponding sprinkler.

2.6 SUPERVISORY NITROGEN SYSTEM N/A

2.7 SUPERVISORY AIR SYSTEM

- A. Provide an air supply system in accordance with NFPA 13 and the manufacturers' requirements. The air supply system shall be sized to pressurize the sprinkler system to 275 kPa (40 psi) within 30 minutes.
- B. Air Compressor: Compressor shall be tank mounted, single stage oil-free type, air-cooled, electric-motor driven, equipped with a check valve, shutoff valve, automatic drain on drip leg, and pressure switch for automatic starting and stopping. Pressure switch settings to start and stop the compressor shall be as required by system conditions. A safety relief valve shall be provided.

2.8 AIR PRESSURE MAINTENANCE DEVICE

Air Pressure Maintenance Device: Air pressure maintenance device shall be UL listed or FM approved and shall automatically reduce supply air pressure to provide the pressure required to be maintained in the piping system. The device shall have a cast bronze body and valve housing complete with diaphragm assembly, spring, filter, ball check to prevent backflow, 1.6 mm (1/16 inch) restriction to prevent rapid pressurization of the system, and adjustment screw. The device shall be capable of reducing an inlet pressure of up to 680 kPa (100 psig) to a fixed outlet pressure adjustable to 70 kPa (10 psig).

2.9 SPRINKLER CABINET

- A. Provide sprinkler cabinet with the required number of sprinkler heads of all ratings and types installed, and a sprinkler wrench for each type of sprinkler in accordance with NFPA 13.
- B. Provide a list of sprinklers installed in the property in the cabinet. The list shall include the following:
 - Manufacturer, model, orifice, deflector type, thermal sensitivity, and pressure for each type of sprinkler in the cabinet.
 - 2. General description of where each sprinkler is used.

- 3. Quantity of each type present in the cabinet.
- 4. Issue or revision date of list.
- C. Sections from NFPA 13:

16.2.7 Stock of Spare Sprinklers.

16.2.7.1* A supply of at least six spare sprinklers shall be maintained on the premises so that any sprinklers that have operated or been damaged in any way can be promptly replaced.

16.2.7.2 The sprinklers shall correspond to the types and temperature ratings of the sprinklers in the property. 16.2.7.3 The sprinklers shall be kept in a cabinet located where the temperature to which they are subjected will at no time exceed the maximum ceiling temperatures specified in Table 7.2.4.1 for each of the sprinklers within the cabinet. 16.2.7.4 Where dry sprinklers of different lengths are installed, spare dry sprinklers shall not be required, provided that a means of returning the system to service is furnished.

16.2.7.5 The stock of spare sprinklers shall include all types and ratings installed and shall be as follows:

(1) For protected facilities having under 300 sprinklers — no fewer than six sprinklers

(2) For protected facilities having 300 to 1000 sprinklers — no fewer than 12 sprinklers

(3) For protected facilities having over 1000 sprinklers — no fewer than 24 sprinklers

16.2.7.6* One sprinkler wrench as specified by the sprinkler manufacturer shall be provided in the cabinet for each type of sprinkler installed to be used for the removal and installation of sprinklers in the system.

16.2.7.7 A list of the sprinklers installed in the property shall be posted in the sprinkler cabinet.

16.2.7.7.1* The list shall include the following:

(1) Sprinkler Identification Number (SIN) if equipped; or the manufacturer, model, K-factor, deflector type, thermal sensitivity, and pressure rating

(2) General description

(3) Quantity of each type to be contained in the cabinet

(4) Issue or revision date of the list

2.10 SPRINKLER SYSTEM SIGNAGE

Rigid plastic, steel or aluminum signs with white lettering on a red background with holes for easy attachment. Sprinkler system signage shall be attached to the valve or piping with chain.

2.11 SWITCHES

- A. OS&Y Valve Supervisory Switches shall be in a weatherproof die cast/red baked enamel, oil resistant, aluminum housing with tamper resistant screws, 13 mm (1/2 inch) conduit entrance and necessary facilities for attachment to the valves. Provide two SPDT switches rated at 2.5 amps at 24 VDC.
- B. Alarm Pressure Switches: Activation by any flow of water equal to or in excess of the discharge from one sprinkler. The alarm pressure switch shall be UL Listed or Factory Mutual Approved for the application in which it is used. Activation of the alarm pressure switch shall cause an alarm on the fire alarm system control unit.
- C. High/Low Pressure Supervisory Switches: The pressure switch shall be UL Listed or FM Approved and contain two single pole double throw contacts. Each switch shall be adjustable from 70 to 414 kPa (10 to 60 psi). The low pressure switch shall supervise pressure in the system and shall be set to activate at 70 kPa (10 psi) above the dry-pipe valve trip point pressure. The high pressure switch shall supervise pressure in the system and shall be set to activate at 70 kPa (10 psi) above the normal dry-pipe supervisory pressure. Activation of either high or low pressure switch shall cause a supervisory alarm on the fire alarm system control unit.

2.12 GAUGES

Provide gauges as required by NFPA 13. Provide gauges where the normal pressure of the system is at the midrange of the gauge.

2.13 PIPE HANGERS, SUPPORTS AND RESTRAINT OF SYSTEM PIPING

Pipe hangers, supports, and restraint of system piping shall be in accordance with NFPA 13.

2.14 WALL, FLOOR AND CEILING PLATES

Provide chrome plated steel escutcheon plates.

2.15 VALVE TAGS

Engraved black filled numbers and letters not less than 15 mm (1/2 inch) high for number designation, and not less than 8 mm (1/4 inch) for service designation on 19 gage, 40 mm (1-1/2 inches) round brass disc, attached with brass "S" hook, brass chain, or nylon twist tie.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Installation shall be accomplished by the licensed contractor. Provide a qualified technician, experienced in the installation and operation

of the type of system being installed, to supervise the installation and testing of the system.

- B. Installation of Piping: Accurately cut pipe to measurements established by the installer and work into place without springing or forcing. In any situation where bending of the pipe is required, use a standard pipe-bending template. Conceal piping in spaces that have finished ceilings. In stairways, locate piping as near to the ceiling as possible to prevent tampering by unauthorized personnel and to provide a minimum headroom clearance of 2250 mm (seven feet six inches). Piping shall not obstruct the minimum means of egress clearances required by NFPA 101. Pipe hangers, supports, and restraint of system piping, // and seismic bracing // shall be installed accordance with NFPA 13.
- C. Welding: Conform to the requirements and recommendations of NFPA 13.
- D. Pitching of Pipe: Conform to the requirements of NFPA 13.
- E. Drains: Provide drips and drains, including low point drains, in accordance with NFPA 13. Pipe drains to discharge at safe points outside of the building. Do not provide a direct drain connection to sewer system or discharge into sinks.
- F. Supervisory Switches: Provide supervisory switches for sprinkler control valves to monitor closure of the valve and for high and low system supervisory air/nitrogen pressure to monitor abnormal system pressures.
- G. Pressure Alarm Switches: Install alarm pressure switches in easily accessible locations.
- H. Inspector's Test Connection: Install and supply in conformance with NFPA 13, and discharge to the exterior of the building. Locate test connection in an area not susceptible to mechanical damage. For drypipe sprinkler systems more than 2800 L (750 gal), provide the number of equivalent sprinkler outlets as calculated for water delivery time in accordance with NFPA 13.
- I. Affix cutout disks, which are created by cutting holes in the walls of pipe for non-threaded pipe connections, to the respective pipe connection near to the pipe from where they were cut.
- J. Provide escutcheon plates for exposed piping passing through walls, floors or ceilings.
- K. Clearances: For systems requiring seismic protection, piping that passes through floors or walls shall have penetrations sized 50 mm (2 inches) nominally larger than the penetrating pipe for pipe sizes 25 mm

(1 inch) to 90 mm (3 $\frac{1}{2}$ inches) and 100 mm (4 inches) nominally larger for penetrating pipe sizes 100 mm (4 inches) and larger.

- L. Sleeves: Provide for pipes passing through masonry or concrete. Provide space between the pipe and the sleeve in accordance with NFPA 13. Seal this space with a UL Listed through penetration fire stop material in accordance with Section 07 84 00, FIRESTOPPING. Where core drilling is used in lieu of sleeves, also seal space around penetrations. Seal penetrations of walls, floors and ceilings of other types of construction, in accordance with Section 07 84 00, FIRESTOPPING.
- //M. For each fire department connection, provide the symbolic sign given in NFPA 170 and locate 2400 to 3000 mm (8 to 10 feet) above each connection location. Size the sign to 450 by 450 mm (18 by 18 inches) with the symbol being at least 350 by 350 mm (14 by 14 inches).//
- N. Firestopping shall be provided for all penetrations of fire resistance rated construction. Firestopping shall comply with Section 07 84 00, FIRESTOPPING.
- O. Painting of Pipe: In finished areas where walls and ceilings have been painted, paint primed surfaces with two coats of paint to match adjacent surfaces, except paint valves and operating accessories with two coats of gloss red enamel. Exercise care to avoid painting sprinklers. Painting of sprinkler systems above suspended ceilings and in crawl spaces is not required. Painting shall comply with Section 09 90 00, PAINTING. Any painted sprinkler shall be replaced with a new sprinkler.
- P. Locate sprinkler cabinet adjacent to the dry-pipe sprinkler system riser or as directed by COR.
- Q. Sprinkler System Signage: Provide rigid sprinkler system signage in accordance with NFPA 13 and NFPA 25. Sprinkler system signage shall include, but not limited to, the following:
 - 1. Identification Signs:
 - a. Provide signage for each control valve, drain valve, sprinkler cabinet, and inspector's test.
 - b. Provide valve tags for each operable valve. Coordinate nomenclature and identification of operable valves with COR.
 Where existing nomenclature does not exist, the Tag Identification shall include no less than the following: (FP-B-F/SZ-#) Fire Protection, Building Number, Floor Number/Smoke Zone

(if applicable), and Valve Number. (E.g., FP-500-1E-001) Fire Protection, Building 500, First Floor East, Number 001.)

- 2. Instruction/Information Signs:
 - a. Provide signage for each control valve to indicate valve function and to indicate what system is being controlled.
 - b. Provide signage indicating the number and location of low point drains.
- 3. Hydraulic Placards:
 - a. Provide signage indicating hydraulic design information. The placard shall include location of the design area, discharge densities, required flow and residual pressure at the base of riser, occupancy classification, hose stream allowance, flow test information, and installing contractor. Locate hydraulic placard information signs at each dry-pipe valve.
- R. Repairs: Repair damage to the building or equipment resulting from the installation of the sprinkler system by the installer at no additional expense to the Government.
- S. Interruption of Service: There shall be no interruption of the existing sprinkler protection, water, electric, or fire alarm services without prior permission of the Contracting Officer Representative. Contractor shall develop an interim fire protection program where interruptions involve in occupied spaces. Request in writing at least one week prior to the planned interruption.

3.2 INSPECTION AND TEST

A. Preliminary Testing: Flush newly installed systems prior to performing tests in order to remove any debris which may have been left as well as ensuring piping is unobstructed. Manually demonstrate nitrogen concentration in dry-pipe sprinkler system piping is at least 98%. Hydrostatically test system, including the fire department connections, pneumatically test system, test air compressor fill time to operating pressure within 30 minutes, and trip test system as specified in NFPA 13, in the presence of the Contracting Officers Representative (COR) or their designated representative. For dry-pipe sprinkler systems with a quick-opening device, the system shall be trip tested with the quick-opening device functioning and with the quick-opening device disabled. Record the time to water delivery for each test. Demonstrate pitch of pipe is in compliance with NFPA 13.

- B. Final Inspection and Testing: Subject system to tests in accordance with NFPA 13, and when all necessary corrections have been accomplished, advise COR to schedule a final inspection and test. Connection to the fire alarm system shall have been in service for at least ten days prior to the final inspection, with adjustments made to prevent false alarms. Furnish all instruments, labor and materials required for the tests and provide the services of the installation foreman or other competent representative of the installer to perform the tests. Correct deficiencies and retest system as necessary, prior to the final inspection and testing. Include the operation of all features of the systems under normal operations in test. At the conclusion of final inspection and testing, blow out dry-pipe system piping using compressed air. Verify piping is fully drained, including low point drains.
- C. Post-Final Inspection: One month after final inspection and testing, the contractor shall manually verify that the system piping has a nitrogen concentration of at least 98%. Advise COR to schedule postfinal inspection.
- D. Final Contractual Acceptance: Final contractual acceptance will be given after successful completion of the final inspection and testing and post-final inspection. The warranty period shall begin after final contractual acceptance.

3.3 INSTRUCTIONS

Furnish the services of a competent instructor for not less than two hours for instructing personnel in the operation and maintenance of the system on the dates requested by the COR.

- - - E N D - - -

SECTION 22 05 11

COMMON WORK RESULTS FOR PLUMBING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section shall apply to all sections of Division 22.
- B. Definitions:
 - 1. Exposed: Piping and equipment exposed to view in finished rooms.
 - Option or optional: Contractor's choice of an alternate material or method.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 05 50 00, METAL FABRICATIONS.
- D. Section 07 84 00, FIRESTOPPING.
- E. Section 07 92 00, JOINT SEALANTS.
- F. Section 09 91 00, PAINTING.
- G. Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION.
- H. Section 23 09 23, DIRECT DIGITAL CONTROLS FOR HVAC.
- I. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS

1.3 QUALITY ASSURANCE

- A. Products Criteria:
 - 1. Standard Products: Material and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture of the products for at least 3 years. However, digital electronics devices, software and systems such as controls, instruments, computer work station, shall be the current generation of technology and basic design that has a proven satisfactory service record of at least three years.
 - 2. Equipment Service: There shall be permanent service organizations, authorized and trained by manufacturers of the equipment supplied, located within 160 km (100 miles) of the project. These organizations shall come to the site and provide acceptable service to restore operations within four hours of receipt of notification by phone, e-mail or fax in event of an emergency, such as the shutdown of equipment; or within 24 hours in a non-emergency. Names,

mail and e-mail addresses and phone numbers of service organizations providing service under these conditions for (as applicable to the project): pumps, critical instrumentation, computer workstation and programming shall be submitted for project record and inserted into the operations and maintenance manual.

- All items furnished shall be free from defects that would adversely affect the performance, maintainability and appearance of individual components and overall assembly.
- 4. The products and execution of work specified in Division 22 shall conform to the referenced codes and standards as required by the specifications. Local codes and amendments enforced by the local code official shall be enforced, if required by local authorities such as the natural gas supplier. If the local codes are more stringent, then the local code shall apply. Any conflicts shall be brought to the attention of the Contracting Officers Technical Representative (COTR).
- 5. Multiple Units: When two or more units of materials or equipment of the same type or class are required, these units shall be products of one manufacturer.
- 6. Assembled Units: Manufacturers of equipment assemblies, which use components made by others, assume complete responsibility for the final assembled product.
- 7. Nameplates: Nameplate bearing manufacturer's name or identifiable trademark shall be securely affixed in a conspicuous place on equipment, or name or trademark cast integrally with equipment, stamped or otherwise permanently marked on each item of equipment.
- 8. Asbestos products or equipment or materials containing asbestos shall not be used.
- B. Welding: Before any welding is performed, contractor shall submit a certificate certifying that welders comply with the following requirements:
 - Qualify welding processes and operators for piping according to ASME "Boiler and Pressure Vessel Code", Section IX, "Welding and Brazing Qualifications".
 - Comply with provisions of ASME B31 series "Code for Pressure Piping".

- 3. Certify that each welder has passed American Welding Society (AWS) qualification tests for the welding processes involved, and that certification is current.
- 4. All welds shall be stamped according to the provisions of the American Welding Society.
- C. Manufacturer's Recommendations: Where installation procedures or any part thereof are required to be in accordance with the recommendations of the manufacturer of the material being installed, printed copies of these recommendations shall be furnished to the COTR prior to installation. Installation of the item will not be allowed to proceed until the recommendations are received. Failure to furnish these recommendations can be cause for rejection of the material.
- D. Execution (Installation, Construction) Quality:
 - All items shall be applied and installed in accordance with manufacturer's written instructions. Conflicts between the manufacturer's instructions and the contract drawings and specifications shall be referred to the COTR for resolution. Written hard copies or computer files of manufacturer's installation instructions shall be provided to the COTR at least two weeks prior to commencing installation of any item.
 - Complete layout drawings shall be required by Paragraph, SUBMITTALS. Construction work shall not start on any system until the layout drawings have been approved.
- E. Guaranty: Warranty of Construction, FAR clause 52.246-21.
- F. Plumbing Systems: IPC, International Plumbing Code.

1.4 SUBMITTALS

- A. Submittals shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 05 11, COMMON WORK RESULTS FOR PLUMBING", with applicable paragraph identification.
- C. Contractor shall make all necessary field measurements and investigations to assure that the equipment and assemblies will meet contract requirements.
- D. If equipment is submitted which differs in arrangement from that shown, provide drawings that show the rearrangement of all associated systems. Approval will be given only if all features of the equipment and

associated systems, including accessibility, are equivalent to that required by the contract.

- E. Prior to submitting shop drawings for approval, contractor shall certify in writing that manufacturers of all major items of equipment have each reviewed drawings and specifications, and have jointly coordinated and properly integrated their equipment and controls to provide a complete and efficient installation.
- F. Upon request by Government, lists of previous installations for selected items of equipment shall be provided. Contact persons who will serve as references, with telephone numbers and e-mail addresses shall be submitted with the references.
- G. Manufacturer's Literature and Data: Manufacturer's literature shall be submitted under the pertinent section rather than under this section.
 - 1. Electric motor data and variable speed drive data shall be submitted with the driven equipment.
 - 2. Equipment and materials identification.
 - 3. Fire stopping materials.
 - 4. Hangers, inserts, supports and bracing. Provide load calculations for variable spring and constant support hangers.
 - 5. Wall, floor, and ceiling plates.
- H. Coordination Drawings: In accordance with GENERAL CONDITIONS, Article, SUBCONTRACTS AND WORK COORDINATION. Complete consolidated and coordinated layout drawings shall be submitted for all new systems, and for existing systems that are in the same areas. The drawings shall include plan views, elevations and sections of all systems and shall be on a scale of not less than 1:32 (3/8-inch equal to one foot). Clearly identify and dimension the proposed locations of the principal items of equipment. The drawings shall clearly show the proposed location and adequate clearance for all equipment, piping, pumps, valves and other items. All valves, trap primer valves, water hammer arrestors, strainers, and equipment requiring service shall be provided with an access door sized for the complete removal of plumbing device, component, or equipment. Equipment foundations shall not be installed until equipment or piping until layout drawings have been approved. Detailed layout drawings shall be provided for all piping systems. In addition, details of the following shall be provided.
 - 1. Mechanical equipment rooms.
 - 2. Interstitial space.

- 3. Hangers, inserts, supports, and bracing.
- 4. Pipe sleeves.
- 5. Equipment penetrations of floors, walls, ceilings, or roofs.
- I. Maintenance Data and Operating Instructions:
 - Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Article, INSTRUCTIONS, for systems and equipment.
 - Listing of recommended replacement parts for keeping in stock supply, including sources of supply, for equipment shall be provided.
 - The listing shall include belts for equipment: Belt manufacturer, model number, size and style, and distinguished whether of multiple belt sets.

1.5 DELIVERY, STORAGE AND HANDLING

A. Protection of Equipment:

- Equipment and material placed on the job site shall remain in the custody of the Contractor until phased acceptance, whether or not the Government has reimbursed the Contractor for the equipment and material. The Contractor is solely responsible for the protection of such equipment and material against any damage.
- Damaged equipment shall be replaced with an identical unit as determined and directed by the COTR. Such replacement shall be at no additional cost to the Government.
- Interiors of new equipment and piping systems shall be protected against entry of foreign matter. Both inside and outside shall be cleaned before painting or placing equipment in operation.
- 4. Existing equipment and piping being worked on by the Contractor shall be under the custody and responsibility of the Contractor and shall be protected as required for new work.
- B. Cleanliness of Piping and Equipment Systems:
 - Care shall be exercised in the storage and handling of equipment and piping material to be incorporated in the work. Debris arising from cutting, threading and welding of piping shall be removed.
 - Piping systems shall be flushed, blown or pigged as necessary to deliver clean systems.
 - Contractor shall be fully responsible for all costs, damage, and delay arising from failure to provide clean systems.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below shall form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. B. American Society of Mechanical Engineers (ASME): Boiler and Pressure Vessel Code (BPVC): SEC IX-2007......Boiler and Pressure Vessel Code; Section IX, Welding and Brazing Qualifications. C. American Society for Testing and Materials (ASTM): A36/A36M-2008.....Standard Specification for Carbon Structural Steel A575-96 (R 2007).....Standard Specification for Steel Bars, Carbon, Merchant Quality, M-Grades R (2002) E84-2005.....Standard Test Method for Surface Burning Characteristics of Building Materials E119-2008a.....Standard Test Methods for Fire Tests of Building Construction and Materials D. Manufacturers Standardization Society (MSS) of the Valve and Fittings Industry, Inc: SP-58-02.....Pipe Hangers and Supports-Materials, Design and Manufacture SP 69-2003 (R 2004)....Pipe Hangers and Supports-Selection and Application E. National Electrical Manufacturers Association (NEMA): MG1-2003, Rev. 1-2007...Motors and Generators F. International Code Council, (ICC): IBC-06, (R 2007).....International Building Code
 - IPC-06, (R 2007).....International Plumbing Code

PART 2 - PRODUCTS

2.1 FACTORY-ASSEMBLED PRODUCTS

- A. STANDARDIZATION OF COMPONENTS SHALL BE MAXIMIZED TO REDUCE SPARE PART requirements.
- B. Manufacturers of equipment assemblies that include components made by others shall assume complete responsibility for final assembled unit.
 - All components of an assembled unit need not be products of same manufacturer.
 - Constituent parts that are alike shall be products of a single manufacturer.

- 3. Components shall be compatible with each other and with the total assembly for intended service.
- 4. Contractor shall guarantee performance of assemblies of components, and shall repair or replace elements of the assemblies as required to deliver specified performance of the complete assembly.
- C. Components of equipment shall bear manufacturer's name and trademark, model number, serial number and performance data on a name plate securely affixed in a conspicuous place, or cast integral with, stamped or otherwise permanently marked upon the components of the equipment.
- D. Major items of equipment, which serve the same function, shall be the same make and model

2.2 COMPATIBILITY OF RELATED EQUIPMENT

Equipment and materials installed shall be compatible in all respects with other items being furnished and with existing items so that the result will be a complete and fully operational system that conforms to contract requirements.

2.3 LIFTING ATTACHMENTS

Equipment shall be provided with suitable lifting attachments to enable equipment to be lifted in its normal position. Lifting attachments shall withstand any handling conditions that might be encountered, without bending or distortion of shape, such as rapid lowering and braking of load.

2.4 EQUIPMENT AND MATERIALS IDENTIFICATION

- A. Use symbols, nomenclature and equipment numbers specified, shown on the drawings, or shown in the maintenance manuals. Identification for piping is specified in Section 09 91 00, PAINTING.
- B. Interior (Indoor) Equipment: Engraved nameplates, with letters not less than 48 mm (3/16-inch) high of brass with black-filled letters, or rigid black plastic with white letters specified in Section 09 91 00, PAINTING shall be permanently fastened to the equipment. Unit components such as water heaters, tanks, coils, filters, fans, etc. shall be identified.
- C. Control Items: All temperature, pressure, and controllers shall be labeled and the component's function identified. Identify and label each item as they appear on the control diagrams.
- D. Valve Tags and Lists:
 - Plumbing: All valves shall be provided with valve tags and listed on a valve list (Fixture stops not included).

- 2. Valve tags: Engraved black filled numbers and letters not less than 13 mm (1/2-inch) high for number designation, and not less than 6.4 mm(1/4-inch) for service designation on 19 gage, 38 mm (1-1/2 inches) round brass disc, attached with brass "S" hook or brass chain.
- 3. Valve lists: Valve lists shall be created using a word processing program and printed on plastic coated cards. The plastic coated valve list card(s), sized 216 mm (8-1/2 inches) by 280 mm (11 inches) shall show valve tag number, valve function and area of control for each service or system. The valve list shall be in a punched 3-ring binder notebook. A copy of the valve list shall be mounted in picture frames for mounting to a wall.
- 4. A detailed plan for each floor of the building indicating the location and valve number for each valve shall be provided. Each valve location shall be identified with a color coded sticker or thumb tack in ceiling.

2.8 FIRE STOPPING

A. Section 07 84 00, FIRESTOPPING specifies an effective barrier against the spread of fire, smoke and gases where penetrations occur for piping. Refer to Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION, for pipe insulation.

2.9 GALVANIZED REPAIR COMPOUND

A. Mil. Spec. DOD-P-21035B, paint.

2.10 PIPE AND EQUIPMENT SUPPORTS AND RESTRAINTS

- A. In lieu of the paragraph which follows, suspended equipment support and restraints may be designed and installed in accordance with the International Building Code (IBC), latest edition, and SECTION 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS. Submittals based on the International Building Code (IBC), latest edition, SECTION 13 05 41 requirements, or the following paragraphs of this Section shall be stamped and signed by a professional engineer registered in a state where the project is located. The Support system of suspended equipment over 227 kg (500 pounds) shall be submitted for approval of the COTR in all cases. See these specifications for lateral force design requirements.
- B. Type Numbers Specified: MSS SP-58. For selection and application refer to MSS SP-69. Refer to Section 05 50 00, METAL FABRICATIONS, for miscellaneous metal support materials and prime coat painting.

- C. For Attachment to Concrete Construction:
 - 1. Concrete insert: Type 18, MSS SP-58.
 - Self-drilling expansion shields and machine bolt expansion anchors: Permitted in concrete not less than 102 mm (4 inches) thick when approved by the COTR for each job condition.
 - 3. Power-driven fasteners: Permitted in existing concrete or masonry not less than 102 mm (4 inches) thick when approved by the COTR for each job condition.
- D. For Attachment to Steel Construction: MSS SP-58.
 - 1. Welded attachment: Type 22.
 - 2. Beam clamps: Types 20, 21, 28 or 29. Type 23 C-clamp may be used for individual copper tubing up to 23 mm (7/8-inch) outside diameter.
- E. Hanger Rods: Hot-rolled steel, ASTM A36 or A575 for allowable load listed in MSS SP-58. For piping, provide adjustment means for controlling level or slope. Types 13 or 15 turn-buckles shall provide 38 mm (1-1/2 inches) minimum of adjustment and incorporate locknuts. All-thread rods are acceptable.
- F. Multiple (Trapeze) Hangers: Galvanized, cold formed, lipped steel channel horizontal member, not less than 41 mm by 41 mm (1-5/8 inches by 1-5/8 inches), 2.7 mm (No. 12 gage), designed to accept special spring held, hardened steel nuts. Trapeze hangers are not permitted for steam supply and condensate piping.
 - 1. Allowable hanger load: Manufacturers rating less 91kg (200 pounds).
 - 2. Guide individual pipes on the horizontal member of every other trapeze hanger with 6 mm (1/4-inch) U-bolt fabricated from steel rod. Provide Type 40 insulation shield, secured by two 13 mm (1/2-inch) galvanized steel bands, or insulated calcium silicate shield for insulated piping at each hanger.
- G. Pipe Hangers and Supports: (MSS SP-58), use hangers sized to encircle insulation on insulated piping. Refer to Section 23 07 11, HVAC, PLUMBING, and BOILER PLANT INSULATION for insulation thickness. To protect insulation, provide Type 39 saddles for roller type supports or insulated calcium silicate shields. Provide Type 40 insulation shield or insulated calcium silicate shield at all other types of supports and hangers including those for insulated piping.
 - 1. General Types (MSS SP-58):
 - a. Standard clevis hanger: Type 1; provide locknut.
 - b. Riser clamps: Type 8.

- c. U-bolt clamp: Type 24.
- d. Copper Tube:
 - Hangers, clamps and other support material in contact with tubing shall be painted with copper colored epoxy paint, plastic coated or taped with isolation tape to prevent electrolysis.
 - For vertical runs use epoxy painted or plastic coated riser clamps.
 - For supporting tube to strut: Provide epoxy painted pipe straps for copper tube or plastic inserted vibration isolation clamps.
 - 4) Insulated Lines: Provide pre-insulated calcium silicate shields sized for copper tube.
- 1. Plumbing Piping (Other Than General Types):
 - a. Horizontal piping: Type 1, 5, 7, 9, and 10.
 - b. Chrome plated piping: Chrome plated supports.
- H. Pre-insulated Calcium Silicate Shields:
 - Provide 360 degree water resistant high density 965 kPa (140 psi) compressive strength calcium silicate shields encased in galvanized metal.
 - 2. Pre-insulated calcium silicate shields to be installed at the point of support during erection.
 - 3. Shield thickness shall match the pipe insulation.
 - 4. The type of shield is selected by the temperature of the pipe, the load it must carry, and the type of support it will be used with.
 - a. Shields for supporting cold water shall have insulation that extends a minimum of one inch past the sheet metal.
 - b. The insulated calcium silicate shield shall support the maximum allowable water filled span as indicated in MSS-SP 69. To support the load, the shields shall have one or more of the following features: structural inserts 4138 kPa (600 psi) compressive strength, an extra bottom metal shield, or formed structural steel (ASTM A36) wear plates welded to the bottom sheet metal jacket.
 - Shields may be used on steel clevis hanger type supports, roller supports or flat surfaces.

2.11 PIPE PENETRATIONS

- A. Pipe penetration sleeves shall be installed for all pipe other than rectangular blocked out floor openings for risers in mechanical bays.
- B. Pipe penetration sleeve materials shall comply with all fire stopping requirements for each penetration.
- C. To prevent accidental liquid spills from passing to a lower level, provide the following:
 - 1. For sleeves: Extend sleeve 25 mm (1 inch) above finished floor and provide sealant for watertight joint.
 - For blocked out floor openings: Provide 40 mm (1-1/2 inch) angle set in silicone adhesive around opening.
 - 3. For drilled penetrations: Provide 40 mm (1-1/2 inch) angle ring or square set in silicone adhesive around penetration.
- C. Penetrations are not allowed through beams or ribs, but may be installed in concrete beam flanges. Any deviation from these requirements must receive prior approval of COTR.
- D. Sheet metal, plastic, or moisture resistant fiber sleeves shall be provided for pipe passing through floors, interior walls, and partitions, unless brass or steel pipe sleeves are specifically called for below.
- E. Brass Pipe Sleeves shall be provided for pipe passing through quarry tile, terrazzo or ceramic tile floors. The sleeve shall be connected with a floor plate.
- F. Sleeve clearance through floors, walls, partitions, and beam flanges shall be 25 mm (1 inch) greater in diameter than external diameter of pipe. Sleeve for pipe with insulation shall be large enough to accommodate the insulation plus 25 mm (1 inch) in diameter. Interior openings shall be caulked tight with fire stopping material and sealant to prevent the spread of fire, smoke, and gases.
- G. Sealant and Adhesives: Shall be as specified in Section 07 92 00, JOINT SEALANTS.

2.12 TOOLS AND LUBRICANTS

A. Furnish, and turn over to the COTR, special tools not readily available commercially, that are required for disassembly or adjustment of equipment and machinery furnished.

2.13 WALL, FLOOR AND CEILING PLATES

A. Material and Type: Chrome plated brass or chrome plated steel, one piece or split type with concealed hinge, with set screw for fastening

to pipe, or sleeve. Use plates that fit tight around pipes, cover openings around pipes and cover the entire pipe sleeve projection.

- B. Thickness: Not less than 2.4 mm (3/32-inch) for floor plates. For wall and ceiling plates, not less than 0.64 mm (0.025-inch) for up to 80 mm (3 inch) pipe, 0.89 mm (0.035-inch) for larger pipe.
- C. Locations: Use where pipe penetrates floors, walls and ceilings in exposed locations, in finished areas only. Wall plates shall be used where insulation ends on exposed water supply pipe drop from overhead. A watertight joint shall be provided in spaces where brass or steel pipe sleeves are specified.

2.14 ASBESTOS

Materials containing asbestos are not permitted.

2.15 CLEANOUTS

- A. Cleanouts shall be full size of pipe up to 6 inches.
- B. In lieu of joints specified in Section 15100, "Building Services Piping," neoprene gaskets may be used if designed for use with drains and cleanouts employed and if approved by the local plumbing authority.
- C. Materials and Manufacturers: Acorn, Josam, J.R. Smith, MIFAB, Wade, Zurn. Josam numbers are indicated:

CONCEALED PIPING	CAST IRON PIPE	STEEL	
Unfinished Areas			
Floors	56000	58460A	
Walls	58790	58890	
Finished Areas - Floors			
Terrazzo	56040-13	56040-13	
Composition Tile	56000-12	56000-12	
Ceramic Tile	56020	56020	
Carpet	56000-14	56000-14	
Finished Areas - Walls			
Plaster	58790	58600	
Tile	58790	58640*	
* With 9 by 9-inch (230 by 230 mm) frame			
Exterior, Flush with Grade			
Walkways	56040-1	-	
Grass Areas	56040* or	-	
* Install in 14-inch (350 mm) square, 6-inch (150 mm) deep	58680**		

CONCEALED PIPING	CAST IRON PIPE	STEEL
concrete pad		
** Heavy Duty		

EXPOSED AND ACCESSIBLE PIPING	CAST IRON PIPE	STEEL	
.Walk-in Shafts	58900	58540	

PART 3 - EXECUTION

3.1 ARRANGEMENT AND INSTALLATION OF EQUIPMENT AND PIPING

A. Location of piping, sleeves, inserts, hangers, and equipment, access provisions shall be coordinated with the work of all trades. Piping, sleeves, inserts, hangers, and equipment shall be located clear of windows, doors, openings, light outlets, and other services and utilities. Equipment layout drawings shall be prepared to coordinate proper location and personnel access of all facilities. The drawings shall be submitted for review.

Manufacturer's published recommendations shall be followed for installation methods not otherwise specified.

- B. Operating Personnel Access and Observation Provisions: All equipment and systems shall be arranged to provide clear view and easy access, without use of portable ladders, for maintenance and operation of all devices including, but not limited to: all equipment items, valves, filters, strainers, transmitters, sensors, control devices. All gages and indicators shall be clearly visible by personnel standing on the floor or on permanent platforms. Maintenance and operating space and access provisions that are shown on the drawings shall not be changed nor reduced.
- C. Structural systems necessary for pipe and equipment support shall be coordinated to permit proper installation.
- D. Location of pipe sleeves, trenches and chases shall be accurately coordinated with equipment and piping locations.
- E. Cutting Holes:
 - Holes through concrete and masonry shall be cut by rotary core drill. Pneumatic hammer, impact electric, and hand or manual hammer type drill will not be allowed, except as permitted by COTR where working area space is limited.

- 2. Holes shall be located to avoid interference with structural members such as beams or grade beams. Holes shall be laid out in advance and drilling done only after approval by COTR. If the Contractor considers it necessary to drill through structural members, this matter shall be referred to COTR for approval.
- Waterproof membrane shall not be penetrated. Pipe floor penetration block outs shall be provided outside the extents of the waterproof membrane.
- F. Interconnection of Instrumentation or Control Devices: Generally, electrical and pneumatic interconnections are not shown but must be provided.
- G. Minor Piping: Generally, small diameter pipe runs from drips and drains, water cooling, and other service are not shown but must be provided.
- H. Protection and Cleaning:
 - Equipment and materials shall be carefully handled, properly stored, and adequately protected to prevent damage before and during installation, in accordance with the manufacturer's recommendations and as approved by the COTR. Damaged or defective items in the opinion of the COTR, shall be replaced.
 - 2. Close pipe openings with caps or plugs during installation. Pipe openings, equipment, and plumbing fixtures shall be tightly covered against dirt or mechanical injury. At completion of all work thoroughly clean fixtures, exposed materials and equipment.
- I. Concrete and Grout: Concrete and shrink compensating grout 25 MPa (3000 psi) minimum, specified in Section 03 30 00, CAST-IN-PLACE CONCRETE. shall be used for all pad or floor mounted equipment. Gages, thermometers, valves and other devices shall be installed with due regard for ease in reading or operating and maintaining said devices. Thermometers and gages shall be located and positioned to be easily read by operator or staff standing on floor or walkway provided. Servicing shall not require dismantling adjacent equipment or pipe work.
- J. Interconnection of Controls and Instruments: Electrical interconnection is generally not shown but shall be provided. This includes interconnections of sensors, transmitters, transducers, control devices, control and instrumentation panels, instruments and computer workstations. Comply with NFPA-70.

- K. Work in Existing Building:
 - Perform as specified in Article, OPERATIONS AND STORAGE AREAS, Article, ALTERATIONS, and Article, RESTORATION of the Section 01 00 00, GENERAL REQUIREMENTS for relocation of existing equipment, alterations and restoration of existing building(s).
 - 2. As specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, OPERATIONS AND STORAGE AREAS, make alterations to existing service piping at times that will cause the least interference with normal operation of the facility.
- L. Inaccessible Equipment:
 - Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance, equipment shall be removed and reinstalled or remedial action performed as directed at no additional cost to the Government.
 - 2. The term "conveniently accessible" is defined as capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as electrical conduit, motors, fans, pumps, belt guards, transformers, high voltage lines, piping, and ductwork.
- M. Work in bathrooms, restrooms, housekeeping closets: All pipe penetrations behind escutcheons shall be sealed with plumbers putty.

3.2 TEMPORARY PIPING AND EQUIPMENT

- A. Continuity of operation of existing facilities may require temporary installation or relocation of equipment and piping. Temporary equipment or pipe installation or relocation shall be provided to maintain continuity of operation of existing facilities.
- B. The Contractor shall provide all required facilities in accordance with the requirements of phased construction and maintenance of service. All piping and equipment shall be properly supported, sloped to drain, operate without excessive stress, and shall be insulated where injury can occur to personnel by contact with operating facilities. The requirements of Para. 3.1 shall apply.
- C. Temporary facilities and piping shall be completely removed and any openings in structures sealed. Necessary blind flanges and caps shall be provided to seal open piping remaining in service.

3.3 RIGGING

A. Openings in building structures shall be planned to accommodate design scheme.

- B. Alternative methods of equipment delivery may be offered and will be considered by Government under specified restrictions of phasing and service requirements as well as structural integrity of the building.
- C. All openings in the building shall be closed when not required for rigging operations to maintain proper environment in the facility for Government operation and maintenance of service.
- D. Contractor shall provide all facilities required to deliver specified equipment and place on foundations. Attachments to structures for rigging purposes and support of equipment on structures shall be Contractor's full responsibility.
- E. Contractor shall check all clearances, weight limitations and shall provide a rigging plan designed by a Registered Professional Engineer. All modifications to structures, including reinforcement thereof, shall be at Contractor's cost, time and responsibility.
- F. Rigging plan and methods shall be referred to COTR for evaluation prior to actual work.

3.4 PIPE AND EQUIPMENT SUPPORTS

- A. Where hanger spacing does not correspond with joist or rib spacing, use structural steel channels secured directly to joist and rib structure that will correspond to the required hanger spacing, and then suspend the equipment and piping from the channels. Holes shall be drilled or burned in structural steel ONLY with the prior written approval of the COTR.
- B. The use of chain pipe supports, wire or strap hangers; wood for blocking, stays and bracing, or hangers suspended from piping above shall not be permitted. Rusty products shall be replaced.
- C. Hanger rods shall be used that are straight and vertical. Turnbuckles for vertical adjustments may be omitted where limited space prevents use. A minimum of 15 mm (1/2-inch) clearance between pipe or piping covering and adjacent work shall be provided.
- D. For horizontal and vertical plumbing pipe supports, refer to the International Plumbing Code (IPC), latest edition, and these specifications.
- E. Overhead Supports:
 - 1. The basic structural system of the building is designed to sustain the loads imposed by equipment and piping to be supported overhead.

- Provide steel structural members, in addition to those shown, of adequate capability to support the imposed loads, located in accordance with the final approved layout of equipment and piping.
- 3. Tubing and capillary systems shall be supported in channel troughs.
- F. Floor Supports:
 - Provide concrete bases, concrete anchor blocks and pedestals, and structural steel systems for support of equipment and piping. Concrete bases and structural systems shall be anchored and doweled to resist forces under operating and seismic conditions (if applicable) without excessive displacement or structural failure.
 - 2. Bases and supports shall not be located and installed until equipment mounted thereon has been approved. Bases shall be sized to match equipment mounted thereon plus 50 mm (2 inch) excess on all edges. Structural drawings shall be reviewed for additional requirements. Bases shall be neatly finished and smoothed, shall have chamfered edges at the top, and shall be suitable for painting.
 - 3. All equipment shall be shimmed, leveled, firmly anchored, and grouted with epoxy grout. Anchor bolts shall be placed in sleeves, anchored to the bases. Fill the annular space between sleeves and bolts with a grout material to permit alignment and realignment.
 - 4. For seismic anchoring, refer to Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.

3.5 PLUMBING SYSTEMS DEMOLITION

- A. Rigging access, other than indicated on the drawings, shall be provided after approval for structural integrity by the COTR. Such access shall be provided without additional cost or time to the Government. Where work is in an occupied facility, approved protection from dust and debris shall be provided at all times for the safety of occupants and maintenance of existing building systems.
- B. Unless specified otherwise, all piping, wiring, conduit, and other devices associated with the equipment not re-used in the new work shall be completely removed from Government property. This includes all pipe, valves, fittings, insulation, and all hangers including the top connection and any fastenings to building structural systems. All openings shall be sealed after removal of equipment, pipes, ducts, and other penetrations in roof, walls, floors, in an approved manner and in accordance with plans and specifications where specifically covered. Structural integrity of the building system shall be maintained.

Reference shall also be made to the drawings and specifications of the other disciplines in the project for additional facilities to be demolished or handled.

C. All valves including gate, globe, ball, butterfly and check, all pressure gages and thermometers with wells shall remain Government property and shall be removed and delivered to COTR and stored as directed. The Contractor shall remove all other material and equipment, devices and demolition debris under these plans and specifications. Such material shall be removed from Government property expeditiously and shall not be allowed to accumulate.

3.7 CLEANING AND PAINTING

- A. Prior to final inspection and acceptance of the plant and facilities for beneficial use by the Government, the plant facilities, equipment and systems shall be thoroughly cleaned and painted. Refer to Section 09 91 00, PAINTING.
- B. In addition, the following special conditions apply:
 - Cleaning shall be thorough. Solvents, cleaning materials and methods recommended by the manufacturers shall be used for the specific tasks. All rust shall be removed prior to painting and from surfaces to remain unpainted. Scratches, scuffs, and abrasions shall be repaired prior to applying prime and finish coats.
 - 2. The following Material And Equipment shall NOT be painted::
 - a. Motors, controllers, control switches, and safety switches.
 - b. Control and interlock devices.
 - c. Regulators.
 - d. Pressure reducing valves.
 - e. Control valves and thermostatic elements.
 - f. Lubrication devices and grease fittings.
 - g. Copper, brass, aluminum, stainless steel and bronze surfaces.
 - h. Valve stems and rotating shafts.
 - i. Pressure gages and thermometers.
 - j. Glass.
 - k. Name plates.
 - 3. Temporary Facilities: Apply paint to surfaces that do not have existing finish coats.
 - 4. The final result shall be a smooth, even-colored, even-textured factory finish on all items. The entire piece of equipment shall be repainted, if necessary, to achieve this.

3.8 CLEANOUTS

- A. Install cleanouts in sanitary and storm drainage systems at ends of runs, at changes in direction that are greater than 45 degrees, near the base of stacks, every 50 feet in horizontal runs, and where indicated.
- B. Vertical Pipes: Install cleanout in tees near floor.
- C. Horizontal Pipes: Install cleanouts in wyes or long sweep quarter ends.
- D. Extend cleanouts on concealed piping flush to finished walls, floors and grade.
- E. Waterproofing: Cleanouts puncturing waterproofing membrane shall have flashing clamps.

3.9 IDENTIFICATION SIGNS

- A. Laminated plastic signs, with engraved lettering not less than 5 mm (3/16-inch) high, shall be provided that designates equipment function, for all equipment, switches, motor controllers, relays, meters, control devices, including automatic control valves. Nomenclature and identification symbols shall correspond to that used in maintenance manual, and in diagrams specified elsewhere. Attach by chain, adhesive, or screws.
- B. Factory Built Equipment: Metal plate, securely attached, with name and address of manufacturer, serial number, model number, size, performance shall be placed on factory built equipment.
- C. Pipe Identification: Refer to Section 09 91 00, PAINTING.

3.10 STARTUP AND TEMPORARY OPERATION

Start up of equipment shall be performed as described in the equipment specifications. Vibration within specified tolerance shall be verified prior to extended operation. Temporary use of equipment is specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT.

3.11 OPERATING AND PERFORMANCE TESTS

- A. Prior to the final inspection, all required tests shall be performed as specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TESTS and submit the test reports and records to the COTR.
- B. Should evidence of malfunction in any tested system, or piece of equipment or component part thereof, occur during or as a result of tests, make proper corrections, repairs or replacements, and repeat tests at no additional cost to the Government.

C. When completion of certain work or system occurs at a time when final control settings and adjustments cannot be properly made to make performance tests, then make performance tests such systems respectively during first actual seasonal use of respective systems following completion of work.

3.12 OPERATION AND MAINTENANCE MANUALS

- A. Provide four bound copies. The Operations and maintenance manuals shall be delivered to COTR not less than 30 days prior to completion of a phase or final inspection.
- B. All new and temporary equipment and all elements of each assembly shall be included.
- C. Data sheet on each device listing model, size, capacity, pressure, speed, horsepower, impeller size, and other information shall be included.
- D. Manufacturer's installation, maintenance, repair, and operation instructions for each device shall be included. Assembly drawings and parts lists shall also be included. A summary of operating precautions and reasons for precautions shall be included in the Operations and Maintenance Manual.
- E. Emergency procedures.

3.13 INSTRUCTIONS TO VA PERSONNEL

Instructions shall be provided in accordance with Article, INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS.

– – – END – – –

SECTION 22 05 12

GENERAL MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT

PART 1 - GENERAL

1.1 DESCRIPTION:

This section describes the general motor requirements for plumbing equipment.

1.2 RELATED WORK:

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements common to more than one section of Division 26.
- B. 26 29 11, LOW-VOLTAGE MOTOR STARTERS: Starters, control and protection of motors: Section

1.3 SUBMITTALS:

- A. In accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, submit the following:
- B. Shop Drawings:
 - Sufficient information, clearly presented, shall be included to determine compliance with drawings and specifications.
 - 2. Motor nameplate information shall be submitted including electrical ratings, dimensions, mounting details, materials, horsepower, power factor, current as a function of speed, current efficiency, speed as a function of load, RPM, enclosure, starting characteristics, torque characteristics, code letter, full load and locked rotor current, service factor, and lubrication method.
 - 3. Motor parameters required for the determination of the Reed Critical Frequency of vertical hollow shaft motors shall be submitted.
- C. Manuals:
 - Companion copies of complete maintenance and operating manuals, including technical data sheets and application data shall be submitted simultaneously with the shop drawings.
- D. Certification: Two weeks prior to final inspection, unless otherwise noted, four copies of the following certification shall be submitted to the Resident Engineer:
 - 1. Certification shall be submitted stating that the motors have been properly applied, installed, adjusted, lubricated, and tested.

1.4 APPLICABLE PUBLICATIONS:

- A. The publications listed below (including amendments, addenda, revisions, supplements and errata) shall form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. National Electrical Manufacturers Association (NEMA): MG 1-07.....Motors and Generators MG 2-01....Safety Standard and Guide for Selection,

Installation and Use of Electric Motors and Generators

C. National Fire Protection Association (NFPA):

70-08.....National Electrical Code (NEC)

PART 2 - PRODUCTS

2.1 MOTORS:

- A. For alternating current, fractional and integral horsepower motors, NEMA Publications MG 1 and MG 2 shall apply.
- B. Voltage ratings shall be as follows:
 - 1. Single phase:
 - a. Motors connected to 120-volt systems: 115 volts.
 - b. Motors connected to 208-volt systems: 200 volts.
 - c. Motors connected to 240 volt or 480 volt systems: 230/460 volts, dual connection.
- C. Number of phases shall be as follows:
 - 1. Motors, less than 373 W (1/2 HP): Single phase.
- D. Horsepower ratings shall be adequate for operating the connected loads continuously in the prevailing ambient temperatures in areas where the motors are installed, without exceeding the NEMA standard temperature rises for the motor insulation.
- E. Motor designs, as indicated by the NEMA code letters, shall be coordinated with the connected loads to assure adequate starting and running torque.
- F. Motor Enclosures:
 - 1. Shall be the NEMA types shown on the drawings for the motors.
 - 2. Where the types of motor enclosures are not shown on the drawings, they shall be the NEMA types, which are most suitable for the environmental conditions where the motors are being installed.
 - 3. Enclosures shall be primed and finish coated at the factory with manufacturer's prime coat and standard finish.

- All motors in hazardous locations shall be approved for the application and meet the Class and Group as required by the area classification.
- G. Electrical Design Requirements
 - 1. Motors shall be continuous duty.
 - The insulation system shall be rated minimum of class B, 130° C (266° F).
 - 3. The maximum temperature rise by resistance at rated power shall not exceed Class B limits, 80° C (176° F).
 - 4. The speed/torque and speed/current characteristics shall comply with NEMA Design A or B, as specified.
 - 5. Motors shall be suitable for full voltage starting, unless otherwise noted.
 - 6. Motors for variable frequency drive applications shall adhere to NEMA standards publication MG 1, Part 30, Application considerations for Constant Speed Motors Used on a Sinusoidal Bus with Harmonic Content and General Purpose Motors Used with Adjustable voltage or Adjustable frequency controls, or both, or Part 31, Definite Purpose Inverter Fed Polyphase Motors.
- H. Mechanical Design Requirements
 - 1. Bearings shall be rated for a minimum of 26,280 hours L-10 life at full load direct coupled, except vertical high thrust motors.
 - 2. Vertical motors shall be capable of withstanding a momentary up thrust of at least 30% of normal down thrust.
 - 3. Grease lubricated bearings shall be designed for electric motor use. Grease shall be capable of the temperatures associated with electric motors and shall be compatible with Polyurea based greases.
 - 4. Grease fittings, if provided, shall be Alemite type or equivalent.
 - 5. Oil lubricated bearings, when specified, shall have an externally visible sight glass to view oil level.
 - 6. Vibration shall not exceed 0.15 inch per second, unfiltered peak.
 - 7. Noise level shall meet the requirements of the application.
 - 8. Motors on 180 frames and larger shall have provisions for lifting eyes or lugs capable of a safety factor of 5.
 - 9. All external fasteners shall be corrosion resistant.
 - Condensation heaters, when specified, shall keep motor windings at least 5° C (41° F) above ambient temperature.

- 11. Winding thermostats, when specified shall be normally closed, connected in series.
- 12. Grounding provisions shall be in the main terminal box.
- Additional requirements for specific motors, as indicated in other sections, shall also apply.
- J. NEMA Premium Efficiency Electric Motors, Motor Efficiencies: All permanently wired polyphase motors of 746 Watts (1 Horsepower) or more shall meet the minimum full-load efficiencies as indicated in the following table, and as specified in this specification. Motors of 746 Watts (one horsepower) or more with open, drip-proof or totally enclosed fan-cooled enclosures shall be NEMA premium efficiency type, unless otherwise indicated. Motors provided as an integral part of motor driven equipment are excluded from this requirement if a minimum seasonal or overall efficiency requirement is indicated for that equipment by the provisions of another section.

Minimum Efficiencies Minimum E				imum Effi	ciencies	8			
	Open Drip-Proof			Totally	7 Enclose	nclosed Fan-Cooled 1200 1800 3600			
Rating	1200	1800	3600	Rating	1200	1800	3600		
kW (HP)	RPM	RPM	RPM	kW (HP)	RPM	RPM	RPM		
0.746 (1)	82.5%	85.5%	77.0%	0.746 (1)	82.5%	85.5%	77.0%		
1.12 (1.5)	86.5%	86.5%	84.0%	1.12 (1.5)	87.5%	86.5%	84.0%		
1.49 (2)	87.5%	86.5%	85.5%	1.49 (2)	88.5%	86.5%	85.5%		
2.24 (3)	88.5%	89.5%	85.5%	2.24 (3)	89.5%	89.5%	86.5%		
3.73 (5)	89.5%	89.5%	86.5%	3.73 (5)	89.5%	89.5%	88.5%		
5.60 (7.5)	90.2%	91.0%	88.5%	5.60 (7.5)	91.0%	91.7%	89.5%		
7.46 (10)	91.7%	91.7%	89.5%	7.46 (10)	91.0%	91.7%	90.2%		
11.2 (15)	91.7%	93.0%	90.2%	11.2 (15)	91.7%	92.4%	91.0%		
14.9 (20)	92.4%	93.0%	91.0%	14.9 (20)	91.7%	93.0%	91.0%		
18.7 (25)	93.0%	93.6%	91.7%	18.7 (25)	93.0%	93.6%	91.7%		
22.4 (30)	93.6%	94.1%	91.7%	22.4 (30)	93.0%	93.6%	91.7%		
29.8 (40)	94.1%	94.1%	92.4%	29.8 (40)	94.1%	94.1%	92.4%		
37.3 (50)	94.1%	94.5%	93.0%	37.3 (50)	94.1%	94.5%	93.0%		
44.8 (60)	94.5%	95.0%	93.6%	44.8 (60)	94.5%	95.0%	93.6%		
56.9 (75)	94.5%	95.0%	93.6%	56.9 (75)	94.5%	95.4%	93.6%		
74.6 (100)	95.0%	95.4%	93.6%	74.6 (100)	95.0%	95.4%	94.1%		
93.3 (125)	95.0%	95.4%	94.1%	93.3 (125)	95.0%	95.4%	95.0%		
112 (150)	95.4%	95.8%	94.1%	112 (150)	95.8%	95.8%	95.0%		

	149.2 (200)	95.4%	95.8%	95.0%	149.2 (200)	95.8%	96.2%	95.4%
--	-------------	-------	-------	-------	-------------	-------	-------	-------

K. Minimum Power Factor at Full Load and Rated Voltage: 90 percent at 1200 RPM, 1800 RPM and 3600 RPM. Power factor correction capacitors shall be installed unless the motor is controlled by a variable frequency drive. The power factor correction capacitors shall be able to withstand high voltage transients and power line variations without breakdown.

PART 3 - EXECUTION

3.1 INSTALLATION:

Install motors in accordance with manufacturer's recommendations, the NEC, NEMA, as shown on the drawings and/or as required by other sections of these specifications.

3.2 FIELD TESTS

Megger all motors after installation, before start-up. All shall test free from grounds.

- - - E N D - - -

SECTION 22 05 19

METERS AND GAGES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

This section describes the requirements for water meters and pressure gages.

1.2 RELATED WORK

Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Water Meter.
 - 2. BACnet communication protocol
 - 3. Product certificates for each type of meter and gauge
- C. Operations and Maintenance manual shall include:
 - 1. System Description
 - 2. Major assembly block diagrams
 - 3. Troubleshooting and preventive maintenance guidelines
 - 4. Spare parts information.
- D. Shop Drawings shall include the following:
 - One line, wiring and terminal diagrams including terminals identified, protocol or communication modules, and Ethernet connections.

1.4 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American National Standards Institute (ANSI): American Society of Mechanical Engineers (ASME): (Copyrighted Society) B40.1-05.....Gauges-Pressure Indicating Dial Type-Elastic
- C. American Water Works Association (AWWA): C700-07 (R 2003).....Standard for Cold Water Meters, Displacement Type, Bronze Main Case
 - C701-07.....Cold Water Meters-Turbine Type, for Customer Service AWWA/ ANSI

C702-01.....Cold water meters - Compound Type

D. International Code Council (ICC):

IPC-06...... (2007 Supplement) International Plumbing Code

1.5 AS-BUILT DOCUMENTATION

- A. The electronic documentation and copies of the Operations and Maintenance Manual, approved submittals, shop drawings, and other closeout documentation shall be prepared by a computer software program complying with Section 508 of the Rehabilitation Act of 1973, as amended (29 U.S.C 794d). The manufacturer or vendor of the software used to prepare the electronic documentation shall have a Voluntary Product Accessibility Template made available for review and included as part of the Operations and Maintenance Manual or closeout documentation. All available accessibility functions listed in the Voluntary Accessibility Template shall be enabled in the prepared electronic files. As Adobe Acrobat is a common industry format for such documentation, following the document, "Creating Accessible Adobe PDF files, A Guide for Document Authors" that is maintained and made available by Adobe free of charge is recommended."
- B. Four sets of manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- C. Four sets of operation and maintenance data updated to include submittal review comments shall be inserted into a three ring binder. All aspects of system operation and maintenance procedures, including piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices such as damper and door closure interlocks shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.

PART 2 - PRODUCTS

2.1 ULTRASONIC WATER METER

A. The Ultrasonic Flow Meters and the accessories shall be suitable for continuous operation under an ambient temperature of 0-55 degrees C and Relative Humidity of 0-95 percent. All accessories required for mounting/erection of these instruments shall be furnished as necessary for completeness of the system.

- B. Flow Measurement: The Ultrasonic Flow shall be based on transit-time flow measurement technique uses a pair of transducers with each transducer sending and receiving coded ultrasonic signals through the fluid. When the fluid is flowing, signal transit-time in the downstream direction is shorter than in the upstream direction; the difference between these transit times is proportional to the flow velocity. The Ultrasonic Flow Transmitter measures this time difference and uses programmed pipe parameters to determine flow rate and direction. Ultrasonic Flow Transmitters are classified as either wetted or non-wetted (clam-on). Clamp-on transducers are clamped onto the outside of the pipe and never come into contact with the process fluid. Welled transducers are mounted into the pipe or flow cell in direct contact with the process fluid.
- C. Accessories: All mounting hardware like clamping fixtures, mechanisms to remove the sensors on line, interconnecting cables, etc. is required to be supplied. Weather canopy for protection from direct sunlight and direct rain shall also be offered as an option. Material of all fittings shall be SS-316.

2.2 WATER METER PROGRAMMING

- A. The software shall have a Microsoft based interface and operate on the latest Windows operating system. The software shall allow the user to configure the meter, troubleshoot the meter, query and display meter parameters, and configure data and stored values.
- B. The meter firmware shall be upgradeable through one of the communication ports without removing the unit from service.
- C. the meter shall include output for analog 4-20 milliamp signals and binary output.
- D. The meter shall have two dry contact relays outputs for alarm or control functions.

2.3 WATER METER COMMUNICATION PROTOCOL

A. The meter shall use a native BACnet Ethernet communication protocol supporting Modbus. The communications shall be protected against surges induced on its communications channels.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Test plugs shall be installed on the inlet and outlet pipes all heat exchangers or water heaters serving more than one plumbing fixture.
- B. Water meter installation shall conform to AWWA C700, AWWA C701, and AWWA C702. Electrical installations shall conform to IEEE C2, NFPA 70 (National Electric Code), and to the requirements specified herein. New materials shall be provided.
- C. Each water meter shall communicate with the building energy management and control system and report daily water consumption and peak daily flow rate.

3.2 FIELD QUALITY CONTROL

A. The meter assembly shall be visually inspected and operationally tested. The correct multiplier placement on the face of the meter shall be verified.

3.3 TRAINING

A. A training course shall be provided to the medical center on meter configuration and maintenance. Training manuals shall be supplied for all attendee with four additional copies supplied. The training course shall cover meter configuration, troubleshooting, and diagnostic procedures.

- - - END - - -

SECTION 22 05 23

GENERAL-DUTY VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

This section describes the requirements for general-duty valves for domestic water and sewer systems.

1.2 RELATED WORK

Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:

1. Valves.

1.4 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society for Testing and Materials (ASTM):A536-84(R 2004) Standard Specification for Ductile Iron Castings
- C. American Society of Sanitary Engineering (ASSE) ASSE 1003-01 (R 2003)...Performance Requirements for Water Pressure Reducing Valves ASSE 1012-02.....Backflow Preventer with Intermediate Atmospheric Vent ASSE 1013-05.....Reduced Pressure Principle Backflow Preventers and Reduced Pressure Fire Protection Principle

Backflow Preventers

- E. Manufacturers Standardization Society of the Valve and Fittings Industry, Inc. (MSS): SP-25-98.....Standard Marking System for Valves, Fittings, Flanges and UnionsSP-67-02a (R 2004) Butterfly Valve of the Single flange Type (Lug Wafer) SP-70-06.....Cast Iron Gate Valves, Flanged and Threaded Ends.

SP-72-99.....Ball Valves With Flanged or Butt Welding For General Purpose

SP-80-03.....Bronze Gate, Globe, Angle and Check Valves. SP-110-96.....Ball Valve Threaded, Socket Welding, Solder Joint, Grooved and Flared Ends

1.5 DELIVERY, STORAGE, AND HANDLING

- A. Valves shall be prepared for shipping as follows:
 - 1. Protect internal parts against rust and corrosion.
 - 2. Protect threads, flange faces, grooves, and weld ends.
 - 3. Set angle, gate, and globe valves closed to prevent rattling.
 - Set ball and plug valves open to minimize exposure of functional surfaces
- B. Valves shall be prepared for storage as follows:
 - 1. Maintain valve end protection.
 - 2. Store valves indoors and maintain at higher than ambient dew point temperature.

PART 2 - PRODUCTS

2.1 VALVES

- A. Asbestos packing and gaskets are prohibited.
- B. Bronze valves shall be made with dezincification resistant materials. Bronze valves made with copper alloy (brass) containing more than 15 percent zinc shall not be permitted.
- C. Valves in insulated piping shall have 50 mm or DN50 (2 inch) stem extensions and extended handles of non-thermal conductive material that allows operating the valve without breaking the vapor seal or disturbing the insulation. Memory stops shall be fully adjustable after insulation is applied.
- D. Ball valves, used to supply potable water shall meet the requirements of NSF 61.
- E. Shut-off:
 - 1. Cold, Hot and Re-circulating Hot Water:
 - a. 50 mm or DN50 (2 inches) and smaller: Ball, MSS SP-72, SP-110, Ball valve shall be full port three piece or two piece with a union design with adjustable stem package. Threaded stem designs are not allowed. The ball valve shall have a SWP rating of 1035 kPa (150 psig) and a CWP rating of 4140 kPa (600 psig). The body material shall be Bronze ASTM B584, Alloy C844. The ends shall be solder,

- F. Balancing: Hot Water Re-circulating, 80 mm or DN80 (3 inches) and smaller manual balancing valve shall be of bronze body, brass ball construction with glass and carbon filled TFE seat rings and designed for positive shutoff. The manual balancing valve shall have differential pressure read-out ports across the valve seat area. The read out ports shall be fitting with internal EPT inserts and check valves. The valve body shall have 8 mm or DN8 NPT (¼" NPT) tapped drain and purge port. The valves shall have memory stops that allow the valve to close for service and then reopened to set point without disturbing the balance position. All valves shall have calibrated nameplates to assure specific valve settings.
- G. Check valves less than 80 mm or DN80 (3 inches) and smaller) shall be class 125, bronze swing check valves with non metallic Buna-N disc. The check valve shall meet MSS SP-80 Type 4 standard. The check valve shall have a CWP rating of 1380 kPa (200 psig). The check valve shall have a Y pattern horizontal body design with bronze body material conforming to ASTM B 62, solder joints, and PTFE or TFE disc.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Valve interior shall be examined for cleanliness, freedom from foreign matter, and corrosion. Special packing materials shall be removed, such as blocks, used to prevent disc movement during shipping and handling.
- B. Valves shall be operated in positions from fully open to fully closed. Guides and seats shall be examined and made accessible by such operations.
- C. Threads on valve and mating pipe shall be examined for form and cleanliness.
- D. Mating flange faces shall be examined for conditions that might cause leakage. Bolting shall be checked for proper size, length, and material. Gaskets shall be verified for proper size and that its material composition is suitable for service and free from defects and damage.
- E. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE INSTALLATION

A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.

- B. Valves shall be located for easy access and shall be provide with separate support. Valves shall be accessible with access doors when installed inside partitions or above hard ceilings.
- C. Valves shall be installed in horizontal piping with stem at or above center of pipe
- D. Valves shall be installed in a position to allow full stem movement.

3.3 ADJUSTING

Valve packing shall be adjusted or replaced after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves shall be replaced if persistent leaking occurs.

- - - END - - -

SECTION 22 07 11

PLUMBING INSULATION

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Field applied insulation for thermal efficiency and condensation control for
 - 1. Plumbing piping and equipment.
 - 2. Re-insulation of plumbing piping and equipment after asbestos abatement.
- B. Definitions
 - 1. ASJ: All service jacket, white finish facing or jacket.
 - 2. Air conditioned space: Space having air temperature and/or humidity controlled by mechanical equipment.
 - Cold: Equipment or piping handling media at design temperature of 16 degrees C (60 degrees F) or below.
 - 4. Concealed: Piping above ceilings and in chases, and pipe spaces.
 - 5. Exposed: Piping and equipment exposed to view in finished areas including mechanical equipment rooms or exposed to outdoor weather. Shafts, chases, crawl spaces and pipe basements are not considered finished areas.
 - 6. FSK: Foil-scrim-kraft facing.
 - Hot: Plumbing equipment or piping handling media above 41 degrees C (105 degrees F).
 - Density: kg/m³ kilograms per cubic meter (Pcf pounds per cubic foot).
 - 9. Thermal conductance: Heat flow rate through materials.
 - a. Flat surface: Watts per square meter (BTU per hour per square foot).
 - b. Pipe or Cylinder: Watts per square meter (BTU per hour per linear foot).
 - 10. Thermal Conductivity (k): Watt per meter, per degree C (BTU per inch thickness, per hour, per square foot, per degree F temperature difference).
 - 11. Vapor Retarder (Vapor Barrier): A material which retards the transmission (migration) of water vapor. Performance of the vapor retarder is rated in terms of permeance (perms). For the purpose of

this specification, vapor retarders shall have a maximum published permeance of 0.1 perms and vapor barriers shall have a maximum published permeance of 0.001 perms.

- 12. HWR: Pump recirculation.
- 13. CW: Cold water.
- 14. HW: Hot water.
- 15. PVDC: Polyvinylidene chloride vapor retarder jacketing, white.

1.2 RELATED WORK

- A. Section 02 82 11, TRADITIONAL ASBESTOS ABATEMENT: Insulation containing asbestos material.
- B. Section 07 84 00, FIRESTOPPING: Mineral fiber and bond breaker behind sealant.
- C. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING: General mechanical requirements and items, which are common to more than one section of Division 22.
- D. Section 22 05 23, GENERAL-DUTY VALVES FOR PLUMBING PIPING: Hot and cold water piping.

1.3 QUALITY ASSURANCE

- A. Refer to article QUALITY ASSURANCE, in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- B. Criteria:
 - 1. Comply with NFPA 90A, particularly paragraphs 4.3.3.1 through 4.3.3.6, 4.3.10.2.6, and 5.4.6.4, parts of which are quoted as follows:

4.3.3.1 Pipe insulation and coverings, vapor retarder facings, adhesives, fasteners, tapes, unless otherwise provided for in <u>4.3.3.1.12</u> or <u>4.3.3.1.2</u>, shall have, in the form in which they are used, a maximum flame spread index of 25 without evidence of continued progressive combustion and a maximum smoke developed index of 50 when tested in accordance with <u>NFPA 255</u>, Standard Method of Test of Surface Burning Characteristics of Building Materials.

4.3.3.1.1 Where these products are to be applied with adhesives, they shall be tested with such adhesives applied, or the adhesives used shall have a maximum flame spread index of 25 and a maximum smoke developed index of 50 when in the final dry state. (See 4.2.4.2.)

4.3.3.3 Pipe insulation and coverings shall not flame, glow, smolder, or smoke when tested in accordance with a similar test for pipe covering, ASTM C 411, Standard Test Method for Hot-Surface Performance of High-Temperature Thermal Insulation, at the temperature to which they are exposed in service. 4.3.3.3.1 In no case shall the test temperature be below 121°C (250°F).

4.3.10.2.6.3 Nonferrous fire sprinkler piping shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.5 m (5 ft) or less when tested in accordance with UL 1887, Standard for Safety Fire Test of Plastic Sprinkler Pipe for Visible Flame and Smoke Characteristics.

4.3.10.2.6.7 Smoke detectors shall not be required to meet the provisions of this section.

- 2. Test methods: ASTM E84, UL 723, or NFPA 255.
- 3. Specified k factors are at 24 degrees C (75 degrees F) mean temperature unless stated otherwise. Where optional thermal insulation material is used, select thickness to provide thermal conductance no greater than that for the specified material. For pipe, use insulation manufacturer's published heat flow tables. For domestic hot water supply and return, run out insulation and condensation control insulation, no thickness adjustment need be made.
- 4. All materials shall be compatible and suitable for service temperature, and shall not contribute to corrosion or otherwise attack surface to which applied in either the wet or dry state.
- C. Every package or standard container of insulation or accessories delivered to the job site for use must have a manufacturer's stamp or label giving the name of the manufacturer and description of the material.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Shop Drawings:
 - All information, clearly presented, shall be included to determine compliance with drawings and specifications and ASTM, federal and military specifications.
 - a. Insulation materials: Specify each type used and state surface burning characteristics.
 - b. Insulation facings and jackets: Each type used.
 - c. Insulation accessory materials: Each type used.
 - d. Manufacturer's installation and fitting fabrication instructions for flexible unicellular insulation.

- e. Make reference to applicable specification paragraph numbers for coordination.
- C. Samples:
- Each type of insulation: Minimum size 100 mm (4 inches) square for board/block/ blanket; 150 mm (6 inches) long, full diameter for round types.
- Each type of facing and jacket: Minimum size 100 mm (4 inches square).
- 3. Each accessory material: Minimum 120 ML (4 ounce) liquid container or 120 gram (4 ounce) dry weight for adhesives / cement / mastic.

1.5 STORAGE AND HANDLING OF MATERIAL

Store materials in clean and dry environment, pipe covering jackets shall be clean and unmarred. Place adhesives in original containers. Maintain ambient temperatures and conditions as required by printed instructions of manufacturers of adhesives, mastics and finishing cements.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only.
- B. Federal Specifications (Fed. Spec.): L-P-535E (2)-91.....Plastic Sheet (Sheeting): Plastic Strip; Poly (Vinyl Chloride) and Poly (Vinyl Chloride -Vinyl Acetate), Rigid.
- C. Military Specifications (Mil. Spec.): MIL-A-3316C (2)-90.....Adhesives, Fire-Resistant, Thermal Insulation MIL-A-24179A (1)-87....Adhesive, Flexible Unicellular-Plastic Thermal Insulation MIL-C-19565C (1)-88....Coating Compounds, Thermal Insulation, Fire-and Water-Resistant, Vapor-Barrier MIL-C-20079H-87....Cloth, Glass; Tape, Textile Glass; and Thread, Glass and Wire-Reinforced Glass D. American Society for Testing and Materials (ASTM): A167-04Standard Specification for Stainless and Heat-Resisting Chromium-Nickel Steel Plate, Sheet, and Strip
 - B209-07.....Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate

C411-05	.Standard test method for Hot-Surface
	Performance of High-Temperature Thermal
	Insulation
C449-07	.Standard Specification for Mineral Fiber
	Hydraulic-Setting Thermal Insulating and
	Finishing Cement
C533-09	.Standard Specification for Calcium Silicate
	Block and Pipe Thermal Insulation
C534-08	.Standard Specification for Preformed Flexible
	Elastomeric Cellular Thermal Insulation in
	Sheet and Tubular Form
C547-07	.Standard Specification for Mineral Fiber pipe
	Insulation
C552-07	.Standard Specification for Cellular Glass
	Thermal Insulation
C553-08	.Standard Specification for Mineral Fiber
	Blanket Thermal Insulation for Commercial and
	Industrial Applications
C585-09	.Standard Practice for Inner and Outer Diameters
	of Rigid Thermal Insulation for Nominal Sizes
	of Pipe and Tubing (NPS System) R (1998)
C612-10	.Standard Specification for Mineral Fiber Block
	and Board Thermal Insulation
C1126-10	.Standard Specification for Faced or Unfaced
	Rigid Cellular Phenolic Thermal Insulation
C1136-10	.Standard Specification for Flexible, Low
	Permeance Vapor Retarders for Thermal
	Insulation
D1668-97a (2006)	.Standard Specification for Glass Fabrics (Woven
	and Treated) for Roofing and Waterproofing
E84-10	.Standard Test Method for Surface Burning
	Characteristics of Building
	Materials
E119-09C	.Standard Test Method for Fire Tests of Building
	Construction and Materials
E136-09 b	.Standard Test Methods for Behavior of Materials
	in a Vertical Tube Furnace at 750 degrees C
	(1380 F)

- E. National Fire Protection Association (NFPA):
 - 101-09Life Safety Code

251-06.....Standard methods of Tests of Fire Endurance of Building Construction Materials

255-06.....Standard Method of tests of Surface Burning Characteristics of Building Materials

F. Underwriters Laboratories, Inc (UL):

723.....UL Standard for Safety Test for Surface Burning Characteristics of Building Materials with Revision of 08/03

G. Manufacturer's Standardization Society of the Valve and Fitting Industry (MSS):

SP58-2002.....Pipe Hangers and Supports Materials, Design, and Manufacture

PART 2 - PRODUCTS

2.1 MINERAL FIBER OR FIBER GLASS

ASTM C612 (Board, Block), Class 1 or 2, density 48 kg/m³ (3 pcf), k = 0.037 (.26) at 24 degrees C (75 degrees F), external insulation for temperatures up to 204 degrees C (400 degrees F).

2.2 MINERAL WOOL OR REFRACTORY FIBER

Comply with Standard ASTM C612, Class 3, 450 degrees C (850 degrees F).

2.3 RIGID CELLULAR PHENOLIC FOAM

Preformed (molded) pipe insulation, ASTM C1126, type III, grade 1, k = 0.021(0.15) at 10 degrees C (50 degrees F), for use at temperatures up to 121 degrees C (250 degrees F) with vapor retarder and all service vapor retarder jacket with polyvinyl chloride premolded fitting covering.

2.8 INSULATION FACINGS AND JACKETS

- A. Vapor Retarder, higher strength with low water permeance = 0.02 or less perm rating, Beach puncture 50 units for insulation facing on pipe insulation jackets. Facings and jackets shall be all service type (ASJ) or PVDC Vapor Retarder jacketing.
- B. ASJ jacket shall be white kraft bonded to 0.025 mm (1 mil) thick aluminum foil, fiberglass reinforced, with pressure sensitive adhesive closure. Comply with ASTM C1136. Beach puncture 50 units, Suitable for painting without sizing. Jackets shall have minimum 40 mm (1-1/2 inch) lap on longitudinal joints and minimum 75mm (3 inch) butt strip on end joints. Butt strip material shall be same as the jacket. Lap and butt

strips shall be self-sealing type with factory-applied pressure sensitive adhesive.

- C. Vapor Retarder medium strength with low water vapor permeance of 0.02 or less perm rating), Beach puncture 25 units: Foil-Scrim-Kraft (FSK) or PVDC vapor retarder jacketing type for concealed ductwork and equipment.
- D. Field applied vapor barrier jackets shall be provided, in addition to the specified facings and jackets, on all exterior piping as well as on interior piping exposed to outdoor air (i.e.; in ventilated attics, piping in ventilated (not air conditioned) spaces, etc.) in high humidity areas or conveying fluids below ambient temperature. The vapor barrier jacket shall consist of a multi-layer laminated cladding with a maximum water vapor permeance of 0.001 perms. The minimum puncture resistance shall be 35 cm-kg (30 inch-pounds) for interior locations and 92 cm-kg (80 inch-pounds) for exterior or exposed locations or where the insulation is subject to damage.
- E. Glass Cloth Jackets: Presized, minimum 0.18 kg per square meter (7.8 ounces per square yard), 2000 kPa (300 psig) bursting strength with integral vapor retarder where required or specified. Weather proof if utilized for outside service.
- F. Factory composite materials may be used provided
- G. Pipe fitting insulation covering (jackets): Fitting covering shall be premolded to match shape of fitting and shall be polyvinyl chloride (PVC) conforming to Fed Spec L-P-335, composition A, Type II Grade GU, and Type III, minimum thickness 0.7 mm (0.03 inches). Provide color matching vapor retarder pressure sensitive tape.
- H. Aluminum Jacket-Piping systems and circular breeching and stacks: ASTM B209, 3003 alloy, H-14 temper, 0.6 mm (0.023 inch) minimum thickness with locking longitudinal joints. Jackets for elbows, tees and other fittings shall be factory-fabricated to match shape of fitting and of 0.6 mm (0.024) inch minimum thickness aluminum. Fittings shall be of same construction as straight run jackets but need not be of the same alloy. Factory-fabricated stainless steel bands shall be installed on all circumferential joints. Bands shall be 13 mm (0.5 inch) wide on 450 mm (18 inch) centers. System shall be weatherproof if utilized for outside service.
- I. Aluminum jacket-Rectangular breeching: ASTM B209, 3003 alloy, H-14 temper, 0.5 mm (0.020 inches) thick with 32 mm (1-1/4 inch)

corrugations or 0.8 mm (0.032 inches) thick with no corrugations. System shall be weatherproof if used for outside service.

2.9 PIPE COVERING PROTECTION SADDLES

A. Cold pipe support: Premolded pipe insulation 180 degrees (half-shells) on bottom half of pipe at supports. Material shall be cellular glass or high density Polyisocyanurate insulation of the same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of 48 kg/m³ (3.0 pcf).

Nominal Pipe Size and Accessories Material (Insert Blocks)			
Nominal Pipe Size mm (inches)	Insert Blocks mm (inches)		
Up through 125 (5)	150 (6) long		
150 (6)	150 (6) long		
200 (8), 250 (10), 300 (12)	225 (9) long		
350 (14), 400 (16)	300 (12) long		
450 through 600 (18 through 24)	350 (14) long		

- B. Warm or hot pipe supports: Premolded pipe insulation (180 degree half-shells) on bottom half of pipe at supports. Material shall be high density Polyisocyanurate (for temperatures up to 149 degrees C [300 degrees F]), cellular glass or calcium silicate. Insulation at supports shall have same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of 48 kg/m³ (3.0 pcf).
- 2.10 ADHESIVE, MASTIC, CEMENT
 - A. Mil. Spec. MIL-A-3316, Class 1: Jacket and lap adhesive and protective finish coating for insulation.
 - B. Mil. Spec. MIL-A-3316, Class 2: Adhesive for laps and for adhering insulation to metal surfaces.
 - C. Mil. Spec. MIL-A-24179, Type II Class 1: Adhesive for installing flexible unicellular insulation and for laps and general use.
 - D. Mil. Spec. MIL-C-19565, Type I: Protective finish for outdoor use.
 - E. Mil. Spec. MIL-C-19565, Type I or Type II: Vapor barrier compound for indoor use.
 - F. ASTM C449: Mineral fiber hydraulic-setting thermal insulating and finishing cement.
 - G. Other: Insulation manufacturers' published recommendations.

2.11 MECHANICAL FASTENERS

- A. Pins, anchors: Welded pins, or metal or nylon anchors with galvanized steel or fiber washer, or clips. Pin diameter shall be as recommended by the insulation manufacturer.
- B. Staples: Outward clinching galvanized steel
- C. Wire: 1.3 mm thick (18 gage) soft annealed galvanized or 1.9 mm (14 gage) copper clad steel or nickel copper alloy.
- D. Bands: 13 mm (1/2 inch) nominal width, brass, galvanized steel, aluminum or stainless steel.

2.12 REINFORCEMENT AND FINISHES

- A. Glass fabric, open weave: ASTM D1668, Type III (resin treated) and Type I (asphalt treated).
- B. Glass fiber fitting tape: Mil. Spec MIL-C-20079, Type II, Class 1.
- C. Tape for Flexible Elastomeric Cellular Insulation: As recommended by the insulation manufacturer.
- D. Hexagonal wire netting: 25 mm (one inch) mesh, 0.85 mm thick (22 gage) galvanized steel.
- E. Corner beads: 50 mm (2 inch) by 50 mm (2 inch), 0.55 mm thick (26 gage) galvanized steel; or, 25 mm (1 inch) by 25 mm (1 inch), 0.47 mm thick (28 gage) aluminum angle adhered to 50 mm (2 inch) by 50 mm (2 inch) Kraft paper.
- F. PVC fitting cover: Fed. Spec L-P-535, Composition A, 11-86 Type II, Grade GU, with Form B Mineral Fiber insert, for media temperature 4 degrees C (40 degrees F) to 121 degrees C (250 degrees F). Below 4 degrees C (40 degrees F) and above 121 degrees C (250 degrees F). Provide double layer insert. Provide color matching vapor barrier pressure sensitive tape.

2.13 FIRESTOPPING MATERIAL

Other than pipe insulation, refer to Section 07 84 00 FIRESTOPPING.

2.14 FLAME AND SMOKE

Unless shown otherwise all assembled systems shall meet flame spread 25 and smoke developed 50 rating as developed under ASTM, NFPA and UL standards and specifications. See paragraph 1.3 "Quality Assurance".

PART 3 - EXECUTION

3.1 GENERAL REQUIREMENTS

A. Required pressure tests of piping joints and connections shall be completed and the work approved by the COTR for application of insulation. Surface shall be clean and dry with all foreign materials, such as dirt, oil, loose scale and rust removed.

B. Except for specific exceptions, insulate all specified equipment, and piping (pipe, fittings, valves, accessories). Insulate each pipe individually. Do not use scrap pieces of insulation where a full length section will fit.

C. Where removal of insulation of piping and equipment is required to comply with Section 02 82 11, TRADITIONAL ASBESTOS ABATEMENT, such areas shall be reinsulated to comply with this specification.

- D. Insulation materials shall be installed in a first class manner with smooth and even surfaces, with jackets and facings drawn tight and smoothly cemented down at all laps. Insulation shall be continuous through all sleeves and openings, except at fire dampers and duct heaters (NFPA 90A). Vapor retarders shall be continuous and uninterrupted throughout systems with operating temperature 16 degrees C (60 degrees F) and below. Lap and seal vapor barrier over ends and exposed edges of insulation. Anchors, supports and other metal projections through insulation on cold surfaces shall be insulated and vapor sealed for a minimum length of 150 mm (6 inches).
- E. Install vapor stops at all insulation terminations on either side of valves, pumps and equipment and particularly in straight lengths of pipe insulation.
- F. Construct insulation on parts of equipment such as cold water pumps and heat exchangers that must be opened periodically for maintenance or repair, so insulation can be removed and replaced without damage. Install insulation with bolted 1 mm thick (20 gage) galvanized steel or aluminum covers as complete units, or in sections, with all necessary supports, and split to coincide with flange/split of the equipment.
- G. Insulation on hot piping and equipment shall be terminated square at items not to be insulated, access openings and nameplates. Cover all exposed raw insulation with white sealer or jacket material.
- H. Protect all insulations outside of buildings with aluminum jacket using lock joint or other approved system for a continuous weather tight system. Access doors and other items requiring maintenance or access shall be removable and sealable.
- I. Plumbing work not to be insulated:
 - 1. Piping and valves of fire protection system.
 - 2. Chromium plated brass piping.

- 3. Water piping in contact with earth.
- 4. Small horizontal cold water branch runs in partitions to individual fixtures may be without insulation for maximum distance of 900 mm (3 feet).
- J. Apply insulation materials subject to the manufacturer's recommended temperature limits. Apply adhesives, mastic and coatings at the manufacturer's recommended minimum coverage.
- K. Elbows, flanges and other fittings shall be insulated with the same material as is used on the pipe straights. Use of polyurethane spray-foam to fill a PVC elbow jacket is prohibited on cold applications.
- L. Firestop Pipe insulation:
 - Provide firestopping insulation at fire and smoke barriers through penetrations. Fire stopping insulation shall be UL listed as defines in Section 07 84 00, FIRESTOPPING.
 - Pipe penetrations requiring fire stop insulation including, but not limited to the following:
 - a. Pipe risers through floors
 - b. Pipe chase walls and floors
 - c. Smoke partitions
 - d. Fire partitions
- M. Freeze protection of above grade outdoor piping (over heat tracing tape): 20 mm (0.75) thick insulation, for all pipe sizes 75 mm(3 inches) and smaller and 25 mm(1inch) thick insulation for larger pipes. Provide metal jackets for all pipes. Provide for cold water make-up where indicated on the drawings as described in Section 23 21 13, HYDRONIC PIPING (electrical heat tracing systems).
- N. Provide vapor barrier jackets over insulation as follows:
 - 1. All piping exposed to outdoor weather.
 - 2. All interior piping conveying fluids exposed to outdoor air (i.e. in attics, ventilated (not air conditioned) spaces, etc.) or below ambient air temperature.

3.2 INSULATION INSTALLATION

- A. Mineral Fiber Board:
 - Faced board: Apply board on pins spaced not more than 300 mm (12 inches) on center each way, and not less than 75 mm (3 inches) from each edge of board. In addition to pins, apply insulation bonding adhesive to entire underside of horizontal metal surfaces. Butt

insulation edges tightly and seal all joints with laps and butt strips. After applying speed clips cut pins off flush and apply vapor seal patches over clips.

- 2. Plain board:
 - a. Insulation shall be scored, beveled or mitered to provide tight joints and be secured to equipment with bands spaced 225 mm (9 inches) on center for irregular surfaces or with pins and clips on flat surfaces. Use corner beads to protect edges of insulation.
 - b. For hot equipment: Stretch 25 mm (1 inch) mesh wire, with edges wire laced together, over insulation and finish with insulating and finishing cement applied in one coat, 6 mm (1/4 inch) thick, trowel led to a smooth finish.
 - c. For cold equipment: Apply meshed glass fabric in a tack coat 1.5 to 1.7 square meter per liter (60 to 70 square feet per gallon) of vapor mastic and finish with mastic at 0.3 to 0.4 square meter per liter (12 to 15 square feet per gallon) over the entire fabric surface.
- 3. Cold equipment: 40 mm (1-1/2inch) thick insulation faced with ASJ.
 - a. Water filter, chemical feeder pot or tank.
 - b. Pneumatic, cold storage water and surge tanks.
- 4. Hot equipment: 40 mm (1-1/2 inch) thick insulation faced with ASJ.
 - a. Domestic water heaters and hot water storage tanks (not factory insulated).
 - b. Booster water heaters for dietetics dish and pot washers and for washdown grease-extracting hoods.
- B. Molded Mineral Fiber Pipe and Tubing Covering:
 - 1. Fit insulation to pipe, aligning longitudinal joints. Seal longitudinal joint laps and circumferential butt strips by rubbing hard with a nylon sealing tool to assure a positive seal. Staples may be used to assist in securing insulation. Seal all vapor retarder penetrations on cold piping with a generous application of vapor barrier mastic. Provide inserts and install with metal insulation shields at outside pipe supports. Install freeze protection insulation over heating cable.
 - 2. Contractor's options for fitting, flange and valve insulation:

- a. Insulating and finishing cement for sizes less than 100 mm (4 inches) operating at surface temperature of 16 degrees C (61 degrees F) or more.
- b. Factory premolded, one piece PVC covers with mineral fiber, (Form B), inserts. Provide two insert layers for pipe temperatures below 4 degrees C (40 degrees F), or above 121 degrees C (250 degrees F). Secure first layer of insulation with twine. Seal seam edges with vapor barrier mastic and secure with fitting tape.
- c. Factory molded, ASTM C547 or field mitered sections, joined with adhesive or wired in place. For hot piping finish with a smoothing coat of finishing cement. For cold fittings, 16 degrees C (60 degrees F) or less, vapor seal with a layer of glass fitting tape imbedded between two 2 mm (1/16 inch) coats of vapor barrier mastic.
- d. Fitting tape shall extend over the adjacent pipe insulation and overlap on itself at least 50 mm (2 inches).
- 3. Nominal thickness in millimeters and inches specified in the schedule at the end of this section.
- C. Rigid Cellular Phenolic Foam:
 - Rigid closed cell phenolic insulation may be provided for piping, ductwork and equipment for temperatures up to 121 degrees C (250 degrees F).
 - Note the NFPA 90A burning characteristics requirements of 25/50 in paragraph 1.3.B
 - 3. Provide secure attachment facilities such as welding pins.
 - 4. Apply insulation with joints tightly drawn together
 - 5. Apply adhesives, coverings, neatly finished at fittings, and valves.
 - Final installation shall be smooth, tight, neatly finished at all edges.
 - 7. Minimum thickness in millimeters (inches) specified in the schedule at the end of this section.
 - Condensation control insulation: Minimum 25 mm (1.0 inch) thick for all pipe sizes.
 - a. Plumbing piping as follows:
 - 1) Waste piping from electric water coolers and icemakers to drainage system.

- Waste piping located above basement floor from ice making and air handling units, from equipment(including trap) to main vertical waste pipe.
- 3) Cold water piping.

3.3 PIPE INSULATION SCHEDULE

Provide insulation for piping systems as scheduled below:

Ir	sulation Thicknes	ss Millime	ters (Inche	es)	
		Nominal	Pipe Size	Millimeters	(Inches)
Operating Temperature Range/Service	Insulation Material	Less than 25 (1)	25 - 32 (1 - 1¼)	38 - 75 (1½ - 3)	100 (4) and Above
38-60 degrees C (100-140 degrees F) (Domestic Hot Water Supply and Return)	Mineral Fiber (Above ground piping only)	38 (1.5)	38 (1.5)	50 (2.0)	50 (2.0)
38-60 degrees C (100-140 degrees F) (Domestic Hot Water Supply and Return)	Rigid Cellular Phenolic Foam (Above ground piping only)	38 (1.5)	38 (1.5)	50 (2.0)	50 (2.0)
38-60 degrees C (100-140 degrees F) (Domestic Hot Water Supply and Return)	Polyiso- cyanurate Closed-Cell Rigid (Exterior Locations only)	38 (1.5)	38 (1.5)		
4-16 degrees C (40-60 degrees F)	Rigid Cellular Phenolic Foam (Above ground piping only)	25 (1.0)	25 (1.0)	25 (1.0)	25 (1.0)
4-16 degrees C (Domestic Hot Water Supply and Return)	Flexible Elastomeric Cellular Thermal (Above ground piping only)	25 (1.0)	25 (1.0)	25 (1.0)	25 (1.0)

38-60 degrees C	Flexible	38	38 (1.5)	
(100-140 degrees F)	Elastomeric	(1.5)		
(Domestic Hot Water Supply and Return)	Cellular Thermal (Above ground piping only)			

- - - END - - -

SECTION 22 11 00

FACILITY WATER DISTRIBUTION

PART 1 - GENERAL

1.1 DESCRIPTION

Domestic water systems, including piping, equipment and all necessary accessories as designated in this section.

1.2 RELATED WORK

- A. Penetrations in rated enclosures: Section 07 84 00, FIRESTOPPING.
- B. Preparation and finish painting and identification of piping systems: Section 09 91 00, PAINTING.
- C. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- D. Pipe Insulation: Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Piping.
 - 2. Strainers.
 - 3. All items listed in Part 2 Products.

1.4 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Federal Specifications (Fed. Spec.):

A-A-1427C.....Sodium Hypochlorite Solution

A-A-59617..... Unions, Brass or Bronze Threaded, Pipe Connections and Solder-Joint Tube Connections

C. American National Standards Institute (ANSI):

American Society of Mechanical Engineers (ASME): (Copyrighted Society) Al3.1-96.....Scheme for Identification of Piping Systems Bl6.3-98.....Malleable Iron Threaded Fittings ANSI/ASME

B16.4-98.....Cast Iron Threaded Fittings Classes 125 and 250
ANSI/ASME

B16.9-01.....Factory-Made Wrought Steel Buttwelding Fittings
ANSI/ASME

B16.11-01.....Forged Steel Fittings, Socket-Welding and Threaded ANSI/ASME B16.12-98.....Cast Iron Threaded Drainage Fittings ANSI/ASME B16.15-85(R 1994).....Cast Bronze Threaded Fittings ANSI/ASME B16.18-01.....Cast Copper Alloy Solder-Joint Pressure Fittings ANSI/ASME B16.22-01.....Wrought Copper and Copper Alloy Solder Joint Pressure Fittings ANSI/ASME Element ANSI/ASME D. American Society for Testing and Materials (ASTM): A47-99.....Ferritic Malleable Iron Castings Revision 1989 A53-02.....Pipe, Steel, Black And Hot-Dipped, Zinc-coated Welded and Seamless A74-03.....Cast Iron Soil Pipe and Fittings A183-83(R1998).....Carbon Steel Track Bolts and Nuts A312-03.....Seamless and Welded Austenitic Stainless Steel Pipe A536-84(R1999) E1.....Ductile Iron Castings A733-03..... Welded and Seamless Carbon Steel and Austenitic Stainless Steel Pipe Nipples B32-03.....Solder Metal B61-02.....Steam or Bronze Castings B62-02.....Composition Bronze or Ounce Metal Castings B75-99(Rev A).....Seamless Copper Tube B88-03..... Seamless Copper Water Tube B584-00.....Copper Alloy Sand Castings for General Applications Revision A B687-99.....Brass, Copper, and Chromium-Plated Pipe Nipples C564-03.....Rubber Gaskets for Cast Iron Soil Pipe and Fittings D2000-01.....Rubber Products in Automotive Applications D4101-03b Propylene Plastic Injection and Extrusion Materials D2447-93.....Polyethylene (PE) Plastic Pipe, Schedule 40 and 80, Based on Outside Diameter D2564-94.....Solvent Cements for Poly (Vinyl Chloride) (PVC) Plastic Pipe and Fittings

D2665-94 Revision A....Poly (Vinyl Chloride) (PVC) Plastic Drain, Waste, and Vent Pipe and Fittings D4101-03b.....Propylene Plastic Injection and Extrusion Materials E1120..... For Liquid Chlorine E1229..... Standard Specification For Calcium Hypochlorite E. American Water Works Association (AWWA): C110-03/ A21.10-03.....Ductile Iron and Gray Iron Fittings - 75 mm thru 1200 mm (3 inch thru 48 inches) for Water and other liquids AWWA/ ANSI C151-00/ A21.51-02.....Ductile-Iron Pipe, Centrifugally Cast in Metal Molds or Sand-Lined Molds, for Water or Other Liquids AWWA/ ANSI C203-02.....Coal-Tar Protective Coatings and Linings for Steel Water Pipelines - Enamel and Tape - Hot Applied AWWA/ ANSI C651-99.....Disinfecting Water Mains F. American Welding Society (AWS): A5.8-92.....Filler Metals for Brazing G. National Association of Plumbing - Heating - Cooling Contractors (PHCC): National Standard Plumbing Code - 1996 H. International Association of Plumbing and Mechanical Officials (IAPMO): Uniform Plumbing Code - 2000 IS6-93.....Installation Standard I. Manufacturers Standardization Society of the Valve and Fittings Industry, Inc. (MSS): SP-72-99.....Ball Valves With Flanged or Butt Welding For General Purpose SP-110-96.....Ball Valve Threaded, Socket Welding, Solder Joint, Grooved and Flared Ends J. American Society of Sanitary Engineers (ASSE): 1001-02..... Pipe Applied Atmospheric Type Vacuum Breakers 1018-01.....Performance for trap seal primer valve-water supply fed 1020-04..... Vacuum Breakers, Anti-Siphon, Pressure Type K. Plumbing and Drainage Institute (PDI): PDI WH-201.....Water Hammer Arrestor

PART 2 - PRODUCTS

2.1 INTERIOR DOMESTIC WATER PIPING

- A. Pipe: Copper tube, ASTM B88, Type K or L, drawn.
- B. Fittings for Copper Tube:
 - Wrought copper or bronze castings conforming to ANSI B16.18 and B16.22. Unions shall be bronze, MSS SP72 & SP 110, Solder or braze joints.
 - 2. Grooved fittings, 50 to 150 mm (2 to 6 inch) wrought copper ASTM B75 C12200, 125 to 150 mm (5 to 6 inch) bronze casting ASTM B584, CDA 844. Mechanical grooved couplings, ductile iron, ASTM A536 (Grade 65-45-12), or malleable iron, ASTM A47 (Grade 32510) housing, with EPDM gasket, steel track head bolts, ASTM A183, coated with copper colored alkyd enamel.
- C. Adapters: Provide adapters for joining screwed pipe to copper tubing.
- D. Solder: ASTM B32 Composition Sb5 HA or HB. Provide non-corrosive flux.
- E. Brazing alloy: AWS A5.8, Classification BCuP.

2.2 EXPOSED WATER PIPING

- A. Finished Room: Use full iron pipe size chrome plated brass piping for exposed water piping connecting fixtures, casework, cabinets, equipment and reagent racks when not concealed by apron including those furnished by the Government or specified in other sections.
 - 1. Pipe: Fed. Spec. WW-P-351, standard weight.
 - 2. Fittings: ANSI B16.15 cast bronze threaded fittings with chrome finish, (125 and 250).
 - 3. Nipples: ASTM B 687, Chromium plated.

4. Unions: Mss SP-72, SP-110, Brass or Bronze with chrome finish. Unions 65 mm (2-1/2 inches) and larger shall be flange type with approved gaskets.

B. Unfinished Rooms, Mechanical Rooms and Kitchens: Chrome-plated brass piping is not required. Paint piping systems as specified in Section 09 91 00, PAINTING.

2.3 TRAP PRIMER WATER PIPING

A. Pipe Copper tube, ASTM B88, type K, hard drawn.

B. Fittings: Bronze castings conforming to ANSI B16.18 Solder joints.

C. Solder: ASTM B32 composition Sb5. Provide non-corrosive flux.

2.4 WATERPROOFING

- A. Provide at points where pipes pass through membrane waterproofed floors or walls in contact with earth.
- B. Floors: Provide cast iron stack sleeve with flashing device and a underdeck clamp. After stack is passed through sleeve, provide a waterproofed caulked joint at top hub.
- C. Walls: See detail shown on drawings.

2.5 DIELECTRIC FITTINGS

Provide dielectric couplings or unions between ferrous and non-ferrous pipe.

2.6 WATER HAMMER ARRESTER

- A. Closed copper tube chamber with permanently sealed 410 kPa (60 psig) air charge above a double O-ring piston. Two high heat Buna-N O-rings pressure packed and lubricated with FDA approved silicone compound. All units shall be designed in accordance with ASSE 1010 for sealed wall installations without an access panel. Size and install in accordance with Plumbing and Drainage Institute requirements (PDI WH 201). Provide water hammer arrestors at:
 - 1. All solenoid valves.
 - 2. All groups of two or more flush valves.
 - 3. All quick opening or closing valves.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. General: Comply with the PHCC National Standard Plumbing Code and the following:
 - Install branch piping for water from the piping system and connect to all fixtures, valves, cocks, outlets, casework, cabinets and equipment, including those furnished by the Government or specified in other sections.
 - Pipe shall be round and straight. Cutting shall be done with proper tools. Pipe, except for plastic and glass, shall be reamed to full size after cutting.
 - All pipe runs shall be laid out to avoid interference with other work.
 - Install union and shut-off valve on pressure piping at connections to equipment.
 - 5. Pipe Hangers, Supports and Accessories:

- All piping shall be supported per of the National Standard Plumbing Code, Chapter No. 8.
- b. Shop Painting and Plating: Hangers, supports, rods, inserts and accessories used for Pipe supports shall be shop coated with red lead or zinc Chromate primer paint. Electroplated copper hanger rods, hangers and accessories may be used with copper tubing.
- c. Floor, Wall and Ceiling Plates, Supports, Hangers:
 - 1) Solid or split unplated cast iron.
 - 2) All plates shall be provided with set screws.
 - 3) Pipe Hangers: Height adjustable clevis type.
 - 4) Adjustable Floor Rests and Base Flanges: Steel.
 - 5) Concrete Inserts: "Universal" or continuous slotted type.
 - 6) Hanger Rods: Mild, low carbon steel, fully threaded or Threaded at each end with two removable nuts at each end for positioning rod and hanger and locking each in place.
 - 7) Riser Clamps: Malleable iron or steel.
 - 8) Rollers: Cast iron.
 - Self-drilling type expansion shields shall be "Phillips" type, with case hardened steel expander plugs.
 - 10)Hangers and supports utilized with insulated pipe and tubing shall have 180 degree (min.) metal protection shield Centered on and welded to the hanger and support. The shield shall be 4 inches in length and be 16 gauge steel. The shield shall be sized for the insulation.
 - 11)Miscellaneous Materials: As specified, required, directed or as noted on the drawings for proper installation of hangers, supports and accessories. If the vertical distance exceeds 6 m (20 feet) for cast iron pipe additional support shall be provided in the center of that span. Provide all necessary auxiliary steel to provide that support.
- Install cast escutcheon with set screw at each wall, floor and ceiling penetration in exposed finished locations and within cabinets and millwork.
- 7. Penetrations:
 - a. Fire Stopping: Where pipes pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING.

Completely fill and seal clearances between raceways and openings with the fire stopping materials.

- b. Waterproofing: At floor penetrations, completely seal clearances around the pipe and make watertight with sealant as specified in Section 07 92 00, JOINT SEALANTS.
- B. Piping shall conform to the following:
 - 1. Domestic Water:
 - a. Where possible, grade all lines to facilitate drainage. Provide drain valves at bottom of risers. All unnecessary traps in circulating lines shall be avoided.
 - b. Connect branch lines at bottom of main serving fixtures below and pitch down so that main may be drained through fixture. Connect branch lines to top of main serving only fixtures located on floor above.

3.2 TESTS

- A. General: Test system either in its entirety or in sections.
- B. Potable Water System: Test after installation of piping and domestic water heaters, but before piping is concealed, before covering is applied, and before plumbing fixtures are connected. Fill systems with water and maintain hydrostatic pressure of 690 kPa (100 psi) gage for two hours. No decrease in pressure is allowed. Provide a pressure gage with a shutoff and bleeder valve at the highest point of the piping being tested.
- C. All Other Piping Tests: Test new installed piping under 1 1/2 times actual operating conditions and prove tight.

3.3 STERILIZATION

- A. After tests have been successfully completed, thoroughly flush and sterilize the interior domestic water distribution system in accordance with AWWA C651.
- B. Use either liquid chlorine or hypochlorite for sterilization.

- - - END - - -

SECTION 22 11 23

DOMESTIC WATER PUMPS

PART 1 - GENERAL

1.1 DESCRIPTION

A. Hot water recirculation pump.

1.2 RELATED WORK

- A. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- B. Section 22 05 12, GENERAL MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT.
- C. Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS.

1.3 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Pump:
 - a. Manufacturer and model.
 - b. Operating speed.
 - c. Capacity.
 - d. Characteristic performance curves.
 - 2. Motor:
 - a. Manufacturer,
 - b. Speed.
 - c. Current Characteristics.
 - d. Efficiency.
- C. Certificate of shop test for domestic water booster system. Provide certified performance curves.

- D. Certified copies of all the factory and construction site test data sheets and reports.
- E. Complete operating and maintenance manuals including wiring diagrams, technical data sheets and information for ordering replaceable parts:
 - Include complete list indicating all components of the systems.
 - 2. Include complete diagrams of the internal wiring for each item of equipment.
 - 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.
- F. Completed System Readiness Checklist provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 22 08 00 COMMISSIONING OF PLUMBING SYSTEMS.

1.4 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. National Electrical Manufacturers Association (NEMA):

ICS6-93 (R2006) Industrial Control and Systems Enclosures
250-08 Enclosures for Electrical Equipment (1000
Volts Maximum)

C. American Society of Mechanical Engineers (ASME):

Boiler and Pressure Vessel Code: 2010 Section VIII Pressure Vessels, Division I and II D. Underwriters' Laboratories, Inc. (UL):

508-99 (R2008) Standards for Industrial Control Equipment

PART 2 - PRODUCTS

2.1 INLINE HOT WATER RECIRCULATING PUMP

- A. Centrifugal in-line horizontal oil lubricated pump designed for quiet operation and 862 kPa (125 psi).
- B. Bronze body construction, single phase, 115 VAC motor. Pump shall be non-overloading at any point on the pump curve.
- C. Pump controlled from on/off aquastat located at pump. In addition, the pump shall be provided with "on-off" switch for shut down. In the inlet and outlet piping of the pump shutoff valves shall be installed to permit service to the pump without draining the system. A check valve shall be installed in the pump discharge piping immediately downstream of the pump.

PART 3 - EXECUTION

3.1 STARTUP AND TESTING

- A. Make tests as recommended by product manufacturer and listed standards and under actual or simulated operating conditions and prove full compliance with design and specified requirements. Tests of the various items of equipment shall be performed simultaneously with the system of which each item is an integral part.
- B. System Test: After installation is completed provide an operational test of the completed system including flow rates, pressure compliance, alarms and all control functions.
- C. When any defects are detected, correct defects and repeat test.

3.2 DEMONSTRATION AND TRAINING

A. Provide services of manufacturer's technical representative for four hours to instruct VA Personnel in operation and maintenance of units. B. Submit training plans and instructor qualifications in accordance with the requirements of Section 22 08 00 COMMISSIONING OF PLUMBING SYSTEMS.

- - - E N D - - -

SECTION 22 13 00 FACILITY SANITARY AND VENT PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section pertains to sanitary sewer and vent systems, including piping, equipment and all necessary accessories as designated in this section.
- B. A complete listing of all acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- D. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- E. Section 07 84 00, FIRESTOPPING: Penetrations in rated enclosures.
- F. Section 07 92 00, JOINT SEALANTS: Sealant products.
- G. Section 09 91 00, PAINTING: Preparation and finish painting and identification of piping systems.
- H. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING: Pipe Hangers and Supports, Materials Identification.
- I. Section 22 07 11, PLUMBING INSULATION.
- K. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS
- L. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Mechanical Engineers (ASME):

A13.1-2007.....Scheme for the Identification of Piping Systems A112.36.2M-1991(R 2012).Cleanouts

All2.6.3-2001 (R2007)...Standard for Floor and Trench Drains

B1.20.1-2013.....Pipe Threads, General Purpose (Inch)

B16.1-2010.....Gray Iron Pipe Flanges and Flanged Fittings

B16.4-2011.....Standard for Grey Iron Threaded Fittings

Classes 125 and 250

	B16.15-2013	09-01-15 Cast Copper Alloy Threaded Fittings, Classes.
		125 and 250
	B16.18-2012	.Cast Copper Alloy Solder Joint Pressure
		Fittings
	B16.21-2011	.Nonmetallic Flat Gaskets for Pipe Flanges
	B16.22-2013	.Wrought Copper and Copper Alloy Solder-Joint
		Pressure Fittings
	B16.23-2011	.Cast Copper Alloy Solder Joint Drainage
		Fittings: DWV
	B16.24-2001 (R2006)	.Cast Copper Alloy Pipe Flanges and Flanged
		Fittings
	B16.29-2012	.Wrought Copper and Wrought Copper Alloy Solder-
		Joint Drainage Fittings: DWV
	B16.39-2009	.Malleable Iron Threaded Pipe Unions Classes
		150, 250, and 300
	B18.2.1-2012	.Square, Hex, Heavy Hex, and Askew Head Bolts
		and Hex, Heavy Hex, Hex Flange, Lobed Head, and
		Lag Screws (Inch Series)
С.	American Society of San	itary Engineers (ASSE):
	1001-2008	.Performance Requirements for Atmospheric Type
		Vacuum Breakers
	1018-2001	.Performance Requirements for Trap Seal Primer
		Valves - Potable Water Supplied
	1044-2001	.Performance Requirements for Trap Seal Primer
		Devices - Drainage Types and Electronic Design
		Types
	1079-2012	.Performance Requirements for Dielectric Pipe
		Unions
D.	American Society for Te	sting and Materials (ASTM):
	A53/A53M-2012	.Standard Specification for Pipe, Steel, Black
		and Hot-Dipped, Zinc-coated, Welded and
		Seamless
	A74-2013a	.Standard Specification for Cast Iron Soil Pipe
		and Fittings

09-01-15
A888-2013aStandard Specification for Hubless Cast Iron
Soil Pipe and Fittings for Sanitary and Storm
Drain, Waste, and Vent Piping Applications
B32-2008Standard Specification for Solder Metal
B43-2009Standard Specification for Seamless Red Brass
Pipe, Standard Sizes
B75-2011Standard Specification for Seamless Copper Tube
B88-2009 Standard Specification for Seamless Copper
Water Tube
B306-2013 Standard Specification for Copper Drainage Tube
(DWV)
B584-2013 Standard Specification for Copper Alloy Sand
Castings for General Applications
B687-1999 (R 2011)Standard Specification for Brass, Copper, and
Chromium-Plated Pipe Nipples
B813-2010 Standard Specification for Liquid and Paste
Fluxes for Soldering of Copper and Copper Alloy
Tube
B828-2002 (R 2010)Standard Practice for Making Capillary Joints
by Soldering of Copper and Copper Alloy Tube
and Fittings
C564-2012Standard Specification for Rubber Gaskets for
Cast Iron Soil Pipe and Fittings
D1785-2012Standard Specification for Poly(Vinyl Chloride)
(PVC) Plastic Pipe, Schedules 40, 80, and 120
D2321-2011 Standard Practice for Underground Installation
of Thermoplastic Pipe for Sewers and Other
Gravity-Flow Applications
D2564-2012 Standard Specification for Solvent Cements for
Poly(Vinyl Chloride) (PVC) Plastic Piping
Systems
D2665-2012Standard Specification for Poly(Vinyl Chloride)
(PVC) Plastic Drain, Waste, and Vent Pipe and
Fittings

09-01-15 D2855-1996 (R 2010).....Standard Practice for Making Solvent-Cemented Joints with Poly(Vinyl Chloride) (PVC) Pipe and Fittings D5926-2011.....Standard Specification for Poly(Vinyl Chloride) (PVC) Gaskets for Drain, Waste, and Vent (DWV), Sewer, Sanitary, and Storm Plumbing Systems F402-2005 (R 2012).....Standard Practice for Safe Handling of Solvent Cements, Primers, and Cleaners Used for Joining Thermoplastic Pipe and Fittings F477-2010.....Standard Specification for Elastomeric Seals (Gaskets) for Joining Plastic Pipe F1545-1997 (R 2009).....Standard Specification for Plastic-Lined Ferrous Metal Pipe, Fittings, and Flanges E. Cast Iron Soil Pipe Institute (CISPI): 2006.....Cast Iron Soil Pipe and Fittings Handbook 301-2012......Standard Specification for Hubless Cast Iron Soil Pipe and Fittings for Sanitary and Storm Drain, Waste, and Vent Piping Applications 310-2012..... Specification for Coupling for Use in Connection with Hubless Cast Iron Soil Pipe and Fittings for Sanitary and Storm Drain, Waste, and Vent Piping Applications F. Copper Development Association, Inc. (CDA): A4015..... Handbook G. International Code Council (ICC): IPC-2012.....International Plumbing Code H. Manufacturers Standardization Society (MSS): SP-123-2013......Non-Ferrous Threaded and Solder-Joint Unions for Use with Copper Water Tube I. National Fire Protection Association (NFPA): 70-2014.....Code (NEC) J. Plumbing and Drainage Institute (PDI): WH-201 (R 2010).....Water Hammer Arrestors Standard K. Underwriters' Laboratories, Inc. (UL): 508-99 (R2013).....Standard for Industrial Control Equipment

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 13 00, FACILITY SANITARY AND VENT PIPING", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 - 1. Piping.
 - 2. Floor Drains.
 - 3. Grease Removal Unit.
 - 4. Cleanouts.
 - 5. Trap Seal Protection.
 - 6. Penetration Sleeves.
 - 7. Pipe Fittings.
 - 8. Traps.
 - 9. Exposed Piping and Fittings.
- D. Detailed shop drawing of clamping device and extensions when required in connection with the waterproofing membrane or the floor drain.

1.5 QUALITY ASSURANCE

A. Bio-Based Materials: For products designated by the USDA's Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.

1.6 AS-BUILT DOCUMENTATION

A. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. As-built drawings are to be provided to the General Contractor, and a digital copy of them as a pdf document. The Sanitary as-built drawings shall be added to the complete as-built set by the G.C. Should the installing contractor engage the testing company to provide as built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement.

B. Certification documentation shall be provided prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and a certification that all results of tests were within limits specified.

PART 2 - PRODUCTS

2.1 SANITARY WASTE, DRAIN, AND VENT PIPING

- A. Cast iron waste, drain, and vent pipe and fittings.
 - Cast iron waste, drain, and vent pipe and fittings shall be used for the following applications:
 - a. Pipe buried in or in contact with earth.
 - b. Sanitary pipe extensions to a distance of approximately 1500 mm (5 feet) outside of the building.
 - c. Interior waste and vent piping above grade.
 - 2. Cast iron Pipe shall be bell and spigot or hubless (plain end or nohub or hubless).
 - 3. The material for all pipe and fittings shall be cast iron soil pipe and fittings and shall conform to the requirements of CISPI 301, ASTM A888, or ASTM A74.
 - Cast iron pipe and fittings shall be made from a minimum of 95 percent post-consumer recycled material.
 - 5. Joints for hubless pipe and fittings shall conform to the manufacturer's installation instructions. Couplings for hubless joints shall conform to CISPI 310. Joints for hub and spigot pipe shall be installed with compression gaskets conforming to the requirements of ASTM C564.
- B. Copper Tube, (DWV):
 - 1. Copper DWV tube sanitary waste, drain and vent pipe may be used for piping above ground, except for urinal drains.
 - 2. The copper DWV tube shall be drainage type, drawn temper conforming to ASTM B306.
 - 3. The copper drainage fittings shall be cast copper or wrought copper conforming to ASME B16.23 or ASME B16.29.

4. The joints shall be lead free, using a water flushable flux, and conforming to ASTM B32.

2.2 EXPOSED WASTE PIPING

- A. Chrome plated brass piping of full iron pipe size shall be used in finished rooms for exposed waste piping connecting fixtures, casework, cabinets, equipment and reagent racks when not concealed by apron including those furnished by the Government or specified in other sections.
 - 1. The Pipe shall meet ASTM B43, regular weight.
 - 2. The Fittings shall conform to ASME B16.15 and ASTM D2665.
 - 3. Nipples shall conform to ASTM B687, Chromium-plated.
 - Unions shall be brass or bronze with chrome finish. Unions 65 mm (2-1/2 inches) and larger shall be flange type with approved gaskets.
- B. In unfinished Rooms such as mechanical Rooms and Kitchens, Chrome-plated brass piping is not required. The pipe materials specified under the paragraph "Sanitary Waste, Drain, and Vent Piping" can be used. The sanitary pipe in unfinished rooms shall be painted as specified in Section 09 91 00, PAINTING.

2.3 SPECIALTY PIPE FITTINGS

- A. Transition pipe couplings shall join piping with small differences in outside diameters or different materials. End connections shall be of the same size and compatible with the pipes being joined. The transition coupling shall be elastomeric, sleeve type reducing or transition pattern and include shear and corrosion resistant metal, tension band and tightening mechanism on each end. The transition coupling sleeve coupling shall be of the following material:
 - 1. For cast iron soil pipes, the sleeve material shall be rubber conforming to ASTM C564.
 - For dissimilar pipes, the sleeve material shall be PVC conforming to ASTM D5926, or other material compatible with the pipe materials being joined.
- B. The dielectric fittings shall conform to ASSE 1079 with a pressure rating of 861 kPa (125 psig) at a minimum temperature of 82 degrees C (180 degrees F). The end connection shall be solder joint copper alloy and threaded ferrous.

09-01-15

C. Dielectric flange insulating kits shall be of non-conducting materials for field assembly of companion flanges with a pressure rating of 1035 kPa (150 psig). The gasket shall be neoprene or phenolic. The bolt sleeves shall be phenolic or polyethylene. The washers shall be phenolic with steel backing washers.

09-01-15

D. The di-electric nipples shall be electroplated steel nipple complying with ASTM F1545 with a pressure rating of 2070 kPa (300 psig) at 107 degrees C (225 degrees F). The end connection shall be male threaded. The lining shall be inert and noncorrosive propylene.

2.4 CLEANOUTS

- A. Cleanouts shall be the same size as the pipe, up to 100 mm (4 inches); and not less than 100 mm (4 inches) for larger pipe. Cleanouts shall be easily accessible and shall be gastight and watertight. Minimum clearance of 600 mm (24 inches) shall be provided for clearing a clogged sanitary line.
- B. Floor cleanouts shall be gray iron housing with clamping device and round, secured, scoriated, gray iron cover conforming to ASME A112.36.2M. A gray iron ferrule with hubless, socket, inside calk or spigot connection and counter sunk, taper-thread, brass or bronze closure plug shall be included. The frame and cover material and finish shall be nickel-bronze copper alloy with a square shape. The cleanout shall be vertically adjustable for a minimum of 50 mm (2 inches). When a waterproof membrane is used in the floor system, clamping collars shall be provided on the cleanouts. Cleanouts shall consist of wye fittings and eighth bends with brass or bronze screw plugs. Cleanouts in the resilient tile floors, quarry tile and ceramic tile floors shall be provided with square top covers recessed for tile insertion. In the carpeted areas, carpet cleanout markers shall be provided. Two-way cleanouts shall be provided where indicated on drawings and at every building exit. The loading classification for cleanouts in sidewalk areas or subject to vehicular traffic shall be heavy duty type.
- C. Cleanouts shall be provided at or near the base of the vertical stacks with the cleanout plug located approximately 600 mm (24 inches) above the floor. If there are no fixtures installed on the lowest floor, the cleanout shall be installed at the base of the stack. The cleanouts shall be extended to the wall access cover. Cleanout shall consist of

sanitary tees. Nickel-bronze square frame and stainless-steel cover with minimum opening of 150 by 150 mm (6 by 6 inches) shall be furnished at each wall cleanout. Where the piping is concealed, a fixture trap or a fixture with integral trap, readily removable without disturbing concealed pipe, shall be accepted as a cleanout equivalent providing the opening to be used as a cleanout opening is the size required.

09-01-15

D. In horizontal runs above grade, cleanouts shall consist of cast brass tapered screw plug in fitting or caulked/hubless cast iron ferrule. Plain end (hubless) piping in interstitial space or above ceiling may use plain end (hubless) blind plug and clamp.

2.5 FLOOR DRAINS

- A. General Data: floor drain shall comply with ASME A112.6.3. A caulking flange, inside gasket, or hubless connection shall be provided for connection to cast iron pipe, screwed or no hub outlets for connection to steel pipe. The drain connection shall be bottom outlet. A membrane clamp and extensions shall be provided, if required, where installed in connection with waterproof membrane. Puncturing membrane other than for drain opening will not be permitted. Double drainage pattern floor drains shall have integral seepage pan for embedding into floor construction, and weep holes to provide adequate drainage from pan to drainpipe. For drains not installed in connection with a waterproof membrane, a .45 kg (16-ounce) soft copper flashing membrane, 600 mm (24 inches) square or another approved waterproof membrane shall be provided.
- B. Type C (FD-C) medium duty (non-traffic) floor drain shall comply with ASME A112.6.3. The type C floor drain shall have a cast iron body, double drainage pattern, clamping device, light duty nickel bronze adjustable strainer with square grate of 150 mm (6 inches) width or diameter minimum for toilet rooms, showers and kitchens.
- C. Type E (FD-E) floor drain shall comply with ASME A112.6.3. The type E floor drain shall have a heavy, cast iron body, double drainage pattern, ductile iron grate not less than 300 mm (12 inches) square, removable sediment bucket. Clearance between body and bucket shall be ample for free flow of wastewater. For traffic use, an extra heavy-duty load classification ductile iron grate shall be provided.

2.6 TRAPS

A. Traps shall be provided on all sanitary branch waste connections from fixtures or equipment not provided with traps. Exposed brass shall be polished brass chromium plated with nipple and set screw escutcheons. Concealed traps may be rough cast brass or same material as the piping they are connected to. Slip joints are not permitted on sewer side of trap. Traps shall correspond to fittings on cast iron soil pipe or steel pipe respectively, and size shall be as required by connected service or fixture.

2.7 PRIMER VALVES AND TRAP SEAL PRIMER SYSTEMS

- A. Trap Primer (TP-1): The trap seal primer system shall be electronic type conforming to ASSE 1044.
 - The controller shall have a 24 hour programmable timer, solid state, 6 outlet zones, minimum adjustable run time of 1 minute for each zone, 12 hour program battery backup, manual switch for 120VAC power, 120VAC to 24VAC internal transformer, fuse protected circuitry, UL listed, 120VAC input-24VAC output, constructed of enameled steel or plastic.
 - 2. The cabinet shall be recessed mounting with a stainless-steel cover.
 - 3. The solenoid valve shall have a brass body, suitable for potable water service, normally closed, 861 kPa (125 psig) rated, 24VAC.
 - 4. The control wiring shall be copper in accordance with the National Electric Code (NFPA 70), Article 725 and not less than 18 gauge. All wiring shall be in conduit and in accordance with Division 26 of the specifications.
 - 5. The vacuum breaker shall conform to ASSE 1001.
- B. Trap Primer (TP-2): The trap seal primer valve shall be hydraulic, supply type with a pressure rating of 861 kPa (125 psig) and conforming to standard ASSE 1018.
 - The inlet and outlet connections shall be 15 mm or DN15 (NPS 1/2 inch)
 - 2. The trap seal primer valve shall be fully automatic with an all brass or bronze body.
 - 3. The trap seal primer valve shall be activated by a drop in building water pressure, no adjustment required.

09-01-15

- 4. The trap seal primer valve shall include a manifold when serving two, three, or four traps.
- 5. The manifold shall be omitted when serving only one trap.

2.8 PENETRATION SLEEVES

A. A sleeve flashing device shall be provided at points where pipes pass through membrane waterproofed floors or walls. The sleeve flashing device shall be manufactured, cast iron fitting with clamping device that forms a sleeve for the pipe floor penetration of the floor membrane. A galvanized steel pipe extension shall be included in the top of the fitting that will extend 50 mm (2 inches) above finished floor and galvanized steel pipe extension in the bottom of the fitting that will extend through the floor slab. A waterproof caulked joint shall be provided at the top hub.

PART 3 - EXECUTION

3.1 PIPE INSTALLATION

- A. The pipe installation shall comply with the requirements of the International Plumbing Code (IPC) and these specifications.
- B. Branch piping shall be installed for waste from the respective piping systems and connect to all fixtures, valves, cocks, outlets, casework, cabinets and equipment, including those furnished by the Government or specified in other sections.
- C. Pipe shall be round and straight. Cutting shall be done with proper tools. Pipe shall be reamed to full size after cutting.
- D. All pipe runs shall be laid out to avoid interference with other work.
- E. The piping shall be installed above accessible ceilings where possible.
- F. The piping shall be installed to permit valve servicing or operation.
- G. The piping shall be installed free of sags and bends.
- H. Seismic restraint shall be installed where required by code.
- I. Changes in direction for soil and waste drainage and vent piping shall be made using appropriate branches, bends and long sweep bends. Sanitary tees and short sweep quarter bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical. Long turn double wye branch and eighth bend fittings shall be used if two fixtures are installed back to back or side by side with common drainpipe. Straight tees, elbows, and crosses may be used on vent lines. Do not change direction of flow more than 90 degrees. Proper

size of standard increaser and reducers shall be used if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.

- J. Buried soil and waste drainage and vent piping shall be laid beginning at the low point of each system. Piping shall be installed true to grades and alignment indicated with unbroken continuity of invert. Hub ends shall be placed upstream. Required gaskets shall be installed according to manufacturer's written instruction for use of lubricants, cements, and other installation requirements.
- K. Cast iron piping shall be installed according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings"
- L. Aboveground copper tubing shall be installed according to Copper Development Association's (CDA) "Copper Tube Handbook".
- M. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no cost to the Government.

3.2 JOINT CONSTRUCTION

- A. Hub and spigot cast iron piping with gasket joints shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for compression joints.
- B. Hub and spigot cast iron piping with calked joints shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for lead and oakum calked joints.
- C. Hubless or No-hub, cast iron piping shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hubless piping coupling joints.
- D. For threaded joints, thread pipe with tapered pipe threads according to ASME B1.20.1. The threads shall be cut full and clean using sharp disc cutters. Threaded pipe ends shall be reamed to remove burrs and restored to full pipe inside diameter. Pipe fittings and valves shall be joined as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is required by the pipe service.
 - 2. Pipe sections with damaged threads shall be replaced with new sections of pipe.

E. Copper tube and fittings with soldered joints shall be joined according to ASTM B828. A water flushable, lead free flux conforming to ASTM B813 and a lead-free alloy solder conforming to ASTM B32 shall be used.

3.3 SPECIALTY PIPE FITTINGS

- A. Transition coupling shall be installed at pipe joints with small differences in pipe outside diameters.
- B. Dielectric fittings shall be installed at connections of dissimilar metal piping and tubing.

3.4 PIPE HANGERS, SUPPORTS AND ACCESSORIES

- A. All piping shall be supported according to the International Plumbing Code (IPC), Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, and these specifications. Where conflicts arise between these the code and Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING the most restrictive or the requirement that specifies supports with highest loading or shortest spacing shall apply.
- B. Hangers, supports, rods, inserts and accessories used for pipe supports shall be painted according to Section 09 91 00, PAINTING. Electroplated copper hanger rods, hangers and accessories may be used with copper tubing.
- C. Horizontal piping and tubing shall be supported within 300 mm (12 inches) of each fitting or coupling.
- D. Horizontal cast iron piping shall be supported with the following maximum horizontal spacing and minimum hanger rod diameters:
 - 1. 40 mm or DN40 to 50 mm or DN50 (NPS 1-1/2 inch to NPS 2 inch): 1500
 mm (60 inches) with 10 mm (3/8 inch) rod.
 - 2. 75 mm or DN75 (NPS 3 inch): 1500 mm (60 inches) with 15 mm (1/2 inch) rod.
 - 3. 100 mm or DN100 to 125 mm or DN125 (NPS 4 inch to NPS 5 inch): 1500 mm (60 inches) with 18 mm (5/8 inch) rod.
 - 4. 150 mm or DN150 to 200 mm or DN200 (NPS 6 inch to NPS 8 inch): 1500 mm (60 inches) with 20 mm (3/4 inch) rod.
 - 5. 250 mm or DN250 to 300 mm or DN300 (NPS 10 inch to NPS 12 inch): 1500 mm (60 inch) with 23 mm (7/8 inch) rod.
- E. Vertical piping and tubing shall be supported at the base, at each floor, and at intervals no greater than 4.6 m (15 feet).

09-01-15

- F. In addition to the requirements in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, Floor, Wall and Ceiling Plates, Supports, Hangers shall have the following characteristics:
 - 1. Solid or split unplated cast iron.
 - 2. All plates shall be provided with set screws.
 - 3. Height adjustable clevis type pipe hangers.
 - 4. Adjustable floor rests and base flanges shall be steel.
 - 5. Hanger rods shall be low carbon steel, fully threaded or threaded at each end with two removable nuts at each end for positioning rod and hanger and locking each in place.
 - 6. Riser clamps shall be malleable iron or steel.
 - 7. Rollers shall be cast iron.
 - See Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, for requirements on insulated pipe protective shields at hanger supports.
- G. Miscellaneous materials shall be provided as specified, required, directed or as noted on the drawings for proper installation of hangers, supports and accessories. If the vertical distance exceeds 6.1 m (20 feet) for cast iron pipe additional support shall be provided in the center of that span. All necessary auxiliary steel shall be provided to provide that support.
- H. Cast escutcheon with set screw shall be provided at each wall, floor and ceiling penetration in exposed finished locations and within cabinets and millwork.
- I. Penetrations:
 - Fire Stopping: Where pipes pass through fire partitions, fire walls, smoke partitions, or floors, a fire stop shall be installed that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING. Clearances between raceways and openings shall be completely filled and sealed with the fire stopping materials.
 - Water proofing: At floor penetrations, clearances shall be completely sealed around the pipe and make watertight with sealant as specified in Section 07 92 00, JOINT SEALANTS.
- J. Exhaust vents shall be extended separately through roof. Sanitary vents shall not connect to exhaust vents.

09-01-15

3.5 TESTS

- A. Sanitary waste and drain systems shall be tested either in its entirety or in sections.
- B. Waste System tests shall be conducted before trenches are backfilled or fixtures are connected. A water test or air test shall be conducted, as directed.
 - 1. If entire system is tested for a water test, tightly close all openings in pipes except highest opening, and fill system with water to point of overflow. If the waste system is tested in sections, tightly plug each opening except highest opening of section under test, fill each section with water and test with at least a 3 m (10 foot) head of water. In testing successive sections, test at least upper 3 m (10 feet) of next preceding section so that each joint or pipe except upper most 3 m (10 feet) of system has been submitted to a test of at least a 3 m (10 foot) head of water. Water shall be kept in the system, or in portion under test, for at least 15 minutes before inspection starts. System shall then be tight at all joints.
 - For an air test, an air pressure of 34 kPa (5 psig) gage shall be maintained for at least 15 minutes without leakage. A force pump and mercury column gage shall be used for the air test.
 - 3. After installing all fixtures and equipment, open water supply so that all p-traps can be observed. For 15 minutes of operation, all p-traps shall be inspected for leaks and any leaks found shall be corrected.
 - 4. Final Tests: Either one of the following tests may be used.
 - a. Smoke Test: After fixtures are permanently connected and traps are filled with water, fill entire drainage and vent systems with smoke under pressure of .25 kPa (1 inch of water) with a smoke machine. Chemical smoke is prohibited.
 - b. Peppermint Test: Introduce 60 ml (2 ounces) of peppermint into each line or stack.

3.6 COMMISSIONING

A. Provide commissioning documentation in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

09-01-15 B. Components provided under this section of the specification will be tested as part of a larger system.

- - - E N D - - -

SECTION 22 33 00

ELECTRIC DOMESTIC WATER HEATERS

PART 1 - GENERAL

1.1 DESCRIPTION:

This section describes the requirements for installing a complete electric domestic water heater system ready for operation including the water heaters, thermometers, and all necessary accessories, connections, and equipment.

1.2 RELATED WORK:

- A. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- B. Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION: Heater Insulation.
- E., 22 05 23, GENERAL-DUTY VALVES FOR PLUMBING PIPING, and 22 11 00, FACILITY WATER DISTRIBUTION: Piping, Fittings, Valves and Gages.

1.3 QUALITY ASSURANCE:

- A. Comply with American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) for efficiency performance:
 - ASHRAE 90.1, Energy Efficient Design of New Buildings except Low-Rise Residential Buildings, "for commercial water heaters."
- B. Electrical components, devices and accessories shall be listed and labeled B as defined in NFPA 70 by a qualified testing agency, and marked for intended location and application.
- C. ASME code construction shall be a vessel fabricated in compliance with the ASME boiler and Pressure Vessel Code: Section VIII, Division 1.
- D. Fabricate and label equipment components that will be in contract with potable water to comply with NSF 61, "Drinking Water System Components - Health Effects"

1.4 SUBMITTALS:

- A. Submit manufacturer's literature and data pertaining to the water heater in properly bound package, in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. Include the following as a minimum:
 - 1. Water Heaters.
 - 2. Pressure and Temperature Relief Valves.
 - 4. Thermometers.
 - 5. Pressure Gages.

- 6. Vacuum Breakers.
- B. For each electric domestic hot water heater type and size, the following characteristics shall be submitted:
 - 1. Rated Capacities.
 - 2. Operating characteristics.
 - 3. Electrical characteristics.
 - 4. Furnished specialties and accessories.
 - 5. A form U-1 or other documentation stating compliance with the ASME Boiler and Pressure Vessel code.
- C. Shop drawings shall include wiring diagrams for power, signal and control functions.
- D. The domestic water heater shall be certified and labeled by a testing agency.

1.5 APPLICABLE PUBLICATIONS:

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Sanitary Engineering (ASSE): 1005......Performance Requirements for Water Heater Drain

```
Valves, 20 mm (3/4 inch) size
```

C. American National Standard Institute (ANSI): Z21.22B-2001......Relief Valves for Hot Water Supply Systems

- D. American Society of Mechanical Engineers (ASME):
 - B1.20.1-83(R 2006).....Pipe Threads, General Purpose (Inch)

B16.5-03.....Standard for Pipe Flanges and Flanged Fittings: NPS ½ through NPS 24

B16.24-06.....Cast Copper Alloy Pipe Flanges and Flanged Fittings: Classes 150, 300, 400, 600, 900, 1500, and 2500.

PTC 25.3-02.....Pressure Relief Devices

Section IV-07.....Boiler and Pressure Vessel Code; Section IV, Recommended Rules for the Care and Operation of Heating Boilers

Section VIII D1-07.....Boiler and Pressure Vessel Code, Section VIII, Pressure Vessels Division 1 -Basic Coverage

- E. National Fire Protection Association (NFPA) 70-06.....National Electrical Code
- F. Underwriters Laboratories, Inc. (UL):

174-04.....Household Electric Storage Tank Water Heaters 1453-04.....Water Heaters, Electric Booster and Commercial Storage Tank

499-05.....Standard for Safety Electric Heating Appliances

1.6 AS-BUILT DOCUMENTATION

- A. The electronic documentation and copies of the Operations and Maintenance Manual, approved submittals, shop drawings, and other closeout documentation shall be prepared by a computer software program complying with Section 508 of the Rehabilitation Act of 1973, as amended (29 U.S.C 794d). The manufacturer or vendor of the software used to prepare the electronic documentation shall have a Voluntary Product Accessibility Template made available for review and included as part of the Operations and Maintenance Manual or closeout documentation. All available accessibility functions listed in the Voluntary Accessibility Template shall be enabled in the prepared electronic files. As Adobe Acrobat is a common industry format for such documentation, the following document, "Creating Accessible Adobe PDF files, A Guide for Document Authors" that is maintained and made available by Adobe free of charge is recommended."
- B. Four sets of manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- C. Four sets of operation and maintenance data updated to include submittal review comments shall be inserted into a three ring binder. All aspects of system operation and maintenance procedures, including piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices such as damper and door closure interlocks shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.

PART 2 - PRODUCTS

2.1 ELECTRIC DOMESTIC WATER HEATERS:

A. The tank construction shall be steel shell, with a inner tank liner complying with NSF 61 for barrier materials for potable water. The

inner liner shall be extended into the tappings. The vessel shall be ASME Boiler and Pressure Vessel Code (BPVC), section VIII, fabricated with a pressure rating of 1035 kPa (150 psig)

- B. Tapping (openings) shall be Factory fabricated of materials compatible with the tank and in accordance with appropriate ASME standards B1.20.1 for piping connections, pressure and temperature relief valve, pressure gauge, thermometer, drain valve, anode rods and controls as required. Tappings shall comply with the following:
 - 1. 50 mm or DN50 (2 inch) and smaller: Threaded ends according to ASME B1.20.1.
 - 2. 65 mm or DN65 (2 1/2-inch) and Larger: Flanged ends according to ASME B16.5 for steel and stainless steel flanges, and according to ASME B 16.24.
- C. Tank insulation shall comply with ASHRAE 90.1.
- D. For domestic hot water heater sizes equal to or greater than 9 KW, the heating element shall be arranged in multiples of three elements. For heaters less than 9 KW, the heater elements shall be arranged in single elements.
- E. The domestic hot water heaters shall have screw in or bolt in immersion type, adjustable thermostat. Set thermostat for maximum water temperature of 55°C (130°F). The electrical characteristics are scheduled on the drawings.
- F. Combination Pressure and Temperature Relief Valves shall be ASME rated and stamped for combination temperature and pressure relief valves. One or more relief valves with total relieving capacity at least as great as the heat input shall be included. The pressure setting shall be less than the domestic water heater and domestic water pipe and fitting working pressure rating.
- G. The anode rod shall be replaceable magnesium.
- H. The drain valve shall be corrosion resistant metal complying with ASSE 1005.

2.2 COMBINATION TEMPERATURE AND PRESSURE RELIEF VALVES

A. The combination temperature and pressure relief values shall be ASME rated and stamped and include a relieving capacity at least as great as the heat input and include a pressure setting less than the water heater's working pressure rating.

2.3 THERMOMETERS:

The thermometers shall be straight stem, iron case, or red liquidfilled thermometers, approximately 175 mm (7 inches) high, 4 to 115°C (40 to 240°F).

PART 3 - EXECUTION

3.1 INSTALLATION:

- A. Water heaters shall be installed on concrete bases unless elevated above the floor. Refer to Specification Section 03 30 00, CAST-IN-PLACE CONCRETE and Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING
- B. The water heaters shall be installed level and plumb and securely anchored.
- C. The water heaters shall be installed and connected in accordance with manufacturer's written instructions.
- D. All pressure and temperature relief valves discharge shall be piped to nearby floor drains.
- E. Thermometers shall be installed on the water heater inlet and outlet piping.
- F. The thermostatic control shall be set for a maximum setting of 54 degrees C (130 degrees F).
- G. Shutoff valves shall be installed on the domestic water supply piping to the water heater and on the domestic hot water outlet piping.
- H. All manufacturers's required clearances shall be maintained.
- I. A combination temperature and pressure relief valve shall be installed at the top portion of the storage tank. The sensing element shall extend into the tank. The relief valve outlet drain piping shall discharge by positive air gap into a floor drain.
- J. Piping type heat traps shall be installed on the inlet and outlet piping of the electric domestic hot water heater storage tanks.
- K. Water heater drain piping shall be installed as indirect waste to spill by positive air gap into open drains or over floor drains. Hose end drain valves shall be installed at low points in water piping for electric domestic hot water heaters without integral drains.

3.2 LEAKAGE TEST:

Before piping connections are made, water heaters shall be tested with hydrostatic pressure of 1375 kPa (200 psi) and 1654 kPa (240 psi) for a unit with a MAWP of 1103 kPa (160 psi). Any domestic water heater leaking water shall be replaced with a new unit at no additional cost to the VA.

3.3 PERFORMANCE TEST:

All of the remote water outlets shall have a minimum of 110°F) and a maximum of 120°F water flow at all times. If necessary, make all corrections to balance the return water system or reset the thermostat to make the system comply with design requirements.

- - - END - - -

SECTION 22 40 00

PLUMBING FIXTURES AND EQUIPMENT

PART 1 - GENERAL

1.1 DESCRIPTION OF WORK

Plumbing fixtures and specialties; fittings; supports; as indicated on the drawings, as required by code and as specified.

1.2 RELATED DIVISIONS AND SECTIONS

- A. Section 01 00 00 GENERAL REQUIREMENTS
- B. Section 10 28 00 TOILET, BATH AND LAUNDRY ACCESSORIES
- C. Section 21 00 11 COMMON WORK RESULTS FOR FIRE SUPPRESSION
- D. Section 22 07 11 INSULATION
- E. Section 23 05 11 COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION
- F. Section 26 05 00 BASIC ELECTRICAL MATERIALS AND METHODS
- G. Division 33 UTILITIES

1.3 QUALITY ASSURANCE

- A. All work, materials, equipment, installation and accessories shall comply with the current enforced edition of the International Plumbing Code and all city, county, state and federal regulations.
- B. Comply with requirements of ADA and ANSI Standards for plumbing fixtures and fittings for wheelchair accessibility.
- C. All inline devices installed on the domestic service lines or building distribution system downstream of the water main and before end point devices and is in contact with the water intended for human ingestion shall comply with the Safe Drinking Water Act and National Sanitation Foundation (NSF) Standard 61, including Annex G to provide lead free water (not containing more than 0.25 percent lead).
 - Inline devices include water meters, building valves, check valves, meter stops, fittings, backflow preventers, etc.

1.4 SUBMITTALS

- A. Submit in accordance with Division 1 and Section 15050.
- B. Manufacturer's technical product data, including installation instructions, appurtenances, accessories, supports, fittings, finishes, construction details, and dimensions of components: Plumbing Fixtures and Accessories Dishwasher Air-gap Fittings Trap Primers

Drains

Cleanouts

Shock Absorbers

Vent Terminal Cap

C. NSF 61-G Certification of domestic water devices.

1.5 APPLICABLE PUBLICATIONS

The publications form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation.

1.6 PROJECT CONDITIONS

- A. Provide all materials, equipment and perform all labor required to install plumbing system complete as indicated on the drawings and as specified.
- B. Plumbing system includes fixtures, equipment, piping and the supports for these items; supplies; stops; faucets; spouts; showerheads; traps; drains; tailpieces; fittings and accessories.
- C. Items indicated to be furnished by the Owner or under other Divisions of the Specifications which require plumbing connections shall be installed and connected to the plumbing system under this Section unless otherwise specified. Obtain rough-in and equipment drawings, as necessary, from the Owner or supplier of the item.
- D. Provide all plumbing fixtures and equipment with accessible stops.
- E. Provide P-traps on fixtures for which traps have not been included as part of the furnished equipment. Size of trap shall be equal to size of fixture tailpiece.
- F. All exposed metal parts of fixtures shall be chromium-plated brass. Piping, fittings, valves, traps and accessories including piping escutcheons shall be chromium plated metals where exposed in finished spaces.

PART 2 - PRODUCTS

2.1 PLUMBING FIXTURES AND SUPPORTS

- A. Provide fixtures as listed. Catalog numbers are American Standard, unless otherwise noted.
- B. Fixtures shall be vitreous china unless otherwise noted. Cast iron fixtures shall have acid resisting enamel finish.
- C. Flush valves shall be self-closing, non-hold open type with vacuum breaker and perform satisfactorily when subjected to inlet water pressure varying from 20 to 75 psi (130 to 520 kPa). Flush valves

shall comply with ADA and not require a force greater than 5 lbf (22 N) to operate.

- D. Restricting Flow Fittings and Flow Restricting Aerators
 - Provide restricting flow fittings or flow restricting aerators on non-self-closing and non-metering lavatory and sink faucets to restrict flow to 2.2 gpm.
 - Restrictor shall compensate for pressure fluctuations between 25 to 80 psig with flow within 10 percent.
 - 3. Manufacturers: Dole, Omni Products
- E. Plumbing Fixture Schedule
 - 1. Water Closets
 - P-105 <u>Water Closet</u>: 3461.712 "Madera," 16-1/2 inches (430 mm) high, flush valve toilet, siphon jet action, 1.28 gallon flush, elongated bowl, floor-mounted, 1-1/2-inch top spud, floor outlet, 2 bolt caps with retainer clips. Fitted with: <u>Flush Valve</u>: Sloan Royal No. 111 valve 1-inch Bak-Chek screwdriver angle stop with cap, flush connection, coupling for 1-1/2-inch top spud, wall and spud flanges. <u>Seat</u>: Church No. 9500SSC, white, extended back seat for elongated bowl, open front, no cover, stainless steel check hinge.

Mounting Height: Seat to floor - 17-1/2 inches (430 mm).

- 2. Lavatories
- P-301 Lavatory: Kohler 2210 undermount bathroom sink; 17 by 14-inch vitreous china lavatory.

Faucet: Kohle4r "Refina" K-5317 with ¼-turn washerless ceramic disc.

<u>Supply Pipes</u>: McGuire No. 165LK, 3/8-inch wall supply, loose key stop valves, cast brass escutcheon and set screw, flexible tube riser.

<u>Trap</u>: McGuire No. 8902 1-1/4 by 1-1/2-inch adjustable P-trap, cast body, cleanout plug, slip inlet tubing drain to wall, cast brass escutcheon and set screw.

- 3. Sinks
- P-403 Large Countertop Sink: Just SL-2117-A-GR, 21 by 17 inches undercoated 18 gage (1.2 mm) stainless steel sink with 3-hole punch. Furnish sink with Bridgeport No. 667 chromeplated cup strainer and tailpiece. Fitted with:

<u>Faucet</u>: Chicago 786-GN2-FC-E2605, chromeplated faucet with 4-inch wrist blade handles, E3 aerator with E2605 flow restrictor, GN2A rigid swing gooseneck spout <u>Supply Pipes</u>: Brass Craft SR-1512-A, chromeplated supply, loose key stop valve, cast brass escutcheon and set screw, flexible tube riser. <u>Trap</u>: Kohler K-9000, 1-1/2 by 1-1/4-inch chromeplated P-trap, cast body, cleanout plug, slip inlet tubing drain to wall, cast

4. Showers

escutcheon and set screw.

P-601 <u>Shower</u>: Built in shower. Shower rod, shower compartment, basin, drain and curtain specification under another division. <u>Trap</u>: Provide 2-inch P-trap.

<u>Valve</u>: Symmons S-96-1-L-X Temptrol pressure-balancing mixing valve, integral volume control, lever handle, integral stops, maximum temperature limit stops, chromeplated brass escutcheon. <u>Showerhead</u>: Symmons No. 4-206 Clear-Flo showerhead with 2.0 gpm flow regulator, spray adjusting handle, and No. 300 chromeplated shower arm with cast brass chrome flange.

<u>Drain</u>: ACO "Quartz" linear shower drain, electro polished 304 stainless steel, shallow 'V' channel profile with centrally located 2 inch stainless steel spigot with strainer.

- 5. Miscellaneous Fixtures
- P-901 <u>Washing Machine Supply and Drain Unit</u>: Guy Gray Manufacturing Co., Inc., Model No. T-200 recessed unit with 1/2-inch hose-end valves and supply connectors.
- P-902 <u>Refrigerator Ice Makert</u>: Guy Gray Manufacturing Co., Inc., Model No. BIM875 recessed unit with 1/2-inch hose-end valves and supply connectors.
- F. Plumbing Fixture Supports (Numbers are Josam unless otherwise noted)
 - 1. Support for wall-mounted lavatories:
 - a. Where fixtures are supported from concrete or cinder block walls, install No. 10 USSG Steel plate on the opposite side of the wall and bolt hangers or supports through plate.
 Where opposite side of wall is exposed to view, place bolts in core of blocks and fill core with cement.

- b. Where lavatories with wall hangers have been specified and fixtures are supported from metal stud frame partitions, fixture brackets or mounting lugs shall be through bolted to steel channel crosspieces not less than 1-1/2 inches wide anchored to studs. Bolt heads shall be welded to channel web.
- c. Concealed arm type lavatory supports, Josam 17100 for single and 17100-BB for double installation, with cast iron headers, structural steel upright and welded feet and header; and chrome plated cast brass threaded escutcheons for slab type lavatories. Provide Josam 17100-67 for wheelchair accessible lavatories.

G. Manufacturers

- Fixtures: American Standard, Crane, Eljer, Kohler, and where named:
 - a. Stainless Steel Sinks: American Standard, Elkay, Just,
 Kohler.
 - b. Acrylic Tubs and Showers: Aqua-Bath, Aquarius, Fiat, Universal Rundle.
- Faucets and Accessories: American Standard, Chicago Faucet, Crane, Delta, Eljer, Kohler, Moen, Price Pfister, Speakman, Symmons, T&S Brass.
- Supplies, Traps: American Standard, Brass Craft, Chicago Faucet, Crane, Eljer, Engineered Brass Co., Keeney, Kohler, McGuire.
- 4. Flush Valves: Delany, Sloan, Zurn.
- 5. Water Closet Seats: Bemis, Benecke, Church, Comfort, Olsonite.
- 6. Fixture Supports: Ancon, Josam, J.R. Smith, MIFAB, Wade, Zurn.
- Mixing Valves: American Standard, Lawler, Moen, Price Pfister, Powers, Speakman, Symmons.
- Showerheads: American Standard, Moen, Powers, Price Pfister, Sloan, Speakman, Symmons.
- Washing Machine Supply and Drain Unit: Acorn, Guy Gray, IPS Corp., LSP Products Group, Oatey, Symmons, Zurn.
- Ice Machine Supply Unit: Acorn, Guy Gray, IPS Corp., LSP Products Group, Oatey, Symmons, Zurn.

2.2 DISHWASHER AIR-GAP FITTINGS

A. Fitting suitable for use with domestic dishwashers and for deck

mounting; with plastic body, chromeplated brass cover metallic cover with enamel finish to match color of sink; minimum capacity of 5 gpm minimum inlet pressure of 5 psig at a minimum temperature of 140 degrees F (60 degrees C).

- B. Hoses: Rubber and suitable for minimum temperature of 140 degrees F (60 degrees C).
 - 1. Inlet Hose: 5/8-inch ID and 48 inches long.
 - 2. Outlet Hose: 7/8-inch ID and 48 inches long.
- C. Manufacturers: B & K Industries, Inc., Brass Craft, Brasstech Inc., Dearborn Brass, Geberit, Sioux Chief Manufacturing Company, Inc., Watts.

2.3 DRAINS

- A. Provide drains as listed in schedule. Numbers are Josam unless otherwise noted.
- B. Provide nickel bronze strainers on all floor drains in finished floor areas and painted cast iron strainers on all other floor drains, unless otherwise noted.
- C. Provide flashing clamps on all drains puncturing waterproof membrane and roofing.
- D. Provide suitable flashing material and clamping collar for drains which are not set in place when slab is poured.
- E. In lieu of joints specified in Section 15100, "Building Services Piping," neoprene gaskets may be used if designed for use with the drains and cleanouts employed and if approved by the local plumbing authority.
 - 1. Floor Drains
 - FD-1 Floor Drain: Josam 30000-6A with Type A round strainer, vertically adjustable and reversible clamp collar. Provide with primer tap where required.
 - 2. Trap Primer
 - a. Type A, Automatic Trap Priming System shall be PPP, Inc. PT Series Electronic Trap Priming Manifold with:
 - 1) 24-hour timer set to deliver water once every 24 hours.
 - Copper manifold with ½-inch (13 mm) compression fittings on to each floor drain. each drain connection designed to discharge an equal amount of water
 - 3) 120-volt solenoid valve.

- 4) Vacuum breaker.
- 5) Manual override switch.
- 6) Inlet shutoff valve.
- 7) Water hammer arrestor.
- 8) Circuit breaker.
- 9) Entire unit with timer, solenoid valve, vacuum breaker, override switch, shutoff valve, water hammer arrestor, circuit breaker, and manifold shall be located in a surface mounted cabinet with solid access door with piano hinge. Door and trim flanges shall be stainless steel and fire rated.
- F. Manufacturers: Acorn, Josam, J.R. Smith, MIFAB, Wade, Zurn.

2.4 CLEANOUTS

- A. Cleanouts shall be full size of pipe up to 6 inches.
- B. In lieu of joints specified in Section 15100, "Building Services Piping," neoprene gaskets may be used if designed for use with drains and cleanouts employed and if approved by the local plumbing authority.
- C. Materials and Manufacturers: Acorn, Josam, J.R. Smith, MIFAB, Wade, Zurn. Josam numbers are indicated:

CONCEALED PIPING	CAST IRON PIPE	STEEL
Unfinished Areas		
Floors	56000	58460A
Walls	58790	58890
Finished Areas - Floors		
Terrazzo	56040-13	56040-13
Composition Tile	56000-12	56000-12
Ceramic Tile	56020	56020
Carpet	56000-14	56000-14
Finished Areas - Walls		
Plaster	58790	58600
Tile	58790	58640*
* With 9 by 9-inch (230 by 230 mm)		
frame		
Exterior, Flush with Grade		
Walkways	56040-1	-
Grass Areas	56040* or	-
* Install in 14-inch (350 mm)	58680**	
square, 6-inch (150 mm) deep		
concrete pad		
** Heavy Duty		

2.5 SHOCK ABSORBERS

A. Type A: Josam 75000 Shoktrol shock absorbers. Sizes shall be in accordance with PDI Standard WH-201 and ASSE Standard 1010.

B. Manufacturers: Ancon, Josam, J.R. Smith, MIFAB, Precision Plumbing Products, Sioux Chief, Wade, Zurn.

PART 3 - EXECUTION

3.1 PLUMBING FIXTURES AND SUPPORTS

- A. Setting heights of lavatories shall be as directed prior to installation.
- B. Install floor-mounted fixtures only after finished floor has been installed.
- C. Seal water closet to the carrier coupling with a closed cell neoprene gasket. Apply adhesive to front and back of gasket.
- D. Provide rubber concussion washers between vitreous china fixtures and supporting brackets.
- E. Protect chromium plated trim from corrosive solutions used to clean tile work.
- F. Provide ASTM C920, Type S white, silicone caulking where fixtures come in contact with walls and floors. Sealant shall be mildew resistant type.
- G. Shower valve temperature limit stops shall be factory and field set to deliver a maximum outlet temperature of 110 degrees F based on inlet water temperatures of 50 degrees F cold water and 120 degrees F hot water. Confirm outlet temperature in field and adjust as required.
- H. Provide insulation protection in accordance with ADA for exposed traps and supplies for all wheelchair accessible lavatories. Insulation shall provide access to supply valves and shall be equal to Handi-Lav-Guard as manufactured by Truebro, Inc. Manufacturers: Proto, Truebro.
- I. Flush valves shall be mounted not more than 36 inches above the floor for wheelchair accessible water closets. Operating lever for water closet shall be mounted on wide side of water closet area.
- J. Showers: Additional reinforcement shall be suitably located to provide required structural integrity. After all valves, grab bars, curtain rods, wall brackets, etc. have been installed, they shall be sealed to make the unit waterproof.
- K. Examine roughing-in of water supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before plumbing fixture installation.
- L. Examine cabinets, counters, floors, and walls for suitable conditions where fixtures will be installed.

- M. Install floor-mounted water closets on closet flanges.
- N. Install counter-mounted fixtures in and attach to casework.
- 0. Install fixtures level and plumb according to roughing-in drawings.
- P. Install stops in locations where they can be easily reached for operation.
- Q. Install toilet seats on water closets.
- R. Install water-supply flow-control fittings with specified flow rates in fixture supplies at stop valves.
- S. Install faucet flow-control fittings with specified flow rates and patterns in faucet spouts if faucets are not available with required rates and patterns. Include adapters if required.
- T. Install shower flow-control fittings with specified maximum flow rates in shower arms.
- U. Install traps on fixture outlets, except fixtures with integral traps and indirect wastes.
- V. Set shower receptors in leveling bed of cement grout.
- W. Check that plumbing fixtures are complete with trim, faucets, fittings, and other specified components.
- X. Inspect installed plumbing fixtures for damage. Replace damaged fixtures and components.
- Y. Test installed fixtures after water systems are pressurized for proper operation. Replace malfunctioning fixtures and components, then retest. Repeat procedure until units operate properly.
- Z. Replace washers and seals of leaking and dripping faucets and stops.
- AA. Install supply and drain unit where indicated on drawings with drain rim 18 to 48 inches above drain trap.
- BB. Install unit according to manufacturer's instructions.

3.2 DISHWASHER AIR-GAP FITTINGS

- A. Install in accordance with manufacturer's recommendations.
- B. Install dishwasher air-gap fitting at each sink indicated to have air-gap fitting.
- C. Install in sink deck.
- D. Connect inlet hose to dishwasher and outlet hose to disposer.

3.3 DRAINS

A. Unless otherwise noted, drains are to be installed at the low point of roof, decks, areaways, floors, etc.

- B. Coordinate floor drain installation to avoid interference with toilet room compartment partitions supported from floor.
- C. Install floor drains in low points so the top of grates are at or below the finished floor level.
- D. Drains not functioning properly shall be removed and reinstalled properly at the expense of the Contractor.
- E. Install trap primer valves where indicated. Pitch outlet piping from trap primer down toward drain trap a minimum of 1 percent and connect to floor drain body, trap, or inlet fitting. Adjust valve for proper flow.
- F. Install traps for all floor drains connected to the sanitary system.

3.4 CLEANOUTS

- A. Install cleanouts in sanitary and storm drainage systems at ends of runs, at changes in direction that are greater than 45 degrees, near the base of stacks, every 50 feet in horizontal runs, and where indicated.
- B. Vertical Pipes: Install cleanout in tees near floor.
- C. Horizontal Pipes: Install cleanouts in wyes or long sweep quarter ends.
- D. Extend cleanouts on concealed piping flush to finished walls, floors and grade.
- E. Waterproofing: Cleanouts puncturing waterproofing membrane shall have flashing clamps.
- 3.5 SHOCK ABSORBERS
 - A. Install Type A shock absorbers at solenoid and fast closing valves, at the top of cold water risers, at each flush valve or battery of flush valves, and where indicated.

- - - END - - -

SECTION 23 05 11

COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 23.
- B. Definitions:
 - Exposed: Piping, ductwork, and equipment exposed to view in finished rooms.
 - Option or optional: Contractor's choice of an alternate material or method.
 - 3. COTR: Contracting Officer's Technical Representative.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 02 82 11, TRADITIONAL ASBESTOS ABATEMENT.
- D. Section 05 50 00, METAL FABRICATIONS.
- E. Section 07 84 00, FIRESTOPPING.
- F. Flashing for Wall and Roof Penetrations: Section 07 60 00, FLASHING AND SHEET METAL.
- G. Section 07 92 00, JOINT SEALANTS.
- H. Section 09 91 00, PAINTING.
- I. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS
- J. Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS.

1.3 QUALITY ASSURANCE

- A. Mechanical, electrical and associated systems shall be safe, reliable, efficient, durable, easily and safely operable and maintainable, easily and safely accessible, and in compliance with applicable codes as specified. The systems shall be comprised of high quality institutional-class and industrial-class products of manufacturers that are experienced specialists in the required product lines. All construction firms and personnel shall be experienced and qualified specialists in industrial and institutional HVAC or steam boiler plant construction, as applicable.
- B. Flow Rate Tolerance for HVAC Equipment: Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.
- C. Equipment Vibration Tolerance:

- Refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT. Equipment shall be factory-balanced to this tolerance and re-balanced on site, as necessary.
- After HVAC air balance work is completed and permanent drive sheaves are in place, perform field mechanical balancing and adjustments required to meet the specified vibration tolerance.
- D. Products Criteria:
 - 1. Standard Products: Material and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture of the products for at least 3 years. The design, model and size of each item shall have been in satisfactory and efficient operation on at least three installations for approximately three years. However, digital electronics devices, software and systems such as controls, instruments, computer work station, shall be the current generation of technology and basic design that has a proven satisfactory service record of at least three years. See other specification sections for any exceptions.
 - All items furnished shall be free from defects that would adversely affect the performance, maintainability and appearance of individual components and overall assembly.
 - 3. Conform to codes and standards as required by the specifications. Conform to local codes, if required by local authorities such as the natural gas supplier, if the local codes are more stringent then those specified. Refer any conflicts to the COTR (RE)/Contracting Officers Technical Representative (COTR).
 - Multiple Units: When two or more units of materials or equipment of the same type or class are required, these units shall be products of one manufacturer.
 - 5. Assembled Units: Manufacturers of equipment assemblies, which use components made by others, assume complete responsibility for the final assembled product.
 - 6. Nameplates: Nameplate bearing manufacturer's name or identifiable trademark shall be securely affixed in a conspicuous place on equipment, or name or trademark cast integrally with equipment, stamped or otherwise permanently marked on each item of equipment.
 - 7. Asbestos products or equipment or materials containing asbestos shall not be used.
- E. Equipment Service Organizations:

- HVAC: Products and systems shall be supported by service organizations that maintain a complete inventory of repair parts and are located reasonably close to the site.
- F. HVAC Mechanical Systems Welding: Before any welding is performed, contractor shall submit a certificate certifying that welders comply with the following requirements:
 - Qualify welding processes and operators for piping according to ASME "Boiler and Pressure Vessel Code", Section IX, "Welding and Brazing Qualifications".
 - 2. Comply with provisions of ASME B31 series "Code for Pressure Piping".
 - 3. Certify that each welder has passed American Welding Society (AWS) qualification tests for the welding processes involved, and that certification is current.
- G. Execution (Installation, Construction) Quality:
 - 1. Apply and install all items in accordance with manufacturer's written instructions. Refer conflicts between the manufacturer's instructions and the contract drawings and specifications to the COTR for resolution. Provide written hard copies or computer files of manufacturer's installation instructions to the COTR at least two weeks prior to commencing installation of any item. Installation of the item will not be allowed to proceed until the recommendations are received. Failure to furnish these recommendations is a cause for rejection of the material.
 - 2. All items that require access, such as for operating, cleaning, servicing, maintenance, and calibration, shall be easily and safely accessible by persons standing at floor level, or standing on permanent platforms, without the use of portable ladders. Examples of these itemsinclude, but are not limited to: all types of valves, filters and strainers, transmitters, control devices. Prior to commencing installation work, refer conflicts between this requirement and contract drawings to the COTR for resolution.
 - Provide complete layout drawings required by Paragraph, SUBMITTALS. Do not commence construction work on any system until the layout drawings have been approved.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, and with requirements in the individual specification sections.
- B. Contractor shall make all necessary field measurements and investigations to assure that the equipment and assemblies will meet contract requirements.
- C. If equipment is submitted which differs in arrangement from that shown, provide drawings that show the rearrangement of all associated systems. Approval will be given only if all features of the equipment and associated systems, including accessibility, are equivalent to that required by the contract.
- D. Prior to submitting shop drawings for approval, contractor shall certify in writing that manufacturers of all major items of equipment have each reviewed drawings and specifications, and have jointly coordinated and properly integrated their equipment and controls to provide a complete and efficient installation.
- E. Upon request by Government, provide lists of previous installations for selected items of equipment. Include contact persons who will serve as references, with telephone numbers and e-mail addresses.
- F. Submittals and shop drawings for interdependent items, containing applicable descriptive information, shall be furnished together and complete in a group. Coordinate and properly integrate materials and equipment in each group to provide a completely compatible and efficient installation. Final review and approvals will be made only by groups.
- G. Ungrouped submittal items for boiler plants, which may be submitted individually, include, but are not limited to:
 - 1. Pipe, valves and fittings identified as to service application.
 - 2. Strainers.
 - 3. Safety valves and drip pan ells.
 - 4. Temperature control valves, sensors.
 - 5. Steam pressure reducing valves and pilots.
 - 6. Steam traps with orifice sizes and pressure ratings.
 - 7. Thermometers and pressure gauges and accessories.
 - 8. Flexible connectors, hose, braided.
 - 9. Dielectric fittings and unions.
 - 10. Quick-couple hose fittings and steam hose.

- 11. Heating and ventilating equipment.
- 12. Vibration isolators air, water.
- Supports and braces for pipe, stacks, breeching; load, size, movement calculations.
- 14. Pressure gauge test kit.
- 15. Insulation, field-applied.
- H. Layout Drawings:
 - Submit complete consolidated and coordinated layout drawings for all new systems, and for existing systems that are in the same areas. Refer to the GENERAL CONDITIONS.
 - 2. The drawings shall include plan views, elevations and sections of all systems and shall be on a scale of not less than 1:32 (3/8-inch equal to one foot). Clearly identify and dimension the proposed locations of the principal items of equipment. The drawings shall clearly show locations and adequate clearance for all equipment, piping, valves, control panels and other items. Show the access means for all items requiring access for operations and maintenance. Provide detailed layout drawings of all piping and duct systems.
 - 3. Do not install equipment foundations, equipment or piping until layout drawings have been approved.
 - 4. In addition, for HVAC systems, provide details of the following:
 - a. Mechanical equipment rooms.
 - b. Crawl space.
 - c. Hangers, inserts, supports, and bracing.
 - d. Pipe sleeves.
 - e. Duct or equipment penetrations of floors, walls, ceilings, or roofs.
- I. Manufacturer's Literature and Data: Submit under the pertinent section rather than under this section.
 - 1. Submit belt drive with the driven equipment. Submit selection data for specific drives when requested by the COTR.
 - 2. Submit electric motor data and variable speed drive data with the driven equipment.
 - 3. Equipment and materials identification.
 - 4. Fire-stopping materials.
 - Hangers, inserts, supports and bracing. Provide load calculations for variable spring and constant support hangers.
 - 6. Wall, floor, and ceiling plates.

- J. HVAC Maintenance Data and Operating Instructions:
 - Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Article, INSTRUCTIONS, for systems and equipment.
 - 2. Provide a listing of recommended replacement parts for keeping in stock supply, including sources of supply, for equipment. Include in the listing belts for equipment: Belt manufacturer, model number, size and style, and distinguished whether of multiple belt sets.
- K. Provide copies of approved HVAC equipment submittals to the Testing, Adjusting and Balancing Subcontractor.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Conditioning and Refrigeration Institute (ARI): 430-99.....Central Station Air-Handling Units
- C. American National Standard Institute (ANSI): B31.1-2004.....Power Piping
- D. Rubber Manufacturers Association (ANSI/RMA): IP-20-2007.....Drives Using Classical V-Belts and Sheaves IP-21-1991(1997)....Drives Using Double-V (Hexagonal) Belts IP-22-2007....Drives Using Narrow V-Belts and Sheaves
- E. Air Movement and Control Association (AMCA): 410-96......Recommended Safety Practices for Air Moving

Devices

- F. American Society of Mechanical Engineers (ASME):
 Boiler and Pressure Vessel Code (BPVC):
 Section I-2007.....Power Boilers
 Section IX-2007.....Welding and Brazing Qualifications
 Code for Pressure Piping:
 B31.1-2004....Power Piping, with Amendments
 G. American Society for Testing and Materials (ASTM):
 - A36/A36M-05.....Carbon Structural Steel A575-96(2002)....Steel Bars, Carbon, Merchant Quality, M-Grades R (2002) E84-07....Standard Test Method for Burning Characteristics of Building Materials

	E119-07Standard Test Method for Fire Tests of Building
	Construction and Materials
н.	Manufacturers Standardization Society (MSS) of the Valve and Fittings
	Industry, Inc:
	SP-58-2002Pipe Hangers and Supports-Materials, Design and
	Manufacture
	SP 69-2003Pipe Hangers and Supports-Selection and
	Application
	SP 127-2001 Bracing for Piping Systems, Seismic - Wind -
	Dynamic, Design, Selection, Application
J.	National Electrical Manufacturers Association (NEMA):
	MG-1-2006Motors and Generators
к.	National Fire Protection Association (NFPA):
	31-06of Oil-Burning
	Equipment
	54-06National Fuel Gas Code
	70-08National Electrical Code
	85-07 Hazard Code
	90A-02and Installation of Air Conditioning and
	Ventilating Systems
	101-06Life Safety Code

1.6 DELIVERY, STORAGE AND HANDLING

- A. Protection of Equipment:
 - Equipment and material placed on the job site shall remain in the custody of the Contractor until phased acceptance, whether or not the Government has reimbursed the Contractor for the equipment and material. The Contractor is solely responsible for the protection of such equipment and material against any damage.
 - Place damaged equipment in first class, new operating condition; or, replace same as determined and directed by the COTR. Such repair or replacement shall be at no additional cost to the Government.
 - Protect interiors of new equipment and piping systems against entry of foreign matter. Clean both inside and outside before painting or placing equipment in operation.
 - 4. Existing equipment and piping being worked on by the Contractor shall be under the custody and responsibility of the Contractor and shall be protected as required for new work.
- B. Cleanliness of Piping and Equipment Systems:

- Exercise care in storage and handling of equipment and piping material to be incorporated in the work. Remove debris arising from cutting, threading and welding of piping.
- 2. Piping systems shall be flushed, blown or pigged as necessary to deliver clean systems.
- 3. Clean interior of all tanks prior to delivery for beneficial use by the Government.
- 4. Boilers shall be left clean following final internal inspection by Government insurance representative or inspector.
- 5. Contractor shall be fully responsible for all costs, damage, and delay arising from failure to provide clean systems.

operation of Government personnel.

PART 2 - PRODUCTS

2.1 FACTORY-ASSEMBLED PRODUCTS

- A. Provide maximum standardization of components to reduce spare part requirements.
- B. Manufacturers of equipment assemblies that include components made by others shall assume complete responsibility for final assembled unit.
 - 1. All components of an assembled unit need not be products of same manufacturer.
 - 2. Constituent parts that are alike shall be products of a single manufacturer.
 - 3. Components shall be compatible with each other and with the total assembly for intended service.
 - Contractor shall guarantee performance of assemblies of components, and shall repair or replace elements of the assemblies as required to deliver specified performance of the complete assembly.
- C. Components of equipment shall bear manufacturer's name and trademark, model number, serial number and performance data on a name plate securely affixed in a conspicuous place, or cast integral with, stamped or otherwise permanently marked upon the components of the equipment.
- D. Major items of equipment, which serve the same function, must be the same make and model. Exceptions will be permitted if performance requirements cannot be met.

2.2 COMPATIBILITY OF RELATED EQUIPMENT

Equipment and materials installed shall be compatible in all respects with other items being furnished and with existing items so that the

result will be a complete and fully operational plant that conforms to contract requirements.

2.3 BELT DRIVES

- A. Type: ANSI/RMA standard V-belts with proper motor pulley and driven sheave. Belts shall be constructed of reinforced cord and rubber.
- B. Dimensions, rating and selection standards: ANSI/RMA IP-20 and IP-21.
- C. Minimum Horsepower Rating: Motor horsepower plus recommended ANSI/RMA service factor (not less than 20 percent) in addition to the ANSI/RMA allowances for pitch diameter, center distance, and arc of contact.
- D. Maximum Speed: 25 m/s (5000 feet per minute).
- E. Adjustment Provisions: For alignment and ANSI/RMA standard allowances for installation and take-up.
- F. Drives may utilize a single V-Belt (any cross section) when it is the manufacturer's standard.
- G. Multiple Belts: Matched to ANSI/RMA specified limits by measurement on a belt measuring fixture. Seal matched sets together to prevent mixing or partial loss of sets. Replacement, when necessary, shall be an entire set of new matched belts.
- H. Sheaves and Pulleys:
 - 1. Material: Pressed steel, or close grained cast iron.
 - 2. Bore: Fixed or bushing type for securing to shaft with keys.
 - 3. Balanced: Statically and dynamically.
 - 4. Groove spacing for driving and driven pulleys shall be the same.
 - 5. Minimum Diameter of V-Belt Sheaves (ANSI/RMA recommendations)in millimeters and inches:

	ional power	St	andard	High	Capacity		
Cross Section	Min. od mm (in)	Cross Section	Min. od mm (in)	Cross Section	Min. od mm (in)		
2L	20 (0.8)	A	83 (3.25)	3V	67 (2.65)		
3L	38 (1.5)	В	146 (5.75)	4V	180 (7.10)		
4L	64 (2.5)	С	239 (9.40)	5V	318 (12.50)		
5L	89 (3.5)	D	345 (13.60)				
		E	554 (21.80)				

- I. Drive Types, Based on ARI 435:
 - 1. Provide adjustable-pitch or fixed-pitch drive as follows:
 - a. Fan speeds up to 1800 RPM: 7.5 kW (10 horsepower) and smaller.

b. Fan speeds over 1800 RPM: 2.2 kW (3 horsepower) and smaller.

- 2. Provide fixed-pitch drives for drives larger than those listed above.
- 3. The final fan speeds required to just meet the system CFM and pressure requirements, without throttling, shall be determined by adjustment of a temporary adjustable-pitch motor sheave or by fan law calculation if a fixed-pitch drive is used initially.

2.4 DRIVE GUARDS

- A. For machinery and equipment, provide guards as shown in AMCA 410 for belts, chains, couplings, pulleys, sheaves, shafts, gears and other moving parts regardless of height above the floor to prevent damage to equipment and injury to personnel. Drive guards may be excluded where motors and drives are inside factory fabricated air handling unit casings.
- B. Pump shafts and couplings shall be fully guarded by a sheet steel guard, covering coupling and shaft but not bearings. Material shall be minimum 16-gage sheet steel; ends shall be braked and drilled and attached to pump base with minimum of four 6 mm (1/4-inch) bolts. Reinforce guard as necessary to prevent side play forcing guard onto couplings.
- C. V-belt and sheave assemblies shall be totally enclosed, firmly mounted, non-resonant. Guard shall be an assembly of minimum 22-gage sheet steel and expanded or perforated metal to permit observation of belts. 25 mm (one-inch) diameter hole shall be provided at each shaft centerline to permit speed measurement.
- D. Materials: Sheet steel, cast iron, expanded metal or wire mesh rigidly secured so as to be removable without disassembling pipe, duct, or electrical connections to equipment.
- E. Access for Speed Measurement: 25 mm (One inch) diameter hole at each shaft center.

2.5 LIFTING ATTACHMENTS

Provide equipment with suitable lifting attachments to enable equipment to be lifted in its normal position. Lifting attachments shall withstand any handling conditions that might be encountered, without bending or distortion of shape, such as rapid lowering and braking of load.

2.6 ELECTRIC MOTORS

- A. All material and equipment furnished and installation methods shall conform to the requirements of Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT; Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS; and, Section 26 05 21, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW). Provide all electrical wiring, conduit, and devices necessary for the proper connection, protection and operation of the systems. Provide special energy efficient motors as scheduled. Unless otherwise specified for a particular application use electric motors with the following requirements.
- B. Single-phase Motors: Capacitor-start type for hard starting applications. Motors for centrifugal fans and pumps may be split phase or permanent split capacitor (PSC).
- C. Poly-phase Motors: NEMA Design B, Squirrel cage, induction type. Each two-speed motor shall have two separate windings. Provide a time- delay (20 seconds minimum) relay for switching from high to low speed.
- D. Rating: Continuous duty at 100 percent capacity in an ambient temperature of 40 degrees centigrade (104 degrees F); minimum horsepower as shown on drawings; maximum horsepower in normal operation not to exceed nameplate rating without service factor.
- E. Special Requirements:
 - Where motor power requirements of equipment furnished deviate from power shown on plans, provide electrical service designed under the requirements of NFPA 70 without additional time or cost to the Government.
 - 2. Assemblies of motors, starters, controls and interlocks on factory assembled and wired devices shall be in accordance with the requirements of this specification.
 - 3. Wire and cable materials specified in the electrical division of the specifications shall be modified as follows:
 - a. Wiring material located where temperatures can exceed 71 degrees
 C (160 degrees F) shall be stranded copper with Teflon FEP
 insulation with jacket. This includes wiring on the boilers.
 - b. Other wiring at boilers and to control panels shall be NFPA 70 designation THWN.

- c. Provide shielded conductors or wiring in separate conduits for all instrumentation and control systems where recommended by manufacturer of equipment.
- 4. Select motor sizes so that the motors do not operate into the service factor at maximum required loads on the driven equipment. Motors on pumps shall be sized for non-overloading at all points on the pump performance curves.
- 5. Motors utilized with variable frequency drives shall be rated "inverter-ready" per NEMA Standard, MG1, Part 31.4.4.2. Provide motor shaft grounding apparatus that will protect bearings from damage from stray currents.
- F. Motor Efficiency and Power Factor: All motors, when specified as "high efficiency" by the project specifications on driven equipment, shall conform to efficiency and power factor requirements in Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT, with no consideration of annual service hours. Motor manufacturers generally define these efficiency requirements as "NEMA premium efficient" and the requirements generally exceed those of the Energy Policy Act of 1992 (EPACT). Motors not specified as "high efficiency" shall comply with EPACT.
- G. Insulation Resistance: Not less than one-half meg-ohm between stator conductors and frame, to be determined at the time of final inspection.

2.7 EQUIPMENT AND MATERIALS IDENTIFICATION

- A. Use symbols, nomenclature and equipment numbers specified, shown on the drawings and shown in the maintenance manuals. Identification for piping is specified in Section 09 91 00, PAINTING.
 - B. Interior (Indoor) Equipment: Engraved nameplates, with letters not less than 48 mm (3/16-inch) high of brass with black-filled letters, or rigid black plastic with white letters specified in Section 09 91 00, PAINTING permanently fastened to the equipment. Identify unit components such as coils, filters, fans, etc.
 - C. Exterior (Outdoor) Equipment: Brass nameplates, with engraved black filled letters, not less than 48 mm (3/16-inch) high riveted or bolted to the equipment.
 - D. Control Items: Label all temperature and humidity sensors, controllers and control dampers. Identify and label each item as they appear on the control diagrams.
 - E. Valve Tags and Lists:

- 1. HVAC and Boiler Plant: Provide for all valves.
- 2. Valve tags: Engraved black filled numbers and letters not less than 13 mm (1/2-inch) high for number designation, and not less than 6.4 mm(1/4-inch) for service designation on 19 gage 38 mm (1-1/2 inches) round brass disc, attached with brass "S" hook or brass chain.
- 3. Valve lists: Typed or printed plastic coated card(s), sized 216 mm(8-1/2 inches) by 280 mm (11 inches) showing tag number, valve function and area of control, for each service or system. Punch sheets for a 3-ring notebook.
- 4. Provide detailed plan for each floor of the building indicating the location and valve number for each valve. Identify location of each valve with a color coded thumb tack in ceiling.

2.8 FIRESTOPPING

Section 07 84 00, FIRESTOPPING specifies an effective barrier against the spread of fire, smoke and gases where penetrations occur for piping and ductwork. Refer to Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION, for firestop pipe and duct insulation.

2.9 GALVANIZED REPAIR COMPOUND

Mil. Spec. DOD-P-21035B, paint form.

2.10 HVAC PIPE AND EQUIPMENT SUPPORTS AND RESTRAINTS

- A. Vibration Isolators: Refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- B. Pipe Supports: Comply with MSS SP-58. Type Numbers specified refer to this standard. For selection and application comply with MSS SP-69. Refer to Section 05 50 00, METAL FABRICATIONS, for miscellaneous metal support materials and prime coat painting requirements.
- C. Attachment to Concrete Building Construction:
 - 1. Concrete insert: MSS SP-58, Type 18.
 - Self-drilling expansion shields and machine bolt expansion anchors: Permitted in concrete not less than 102 mm (four inches) thick when approved by the COTR for each job condition.
 - 3. Power-driven fasteners: Permitted in existing concrete or masonry not less than 102 mm (four inches) thick when approved by the COTR for each job condition.
- D. Attachment to Steel Building Construction:
 - 1. Welded attachment: MSS SP-58, Type 22.

- 2. Beam clamps: MSS SP-58, Types 20, 21, 28 or 29. Type 23 C-clamp may be used for individual copper tubing up to 23mm (7/8-inch) outside diameter.
- E. Attachment to Wood Construction: Wood screws or lag bolts.
- F. Hanger Rods: Hot-rolled steel, ASTM A36 or A575 for allowable load listed in MSS SP-58. For piping, provide adjustment means for controlling level or slope. Types 13 or 15 turn-buckles shall provide 38 mm (1-1/2 inches) minimum of adjustment and incorporate locknuts. All-thread rods are acceptable.
- G. Hangers Supporting Multiple Pipes (Trapeze Hangers): Galvanized, cold formed, lipped steel channel horizontal member, not less than 41 mm by 41 mm (1-5/8 inches by 1-5/8 inches), 2.7 mm (No. 12 gage), designed to accept special spring held, hardened steel nuts. Not permitted for steam supply and condensate piping.
 - 1. Allowable hanger load: Manufacturers rating less 91kg (200 pounds).
 - 2. Guide individual pipes on the horizontal member of every other trapeze hanger with 6 mm (1/4-inch) U-bolt fabricated from steel rod. Provide Type 40 insulation shield, secured by two 13mm (1/2-inch) galvanized steel bands, or preinsulated calcium silicate shield for insulated piping at each hanger.
- H. Supports for Piping Systems:
 - Select hangers sized to encircle insulation on insulated piping. Refer to Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION for insulation thickness. To protect insulation, provide Type 39 saddles for roller type supports or preinsulated calcium silicate shields. Provide Type 40 insulation shield or preinsulated calcium silicate shield at all other types of supports and hangers including those for preinsulated piping.
 - 2. Piping Systems except High and Medium Pressure Steam (MSS SP-58):
 - a. Standard clevis hanger: Type 1; provide locknut.
 - b. Riser clamps: Type 8.
 - c. Wall brackets: Types 31, 32 or 33.
 - d. Roller supports: Type 41, 43, 44 and 46.
 - e. Saddle support: Type 36, 37 or 38.
 - f. Turnbuckle: Types 13 or 15. Preinsulate.
 - g. U-bolt clamp: Type 24.
 - h. Copper Tube:

- Hangers, clamps and other support material in contact with tubing shall be painted with copper colored epoxy paint, plastic coated or taped with non adhesive isolation tape to prevent electrolysis.
- 2) For vertical runs use epoxy painted or plastic coated riser clamps.
- For supporting tube to strut: Provide epoxy painted pipe straps for copper tube or plastic inserted vibration isolation clamps.
- Insulated Lines: Provide pre-insulated calcium silicate shields sized for copper tube.
- Supports for plastic piping: As recommended by the pipe manufacturer with black rubber tape extending one inch beyond steel support or clamp.
- I. Pre-insulated Calcium Silicate Shields:
 - Provide 360 degree water resistant high density 965 kPa (140 psi) compressive strength calcium silicate shields encased in galvanized metal.
 - 2. Pre-insulated calcium silicate shields to be installed at the point of support during erection.
 - 3. Shield thickness shall match the pipe insulation.
 - 4. The type of shield is selected by the temperature of the pipe, the load it must carry, and the type of support it will be used with.
 - a. Shields for supporting chilled or cold water shall have insulation that extends a minimum of 1 inch past the sheet metal.
 Provide for an adequate vapor barrier in chilled lines.
 - b. The pre-insulated calcium silicate shield shall support the maximum allowable water filled span as indicated in MSS-SP 69. To support the load, the shields may have one or more of the following features: structural inserts 4138 kPa (600 psi) compressive strength, an extra bottom metal shield, or formed structural steel (ASTM A36) wear plates welded to the bottom sheet metal jacket.
 - 5. Shields may be used on steel clevis hanger type supports, roller supports or flat surfaces.

2.14 PIPE PENETRATIONS

A. Install sleeves during construction for other than blocked out floor openings for risers in mechanical bays.

- B. To prevent accidental liquid spills from passing to a lower level, provide the following:
 - 1. For sleeves: Extend sleeve 25 mm (one inch) above finished floor and provide sealant for watertight joint.
 - For blocked out floor openings: Provide 40 mm (1-1/2 inch) angle set in silicone adhesive around opening.
 - For drilled penetrations: Provide 40 mm (1-1/2 inch) angle ring or square set in silicone adhesive around penetration.
- C. Penetrations are not allowed through beams or ribs, but may be installed in concrete beam flanges. Any deviation from these requirements must receive prior approval of COTR.
- D. Sheet Metal, Plastic, or Moisture-resistant Fiber Sleeves: Provide for pipe passing through floors, interior walls, and partitions, unless brass or steel pipe sleeves are specifically called for below.
- E. Cast Iron or Zinc Coated Pipe Sleeves: Provide for pipe passing through exterior walls below grade. Make space between sleeve and pipe watertight with a modular or link rubber seal. Seal shall be applied at both ends of sleeve.
- F. Galvanized Steel or an alternate Black Iron Pipe with asphalt coating Sleeves: Provide for pipe passing through concrete beam flanges, except where brass pipe sleeves are called for. Provide sleeve for pipe passing through floor of mechanical rooms, laundry work rooms, and animal rooms above basement. Except in mechanical rooms, connect sleeve with floor plate.
- G. Brass Pipe Sleeves: Provide for pipe passing through quarry tile, terrazzo or ceramic tile floors. Connect sleeve with floor plate.
- H. Sleeves are not required for wall hydrants for fire department connections or in drywall construction.
- I. Sleeve Clearance: Sleeve through floors, walls, partitions, and beam flanges shall be one inch greater in diameter than external diameter of pipe. Sleeve for pipe with insulation shall be large enough to accommodate the insulation. Interior openings shall be caulked tight with fire stopping material and sealant to prevent the spread of fire, smoke, and gases.
- J. Sealant and Adhesives: Shall be as specified in Section 07 92 00, JOINT SEALANTS.

2.15 SPECIAL TOOLS AND LUBRICANTS

- A. Furnish, and turn over to the COTR, special tools not readily available commercially, that are required for disassembly or adjustment of equipment and machinery furnished.
- B. Grease Guns with Attachments for Applicable Fittings: One for each type of grease required for each motor or other equipment.
- C. Tool Containers: Hardwood or metal, permanently identified for in tended service and mounted, or located, where directed by the COTR.
- D. Lubricants: A minimum of 0.95 L (one quart) of oil, and 0.45 kg (one pound) of grease, of equipment manufacturer's recommended grade and type, in unopened containers and properly identified as to use for each different application.

2.16 WALL, FLOOR AND CEILING PLATES

- A. Material and Type: Chrome plated brass or chrome plated steel, one piece or split type with concealed hinge, with set screw for fastening to pipe, or sleeve. Use plates that fit tight around pipes, cover openings around pipes and cover the entire pipe sleeve projection.
- B. Thickness: Not less than 2.4 mm (3/32-inch) for floor plates. For wall and ceiling plates, not less than 0.64 mm (0.025-inch) for up to 80 mm (3-inch pipe), 0.89 mm (0.035-inch) for larger pipe.
- C. Locations: Use where pipe penetrates floors, walls and ceilings in exposed locations, in finished areas only. Use also where insulation ends on exposed water supply pipe drop from overhead. Provide a watertight joint in spaces where brass or steel pipe sleeves are specified.

2.17 ASBESTOS

Materials containing asbestos are not permitted.

PART 3 - EXECUTION

3.1 ARRANGEMENT AND INSTALLATION OF EQUIPMENT AND PIPING

A. Coordinate location of piping, sleeves, inserts, hangers, ductwork and equipment. Locate piping, sleeves, inserts, hangers, ductwork and equipment clear of windows, doors, openings, light outlets, and other services and utilities. Prepare equipment layout drawings to coordinate proper location and personnel access of all facilities. Submit the drawings for review as required by Part 1. Follow manufacturer's published recommendations for installation methods not otherwise specified.

- B. Operating Personnel Access and Observation Provisions: Select and arrange all equipment and systems to provide clear view and easy access, without use of portable ladders, for maintenance and operation of all devices including, but not limited to: all equipment items, valves, filters, strainers, transmitters, sensors, control devices. All gages and indicators shall be clearly visible by personnel standing on the floor or on permanent platforms. Do not reduce or change maintenance and operating space and access provisions that are shown on the drawings.
- C. Equipment and Piping Support: Coordinate structural systems necessary for pipe and equipment support with pipe and equipment locations to permit proper installation.
- D. Location of pipe sleeves, trenches and chases shall be accurately coordinated with equipment and piping locations.
- E. Cutting Holes:
 - Cut holes through concrete and masonry by rotary core drill. Pneumatic hammer, impact electric, and hand or manual hammer type drill will not be allowed, except as permitted by COTR where working area space is limited.
 - 2. Locate holes to avoid interference with structural members such as beams or grade beams. Holes shall be laid out in advance and drilling done only after approval by COTR. If the Contractor considers it necessary to drill through structural members, this matter shall be referred to COTR for approval.
 - 3. Do not penetrate membrane waterproofing.
- F. Interconnection of Instrumentation or Control Devices: Generally, electrical and pneumatic interconnections are not shown but must be provided.
- G. Minor Piping: Generally, small diameter pipe runs from drips and drains, water cooling, and other service are not shown but must be provided.
- H. Electrical and Pneumatic Interconnection of Controls and Instruments: This generally not shown but must be provided. This includes interconnections of sensors, transmitters, transducers, control devices, control and instrumentation panels, instruments and computer workstations. Comply with NFPA-70.
- I. Protection and Cleaning:

- Equipment and materials shall be carefully handled, properly stored, and adequately protected to prevent damage before and during installation, in accordance with the manufacturer's recommendations and as approved by the COTR. Damaged or defective items in the opinion of the COTR, shall be replaced.
- 2. Protect all finished parts of equipment, such as shafts and bearings where accessible, from rust prior to operation by means of protective grease coating and wrapping. Close pipe openings with caps or plugs during installation. Tightly cover and protect fixtures and equipment against dirt, water chemical, or mechanical injury. At completion of all work thoroughly clean fixtures, exposed materials and equipment.
- J. Concrete and Grout: Use concrete and shrink compensating grout 25 MPa (3000 psi) minimum, specified in Section 03 30 00, CAST-IN-PLACE CONCRETE.
- K. Install gages, thermometers, valves and other devices with due regard for ease in reading or operating and maintaining said devices. Locate and position thermometers and gages to be easily read by operator or staff standing on floor or walkway provided. Servicing shall not require dismantling adjacent equipment or pipe work.
- L. Work in Existing Building:
 - Perform as specified in Article, OPERATIONS AND STORAGE AREAS, Article, ALTERATIONS, and Article, RESTORATION of the Section 01 00 00, GENERAL REQUIREMENTS for relocation of existing equipment, alterations and restoration of existing building(s).
 - 2. As specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, OPERATIONS AND STORAGE AREAS, make alterations to existing service piping at times that will least interfere with normal operation of the facility.
 - 3. Cut required openings through existing masonry and reinforced concrete using diamond core drills. Use of pneumatic hammer type drills, impact type electric drills, and hand or manual hammer type drills, will be permitted only with approval of the COTR. Locate openings that will least effect structural slabs, columns, ribs or beams. Refer to the COTR for determination of proper design for openings through structural sections and opening layouts approval, prior to cutting or drilling into structure. After COTR's approval,

carefully cut opening through construction no larger than absolutely necessary for the required installation.

- M. Inaccessible Equipment:
 - Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance, equipment shall be removed and reinstalled or remedial action performed as directed at no additional cost to the Government.
 - 2. The term "conveniently accessible" is defined as capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as motors, fans, pumps, belt guards, transformers, high voltage lines, piping, and ductwork.

3.2 TEMPORARY PIPING AND EQUIPMENT

- A. Continuity of operation of existing facilities will generally require temporary installation or relocation of equipment and piping.
- B. The Contractor shall provide all required facilities in accordance with the requirements of phased construction and maintenance of service. All piping and equipment shall be properly supported, sloped to drain, operate without excessive stress, and shall be insulated where injury can occur to personnel by contact with operating facilities. The requirements of Para. 3.1 apply.
- C. Temporary facilities and piping shall be completely removed and any openings in structures sealed. Provide necessary blind flanges and caps to seal open piping remaining in service.

3.3 RIGGING

- A. Design is based on application of available equipment. Openings in building structures are planned to accommodate design scheme.
- B. Alternative methods of equipment delivery may be offered by Contractor and will be considered by Government under specified restrictions of phasing and maintenance of service as well as structural integrity of the building.
- C. Close all openings in the building when not required for rigging operations to maintain proper environment in the facility for Government operation and maintenance of service.
- D. Contractor shall provide all facilities required to deliver specified equipment and place on foundations. Attachments to structures for rigging purposes and support of equipment on structures shall be Contractor's full responsibility. Upon request, the Government will

check structure adequacy and advise Contractor of recommended restrictions.

- E. Contractor shall check all clearances, weight limitations and shall offer a rigging plan designed by a Registered Professional Engineer. All modifications to structures, including reinforcement thereof, shall be at Contractor's cost, time and responsibility.
- F. Rigging plan and methods shall be referred to COTR for evaluation prior to actual work.
- G. Restore building to original condition upon completion of rigging work.

3.4 PIPE AND EQUIPMENT SUPPORTS

- A. Where hanger spacing does not correspond with joist or rib spacing, use structural steel channels secured directly to joist and rib structure that will correspond to the required hanger spacing, and then suspend the equipment and piping from the channels. Drill or burn holes in structural steel only with the prior approval of the COTR.
- B. Use of chain, wire or strap hangers; wood for blocking, stays and bracing; or, hangers suspended from piping above will not be permitted. Replace or thoroughly clean rusty products and paint with zinc primer.
- C. Use hanger rods that are straight and vertical. Turnbuckles for vertical adjustments may be omitted where limited space prevents use. Provide a minimum of 15 mm (1/2-inch) clearance between pipe or piping covering and adjacent work.
- D. HVAC Horizontal Pipe Support Spacing: Refer to MSS SP-69. Provide additional supports at valves, strainers, in-line pumps and other heavy components. Provide a support within one foot of each elbow.
- E. HVAC Vertical Pipe Supports:
 - Up to 150 mm (6-inch pipe), 9 m (30 feet) long, bolt riser clamps to the pipe below couplings, or welded to the pipe and rests supports securely on the building structure.
 - 2. Vertical pipe larger than the foregoing, support on base elbows or tees, or substantial pipe legs extending to the building structure.
- F. Overhead Supports:
 - 1. The basic structural system of the building is designed to sustain the loads imposed by equipment and piping to be supported overhead.
 - Provide steel structural members, in addition to those shown, of adequate capability to support the imposed loads, located in accordance with the final approved layout of equipment and piping.
 - 3. Tubing and capillary systems shall be supported in channel troughs.

- G. Floor Supports:
 - Provide concrete bases, concrete anchor blocks and pedestals, and structural steel systems for support of equipment and piping. Anchor and dowel concrete bases and structural systems to resist forces under operating and seismic conditions (if applicable) without excessive displacement or structural failure.
 - 2. Do not locate or install bases and supports until equipment mounted thereon has been approved. Size bases to match equipment mounted thereon plus 50 mm (2 inch) excess on all edges. Boiler foundations shall have horizontal dimensions that exceed boiler base frame dimensions by at least 150 mm (6 inches) on all sides. Refer to structural drawings. Bases shall be neatly finished and smoothed, shall have chamfered edges at the top, and shall be suitable for painting.
 - 3. All equipment shall be shimmed, leveled, firmly anchored, and grouted with epoxy grout. Anchor bolts shall be placed in sleeves, anchored to the bases. Fill the annular space between sleeves and bolts with a granular material to permit alignment and realignment.

3.5 MECHANICAL DEMOLITION

- A. Rigging access, other than indicated on the drawings, shall be provided by the Contractor after approval for structural integrity by the COTR. Such access shall be provided without additional cost or time to the Government. Where work is in an operating plant, provide approved protection from dust and debris at all times for the safety of plant personnel and maintenance of plant operation and environment of the plant.
- B. Completely remove all piping, wiring, conduit, and other devices associated with the equipment not to be re-used in the new work. This includes all pipe, valves, fittings, insulation, and all hangers including the top connection and any fastenings to building structural systems. Seal all openings, after removal of equipment, pipes, ducts, and other penetrations in roof, walls, floors, in an approved manner and in accordance with plans and specifications where specifically covered. Structural integrity of the building system shall be maintained. Reference shall also be made to the drawings and specifications of the other disciplines in the project for additional facilities to be demolished or handled.

- C. All valves including gate, globe, ball, butterfly and check, all pressure gages and thermometers with wells shall remain Government property and shall be removed and delivered to COTR and stored as directed. The Contractor shall remove all other material and equipment, devices and demolition debris under these plans and specifications. Such material shall be removed from Government property expeditiously and shall not be allowed to accumulate.
- D. Asbestos Insulation Removal: Conform to Section 02 82 11, TRADITIONAL ASBESTOS ABATEMENT.

3.6 CLEANING AND PAINTING

- A. Prior to final inspection and acceptance of the plant and facilities for beneficial use by the Government, the plant facilities, equipment and systems shall be thoroughly cleaned and painted. Refer to Section 09 91 00, PAINTING.
- B. In addition, the following special conditions apply:
 - Cleaning shall be thorough. Use solvents, cleaning materials and methods recommended by the manufacturers for the specific tasks. Remove all rust prior to painting and from surfaces to remain unpainted. Repair scratches, scuffs, and abrasions prior to applying prime and finish coats.
 - 2. Material And Equipment Not To Be Painted Includes:
 - a. Motors, controllers, control switches, and safety switches.
 - b. Control and interlock devices.
 - c. Regulators.
 - d. Pressure reducing valves.
 - e. Control valves and thermostatic elements.
 - f. Lubrication devices and grease fittings.
 - g. Copper, brass, aluminum, stainless steel and bronze surfaces.
 - h. Valve stems and rotating shafts.
 - i. Pressure gauges and thermometers.
 - j. Glass.
 - k. Name plates.
 - 3. Final result shall be smooth, even-colored, even-textured factory finish on all items. Completely repaint the entire piece of equipment if necessary to achieve this.

3.7 IDENTIFICATION SIGNS

A. Provide laminated plastic signs, with engraved lettering not less than5 mm (3/16-inch) high, designating functions, for all equipment,

switches, motor controllers, relays, meters, control devices, including automatic control valves. Nomenclature and identification symbols shall correspond to that used in maintenance manual, and in diagrams specified elsewhere. Attach by chain, adhesive, or screws.

- B. Factory Built Equipment: Metal plate, securely attached, with name and address of manufacturer, serial number, model number, size, performance.
- C. Pipe Identification: Refer to Section 09 91 00, PAINTING.

3.8 MOTOR AND DRIVE ALIGNMENT

- A. Belt Drive: Set driving and driven shafts parallel and align so that the corresponding grooves are in the same plane.
- B. Direct-connect Drive: Securely mount motor in accurate alignment so that shafts are free from both angular and parallel misalignment when both motor and driven machine are operating at normal temperatures.

3.9 LUBRICATION

- A. Lubricate all devices requiring lubrication prior to initial operation.Field-check all devices for proper lubrication.
- B. Equip all devices with required lubrication fittings or devices. Provide a minimum of one liter (one quart) of oil and 0.5 kg (one pound) of grease of manufacturer's recommended grade and type for each different application; also provide 12 grease sticks for lubricated plug valves. Deliver all materials to COTR in unopened containers that are properly identified as to application.
- C. Provide a separate grease gun with attachments for applicable fittings for each type of grease applied.
- D. All lubrication points shall be accessible without disassembling equipment, except to remove access plates.

3.10 STARTUP AND TEMPORARY OPERATION

Start up equipment as described in equipment specifications. Verify that vibration is within specified tolerance prior to extended operation. Temporary use of equipment is specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT.

3.11 OPERATING AND PERFORMANCE TESTS

A. Prior to the final inspection, perform required tests as specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TESTS, and submit the test reports and records to the COTR.

- B. Should evidence of malfunction in any tested system, or piece of equipment or component part thereof, occur during or as a result of tests, make proper corrections, repairs or replacements, and repeat tests at no additional cost to the Government.
- C. When completion of certain work or system occurs at a time when final control settings and adjustments cannot be properly made to make performance tests, then make performance tests for heating systems and for cooling systems respectively during first actual seasonal use of respective systems following completion of work.

3.12 INSTRUCTIONS TO VA PERSONNEL

Provide in accordance with Article, INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS.

- - - END - - -

SECTION 23 05 12

GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT

PART 1 - GENERAL

1.1 DESCRIPTION:

This section specifies the furnishing, installation and connection of motors for HVAC and steam generation equipment.

1.2 RELATED WORK:

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements that are common to more than one Section of Division 26.
- B. Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS: Starters, control and protection for motors.
- C. Other sections specifying motor driven equipment in Division 23.

1.3 SUBMITTALS:

- A. In accordance with Section, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, submit the following:
- B. Shop Drawings:
 - Sufficient information, clearly presented, shall be included to determine compliance with drawings and specifications.
 - Include electrical ratings, dimensions, mounting details, materials, horsepower, RPM, enclosure, starting characteristics, torque characteristics, code letter, full load and locked rotor current, service factor, and lubrication method.
- C. Manuals:
 - Submit simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals, including technical data sheets and application data.
- D. Certification: Two weeks prior to final inspection, unless otherwise noted, submit four copies of the following certification to the COTR:
 - Certification that the motors have been properly applied, installed, adjusted, lubricated, and tested.

1.4 APPLICABLE PUBLICATIONS:

A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.

- B. National Electrical Manufacturers Association (NEMA):
 - MG 1-2011.....Motors and Generators

MG 2-07.....Safety Standard and Guide for Selection, Installation and Use of Electric Motors and Generators

C. National Fire Protection Association (NFPA): 70-02.....National Electrical Code (NEC)

PART 2 - PRODUCTS

2.1 MOTORS:

- A. For alternating current, fractional and integral horsepower motors, NEMA Publications MG 1 and MG 2 shall apply.
- B. Voltage ratings shall be as follows:
 - 1. Single phase:
 - a. Motors connected to 120-volt systems: 115 volts.
 - b. Motors connected to 208-volt systems: 200 volts.
 - c.
- C. Number of phases shall be as follows: Single phase
- D. Horsepower ratings shall be adequate for operating the connected loads continuously in the prevailing ambient temperatures in areas where the motors are installed, without exceeding the NEMA standard temperature rises for the motor insulation.
- E. Motor designs, as indicated by the NEMA code letters, shall be coordinated with the connected loads to assure adequate starting and running torque.
- F. Motor Enclosures:
 - 1. Shall be the NEMA types shown on the drawings for the motors.
 - 2. Where the types of motor enclosures are not shown on the drawings, they shall be the NEMA types, which are most suitable for the environmental conditions where the motors are being installed.
 - 3. Enclosures shall be primed and finish coated at the factory with manufacturer's prime coat and standard finish.
- G. Additional requirements for specific motors, as indicated in other sections, shall also apply.
- H. Energy-Efficient Motors (Motor Efficiencies): All permanently wired polyphase motors of 746 Watts or more shall meet the minimum full-load efficiencies as indicated in the following table, and as specified in this specification. Motors of 746 Watts or more with open, drip-proof or totally enclosed fan-cooled enclosures shall be NEMA premium

efficiency type, unless otherwise indicated. Motors provided as an integral part of motor driven equipment are excluded from this requirement if a minimum seasonal or overall efficiency requirement is indicated for that equipment by the provisions of another section.

Min	imum Eff	iciencie	S	Mini	mum Effi	ciencies	
	Open Drip	-Proof		Totally	Enclosed	l Fan-Coc	oled
Rating	1200	1800	3600	Rating	1200	1800	3600
kW (HP)	RPM	RPM	RPM	kW (HP)	RPM	RPM	RPM
0.746 (1)	82.5%	85.5%	77.0%	0.746 (1)	82.5%	85.5%	77.0%
1.12 (1.5)	86.5%	86.5%	84.0%	1.12 (1.5)	87.5%	86.5%	84.0%
1.49 (2)	87.5%	86.5%	85.5%	1.49 (2)	88.5%	86.5%	85.5%
2.24 (3)	88.5%	89.5%	85.5%	2.24 (3)	89.5%	89.5%	86.5%
3.73 (5)	89.5%	89.5%	86.5%	3.73 (5)	89.5%	89.5%	88.5%
5.60 (7.5)	90.2%	91.0%	88.5%	5.60 (7.5)	91.0%	91.7%	89.5%
7.46 (10)	91.7%	91.7%	89.5%	7.46 (10)	91.0%	91.7%	90.2%
11.2 (15)	91.7%	93.0%	90.2%	11.2 (15)	91.7%	92.4%	91.0%
14.9 (20)	92.4%	93.0%	91.0%	14.9 (20)	91.7%	93.0%	91.0%
18.7 (25)	93.0%	93.6%	91.7%	18.7 (25)	93.0%	93.6%	91.7%
22.4 (30)	93.6%	94.1%	91.7%	22.4 (30)	93.0%	93.6%	91.7%
29.8 (40)	94.1%	94.1%	92.4%	29.8 (40)	94.1%	94.1%	92.4%
37.3 (50)	94.1%	94.5%	93.0%	37.3 (50)	94.1%	94.5%	93.0%
44.8 (60)	94.5%	95.0%	93.6%	44.8 (60)	94.5%	95.0%	93.6%
56.9 (75)	94.5%	95.0%	93.6%	56.9 (75)	94.5%	95.4%	93.6%
74.6 (100)	95.0%	95.4%	93.6%	74.6 (100)	95.0%	95.4%	94.1%
93.3 (125)	95.0%	95.4%	94.1%	93.3 (125)	95.0%	95.4%	95.0%
112 (150)	95.4%	95.8%	94.1%	112 (150)	95.8%	95.8%	95.0%
149.2	95.4%	95.8%	95.0%	149.2	95.8%	96.2%	95.4%
(200)				(200)			

- I. Minimum Power Factor at Full Load and Rated Voltage: 90 percent at 1200 RPM, 1800 RPM and 3600 RPM.
- J. Premium efficiency motors shall be used where energy cost/kW x (hours use/year) > 50.

PART 3 - EXECUTION

3.1 INSTALLATION:

Install motors in accordance with manufacturer's recommendations, the NEC, NEMA, as shown on the drawings and/or as required by other sections of these specifications.

3.2 FIELD TESTS

Megger all motors after installation, before start-up. All shall test free from grounds.

- - - END - - -

SECTION 23 05 41

NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 DESCRIPTION

Noise criteria, vibration tolerance and vibration isolation for HVAC and plumbing work.

1.2 RELATED WORK

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION: General mechanical requirements and items, which are common to more than one section of Division 23.
- B. Section 23 22 13, STEAM AND CONDENSATE HEATING PIPING: Requirements for flexible pipe connectors to reciprocating and rotating mechanical equipment.
- C. Section 23 31 00, HVAC DUCTS AND CASINGS: requirements for flexible duct connectors, sound attenuators and sound absorbing duct lining.
- D. SECTION 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC: requirements for sound and vibration tests.

1.3 QUALITY ASSURANCE

- A. Refer to article, QUALITY ASSURANCE in specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.
- B. Noise Criteria:
 - 1. Noise levels in all 8 octave bands due to equipment and duct systems shall not exceed following NC levels:

TYPE OF ROOM	NC LEVEL
Bathrooms and Toilet Rooms	40
Corridors(Public)	40
Kitchens	40
Bedrooms	35
Conference Rooms	30

2. For equipment which has no sound power ratings scheduled on the plans, the contractor shall select equipment such that the foregoing noise criteria, local ordinance noise levels, and OSHA requirements are not exceeded. Selection procedure shall be in accordance with ASHRAE Fundamentals Handbook, Chapter 7, Sound and Vibration.

- 3. An allowance, not to exceed 5db, may be added to the measured value to compensate for the variation of the room attenuating effect between room test condition prior to occupancy and design condition after occupancy which may include the addition of sound absorbing material, such as, furniture. This allowance may not be taken after occupancy. The room attenuating effect is defined as the difference between sound power level emitted to room and sound pressure level in room.
- In absence of specified measurement requirements, measure equipment noise levels three feet from equipment and at an elevation of maximum noise generation.
- C. Allowable Vibration Tolerances for Rotating, Non-reciprocating Equipment: Not to exceed a self-excited vibration maximum velocity of 5 mm per second (0.20 inch per second) RMS, filter in, when measured with a vibration meter on bearing caps of machine in vertical, horizontal and axial directions or measured at equipment mounting feet if bearings are concealed. Measurements for internally isolated fans and motors may be made at the mounting feet.

1.4 SUBMITTALS

- A. Submit in accordance with specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Vibration isolators:
 - a. Floor mountings
 - b. Hangers
 - c. Snubbers
 - d. Thrust restraints
 - 2. Bases.
 - 3. Acoustical enclosures.
- C. Isolator manufacturer shall furnish with submittal load calculations for selection of isolators, including supplemental bases, based on lowest operating speed of equipment supported.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE):

2005.....Fundamentals Handbook, Chapter 7, Sound and Vibration

C. American Society for Testing and Materials (ASTM):

A123/A123M-02.....Standard Specification for Zinc (Hot-Dip Galvanized) Coatings on Iron and Steel Products

A307-04.....Standard Specification for Carbon Steel Bolts

and Studs, 60,000 PSI Tensile Strength

D2240-05.....Standard Test Method for Rubber Property -

Durometer Hardness

- D. Manufacturers Standardization (MSS): SP-58-02.....Pipe Hangers and Supports-Materials, Design and Manufacture
- E. Occupational Safety and Health Administration (OSHA): 29 CFR 1910.95....Occupational Noise Exposure

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

- A. Type of isolator, base, and minimum static deflection shall be as required for each specific equipment application as recommended by isolator or equipment manufacturer but subject to minimum requirements indicated herein and in the schedule on the drawings.
- B. Elastometric Isolators shall comply with ASTM D2240 and be oil resistant neoprene with a maximum stiffness of 60 durometer and have a straight-line deflection curve.
- C. Exposure to weather: Isolators, including springs, exposed to weather shall be hot dip galvanized after fabrication. Hot-dip zinc coating shall not be less than 609 grams per square meter (two ounces per square foot) by weight complying with ASTM A123.In addition provide limit stops to resist wind velocity. Comply with the design wind velocity of 75 mph.
- D. Uniform Loading: Select and locate isolators to produce uniform loading and deflection even when equipment weight is not evenly distributed.
- E. Color code isolators by type and size for easy identification of capacity.

2.2 VIBRATION ISOLATORS

- A. Floor Mountings:
 - Double Deflection Neoprene (Type N): Shall include neoprene covered steel support plated (top and bottom), friction pads, and necessary bolt holes.

- 2. Spring Isolators (Type S): Shall be free-standing, laterally stable and include acoustical friction pads and leveling bolts. Isolators shall have a minimum ratio of spring diameter-to-operating spring height of 1.0 and an additional travel to solid equal to 50 percent of rated deflection.
- 3. Spring Isolators with Vertical Limit Stops (Type SP): Similar to spring isolators noted above, except include a vertical limit stop to limit upward travel if weight is removed and also to reduce movement and spring extension due to wind loads. Provide clearance around restraining bolts to prevent mechanical short circuiting.
- 4. Pads (Type D), Washers (Type W), and Bushings (Type L): Pads shall be felt, cork, neoprene waffle, neoprene and cork sandwich, neoprene and fiberglass, neoprene and steel waffle, or reinforced duck and neoprene. Washers and bushings shall be reinforced duck and neoprene. Size pads for a maximum load of 345 kPa (50 pounds per square inch).
- B. Hangers: Shall be combination neoprene and springs unless otherwise noted and shall allow for expansion of pipe.
 - Combination Neoprene and Spring (Type H): Vibration hanger shall contain a spring and double deflection neoprene element in series. Spring shall have a diameter not less than 0.8 of compressed operating spring height. Spring shall have a minimum additional travel of 50 percent between design height and solid height. Spring shall permit a 15 degree angular misalignment without rubbing on hanger box.
 - 2. Spring Position Hanger (Type HP): Similar to combination neoprene and spring hanger except hanger shall hold piping at a fixed elevation during installation and include a secondary adjustment feature to transfer load to spring while maintaining same position.
 - 3. Neoprene (Type HN): Vibration hanger shall contain a double deflection type neoprene isolation element. Hanger rod shall be separated from contact with hanger bracket by a neoprene grommet.
 - 4. Spring (Type HS): Vibration hanger shall contain a coiled steel spring in series with a neoprene grommet. Spring shall have a diameter not less than 0.8 of compressed operating spring height. Spring shall have a minimum additional travel of 50 percent between design height and solid height. Spring shall permit a 15 degree angular misalignment without rubbing on hanger box.

- 5. Hanger supports for piping 50 mm (2 inches) and larger shall have a pointer and scale deflection indicator.
- C. Thrust Restraints (Type THR): Restraints shall provide a spring element contained in a steel frame with neoprene pads at each end attachment. Restraints shall have factory preset thrust and be field adjustable to allow a maximum movement of 6 mm (1/4 inch) when the fan starts and stops. Restraint assemblies shall include rods, angle brackets and other hardware for field installation.

2.4 BASES

- A. Rails (Type R): Design rails with isolator brackets to reduce mounting height of equipment and cradle machines having legs or bases that do not require a complete supplementary base. To assure adequate stiffness, height of members shall be a minimum of 1/12 of longest base dimension but not less than 100 mm (4 inches). Where rails are used with neoprene mounts for small fans or close coupled pumps, extend rails to compensate overhang of housing.
- B. Integral Structural Steel Base (Type B): Design base with isolator brackets to reduce mounting height of equipment which require a complete supplementary rigid base. To assure adequate stiffness, height of members shall be a minimum of 1/12 of longest base dimension, but not less than 100 mm (four inches).
- C. Inertia Base (Type I): Base shall be a reinforced concrete inertia base. Pour concrete into a welded steel channel frame, incorporating prelocated equipment anchor bolts and pipe sleeves. Level the concrete to provide a smooth uniform bearing surface for equipment mounting. Provide grout under uneven supports. Channel depth shall be a minimum of 1/12 of longest dimension of base but not less than 150 mm (six inches). Form shall include 13-mm (1/2-inch) reinforcing bars welded in place on minimum of 203 mm (eight inch) centers running both ways in a layer 40 mm (1-1/2 inches) above bottom. Use height saving brackets in all mounting locations. Weight of inertia base shall be equal to or greater than weight of equipment supported to provide a maximum peak-to-peak displacement of 2 mm (1/16 inch).
- D. Curb Mounted Isolation Base (Type CB): Fabricate from aluminum to fit on top of standard curb with overlap to allow water run-off and have wind and water seals which shall not interfere with spring action. Provide resilient snubbers with 6 mm (1/4 inch) clearance for wind resistance. Top and bottom bearing surfaces shall have sponge type

weather seals. Integral spring isolators shall comply with Spring Isolator (Type S) requirements.

2.5 SOUND ATTENUATING UNITS

Refer to specification Section 23 31 00, HVAC DUCTS AND CASINGS.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Vibration Isolation:
 - No metal-to-metal contact will be permitted between fixed and floating parts.
 - 2. Connections to Equipment: Allow for deflections equal to or greater than equipment deflections. Electrical, drain, piping connections, and other items made to rotating or reciprocating equipment (pumps, compressors, etc.) which rests on vibration isolators, shall be isolated from building structure for first three hangers or supports.
 - 3. Common Foundation: Mount each electric motor on same foundation as driven machine. Hold driving motor and driven machine in positive rigid alignment with provision for adjusting motor alignment and belt tension. Bases shall be level throughout length and width. Provide shims to facilitate pipe connections, leveling, and bolting.
 - Provide heat shields where elastomers are subject to temperatures over 38 degrees C (100 degrees F).
 - Extend bases for pipe elbow supports at discharge and suction connections at pumps. Pipe elbow supports shall not short circuit pump vibration to structure.
 - 6. Non-rotating equipment such as heat exchangers and convertors shall be mounted on isolation units having the same static deflection as the isolation hangers or support of the pipe connected to the equipment.
- B. Inspection and Adjustments: Check for vibration and noise transmission through connections, piping, ductwork, foundations, and walls. Adjust, repair, or replace isolators as required to reduce vibration and noise transmissions to specified levels.

3.2 ADJUSTING

A. Adjust vibration isolators after piping systems are filled and equipment is at operating weight.

- B. Adjust limit stops on restrained spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation.
- C. Attach thrust limits at centerline of thrust and adjust to a maximum of 1/4 inch (6-mm) movement during start and stop.
- D. Adjust active height of spring isolators.
- E. Adjust snubbers according to manufacturer's recommendations.
- F. Adjust seismic restraints to permit free movement of equipment within normal mode of operation.
- G. Torque anchor bolts according to equipment manufacturer's recommendations to resist seismic forces.

- - - END - - -

SELECTION GUIDE FOR VIBRATION ISOLATORS

EQUIPMENT	c	ON GRADE			20FT FLOOR SPAN			30FT FLOOR SPAN			FLOOR	SPAN	50FT FLOOR SPAN		
	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL
AIR HANDLING UNIT	PACKAGE	3													
SUSPENDED															
UP THRU 5 HP					Н	1.0	-	Н	1.0		Н	1.0		Н	1.0
FLOOR MOUNTED:															
UP THRU 5 HP		D			S	1.0		S	1.0		S	1.0		S	1.0
7-1/2 HP & OVER:															
UP TO 500 RPM		D		R	S, THR	1.7	R	S, THR	1.7	R	S, THR	1.7	R	S, THR	1.7
501 RPM & OVER		D			S, THR	1.0		S, THR	1.0	R	S, THR	1.7	R	S, THR	1.7
CONDENSING UNITS															
ALL		SS	0.25		SS	0.75		SS	1.5	CB	SS	1.5			NA
PUMPS													-		
CLOSE COUPLED	UP TO 1-1/2 HP					D,L, W			D,L, W			D,L, W			D,L, W
	2 HP & OVER				I	S	0.8	I	S	1.5	I	S	1.5	I	S
LARGE INLINE	Up to 25 HP					S	0.75		S	1.50		S	1.50		

EQUIPMENT	ON GRADE			20FT FLOOR SPAN			30FT FLOOR SPAN			40FT FLOOR SPAN			50FT FLOOR SPAN		
	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL
IN-LINE CENTRIFUGAL AND VANE AXIAL FANS, : (APR 9)															
UP THRU 50 HP:															
UP TO 300 RPM					Н	2.5		Н	2.5		Н	2.5		Н	3.5
301 - 500 RPM					Н	1.7		Н	1.7		Н	2.5		Н	2.5
501 - & OVER					Н	1.0		Н	1.0		Н	1.7		Н	2.5

NOTES:

1. Edit the Table above to suit where isolator, other than those shown, are used, such as for seismic restraints and position limit stops.

2. For suspended floors lighter than 100 mm (4 inch) thick concrete, select deflection requirements from next higher span.

3. Direct bolt fire pumps to concrete base. Provide pads (D) for domestic water booster pump package.

4. Suspended: Use "H" isolators of same deflection as floor mounted.

SECTION 23 05 93

TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Testing, adjusting, and balancing (TAB) of heating, ventilating and air conditioning (HVAC) systems. TAB includes the following:
 - 1. Planning systematic TAB procedures.
 - 2. Design Review Report.
 - 3. Systems Inspection report.
 - 4. Duct Air Leakage test report.
 - 5. Systems Readiness Report.
 - Balancing air and water distribution systems; adjustment of total system to provide design performance; and testing performance of equipment and automatic controls.
 - 7. Vibration and sound measurements.
 - 8. Recording and reporting results.
- B. Definitions:
 - Basic TAB used in this Section: Chapter 37, "Testing, Adjusting and Balancing" of ASHRAE Handbook, "HVAC Applications".
 - 2. TAB: Testing, Adjusting and Balancing; the process of checking and adjusting HVAC systems to meet design objectives.
 - 3. AABC: Associated Air Balance Council.
 - 4. NEBB: National Environmental Balancing Bureau.
 - 5. Hydronic Systems: Includes glycol-water systems, radiant floor hot water heating.
 - Air Systems: Includes all outside air, supply air, return air, exhaust air and relief air systems.
 - Flow rate tolerance: The allowable percentage variation, minus to plus, of actual flow rate from values (design) in the contract documents.

1.2 RELATED WORK

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION: General Mechanical Requirements.
- B. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT: Noise and Vibration Requirements.

- C. Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION: Piping and Equipment Insulation.
- D. Section 23 31 00, HVAC DUCTS AND CASINGS: Duct Leakage.
- E. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Controls and Instrumentation Settings.

1.3 QUALITY ASSURANCE

- A. Refer to Articles, Quality Assurance and Submittals, in Section23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.
- B. Qualifications:
 - TAB Agency: The TAB agency shall be a subcontractor of the General Contractor and shall report to and be paid by the General Contractor.
 - 2. The TAB agency shall be either a certified member of AABC or certified by the NEBB to perform TAB service for HVAC, water balancing and vibrations and sound testing of equipment. The certification shall be maintained for the entire duration of duties specified herein. If, for any reason, the agency loses subject certification during this period, the General Contractor shall immediately notify the COTR and submit another TAB firm for approval. Any agency that has been the subject of disciplinary action by either the AABC or the NEBB within the five years preceding Contract Award shall not be eligible to perform any work related to the TAB. All work performed in this Section and in other related Sections by the TAB agency shall be considered invalid if the TAB agency loses its certification prior to Contract completion, and the successor agency's review shows unsatisfactory work performed by the predecessor agency.
 - 3. TAB Specialist: The TAB specialist shall be either a member of AABC or an experienced technician of the Agency certified by NEBB. The certification shall be maintained for the entire duration of duties specified herein. If, for any reason, the Specialist loses subject certification during this period, the General Contractor shall immediately notify the COTR and submit another TAB Specialist for approval. Any individual that has been the subject of disciplinary action by either the AABC or the NEBB within the five years preceding Contract Award shall not be eligible to perform any duties related to the HVAC systems, including TAB. All work specified in this Section and in other related Sections performed by the TAB

specialist shall be considered invalid if the TAB Specialist loses its certification prior to Contract completion and must be performed by an approved successor.

- 4. TAB Specialist shall be identified by the General Contractor within 60 days after the notice to proceed. The TAB specialist will be coordinating, scheduling and reporting all TAB work and related activities and will provide necessary information as required by the COTR. The responsibilities would specifically include:
 - a. Shall directly supervise all TAB work.
 - b. Shall sign the TAB reports that bear the seal of the TAB standard. The reports shall be accompanied by report forms and schematic drawings required by the TAB standard, AABC or NEBB.
 - c. Would follow all TAB work through its satisfactory completion.
 - d. Shall provide final markings of settings of all HVAC adjustment devices.
 - e. Permanently mark location of duct test ports.
- 5. All TAB technicians performing actual TAB work shall be experienced and must have done satisfactory work on a minimum of 3 projects comparable in size and complexity to this project. Qualifications must be certified by the TAB agency in writing.
- C. Test Equipment Criteria: The instrumentation shall meet the accuracy/calibration requirements established by AABC National Standards or by NEBB Procedural Standards for Testing, Adjusting and Balancing of Environmental Systems and instrument manufacturer. Provide calibration history of the instruments to be used for test and balance purpose.
- D. Tab Criteria:
 - One or more of the applicable AABC, NEBB or SMACNA publications, supplemented by ASHRAE Handbook "HVAC Applications" Chapter 36, and requirements stated herein shall be the basis for planning, procedures, and reports.
 - Flow rate tolerance: Following tolerances are allowed. For tolerances not mentioned herein follow ASHRAE Handbook "HVAC Applications", Chapter 36, as a guideline. Air Filter resistance during tests, artificially imposed if necessary, shall be at least 90 percent of final values for pre-filters and after-filters.
 - a. Air handling unit and all other fans, cubic meters/min (cubic feet per minute): Minus 0 percent to plus 10 percent.

- b. Minimum outside air: 0 percent to plus 10 percent.
- c. Individual room air outlets and inlets, and air flow rates not mentioned above: Minus 2 percent to plus 10 percent except if the air to a space is 100 CFM or less the tolerance would be 0 to plus 5 percent.
- Systems shall be adjusted for energy efficient operation as described in PART 3.
- 4. Typical TAB procedures and results shall be demonstrated to the COTR for one air distribution system (including all fans, three terminal units, three rooms) and one hydronic system (pumps and three coils) as follows:
 - a. When field TAB work begins.
 - b. During each partial final inspection and the final inspection for the project if requested by VA.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Submit names and qualifications of TAB agency and TAB specialists within 60 days after the notice to proceed. Submit information on three recently completed projects and a list of proposed test equipment.
- C. For use by the COTR staff, submit one complete set of applicable AABC or NEBB publications that will be the basis of TAB work.
- D. Submit Following for Review and Approval:
 - Design Review Report within 90 days for conventional design projects after the system layout on air and water side is completed by the Contractor.
 - 2. Systems inspection report on equipment and installation for conformance with design.
 - 3. Duct Air Leakage Test Report.
 - 4. Systems Readiness Report.
 - Intermediate and Final TAB reports covering flow balance and adjustments, performance tests, vibration tests and sound tests.
 - Include in final reports uncorrected installation deficiencies noted during TAB and applicable explanatory comments on test results that differ from design requirements.
- E. Prior to request for Final or Partial Final inspection, submit completed Test and Balance report for the area.

1.5 APPLICABLE PUBLICATIONS

Α.	The following publications form a part of this specification to the
	extent indicated by the reference thereto. In text the publications are
	referenced to by the acronym of the organization.
в.	American Society of Heating, Refrigerating and Air Conditioning
	Engineers, Inc. (ASHRAE):
	2003 Applications ASHRAE Handbook, Chapter 37,
	Testing, Adjusting, and Balancing and Chapter
	47, Sound and Vibration Control
C.	Associated Air Balance Council (AABC):
	2002
	Balance
D.	National Environmental Balancing Bureau (NEBB):
	7 th Edition 2005Procedural Standards for Testing, Adjusting,
	Balancing of Environmental Systems
	1^{st} Edition 1994Procedural Standards for the Measurement and
	Assessment of Sound and Vibration
	2 nd Edition 1999Procedural Standards for Building Systems
	Commissioning
Ε.	Sheet Metal and Air Conditioning Contractors National Association
	(SMACNA):

3rd Edition 2002HVAC SYSTEMS-Testing, Adjusting and Balancing

PART 2 - PRODUCTS

2.1 PLUGS

Provide plastic plugs to seal holes drilled in ductwork for test purposes.

2.2 INSULATION REPAIR MATERIAL

See Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION. Provide for repair of insulation removed or damaged for TAB work.

PART 3 - EXECUTION

3.1 GENERAL

A. Refer to TAB Criteria in Article, Quality Assurance.

B. Obtain applicable contract documents and copies of approved submittals for HVAC equipment and automatic control systems.

3.2 DESIGN REVIEW REPORT

The TAB Specialist shall review the Contract Plans and specifications and advise the COTR of any design deficiencies that would prevent the HVAC systems from effectively operating in accordance with the sequence of operation specified or prevent the effective and accurate TAB of the system. The TAB Specialist shall provide a report individually listing each deficiency and the corresponding proposed corrective action necessary for proper system operation.

3.3 SYSTEMS INSPECTION REPORT

- A. Inspect equipment and installation for conformance with design.
- B. The inspection and report is to be done after air distribution equipment is on site and duct installation has begun, but well in advance of performance testing and balancing work. The purpose of the inspection is to identify and report deviations from design and ensure that systems will be ready for TAB at the appropriate time.
- C. Reports: Follow check list format developed by AABC, NEBB or SMACNA, supplemented by narrative comments, with emphasis on air handling units and fans. Check for conformance with submittals. Verify that diffuser and register sizes are correct.

3.4 DUCT AIR LEAKAGE TEST REPORT

See paragraphs "Duct leakage Tests and Repairs" in Section 23 31 00, HVAC DUCTS AND CASINGS for TAB agency's role and responsibilities in witnessing, recording and reporting of deficiencies.

3.5 SYSTEM READINESS REPORT

- A. Inspect each System to ensure that it is complete including installation and operation of controls.
- B. Verify that all items such as ductwork piping, ports, terminals, connectors, etc., that is required for TAB are installed. Provide a report to the COTR.

3.6 TAB REPORTS

- A. Submit an intermediate report for all of systems and equipment tested and balanced to establish satisfactory test results.
- B. The TAB contractor shall provide raw data immediately in writing to the COTR if there is a problem in achieving intended results before submitting a formal report.
- C. If over 20 percent of readings in the intermediate report fall outside the acceptable range, the TAB report shall be considered invalid and all contract TAB work shall be repeated and re-submitted for approval.
- D. Do not proceed with the remaining systems until intermediate report is approved by the COTR.

3.7 TAB PROCEDURES

- A. Tab shall be performed in accordance with the requirement of the Standard under which TAB agency is certified by either AABC or NEBB.
- B. General: During TAB all related system components shall be in full operation. Fan and pump rotation, motor loads and equipment vibration shall be checked and corrected as necessary before proceeding with TAB. Set controls and/or block off parts of distribution systems to simulate design operation of variable volume air or water systems for test and balance work.
- C. Coordinate TAB procedures with any phased construction completion requirements for the project. Provide TAB reports for each phase of the project prior to partial final inspections of each phase of the project.
- D. Allow sufficient time in construction schedule for TAB and submission of all reports for an organized and timely correction of deficiencies.
- E. Air Balance and Equipment Test: Include air handling units, fans, room diffusers/outlets/inlets.
 - Artificially load air filters by partial blanking to produce air pressure drop of at least 90 percent of the design final pressure drop.
 - Adjust fan speeds to provide design air flow. V-belt drives, including fixed pitch pulley requirements, are specified in Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.
 - 3. Test and balance systems in all specified modes of operation, including variable volume, economizer, and fire emergency modes. Verify that dampers and other controls function properly.
 - 4. Record final measurements for air handling equipment performance data sheets.
- F. Water Balance and Equipment Test: Include circulating pumps, convertors, coils, coolers and condensers:
 - Adjust flow rates for equipment. Set coils and evaporator to values on equipment submittals, if different from values on contract drawings.
 - Record final measurements for hydronic equipment on performance data sheets. Include entering and leaving water temperatures for heating and cooling coils, and for convertors. Include entering and leaving air temperatures (DB/WB for cooling coils) for air handling units

and reheat coils. Make air and water temperature measurements at the same time.

3.8 VIBRATION TESTING

- A. Furnish instruments and perform vibration measurements as specified in Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT. Field vibration balancing is specified in Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION. Provide measurements for all rotating HVAC equipment of 373 watts (1/2 horsepower) and larger, including centrifugal/screw compressors, cooling towers, pumps, fans and motors.
- B. Record initial measurements for each unit of equipment on test forms and submit a report to the COTR. Where vibration readings exceed the allowable tolerance Contractor shall be directed to correct the problem. The TAB agency shall verify that the corrections are done and submit a final report to the COTR.

3.9 SOUND TESTING

- A. Perform and record required sound measurements in accordance with Paragraph, QUALITY ASSURANCE in Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
 - Take readings in rooms, approximately ten percent of all rooms. The COTR may designate the specific rooms to be tested.
 - Provide cooling tower sound measurements. Refer to Section 23 65 00, COOLING TOWERS.
- B. Take measurements with a calibrated sound level meter and octave band analyzer of the accuracy required by AABC or NEBB.
- C. Sound reference levels, formulas and coefficients shall be according to ASHRAE Handbook, "HVAC Applications", Chapter 46, SOUND AND VIBRATION CONTROL.
- D. Determine compliance with specifications as follows:
 - When sound pressure levels are specified, including the NC Criteria in Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT:
 - a. Reduce the background noise as much as possible by shutting off unrelated audible equipment.
 - b. Measure octave band sound pressure levels with specified equipment "off."
 - c. Measure octave band sound pressure levels with specified equipment "on."

d. Use the DIFFERENCE in corresponding readings to determine the sound pressure due to equipment.

DIFFERENCE:	0	1	2	3	4	5 to 9	10 or More
FACTOR:	10	7	4	3	2	1	0

Sound pressure level due to equipment equals sound pressure level with equipment "on" minus FACTOR.

- e. Plot octave bands of sound pressure level due to equipment for typical rooms on a graph which also shows noise criteria (NC) curves.
- 2. When sound power levels are specified:
 - a. Perform steps 1.a. thru 1.d., as above.
 - b. For indoor equipment: Determine room attenuating effect, i.e., difference between sound power level and sound pressure level. Determined sound power level will be the sum of sound pressure level due to equipment plus the room attenuating effect.
 - c. For outdoor equipment: Use directivity factor and distance from noise source to determine distance factor, i.e., difference between sound power level and sound pressure level. Measured sound power level will be the sum of sound pressure level due to equipment plus the distance factor.
- E. Where measured sound levels exceed specified level, the installing contractor or equipment manufacturer shall take remedial action approved by the COTR and the necessary sound tests shall be repeated.

3.10 MARKING OF SETTINGS

Following approval of Tab final Report, the setting of all HVAC adjustment devices including valves, splitters and dampers shall be permanently marked by the TAB Specialist so that adjustment can be restored if disturbed at any time. Style and colors used for markings shall be coordinated with the COTR.

3.11 IDENTIFICATION OF TEST PORTS

The TAB Specialist shall permanently and legibly identify the location points of duct test ports. If the ductwork has exterior insulation, the identification shall be made on the exterior side of the insulation. All penetrations through ductwork and ductwork insulation shall be sealed to prevent air leaks and maintain integrity of vapor barrier.

SECTION 23 07 11

HVAC AND BOILER PLANT INSULATION

1.1 DESCRIPTION

- A. Field applied insulation for thermal efficiency and condensation control for
 - 1. HVAC piping, ductwork and equipment.
 - 2. Re-insulation of HVAC piping, ductwork and equipment, plumbing piping and equipment after asbestos abatement.

B. Definitions

- 1. ASJ: All service jacket, white finish facing or jacket.
- 2. Air conditioned space: Space having air temperature and/or humidity controlled by mechanical equipment.
- Cold: Equipment, ductwork or piping handling media at design temperature of 16 degrees C (60 degrees F) or below.
- Concealed: Ductwork and piping above ceilings and in chases, interstitial space, and pipe spaces.
- 5. Exposed: Piping, ductwork, and equipment exposed to view in finished areas including mechanical, Boiler Plant and electrical equipment rooms or exposed to outdoor weather. Attics and crawl spaces where air handling units are located are considered to be mechanical rooms. Shafts, chases, interstitial spaces, unfinished attics, crawl spaces and pipe basements are not considered finished areas.
- 6. FSK: Foil-scrim-kraft facing.
- 7. Hot: HVAC Ductwork handling air at design temperature above 16 degrees C (60 degrees F);HVAC equipment or piping handling media above 41 degrees C (105 degrees F); Boiler Plant breechings and stack temperature range 150-370 degrees C(300-700 degrees F) and piping media and equipment 32 to 230 degrees C(90 to 450 degrees F).
- Density: kg/m³ kilograms per cubic meter (Pcf pounds per cubic foot).
- 9. Runouts: Branch pipe connections up to 25-mm (one-inch) nominal size to fan coil units or reheat coils for terminal units.
- 10. Thermal conductance: Heat flow rate through materials.
 - a. Flat surface: Watt per square meter (BTU per hour per square foot).
 - b. Pipe or Cylinder: Watt per square meter (BTU per hour per linear foot).

- 11. Thermal Conductivity (k): Watt per meter, per degree C (BTU per inch thickness, per hour, per square foot, per degree F temperature difference).
- 12. Vapor Retarder (Vapor Barrier): A material which retards the transmission (migration) of water vapor. Performance of the vapor retarder is rated in terms of permeance (perms). For the purpose of this specification, vapor retarders shall have a maximum published permeance of 0.1 perms and vapor barriers shall have a maximum published permeance of 0.001 perms.
- 13. MPS: Medium pressure steam (110 kPa [16 psig] thru 414 kPa [59 psig].
- 14. MPR: Medium pressure steam condensate return.
- 15. LPS: Low pressure steam (103 kPa [15 psig] and below).
- 16. LPR: Low pressure steam condensate gravity return.
- 17. PC: Pumped condensate.
- 18. HWH: Hot water heating supply.
- 19. HWHR: Hot water heating return.
- 20. CPD: Condensate pump discharge.
- 21. R: Pump recirculation.
- 22. CW: Cold water.
- 23. SW: Soft water.
- 24. RS: Refrigerant suction.

25. PVDC: Polyvinylidene chloride vapor retarder jacketing, white.

1.2 RELATED WORK

- A. Section 02 82 11, TRADITIONAL ASBESTOS ABATEMENT: Insulation containing asbestos material.
- B. Section 07 84 00, FIRESTOPPING: Mineral fiber and bond breaker behind sealant.
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General mechanical requirements and items, which are common to more than one section of Division 23.
- D. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT
- E. Section 23 21 23, HYDRONIC PUMPS
- F. Section 23 22 13, STEAM and CONDENSATE HEATING PIPING
- G. Section 23 50 11, BOILER PLANT MECHANICAL EQUIPMENT
- H. Section 23 23 00, REFRIGERANT PIPING: Requirements for refrigerant piping and fittings.

- I. Section 23 21 13, HYDRONIC PIPING and Section 23 22 13, STEAM and CONDENSATE HEATING PIPING: Piping and equipment.
- J. Section 23 21 13, HYDRONIC PIPING: Hot water piping.
- K. Section 23 31 00, HVAC DUCTS AND CASINGS: Ductwork, plenum and fittings.

1.3 QUALITY ASSURANCE

- A. Refer to article QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Criteria:
 - 1. Comply with NFPA 90A, particularly paragraphs 4.3.3.1 through 4.3.3.6, 4.3.10.2.6, and 5.4.6.4, parts of which are quoted as follows:

4.3.3.1 Pipe insulation and coverings, duct coverings, duct linings, vapor retarder facings, adhesives, fasteners, tapes, and supplementary materials added to air ducts, plenums, panels, and duct silencers used in duct systems, unless otherwise provided for in <u>4.3.3.1.1</u> or <u>4.3.3.1.2.</u>, shall have, in the form in which they are used, a maximum flame spread index of 25 without evidence of continued progressive combustion and a maximum smoke developed index of 50 when tested in accordance with <u>NFPA 255</u>, *Standard Method of Test of Surface Burning Characteristics of Building Materials*.

4.3.3.1.1 Where these products are to be applied with adhesives, they shall be tested with such adhesives applied, or the adhesives used shall have a maximum flame spread index of 25 and a maximum smoke developed index of 50 when in the final dry state. (See 4.2.4.2.)

4.3.3.1.2 The flame spread and smoke developed index requirements of 4.3.3.1.1 shall not apply to air duct weatherproof coverings where they are located entirely outside of a building, do not penetrate a wall or roof, and do not create an exposure hazard.

4.3.3.2 Closure systems for use with rigid and flexible air ducts tested in accordance with UL 181, Standard for Safety Factory-Made Air Ducts and Air Connectors, shall have been tested, listed, and used in accordance with the conditions of their listings, in accordance with one of the following:

(1) UL 181A, Standard for Safety Closure Systems for Use with Rigid Air Ducts and Air Connectors

(2) UL 181B, Standard for Safety Closure Systems for Use with Flexible Air Ducts and Air Connectors

4.3.3.3 Air duct, panel, and plenum coverings and linings, and pipe insulation and coverings shall not flame, glow, smolder, or smoke when tested in accordance with a similar test for pipe covering, ASTM C 411, Standard Test Method for Hot-Surface Performance of High-Temperature Thermal Insulation, at the temperature to which they are exposed in service. 4.3.3.3.1 In no case shall the test temperature be below 121°C (250°F).

4.3.3.4 Air duct coverings shall not extend through walls or floors that are required to be fire stopped or required to have a fire resistance rating, unless such coverings meet the requirements of 5.4.6.4.

4.3.3.5* Air duct linings shall be interrupted at fire dampers to prevent interference with the operation of devices.

4.3.3.6 Air duct coverings shall not be installed so as to conceal or prevent the use of any service opening.

4.3.10.2.6 Materials exposed to the airflow shall be noncombustible or limited combustible and have a maximum smoke developed index of 50 or comply with the following.

4.3.10.2.6.1 Electrical wires and cables and optical fiber cables shall be listed as noncombustible or limited combustible and have a maximum smoke developed index of 50 or shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.5 m (5 ft) or less when tested in accordance with NFPA 262, Standard Method of Test for Flame Travel and Smoke of Wires and Cables for Use in Air-Handling Spaces.

4.3.10.2.6.4 Optical-fiber and communication raceways shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.5 m (5 ft) or less when tested in accordance with UL 2024, Standard for Safety Optical-Fiber Cable Raceway.

4.3.10.2.6.6 Supplementary materials for air distribution systems shall be permitted when complying with the provisions of 4.3.3.

5.4.6.4 Where air ducts pass through walls, floors, or partitions that are required to have a fire resistance rating and where fire dampers are not required, the opening in the construction around the air duct shall be as follows:

- (1) Not exceeding a 25.4 mm (1 in.) average clearance on all sides
- (2) Filled solid with an approved material capable of preventing the passage of flame and hot gases sufficient to ignite cotton waste when subjected to the time-temperature fire conditions required for fire barrier penetration as specified in <u>NFPA</u> <u>251</u>, Standard Methods of Tests of Fire Endurance of Building Construction and Materials
- 2. Test methods: ASTM E84, UL 723, or NFPA 255.
- 3. Specified k factors are at 24 degrees C (75 degrees F) mean temperature unless stated otherwise. Where optional thermal insulation material is used, select thickness to provide thermal conductance no greater than that for the specified material. For pipe, use insulation manufacturer's published heat flow tables. For domestic hot water supply and return, run out insulation and

condensation control insulation, no thickness adjustment need be made.

- 4. All materials shall be compatible and suitable for service temperature, and shall not contribute to corrosion or otherwise attack surface to which applied in either the wet or dry state.
- C. Every package or standard container of insulation or accessories delivered to the job site for use must have a manufacturer's stamp or label giving the name of the manufacturer and description of the material.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Shop Drawings:
 - All information, clearly presented, shall be included to determine compliance with drawings and specifications and ASTM, federal and military specifications.
 - a. Insulation materials: Specify each type used and state surface burning characteristics.
 - b. Insulation facings and jackets: Each type used. Make it clear that white finish will be furnished for exposed ductwork, casings and equipment.
 - c. Insulation accessory materials: Each type used.
 - d. Manufacturer's installation and fitting fabrication instructions for flexible unicellular insulation.
 - e. Make reference to applicable specification paragraph numbers for coordination.
- C. Samples:
 - Each type of insulation: Minimum size 100 mm (4 inches) square for board/block/ blanket; 150 mm (6 inches) long, full diameter for round types.
 - Each type of facing and jacket: Minimum size 100 mm (4 inches square).
 - 3. Each accessory material: Minimum 120 ML (4 ounce) liquid container or 120 gram (4 ounce) dry weight for adhesives / cement / mastic.

1.5 STORAGE AND HANDLING OF MATERIAL

Store materials in clean and dry environment, pipe covering jackets shall be clean and unmarred. Place adhesives in original containers. Maintain ambient temperatures and conditions as required by printed instructions of manufacturers of adhesives, mastics and finishing cements.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only.
- B. Federal Specifications (Fed. Spec.): L-P-535E (2)- 99.....Plastic Sheet (Sheeting): Plastic Strip; Poly (Vinyl Chloride) and Poly (Vinyl Chloride -Vinyl Acetate), Rigid.
- C. Military Specifications (Mil. Spec.): MIL-A-3316C (2)-90.....Adhesives, Fire-Resistant, Thermal Insulation MIL-A-24179A (1)-87....Adhesive, Flexible Unicellular-Plastic Thermal Insulation MIL-C-19565C (1)-88.....Coating Compounds, Thermal Insulation, Fire-and Water-Resistant, Vapor-Barrier MIL-C-20079H-87.....Cloth, Glass; Tape, Textile Glass; and Thread, Glass and Wire-Reinforced Glass D. American Society for Testing and Materials (ASTM): A167-99(2004).....Standard Specification for Stainless and Heat-Resisting Chromium-Nickel Steel Plate, Sheet, and Strip B209-07..... Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate C411-05.....Standard test method for Hot-Surface Performance of High-Temperature Thermal Insulation C449-07.....for Mineral Fiber Hydraulic-Setting Thermal Insulating and Finishing Cement C533-09.....Standard Specification for Calcium Silicate Block and Pipe Thermal Insulation C534-08..... Standard Specification for Preformed Flexible Elastomeric Cellular Thermal Insulation in Sheet and Tubular Form C547-07.....Standard Specification for Mineral Fiber pipe

Insulation

	C552-07	.Standard Specification for Cellular Glass
		Thermal Insulation
	C553-08	.Standard Specification for Mineral Fiber
		Blanket Thermal Insulation for Commercial and
		Industrial Applications
	C585-09	.Standard Practice for Inner and Outer Diameters
		of Rigid Thermal Insulation for Nominal Sizes
		of Pipe and Tubing (NPS System) R (1998)
	C612-10	.Standard Specification for Mineral Fiber Block
		and Board Thermal Insulation
	C1126-04	.Standard Specification for Faced or Unfaced
		Rigid Cellular Phenolic Thermal Insulation
	C1136-10	.Standard Specification for Flexible, Low
		Permeance Vapor Retarders for Thermal
		Insulation
	D1668-97a (2006)	.Standard Specification for Glass Fabrics (Woven
		and Treated) for Roofing and Waterproofing
	E84-10	.Standard Test Method for Surface Burning
		Characteristics of Building
		Materials
	E119-09c	.Standard Test Method for Fire Tests of Building
		Construction and Materials
	E136-09b	.Standard Test Methods for Behavior of Materials
		in a Vertical Tube Furnace at 750 degrees C
		(1380 F)
Ε.	National Fire Protectio	n Association (NFPA):
	90A-09	.Standard for the Installation of Air
		Conditioning and Ventilating Systems
	96-08	.Standard s for Ventilation Control and Fire
		Protection of Commercial Cooking Operations
	101-09	.Life Safety Code
	251-06	.Standard methods of Tests of Fire Endurance of
		Building Construction Materials
	255-06	.Standard Method of tests of Surface Burning
		Characteristics of Building Materials
F.	Underwriters Laboratori	es, Inc (UL):

723.....UL Standard for Safety Test for Surface Burning Characteristics of Building Materials with Revision of 09/08

G. Manufacturer's Standardization Society of the Valve and Fitting Industry (MSS): SP58-2009.....Pipe Hangers and Supports Materials, Design,

and Manufacture

PART 2 - PRODUCTS

2.1 MINERAL FIBER OR FIBER GLASS

- A. ASTM C612 (Board, Block), Class 1 or 2, density 48 kg/m³ (3 pcf), k = 0.037 (0.26) at 24 degrees C (75 degrees F), external insulation for temperatures up to 204 degrees C (400 degrees F) with foil scrim (FSK) facing.
- B. ASTM C553 (Blanket, Flexible) Type I, Class B-3, Density 16 kg/m³ (1 pcf), k = 0.045 (0.31) at 24 degrees C (75 degrees F), for use at temperatures up to 204 degrees C (400 degrees F) with foil scrim (FSK) facing.
- C. ASTM C547 (Pipe Fitting Insulation and Preformed Pipe Insulation), Class 1, k = 0.037 (0.26) at 24 degrees C (75 degrees F), for use at temperatures up to 230 degrees C (450 degrees F) with an all service vapor retarder jacket with polyvinyl chloride premolded fitting covering.

2.2 MINERAL WOOL OR REFRACTORY FIBER

A. Comply with Standard ASTM C612, Class 3, 450 degrees C (850 degrees F).

2.3 RIGID CELLULAR PHENOLIC FOAM

- A. Preformed (molded) pipe insulation, ASTM C1126, type III, grade 1, k = 0.021(0.15) at 10 degrees C (50 degrees F), for use at temperatures up to 121 degrees C (250 degrees F) with all service vapor retarder jacket with polyvinyl chloride premolded fitting covering.
- B. Equipment and Duct Insulation, ASTM C 1126, type II, grade 1, k = 0.021 (0.15) at 10 degrees C (50 degrees F), for use at temperatures up to 121 degrees C (250 degrees F) with rigid cellular phenolic insulation and covering, and all service vapor retarder jacket.

2.4 CELLULAR GLASS CLOSED-CELL

- A. Comply with Standard ASTM C177, C518, density 120 kg/m³ (7.5 pcf) nominal, k = 0.033 (0.29) at 240 degrees C (75 degrees F).
- B. Pipe insulation for use at temperatures up to 200 degrees C (400 degrees F) with all service vapor retarder jacket.

2.5 POLYISOCYANURATE CLOSED-CELL RIGID

- A. Preformed (fabricated) pipe insulation, ASTM C591, type IV, K=0.027(0.19) at 24 degrees C (75 degrees F), flame spread not over 25, smoke developed not over 50, for use at temperatures up to 149 degree C (300 degree F) with factory applied PVDC or all service vapor retarder jacket with polyvinyl chloride premolded fitting covers.
- B. Equipment and duct insulation, ASTM C 591,type IV, K=0.027(0.19) at 24 degrees C (75 degrees F), for use at temperatures up to 149 degrees C (300 degrees F) with PVDC or all service jacket vapor retarder jacket.

2.6 FLEXIBLE ELASTOMERIC CELLULAR THERMAL

ASTM C177, C518, k = 0.039 (0.27) at 24 degrees C (75 degrees F), flame spread not over 25, smoke developed not over 50, for temperatures from minus 4 degrees C (40 degrees F) to 93 degrees C (200 degrees F). No jacket required.

2.7 INSULATION FACINGS AND JACKETS

- A. Vapor Retarder, higher strength with low water permeance = 0.02 or less perm rating, Beach puncture 50 units for insulation facing on exposed ductwork, casings and equipment, and for pipe insulation jackets. Facings and jackets shall be all service type (ASJ) or PVDC Vapor Retarder jacketing.
- B. ASJ jacket shall be white kraft bonded to 0.025 mm (1 mil) thick aluminum foil, fiberglass reinforced, with pressure sensitive adhesive closure. Comply with ASTM C1136. Beach puncture 50 units, Suitable for painting without sizing. Jackets shall have minimum 40 mm (1-1/2 inch) lap on longitudinal joints and minimum 75 mm (3 inch) butt strip on end joints. Butt strip material shall be same as the jacket. Lap and butt strips shall be self-sealing type with factory-applied pressure sensitive adhesive.
- C. Vapor Retarder medium strength with low water vapor permeance of 0.02 or less perm rating), Beach puncture 25 units: Foil-Scrim-Kraft (FSK) or PVDC vapor retarder jacketing type for concealed ductwork and equipment.
- D. Field applied vapor barrier jackets shall be provided, in addition to the specified facings and jackets, on all exterior piping and ductwork as well as on interior piping and ductwork exposed to outdoor air (i.e.; in ventilated attics, piping in ventilated (not air conditioned) spaces, etc.)in high humidity areas conveying fluids below ambient

temperature. The vapor barrier jacket shall consist of a multi-layer laminated cladding with a maximum water vapor permeance of 0.001 perms. The minimum puncture resistance shall be 35 cm-kg (30 inch-pounds) for interior locations and 92 cm-kg (80 inch-pounds) for exterior or exposed locations or where the insulation is subject to damage.

- E. Glass Cloth Jackets: Presized, minimum 0.18 kg per square meter (7.8 ounces per square yard), 2000 kPa (300 psig) bursting strength with integral vapor retarder where required or specified. Weather proof if utilized for outside service.
- F. Factory composite materials may be used provided that they have been tested and certified by the manufacturer.
- G. Pipe fitting insulation covering (jackets): Fitting covering shall be premolded to match shape of fitting and shall be polyvinyl chloride (PVC) conforming to Fed Spec L-P-335, composition A, Type II Grade GU, and Type III, minimum thickness 0.7 mm (0.03 inches). Provide color matching vapor retarder pressure sensitive tape.
- H. Aluminum Jacket-Piping systems: ASTM B209, 3003 alloy, H-14 temper, 0.6 mm (0.023 inch) minimum thickness with locking longitudinal joints. Jackets for elbows, tees and other fittings shall be factory-fabricated to match shape of fitting and of 0.6 mm (0.024) inch minimum thickness aluminum. Fittings shall be of same construction as straight run jackets but need not be of the same alloy. Factory-fabricated stainless steel bands shall be installed on all circumferential joints. Bands shall be 13 mm (0.5 inch) wide on 450 mm (18 inch) centers. System shall be weatherproof if utilized for outside service.

2.8 REMOVABLE INSULATION JACKETS

- A. Insulation and Jacket:
 - 1. Non-Asbestos Glass mat, type E needled fiber.
 - Temperature maximum of 450°F, Maximum water vapor transmission of
 0.00 perm, and maximum moisture absorption of 0.2 percent by volume.
 - 3. Jacket Material: Silicon/fiberglass and LFP 2109 pure PTFE.
 - Construction: One piece jacket body with three-ply braided pure Teflon or Kevlar thread and insulation sewn as part of jacket. Belt fastened.

2.9 PIPE COVERING PROTECTION SADDLES

A. Cold pipe support: Premolded pipe insulation 180 degrees (half-shells) on bottom half of pipe at supports. Material shall be cellular glass or high density Polyisocyanurate insulation of the same thickness as

Nominal Pipe Size and Accessories Material (Insert Blocks)					
Nominal Pipe Size mm (inches)	Insert Blocks mm (inches)				
Up through 125 (5)	150 (6) long				
150 (6)	150 (6) long				
200 (8), 250 (10), 300 (12)	225 (9) long				
350 (14), 400 (16)	300 (12) long				
450 through 600 (18 through 24)	350 (14) long				

adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of 48 kg/m³ (3.0 pcf).

B. Warm or hot pipe supports: Premolded pipe insulation (180 degree half-shells) on bottom half of pipe at supports. Material shall be high density Polyisocyanurate (for temperatures up to 149 degrees C [300 degrees F]), cellular glass or calcium silicate. Insulation at supports shall have same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of 48 kg/m³ (3.0 pcf).

2.10 ADHESIVE, MASTIC, CEMENT

- A. Mil. Spec. MIL-A-3316, Class 1: Jacket and lap adhesive and protective finish coating for insulation.
- B. Mil. Spec. MIL-A-3316, Class 2: Adhesive for laps and for adhering insulation to metal surfaces.
- C. Mil. Spec. MIL-A-24179, Type II Class 1: Adhesive for installing flexible unicellular insulation and for laps and general use.
- D. Mil. Spec. MIL-C-19565, Type I: Protective finish for outdoor use.
- E. Mil. Spec. MIL-C-19565, Type I or Type II: Vapor barrier compound for indoor use.
- F. ASTM C449: Mineral fiber hydraulic-setting thermal insulating and finishing cement.
- G. Other: Insulation manufacturers' published recommendations.

2.11 MECHANICAL FASTENERS

- A. Pins, anchors: Welded pins, or metal or nylon anchors with galvanized steel-coated or fiber washer, or clips. Pin diameter shall be as recommended by the insulation manufacturer.
- B. Staples: Outward clinching galvanized steel.
- C. Wire: 1.3 mm thick (18 gage) soft annealed galvanized or 1.9 mm (14 gage) copper clad steel or nickel copper alloy.

D. Bands: 13 mm (0.5 inch) nominal width, brass, galvanized steel, aluminum or stainless steel.

2.12 REINFORCEMENT AND FINISHES

- A. Glass fabric, open weave: ASTM D1668, Type III (resin treated) and Type I (asphalt treated).
- B. Glass fiber fitting tape: Mil. Spec MIL-C-20079, Type II, Class 1.
- C. Tape for Flexible Elastomeric Cellular Insulation: As recommended by the insulation manufacturer.
- D. Hexagonal wire netting: 25 mm (one inch) mesh, 0.85 mm thick (22 gage) galvanized steel.
- E. Corner beads: 50 mm (2 inch) by 50 mm (2 inch), 0.55 mm thick (26 gage) galvanized steel; or, 25 mm (1 inch) by 25 mm (1 inch), 0.47 mm thick (28 gage) aluminum angle adhered to 50 mm (2 inch) by 50 mm (2 inch) Kraft paper.
- F. PVC fitting cover: Fed. Spec L-P-535, Composition A, 11-86 Type II, Grade GU, with Form B Mineral Fiber insert, for media temperature 4 degrees C (40 degrees F) to 121 degrees C (250 degrees F). Below 4 degrees C (40 degrees F) and above 121 degrees C (250 degrees F). Provide double layer insert. Provide color matching vapor barrier pressure sensitive tape.

2.13 FIRESTOPPING MATERIAL

Other than pipe and duct insulation, refer to Section 07 84 00 FIRESTOPPING.

2.14 FLAME AND SMOKE

Unless shown otherwise all assembled systems shall meet flame spread 25 and smoke developed 50 rating as developed under ASTM, NFPA and UL standards and specifications. See paragraph 1.3 "Quality Assurance".

PART 3 - EXECUTION

3.1 GENERAL REQUIREMENTS

- A. Required pressure tests of duct and piping joints and connections shall be completed and the work approved by the Resident Engineer for application of insulation. Surface shall be clean and dry with all foreign materials, such as dirt, oil, loose scale and rust removed.
- B. Except for specific exceptions, insulate entire specified equipment, piping (pipe, fittings, valves, accessories), and duct systems. Insulate each pipe and duct individually. Do not use scrap pieces of insulation where a full length section will fit.

- C. Where removal of insulation of piping, ductwork and equipment is required to comply with Section 02 82 11, TRADITIONAL ASBESTOS ABATEMENT and Section 02 82 13.13, GLOVEBAG ASBESTOS ABATEMENT.
- D. Insulation materials shall be installed in a first class manner with smooth and even surfaces, with jackets and facings drawn tight and smoothly cemented down at all laps. Insulation shall be continuous through all sleeves and openings, except at fire dampers and duct heaters (NFPA 90A). Vapor retarders shall be continuous and uninterrupted throughout systems with operating temperature 16 degrees C (60 degrees F) and below. Lap and seal vapor retarder over ends and exposed edges of insulation. Anchors, supports and other metal projections through insulation on cold surfaces shall be insulated and vapor sealed for a minimum length of 150 mm (6 inches).
- E. Install vapor stops at all insulation terminations on either side of valves, pumps and equipment and particularly in straight lengths of pipe insulation.
- F. Construct insulation on parts of equipment such as chilled water pumps and heads of chillers, convertors and heat exchangers that must be opened periodically for maintenance or repair, so insulation can be removed and replaced without damage. Install insulation with bolted 1 mm thick (20 gage) galvanized steel or aluminum covers as complete units, or in sections, with all necessary supports, and split to coincide with flange/split of the equipment.
- G. Insulation on hot piping and equipment shall be terminated square at items not to be insulated, access openings and nameplates. Cover all exposed raw insulation with white sealer or jacket material.
- H. Protect all insulations outside of buildings with aluminum jacket using lock joint or other approved system for a continuous weather tight system. Access doors and other items requiring maintenance or access shall be removable and sealable.
- I. Insulate PRVs, flow meters, and steam traps.
- I. HVAC work not to be insulated:
 - 1. Internally insulated ductwork and air handling units.
 - 2. Relief air ducts (Economizer cycle exhaust air).
 - 3. Exhaust air ducts and plenums, and ventilation exhaust air shafts.
 - 4. Equipment: Expansion tanks, flash tanks, hot water pumps.
 - In hot piping: Unions, flexible connectors, control valves, PRVs, safety valves and discharge vent piping, vacuum breakers,

thermostatic vent valves, steam traps 20 mm (3/4 inch) and smaller, exposed piping through floor for convectors and radiators. Insulate piping to within approximately 75 mm (3 inches) of uninsulated items.

- J. Apply insulation materials subject to the manufacturer's recommended temperature limits. Apply adhesives, mastic and coatings at the manufacturer's recommended minimum coverage.
- K. Elbows, flanges and other fittings shall be insulated with the same material as is used on the pipe straights. // The elbow/ fitting insulation shall be field-fabricated, mitered or factory prefabricated to the necessary size and shape to fit on the elbow/ fitting.// Use of polyurethane spray-foam to fill a PVC elbow jacket is prohibited on cold applications.
- L. Firestop Pipe and Duct insulation:
 - Provide firestopping insulation at fire and smoke barriers through penetrations. Fire stopping insulation shall be UL listed as defines in Section 07 84 00, FIRESTOPPING.
 - Pipe and duct penetrations requiring fire stop insulation including, but not limited to the following:
 - a. Pipe risers through floors
 - b. Pipe or duct chase walls and floors
 - c. Smoke partitions
 - d. Fire partitions
- M. Provide vapor barrier jackets over insulation as follows:
 - 1. All piping and ductwork exposed to outdoor weather.
 - All interior piping and ducts conveying fluids exposed to outdoor air (i.e. in attics, ventilated (not air conditioned) spaces, etc.) below ambient air temperature.
- P. Provide metal jackets over insulation as follows:
 - 1. All piping and ducts exposed to outdoor weather.
 - 2. Piping exposed in building, within 1800 mm (6 feet) of the floor, that connects to sterilizers, kitchen and laundry equipment. Jackets may be applied with pop rivets. Provide aluminum angle ring escutcheons at wall, ceiling or floor penetrations.
 - 3. A 50 mm (2 inch) overlap is required at longitudinal and circumferential joints.

3.2 INSULATION INSTALLATION

A. Mineral Fiber Board:

- 1. Faced board: Apply board on pins spaced not more than 300 mm (12 inches) on center each way, and not less than 75 mm (3 inches) from each edge of board. In addition to pins, apply insulation bonding adhesive to entire underside of horizontal metal surfaces. Butt insulation edges tightly and seal all joints with laps and butt strips. After applying speed clips cut pins off flush and apply vapor seal patches over clips.
- 2. Plain board:
 - a. Insulation shall be scored, beveled or mitered to provide tight joints and be secured to equipment with bands spaced 225 mm (9 inches) on center for irregular surfaces or with pins and clips on flat surfaces. Use corner beads to protect edges of insulation.
 - b. For hot equipment: Stretch 25 mm (1 inch) mesh wire, with edges wire laced together, over insulation and finish with insulating and finishing cement applied in one coat, 6 mm (1/4 inch) thick, trowel led to a smooth finish.
 - c. For cold equipment: Apply meshed glass fabric in a tack coat 1.5 to 1.7 square meter per liter (60 to 70 square feet per gallon) of vapor mastic and finish with mastic at 0.3 to 0.4 square meter per liter (12 to 15 square feet per gallon) over the entire fabric surface.
- 3. Exposed, unlined ductwork and equipment in unfinished areas, mechanical and electrical equipment rooms and attics, and duct work exposed to outdoor weather:
 - a. 50 mm (2 inch) thick insulation faced with ASJ (white all service jacket): Supply air duct.
 - b. 50 mm (2 inch) thick insulation faced with ASJ: Return air duct.
 - c. Outside air intake ducts: 25 mm (one inch) thick insulation faced with ASJ.
 - d. Exposed, unlined supply and return ductwork exposed to outdoor weather: 50 mm (2 inch) thick insulation faced with a reinforcing membrane and two coats of vapor barrier mastic or multi-layer vapor barrier with a maximum water vapor permeability of 0.001 perms.
- 4. Hot equipment: 40 mm (1-1/2 inch) thick insulation faced with ASJ.a. Convertors, air separators.

- b. Domestic water heaters and hot water storage tanks (not factory insulated).
- B. Flexible Mineral Fiber Blanket:
 - 1. Adhere insulation to metal with 75 mm (3 inch) wide strips of insulation bonding adhesive at 200 mm (8 inches) on center all around duct. Additionally secure insulation to bottom of ducts exceeding 600 mm (24 inches) in width with pins welded or adhered on 450 mm (18 inch) centers. Secure washers on pins. Butt insulation edges and seal joints with laps and butt strips. Staples may be used to assist in securing insulation. Seal all vapor retarder penetrations with mastic. Sagging duct insulation will not be acceptable. Install firestop duct insulation where required.
 - 2. Supply air ductwork to be insulated includes main and branch ducts from AHU discharge to room supply outlets, and the bodies of ceiling outlets to prevent condensation. Insulate sound attenuator units, coil casings and damper frames. To prevent condensation insulate trapeze type supports and angle iron hangers for flat oval ducts that are in direct contact with metal duct.
 - 3. Concealed supply air ductwork.
 - a. Above ceilings at a roof level, in attics, and duct work exposed to outdoor weather: 50 mm (2 inch) thick insulation faced with FSK.
 - b. Above ceilings for other than roof level: 40 mm (1 ½ inch) thick insulation faced with FSK.
 - 4. Concealed return air duct:
 - a. In attics (where not subject to damage) and where exposed to outdoor weather: 50mmm (2 inch)thick insulation faced with FSK.
 - b. Above ceilings at a roof level, unconditioned areas, and in chases with external wall or containing steam piping; 40 mm (1-1/2 inch) thick, insulation faced with FSK.
 - 5. Concealed outside air duct: 40 mm (1-1/2 inch) thick insulation faced with FSK.
- C. Molded Mineral Fiber Pipe and Tubing Covering:
 - Fit insulation to pipe or duct, aligning longitudinal joints. Seal longitudinal joint laps and circumferential butt strips by rubbing hard with a nylon sealing tool to assure a positive seal. Staples may be used to assist in securing insulation. Seal all vapor retarder penetrations on cold piping with a generous application of

vapor barrier mastic. Provide inserts and install with metal insulation shields at outside pipe supports. Install freeze protection insulation over heating cable.

- 2. Contractor's options for fitting, flange and valve insulation:
 - a. Insulating and finishing cement for sizes less than 100 mm (4 inches) operating at surface temperature of 16 degrees C (61 degrees F) or more.
 - b. Factory premolded, one piece PVC covers with mineral fiber, (Form B), inserts. Provide two insert layers for pipe temperatures below 4 degrees C (40 degrees F), or above 121 degrees C (250 degrees F). Secure first layer of insulation with twine. Seal seam edges with vapor barrier mastic and secure with fitting tape.
 - c. Factory molded, ASTM C547 or field mitered sections, joined with adhesive or wired in place. For hot piping finish with a smoothing coat of finishing cement. For cold fittings, 16 degrees C (60 degrees F) or less, vapor seal with a layer of glass fitting tape imbedded between two 2 mm (1/16 inch) coats of vapor barrier mastic.
 - d. Fitting tape shall extend over the adjacent pipe insulation and overlap on itself at least 50 mm (2 inches).
- 3. Nominal thickness in millimeters and inches specified in the schedule at the end of this section.
- D. Rigid Cellular Phenolic Foam:
 - Rigid closed cell phenolic insulation may be provided for piping, ductwork and equipment for temperatures up to 121 degrees C (250 degrees F).
 - Note the NFPA 90A burning characteristics requirements of 25/50 in paragraph 1.3.B
 - 3. Provide secure attachment facilities such as welding pins.
 - 4. Apply insulation with joints tightly drawn together
 - 5. Apply adhesives, coverings, neatly finished at fittings, and valves.
 - Final installation shall be smooth, tight, neatly finished at all edges.
 - 7. Minimum thickness in millimeters (inches) specified in the schedule at the end of this section.
 - Exposed, unlined supply and return ductwork exposed to outdoor weather: 50 mm (2 inch) thick insulation faced with a multi-layer vapor barrier with a maximum water vapor permeance of 0.00 perms.

- 9. Condensation control insulation: Minimum 25 mm (1.0 inch) thick for all pipe sizes.
 - a. HVAC: Cooling coil condensation piping to waste piping fixture or drain inlet. Omit insulation on plastic piping in mechanical rooms.
- E. Cellular Glass Insulation:
 - 1. Pipe and tubing, covering nominal thickness in millimeters and inches as specified in the schedule at the end of this section.
 - Exposed, unlined supply and return ductwork exposed to outdoor weather: 50 mm (2 inch) thick insulation faced with a reinforcing membrane and two coats of vapor barrier mastic or multi-layer vapor barrier with a water vapor permeability of 0.00 perms.
- F. Polyisocyanurate Closed-Cell Rigid Insulation:
 - Polyisocyanurate closed-cell rigid insulation (PIR) may be provided for exterior piping, equipment and ductwork for temperature up to 149 degree C (300 degree F).
 - Install insulation, vapor barrier and jacketing per manufacturer's recommendations. Particular attention should be paid to recommendations for joint staggering, adhesive application, external hanger design, expansion/contraction joint design and spacing and vapor barrier integrity.
 - Install insulation with all joints tightly butted (except expansion) joints in hot applications).
 - If insulation thickness exceeds 63 mm (2.5 inches), install as a double layer system with longitudinal (lap) and butt joint staggering as recommended by manufacturer.
 - 5. For cold applications, vapor barrier shall be installed in a continuous manner. No staples, rivets, screws or any other attachment device capable of penetrating the vapor barrier shall be used to attach the vapor barrier or jacketing. No wire ties capable of penetrating the vapor barrier shall be used to hold the insulation in place. Banding shall be used to attach PVC or metal jacketing.
 - 6. Elbows, flanges and other fittings shall be insulated with the same material as is used on the pipe straights. The elbow/ fitting insulation shall be field-fabricated, mitered or factory prefabricated to the necessary size and shape to fit on the elbow/

fitting. Use of polyurethane spray-foam to fill PVC elbow jacket is prohibited on cold applications.

- For cold applications, the vapor barrier on elbows/fittings shall be either mastic-fabric-mastic or 2 mil thick PVDC vapor barrier adhesive tape.
- 8. All PVC and metal jacketing shall be installed so as to naturally shed water. Joints shall point down and shall be sealed with either adhesive or caulking (except for periodic slip joints).
- 9. Exposed, unlined supply and return ductwork exposed to outdoor weather: 50 mm (2 inch) thick insulation faced with a multi-layer vapor barrier with a water vapor permeance of 0.00 perms.
- 10. Note the NFPA 90A burning characteristic requirements of 25/50 in paragraph 1.3B. Refer to paragraph 3.1 for items not to be insulated.
- 11. Minimum thickness in millimeter (inches) specified in the schedule at the end of this section.
- G. Flexible Elastomeric Cellular Thermal Insulation:
 - Apply insulation and fabricate fittings in accordance with the manufacturer's installation instructions and finish with two coats of weather resistant finish as recommended by the insulation manufacturer.
 - 2. Pipe and tubing insulation:
 - a. Use proper size material. Do not stretch or strain insulation.
 - b. To avoid undue compression of insulation, provide cork stoppers or wood inserts at supports as recommended by the insulation manufacturer. Insulation shields are specified under Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
 - c. Where possible, slip insulation over the pipe or tubing prior to connection, and seal the butt joints with adhesive. Where the slip-on technique is not possible, slit the insulation and apply it to the pipe sealing the seam and joints with contact adhesive. Optional tape sealing, as recommended by the manufacturer, may be employed. Make changes from mineral fiber insulation in a straight run of pipe, not at a fitting. Seal joint with tape.
 - Apply sheet insulation to flat or large curved surfaces with 100 percent adhesive coverage. For fittings and large pipe, apply adhesive to seams only.

- 4. Pipe insulation: nominal thickness in millimeters (inches as specified in the schedule at the end of this section.
- 5. Exposed, unlined supply and return ductwork exposed to outdoor weather: 50 mm (2 inch) thick insulation faced with a multi-layer vapor barrier with a water vapor permeance of 0.00 perms.

3.3 APPLICATION - PIPE, VALVES, STRAINERS AND FITTINGS:

- A. Temperature range 100 to 121 degrees C (211 to 250 degrees F):
 - 1. Application: Steam service 103 kpa (15 psig) and below, trap assembly discharge piping.
 - 2. Insulation and Jacket:
 - a. Calcium silicate for piping from zero to 1800 mm (0 to 6 feet) above boiler room floor, and any floors or access platforms on which tanks or pumps are located.
 - b. Mineral Fiber or rigid closed cell phenolic foam for remaining locations.
 - c. ASJ with PVC premolded fitting coverings.
 - d. Aluminum jacket from zero to 1800 mm (6 feet) above floor on condensate lines at boilers and burners.

3. Thickness-calcium silicate and mineral fiber insulation:

	Nominal Thickness Of Insulation
Pipe Diameter mm (in)	Insulation Thickness mm (in)
25 (1 and below)	50 (2)
25 to 38 (1- 1/4 to 1-1/2)	50 (2)
38 (1-1/2) and above	75 (3)

4. Thickness-rigid closed-cell phenolic foam insulation:

	Nominal Thickness Of Insulation
Pipe Diameter mm (in)	Insulation Thickness mm (in)
25 (1 and below)	38 (1.5)
25 to 38 (1- 1/4 to 1-1/2)	38 (1.5)
38 (1-1/2) and above	75(3)

C. Temperature range 32 to 99 degrees C (90 to 211 degrees F):

- Application: gravity and pumped heating returns, condensate return from convertors and heated water storage tanks.
- 2. Insulation Jacket:
 - a. Mineral fiber or rigid closed-cell phenolic foam for remaining locations.
 - b. ASJ with PVC premolded fitting coverings.
- 3. Thickness-calcium silicate and mineral fiber insulation:

Nomi	nal Thickness Of Insulation
Pipe Diameter mm (in)	Insulation Thickness mm (in)
25 (1 and below)	38 (1.5)
25 to 38 (1-1/4 to 1-1/2)	50(2)
38 (1-1/2) and above	75 (3)

4. Thickness-rigid closed-cell phenolic foam insulation:

Nomi	nal Thickness Of Insulation
Pipe Diameter mm (in)	Insulation Thickness mm (in)
25 (1 and below)	19 (0.75)
25 to 38 (1-1/4 to 1-1/2)	19 (0.75)
38 (1-1/2) and above	25 (1)

- D. Protective insulation to prevent personnel injury:
 - Application: Piping from zero to 1800 mm (6 feet) above all floors and access platforms.
 - 2. Insulation thickness: 25 mm (1 inch).
 - 3. Insulation and jacket: Calcium silicate with ASJ except provide aluminum jacket on piping at boilers within 1800 mm (6 feet) of floor. Use PVC premolded fitting coverings when all service jacket is utilized.
- E. Installation:
 - At pipe supports, weld pipe covering protection saddles to pipe, except where MS-SP58, type 3 pipe clamps are utilized.
 - Insulation shall be firmly applied, joints butted tightly, mechanically fastened by stainless steel wires on 300 mm (12 inch) centers.

- 3. At support points, fill and thoroughly pack space between pipe covering protective saddle bearing area.
- 4. Terminate insulation and jacket hard and tight at anchor points.
- 5. Terminate insulation at piping facilities not insulated with a 45 degree chamfered section of insulating and finishing cement covered with jacket.
- 6. On mineral fiber and rigid closed-cell phenolic foam systems, insulated flanged fittings, strainers and valves with sections of pipe insulation cut, fitted and arranged neatly and firmly wired in place. Fill all cracks, voids and coat outer surface with insulating cement. Install jacket. Provide similar construction on welded and threaded fittings on calcium silicate systems or use premolded fitting insulation.
- 7. On mineral fiber systems, insulate welded and threaded fittings more than 50 mm (2 inches) in diameter with compressed blanket insulation (minimum 2/1) and finish with jacket or PVC cover.
- Insulate fittings 50 mm (2 inches) and smaller with mastic finishing material and cover with jacket.
- 9. Insulate valve bonnet up to valve side of bonnet flange to permit bonnet flange removal without disturbing insulation.
- 10. Install jacket smooth, tight and neatly finish all edges. Over wrap ASJ butt strips by 50 percent. Secure aluminum jacket with stainless steel bands 300 mm (12 inches) on center or aluminum screws on 200 mm (4 inch) centers.
- 11. Do not insulate basket removal flanges on strainers.

3.4 PIPE INSULATION SCHEDULE

Provide insulation for piping systems as scheduled below:

	Nominal	Pipe Size	Millimeters	(Inches)	
Operating Temperature Range/Service	Insulation Material	Less than 25 (1)	25 - 32 (1 - 1¼)	38 - 75 (1½ - 3)	100 (4) and Above
122-177 degrees C (251-350 degrees F) (HPS, MPS)	Mineral Fiber (Above ground piping only)	75 (3)	100 (4)	113 (4.5)	113 (4.5)

Insulation Thickness Millimeters (Inches)

(212-250 degrees F) (MPR, LPS, vent piping from PRV Safety Valves)(Above ground piping from PRV Safety Valves)(2.5)(2.5)(2.5)(2.5)100-121 degrees C (212-250 degrees F) (MPR, LPS, vent piping from PRV Safety Valves)Rigid Cellular Phenolic Foam50 (2.0)50 (2.0)75 (3.0)75 (3.0)38-94 degrees C (100-201 degrees F) (LPR, HWH, HWHR)Mineral Fiber (Above ground piping only)38 (1.5)38 (1.5)50 (2.0)50 (2.0)38-94 degrees C (100-211 degrees F) (LPR, HWH, HWHR)Mineral Fiber (Above ground piping only)38 (1.5)38 (1.5)50 (2.0)50 (2.0)38-94 degrees C (100-201 degrees F) (LPR, HWH, HWHR)Flexible Elastomeric Cellular Thermal (Above ground piping only)38 (1.5)38 (1.5)50 (2.0)50 (2.0)4-16 degrees C (40-60 degrees F) (RS for DX refrigeration)Flexible Class Closed- Cellular Cellular Cellular Cellular Cellular Cellular (1.5)38 (1.5)38 (1.5)38 (1.5)38 (1.5)4-16 degrees C (40-60 degrees F) (RS for DX refrigeration)Cellular Closed-Cell Rigid (Exterior Locations only)38 (1.5)38 (1.5)38 (1.5)38 (1.5)38 (1.5)4-16 degrees C (40-60 degrees F) (RS for DX refrigeration)Cellular Rigid (Exterior Locations only)38 (1.5)38 (1.5)38 (1.5)38 (1.5)4-16 degrees C (Above ground (Exterior Locations only)Cellular (Se for DX (Exterior Locations only)38 (1.5)<	100-121 degrees C	Mineral Fiber	62	62 (2.5)	75 (3.0)	75 (3.0)
(MRR, LPS, vent piping from PRV Safety Valves)Rigid Cellular phenolic Foam50 (2.0)50 (2.0)75 (3.0)75 (3.0)(MRR, LPS, vent piping from PRV Safety Valves)Mineral Fiber (Above ground piping only)3838 (1.5)50 (2.0)50 (2.0)50 (2.0)(MRR, HWH, HWHR)Mineral Fiber (Above ground piping only)3838 (1.5)50 (2.0)50 (2.0)50 (2.0)38-94 degrees C (100-200 degrees F)Rigid Cellular Phenolic Foam38 (1.5)38 (1.5)50 (2.0)50 (2.0)38-94 degrees C (100-211 degrees F)Flexible Elastomeric Cellular Thermal (Above ground piping only)38 (1.5)38 (1.5)50 (2.0)50 (2.0)4-16 degrees C (40-60 degrees F)Rigid Cellular Phenolic Foam38 (1.5)38 (1.5)38 (1.5)38 (1.5)38 (1.5)4-16 degrees C (40-60 degrees F)Cellular Phenolic Foam38 (1.5)38 (1.5)38 (1.5)38 (1.5)38 (1.5)4-16 degrees C (40-60 degrees F)Cellular Cellular Phenolic Foam38 (1.5)38 (1.5)38 (1.5)38 (1.5)38 (1.5)4-16 degrees C (40-60 degrees F)Cellular Class Closed- Cell38 (1.5)38 (1.5)38 (1.5)38 (1.5)38 (1.5)4-16 degrees C (40-60 degrees F)Cellular Class Closed- Cell38 (1.5)38 (1.5)38 (1.5)38 (1.5)38 (1.5)4-16 degrees C (Cosed-Cell Closed-CellCellular Class Closed- Cell38 (1.5)38 (1.5)38 (1.5) <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td>	_					
Safety Valves)Rigid Cellular Phenolic Foam50 (2.0)50 (2.0)75 (3.0)75 (3.0)(MPR, LPS, vent piping from PRV Safety Valves)Mineral Fiber (Above ground piping only)38 (1.5)38 (1.5)50 (2.0)50 (2.0)50 (2.0)38-94 degrees C (100-200 degrees F)Mineral Fiber (Above ground piping only)38 (1.5)38 (1.5)50 (2.0)50 (2.0)38-99 degrees C (100-211 degrees F)Rigid Cellular Phenolic Foam38 (1.5)38 (1.5)50 (2.0)50 (2.0)(LPR, HWH, HWHR)Flexible Elastomeric Cellular Thermal (Above ground piping only)38 (1.5)38 (1.5)50 (2.0)50 (2.0)(LPR, HWH, HWHR)Flexible Elastomeric Cellular Thermal (Above ground piping only)38 (1.5)38 (1.5)38 (1.5)38 (1.5)(40-60 degrees F) (RS for DX refrigeration)Cellular Cell Cell38 (1.5)38 (1.5)38 (1.5)38 (1.5)38 (1.5)4-16 degrees C (40-60 degrees F) (RS for DX refrigeration)Cellular Class Closed- Cell38 (1.5)38 (1.5)38 (1.5)38 (1.5)4-16 degrees C (40-60 degrees F) (RS for DX refrigeration)Polyiso- cyanurate Closed-Cell38 (1.5)38 (1.5)38 (1.5)38 (1.5)4-16 degrees C (40-60 degrees F) (RS for DX refrigeration)Polyiso- cyanurate Closed-Cell38 (1.5)38 (1.5)38 (1.5)38 (1.5)4-16 degrees C (40-60 degrees F) (RS for DX refrigeration)Polyiso- cyanurate<		piping only)				
100-121 degrees C (212-250 degrees F)Rigid Cellular Phenolic Foam50 (2.0)50 (2.0)75 (3.0)75 (3.0)(MRR, LPS, vent piping from PRV Safety Valves)Mineral Fiber (Above ground piping only)38 (1.5)38 (1.5)50 (2.0)50 (2.0)50 (2.0)38-94 degrees C (100-200 degrees F)Mineral Fiber (Above ground piping only)38 (1.5)38 (1.5)50 (2.0)50 (2.0)50 (2.0)38-99 degrees C (100-211 degrees F)Rigid Cellular Phenolic Foam38 (1.5)38 (1.5)50 (2.0)50 (2.0)(100-211 degrees F) (LPR, HWH, HWHR)Flexible Elastomeric Cellular Thermal (Above ground piping only)38 (1.5)38 (1.5)50 (2.0)50 (2.0)4-16 degrees C (40-60 degrees F) (RS for DX refrigeration)Rigid Cellular Phenolic Foam38 (1.5)38 (1.5)38 (1.5)38 (1.5)4-16 degrees C (40-60 degrees F) (RS for DX refrigeration)Cellular Glass Closed- Cell38 (1.5)38 (1.5)38 (1.5)38 (1.5)4-16 degrees C (40-60 degrees F) (RS for DX refrigeration)Polyiso- cyanurate Closed-Cell38 (1.5)38 (1.5)38 (1.5)38 (1.5)4-16 degrees C (40-60 degrees F) (RS for DX refrigeration)Polyiso- cyanurate Closed-Cell38 (1.5)38 (1.5)38 (1.5)38 (1.5)4-16 degrees C (40-60 degrees F) (RS for DX refrigeration)Polyiso- cyanurate Closed-Cell38 (1.5)38 (1.5)38 (1.5)38 (1.5)(RS for DX ref						
(212-250 degrees F) (MPR, LPS, vent piping from PRV Safety Valves)Phenolic Foam(2.0)Image: Constraint of the second		Rigid Cellular	50	50 (2.0)	75 (3.0)	75 (3.0)
piping from PRV Safety Valves)Mineral Fiber (Above ground piping only)3838(1.5)50(2.0)50(2.0)(LPR, HWH, HWHR)Rigid Cellular Phenolic Foam38(1.5)38(1.5)50(2.0)50(2.0)(100-211 degrees F) (LPR, HWH, HWHR)Rigid Cellular Phenolic Foam3838(1.5)50(2.0)50(2.0)(100-210 degrees F) (LPR, HWH, HWHR)Flexible Elastomeric Cellular Thermal (Above ground piping only)3838(1.5)50(2.0)50(2.0)4-16 degrees C (40-60 degrees F) (RS for DX refrigeration)Rigid Cellular Phenolic Foam3838(1.5)3838(1.5)38(1.5)4-16 degrees C (40-60 degrees F) (RS for DX refrigeration)Cellular Glass Closed- Cell3838(1.5)38(1.5)38(1.5)38(1.5)4-16 degrees C (40-60 degrees F) (RS for DX refrigeration)Cellular Glass Closed- Cell3838(1.5)38(1.5)38(1.5)4-16 degrees C (40-60 degrees F) (RS for DX refrigeration)Polyiso- Cyanurate Closed-Cell Rigid (Exterior Locations3838(1.5)38(1.5)38(1.5)4.16 degrees C (Above (Closed-Cell (RS for DX refrigeration)Polyiso- Cyanurate Closed-Cell Rigid (Exterior Locations3838(1.5)38(1.5)38(1.5)	-	-	(2.0)	. ,		
(100-200 degrees F) (LPR, HWH, HWHR)(Above ground piping only)(1.5)	piping from PRV					
(LPR, HWH, HWHR)piping only)	-			38 (1.5)	50 (2.0)	50 (2.0)
(LPR, HWH, HWHR)Rigid Cellular Phenolic Foam38 (1.5)38 (1.5)38 (1.5)50 (2.0)50 (2.0)(100-211 degrees F) (LPR, HWH, HWHR)Flexible Elastomeric Cellular Thermal (Above ground piping only)38 (1.5)38 (1.5)38 (1.5)38 (1.5) 4-16 degrees C (40-60 degrees F) (RS for DX refrigeration)Rigid Cellular Phenolic Foam38 (1.5)38 (1.5)38 (1.5)38 (1.5)38 (1.5)38 (1.5)38 (1.5)4-16 degrees C (40-60 degrees F) (RS for DX refrigeration)Cellular Glass Closed- Cell38 (1.5)38 (1.5)38 (1.5)38 (1.5)38 (1.5)38 (1.5)4-16 degrees C (40-60 degrees F) (RS for DX refrigeration)Cellular Glass Closed- Cell38 (1.5)38 (1.5)38 (1.5)38 (1.5)38 (1.5)38 (1.5)38 (1.5)4-16 degrees C (40-60 degrees F) (RS for DX refrigeration)Polyiso- Cyanurate Closed-Cell Rigid (1.5)38 (1.5)38 (1.5)38 (1.5)38 (1.5)38 (1.5)38 (1.5)4-16 degrees C (40-60 degrees F) (RS for DX refrigeration)Polyiso- Cyanurate Closed-Cell Rigid (Exterior Locations38 (1.5)38 (1.5)38 (1.5)38 (1.5)38 (1.5)38 (1.5)		_	(1.5)			
(100-211 degrees F)Phenolic Foam(1.5)Interference(LPR, HWH, HWHR)Second degrees CFlexible3838 (1.5)(100-200 degrees F)FlexibleElastomeric(1.5)38 (1.5)(LPR, HWH, HWHR)FlexibleSecond piping only)3838 (1.5)4-16 degrees CRigid Cellular Phenolic Foam3838 (1.5)38 (1.5)38 (1.5)38 (1.5)(40-60 degrees F)Cellular Phenolic Foam3838 (1.5)38 (1.5)38 (1.5)38 (1.5)4-16 degrees CCellular Glass Closed- Cell3838 (1.5)38 (1.5)38 (1.5)38 (1.5)(40-60 degrees F)Cellular Glass Closed-Cell Cell3838 (1.5)38 (1.5)38 (1.5)38 (1.5)4-16 degrees CPolyiso- cyanurate Closed-Cell Rigid (Exterior Locations3838 (1.5)38 (1.5)38 (1.5)						
(100-211 degrees F)Flexible3838(LPR, HWH, HWHR)Flexible3838(1.5)(100-200 degrees F)FlexibleElastomeric Cellular Thermal (Above ground piping only)(1.5)38(1.5)(LPR, HWH, HWHR)Rigid Cellular Phenolic Foam3838(1.5)38(1.5)4-16 degrees C (40-60 degrees F)Rigid Cellular Phenolic Foam3838(1.5)38(1.5)4-16 degrees C (RS for DX refrigeration)Cellular Glass Closed- Cell3838(1.5)38(1.5)4-16 degrees C (RS for DX refrigeration)Cellular Glass Closed- Cell3838(1.5)38(1.5)4-16 degrees C (RS for DX refrigeration)Polyiso- cyanurate Closed-Cell Rigid (Exterior Locations3838(1.5)38(1.5)	5	-		38 (1.5)	50 (2.0)	50 (2.0)
38-94 degrees C (100-200 degrees F) (LPR, HWH, HWHR)Flexible Elastomeric Cellular Thermal (Above ground piping only)38381.5)4-16 degrees C (40-60 degrees F) (RS for DX refrigeration)Rigid Cellular Phenolic Foam3838(1.5)3838(1.5)381.5)4-16 degrees C (40-60 degrees F) (RS for DX refrigeration)Cellular Phenolic Foam3838(1.5)3838(1.5)4-16 degrees C (40-60 degrees F) (RS for DX refrigeration)Cellular Glass Closed- Cell3838(1.5)38(1.5)4-16 degrees C (40-60 degrees F) (RS for DX refrigeration)Polyiso- Cyanurate Closed-Cell Rigid (Exterior Locations3838(1.5)38(1.5)4-16 degrees F) (RS for DX refrigeration)Polyiso- Cyanurate Closed-Cell Rigid (Exterior Locations38(1.5)38(1.5)38(1.5)	(100-211 degrees F)		(1.5)			
(100-200 degrees F) (LPR, HWH, HWHR)Elastomeric Cellular Thermal (Above ground piping only)(1.5)Image: Second seco	(LPR, HWH, HWHR)					
(LPR, HWH, HWHR)Cellular Thermal (Above ground piping only)381.5)38 (1.5)38 (1.5)4-16 degrees C (40-60 degrees F)Rigid Cellular Phenolic Foam38 (1.5)38 (1.5)38 (1.5)38 (1.5)(RS for DX refrigeration)Cellular Glass Closed- Cell38 (1.5)38 (1.5)38 (1.5)38 (1.5)4-16 degrees C (40-60 degrees F)Cellular Glass Closed- Cell38 (1.5)38 (1.5)38 (1.5)38 (1.5)4-16 degrees C (RS for DX refrigeration)Polyiso- Cyanurate Closed-Cell Rigid (Exterior Locations38 (1.5)38 (1.5)38 (1.5)38 (1.5)	_			38 (1.5)		
Inermal (Above ground piping only)Inermal (Above ground piping only)Inermal (Above ground piping only)Inermal (Above ground piping only)Inermal (Above ground piping only)4-16 degrees CRigid Cellular Phenolic Foam3838 (1.5)38 (1.5)38 (1.5)(40-60 degrees F)Cellular Glass Closed- Cell3838 (1.5)38 (1.5)38 (1.5)(40-60 degrees F)Cellular Cell38(1.5)38 (1.5)38 (1.5)38 (1.5)(40-60 degrees C refrigeration)Polyiso- Cyanurate Closed-Cell Rigid (Exterior Locations3838 (1.5)38 (1.5)38 (1.5)			(1.5)			
only)Image: constraint of the sector of the sec	(LPR, HWH, HWHR)	•				
(40-60 degrees F)Phenolic Foam(1.5)Image: Constraint of the sector of t						
(40-60 degrees F)(RS for DX refrigeration)(RS for DX refrigeration)(RS for DX Class Closed- Cell38 (1.5)38 (1.5)38 (1.5)38 (1.5)(40-60 degrees F)Cellular Glass Closed- Cell38 (1.5)38 (1.5)38 (1.5)38 (1.5)(40-60 degrees C) (40-60 degrees F)Polyiso- Cyanurate Closed-Cell Rigid (Exterior Locations38 (1.5)38 (1.5)38 (1.5)38 (1.5)	4-16 degrees C	Rigid Cellular	38	38 (1.5)	38 (1.5)	38 (1.5)
refrigeration)Cellular Glass Closed- Cell38 (1.5)38 (1.5)38 (1.5)(40-60 degrees F) (RS for DX refrigeration)Cellular Glass Closed- Cell38 (1.5)38 (1.5)38 (1.5)4-16 degrees C (40-60 degrees F) (RS for DX refrigeration)Polyiso- cyanurate Closed-Cell Rigid (Exterior Locations38 (1.5)38 (1.5)38 (1.5)	(40-60 degrees F)	Phenolic Foam	(1.5)			
4-16 degrees C (40-60 degrees F)Cellular Glass Closed- Cell38 (1.5)38 (1.5)38 (1.5)38 (1.5)(RS for DX refrigeration)Polyiso- Cyanurate Closed-Cell38 (1.5)38 (1.5)38 (1.5)38 (1.5)38 (1.5)(40-60 degrees F) (40-60 degrees F)Polyiso- Closed-Cell38 (1.5)38 (1.5)38 (1.5)38 (1.5)38 (1.5)(40-60 degrees F) (RS for DX refrigeration)Rigid (Exterior Locations1.5)1.5)38 (1.5)38 (1.5)	(RS for DX					
(40-60 degrees F) (RS for DX refrigeration)Glass Closed- Cell(1.5)(1.5)(1.5)4-16 degrees C (40-60 degrees F) (RS for DX refrigeration)Polyiso- cyanurate Closed-Cell Rigid (Exterior Locations38 (1.5)38 (1.5)38 (1.5)	refrigeration)					
(40-60 degrees F)CellCell(RS for DX refrigeration)Polyiso- cyanurate Closed-Cell38 (1.5)(40-60 degrees F)Polyiso- cyanurate Closed-Cell38 (1.5)(RS for DX refrigeration)Rigid (Exterior Locations38 (1.5)	4-16 degrees C			38 (1.5)	38 (1.5)	38 (1.5)
(RS for DX refrigeration)Polyiso- cyanurate Closed-Cell38 (1.5)38 (1.5)38 (1.5)(40-60 degrees F) (RS for DX refrigeration)Polyiso- cyanurate Closed-Cell38 (1.5)38 (1.5)38 (1.5)	(40-60 degrees F)		(1.5)			
4-16 degrees CPolyiso- cyanurate Closed-Cell3838 (1.5)38 (1.5)(40-60 degrees F)Closed-Cell(1.5)1.5)1.5)1.5)(RS for DX refrigeration)Rigid (Exterior Locations1.5)1.5)1.5)						
(40-60 degrees F)cyanurate Closed-Cell(1.5)(RS for DXRigid (Exterior Locations						
(40-60 degrees F)Closed-Cell(RS for DXRigidrefrigeration)(ExteriorLocationsImage: Content of the second se	4-16 degrees C			38 (1.5)	38 (1.5)	38 (1.5)
refrigeration) (Exterior Locations	(40-60 degrees F)		(1.)			
Locations		(Exterior				
only)	rerrigeration)					
		only)				

(40-60 degrees F) Flexibl	e 38	38 (1.5)	38 (1.5)	38 (1.5)
(RS for DX refrigeration) Elastom Cellula Thermal ground g only)	eric (1.5) (Above			

- - - E N D - - -

SECTION 23 09 23

DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The control system(s) shall be as indicated on the project documents, point list, drawings and described in these specifications. This scope of work shall include a complete and working system that ties into and integrates with the existing Johnson Controls system, including all engineering, programming, controls and installation materials, installation labor, commissioning and start-up, training, final project documentation and warranty.
- C. The Controls Contractor's work shall include all labor, materials, special tools, equipment, enclosures, power supplies, software, software licenses, Project specific software configurations and database entries, interfaces, wiring, tubing, installation, labeling, engineering, calibration, documentation, submittals, testing, verification, training services, permits and licenses, transportation, shipping, handling, administration, supervision, management, insurance, Warranty, specified services and items required by the Contract for the complete and fully functional Controls Systems.
- D. Following control devices and systems shall be used to provide the functional requirements of HVAC equipment and systems.
 - 1. Direct Digital Control (DDC) of HVAC equipment and systems with electric or electronic positioning of valves and dampers.
 - Humidifiers and similar units for control of room environment conditions may be equipped with integral controls furnished and installed by the equipment manufacturer or field mounted. Refer to equipment specifications and as indicated in project documents.
- E. Connect the new work to the existing ECC system or operator workstation manufactured by Johnson Controls located in Boiler Plant. The existing CPU/Monitor, printer, and other peripherals may be used to form a single operator workstation. New system including interface to existing systems and equipment shall operate and function as one complete system including one database of control point objects and global control logic capabilities. Facility operators shall have complete operations and control capability over all systems, new and existing including; monitoring, trending, graphing, scheduling, alarm management, global

point sharing, global strategy deployment, graphical operations interface and custom reporting as specified. Modify the existing ECC, if necessary, to accommodate the additional control points.

- F. The control subcontractor shall supply as required, all necessary hardware equipment and software packages to interface between any existing and new system Network Area Controllers (NAC) as part of this contract. Number of area controllers required is dependent on the type and quantity of devices, hardware and software points provided. Network area controllers are same as remote controller units (RCU).
- G. The control systems shall be designed such that each mechanical system shall operate under stand-alone mode. Temperature Controls contractor shall provide controllers for each mechanical system. In the event of a network communication failure, or the loss of any other controller, the control system shall continue to operate independently. Failure of the ECC shall have no effect on the field controllers, including those involved with global strategies.
- H. The Top End of the NAC shall communicate using American Society of Heating and Refrigerating Engineers/American National Standards Institute (ASHRAE/ANSI) Standard 135(BACnet) protocol. The NAC shall reside on the BACnet/IP Ethernet (ISO 8802-3) local area network, and provide information via standard BACnet object types and application services.
- I. The intent of this specification is to provide a connection to the existing control system.
 - 1. Power wiring shall not be run in conduit with communications trunk wiring or signal or control wiring operating at 100 volts or less.

1.2 RELATED WORK

- A. Section 28 31 00, FIRE DETECTION AND ALARM.
- B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.
- C. Section 21 13 16, DRY PIPE FIRE-SUPPRESSION SYSTEMS.
- D. Section 23 21 13, HYDRONIC PIPING and Section 23 22 13, STEAM AND CONDENSATE HEATING PIPING.
- E. Section 23 31 00, HVAC DUCTS AND CASINGS.
- F. Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.
- G. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- H. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS.
- I. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES
 (600 VOLTS AND BELOW).

J. Section 26 27 26, WIRING DEVICES.

1.3 DEFINITION

- A. Algorithm: A logical procedure for solving a recurrent mathematical problem; A prescribed set of well-defined rules or processes for the solution of a problem in a finite number of steps.
- B. ACU: Auxiliary Control Unit (ACU) used for controls of air handling units, reports to RCU.
- C. Analog: A continuously varying signal value (e.g., temperature, current, velocity etc.
- D. BACnet: Building Automation Control Network Protocol, ASHRAE Standard 135.
- E. Baud: It is a signal change in a communication link. One signal change can represent one or more bits of information depending on type of transmission scheme. Simple peripheral communication is normally one bit per Baud. (e.g., Baud rate = 78,000 Baud/sec is 78,000 bits/sec, if one signal change = 1 bit).
- F. Binary: A two-state system where a high signal level represents an "ON" condition and an "OFF" condition is represented by a low signal level.
- G. BMP or bmp: Suffix, computerized image file, used after the period in a DOS-based computer file to show that the file is an image stored as a series of pixels.
- H. Bus Topology: A network topology that physically interconnects workstations and network devices in parallel on a network segment.
- I. Control Unit (CU): Generic term for any controlling unit, stand-alone, microprocessor based, digital controller residing on secondary LAN or Primary LAN, used for local controls or global controls. In this specification, there are three types of control units are used; Unitary Control Unit (UCU), Auxiliary Control Unit (ACU), and Remote Control Unit (RCU).
- J. Deadband: A temperature range over which no heating or cooling is supplied, i.e., 22-25 degrees C (72-78 degrees F), as opposed to a single point change over or overlap).
- K. Diagnostic Program: A software test program, which is used to detect and report system or peripheral malfunctions and failures. Generally, this system is performed at the initial startup of the system.
- L. Direct Digital Control (DDC): Microprocessor based control including Analog/Digital conversion and program logic. A control loop or subsystem in which digital and analog information is received and

processed by a microprocessor, and digital control signals are generated based on control algorithms and transmitted to field devices in order to achieve a set of predefined conditions.

- M. Distributed Control System: A system in which the processing of system data is decentralized and control decisions can and are made at the subsystem level. System operational programs and information are provided to the remote subsystems and status is reported back to the Engineering Control Center. Upon the loss of communication with the Engineering Control center, the subsystems shall be capable of operating in a stand-alone mode using the last best available data.
- N. Download: The electronic transfer of programs and data files from a central computer or operation workstation with secondary memory devices to remote computers in a network (distributed) system.
- O. DXF: An AutoCAD 2-D graphics file format. Many CAD systems import and export the DXF format for graphics interchange.
- P. Electrical Control: A control circuit that operates on line or low voltage and uses a mechanical means, such as a temperature sensitive bimetal or bellows, to perform control functions, such as actuating a switch or positioning a potentiometer.
- Q. Electronic Control: A control circuit that operates on low voltage and uses a solid-state components to amplify input signals and perform control functions, such as operating a relay or providing an output signal to position an actuator.
- R. Engineering Control Center (ECC): The centralized control point for the intelligent control network. The ECC comprises of personal computer and connected devices to form a single workstation.
- S. Ethernet: A trademark for a system for exchanging messages between computers on a local area network using coaxial, fiber optic, or twisted-pair cables.
- T. Firmware: Firmware is software programmed into read only memory (ROM) chips. Software may not be changed without physically altering the chip.
- U. FTT-10: Echelon Transmitter-Free Topology Transceiver.
- V. GIF: Abbreviation of Graphic interchange format.
- W. Graphic Program (GP): Program used to produce images of air handler systems, fans, chillers, pumps, and building spaces. These images can be animated and/or color-coded to indicate operation of the equipment.

- X. Graphic Sequence of Operation: It is a graphical representation of the sequence of operation, showing all inputs and output logical blocks.
- Y. I/O Unit: The section of a digital control system through which information is received and transmitted. I/O refers to analog input (AI, digital input (DI), analog output (AO) and digital output (DO). Analog signals are continuous and represent temperature, pressure, flow rate etc, whereas digital signals convert electronic signals to digital pulses (values), represent motor status, filter status, on-off equipment etc.
- Z. I/P: Internet Protocol-global network, connecting workstations and other host computers, servers etc. to share the information.
- AA. JPEG: A standardized image compression mechanism stands for Joint Photographic Experts Group, the original name of the committee that wrote the standard.
- BB. Local Area Network (LAN): A communication bus that interconnects operator workstation and digital controllers for peer-to-peer communications, sharing resources and exchanging information.
- CC. LonMark: An association comprising of suppliers and installers of LonTalk products. The Association provides guidelines for the implementation of the LonTalk protocol to ensure interoperability through Standard implementation.
- DD. LonTalk: An open standard protocol developed by the Echelon Corporation that uses a "Neuron Chip" for communication.
- EE. LonWorks: Network technology developed by the Echelon Corporation.
- FF. Network: A set of computers or other digital devices communicating with each other over a medium such as wire, coax, fiber optics cable etc.
- GG. Network Area Controller: Digital controller, supports a family of auxiliary control units and unitary control units, and communicates with peer-to-peer network for transmission of global data.
- HH. Network Repeater: A device that receives data packet from one network and rebroadcasts to another network. No routing information is added to the protocol.
- II. MS/TP: Master-slave/token-passing.
- JJ. Operating system (OS): Software, which controls the execution of computer application programs.
- KK. PCX: File type for an image file. When photographs are scanned onto a personal computer they can be saved as PCX files and viewed or changed by a special application program as Photo Shop.

- LL. Peripheral: Different components that make the control system function as one unit. Peripherals include monitor, printer, and I/O unit.
- MM. Peer-to-Peer: A networking architecture that treats all network stations as equal partners.
- NN. PICS: Protocol Implementation Conformance Statement.
- 00. UCU: Unitary Control Unit, digital controller, dedicated to a specific piece of equipment, such as VAV boxes, chillers, fan coil units, heat exchangers etc.

1.4 QUALITY ASSURANCE

- A. Criteria:
 - The Controls and Instrumentation System Contractor shall be a primary equipment manufacturer-owned branch office that is regularly engaged in the engineering, programming, installation and service of total integrated Facility Management Systems of similar size, scope and complexity to the EEC specified in this Contract. Distributors, manufacturer's representatives and wholesalers will not be acceptable.
 - 2. Single Source Responsibility of subcontractor: The Contractor shall obtain hardware and software supplied under this Section and delegates the responsibility to a single source controls installation subcontractor. The controls subcontractor shall be responsible for the complete design, installation, and commissioning of the system. The controls subcontractor shall be in the business of design, installation and service of such building automation control systems similar in size and complexity.
 - 3. Equipment and Materials: Equipment and materials shall be cataloged products of manufacturers regularly engaged in production and installation of HVAC control systems. Products shall be manufacturer's latest standard design and have been tested and proven in actual use.
 - 4. The controls subcontractor shall provide a list of no less than five similar projects which have building control systems as specified in this Section. These projects must be on-line and functional such that the Department of Veterans Affairs (VA) representative would observe the control systems in full operation.
 - 5. The controls subcontractor shall have (minimum of three years) experience in design and installation of building automation systems similar in performance to those specified in this Section. Provide

evidence of experience by submitting resumes of the project manager, the local branch manager, project engineer, the application engineering staff, and the electronic technicians who would be involved with the supervision, the engineering, and the installation of the control systems. Training and experience of these personnel shall not be less than three years. Failure to disclose this information will be a ground for disgualification of the supplier.

- The controls subcontractor shall have in-place facility within 50 miles with technical staff, spare parts inventory for the next five (5) years, and necessary test and diagnostic equipment to support the control systems.
- 7. Provide a competent and experienced Project Manager employed by the Controls Contractor. The Project Manager shall be supported as necessary by other Contractor employees in order to provide professional engineering, technical and management service for the work. The Project Manager shall attend scheduled Project Meetings as required and shall be empowered to make technical, scheduling and related decisions on behalf of the Controls Contractor.
- B. Codes and Standards:
 - 1. All work shall conform to the applicable Codes and Standards.
 - Electronic equipment shall conform to the requirements of FCC Regulation, Part 15, Governing Radio Frequency Electromagnetic Interference, and be so labeled.
 - 3. Peer-to-peer controllers, unitary controllers shall conform to the requirements of UL 916, Category PAZX.

1.5 PERFORMANCE

- A. The system shall conform to the following:
 - Object Command: The maximum time between the command of a binary object by the operator and the reaction by the device shall be (10) seconds. Analog objects shall start to adjust within (3) seconds.
 - 2. Object Scan: All changes of state and change of analog values shall be transmitted over the high-speed network such that any data used or displayed at a controller or work-station will be current, within the prior (10) seconds.
 - Alarm Response Time: The maximum time from when an object goes into alarm to when it is annunciated at the workstation shall not exceed (10) seconds.

- 4. Program Execution Frequency: Custom and standard applications shall be capable of running as often as once every (5) seconds. The Contractor shall be responsible for selecting execution times consistent with the mechanical process under control.
- 5. Performance: Programmable Controllers shall be able to execute DDC PID control loops at a selectable frequency from at least once every five (5) seconds. The controller shall scan and update the process value and output generated by this calculation at this same frequency.
- 6. Multiple Alarm Annunciations: All workstations on the network shall receive alarms within (5) seconds of each other.

7.	Reporting A	Accui	cacy:	Listed	below	are	minim	um accepta	able	reporting
	accuracies	for	all	values	reporte	ed by	the s	specified	syst	cem:

Measured Variable	Reported Accuracy
Space temperature	±0.5 degrees C (±1 degrees F)
Ducted air temperature	±1.0 degrees C [±2 degrees F]
Outdoor air temperature	±1.0 degrees C [±2 degrees F]
Water temperature	±0.5 degrees C [±1 degrees F]
Relative humidity	±2 percent RH
Water flow	±5 percent of full scale
Air flow (terminal)	±10 percent of reading
Air flow (measuring stations)	±5 percent of reading
Air pressure (ducts)	±25 Pa [±0.1 "W.G.]
Air pressure (space)	±3 Pa [±0.001 "W.G.]
Water pressure	±2 percent of full scale *Note 1
Electrical Power	5 percent of reading

Note 1: for both absolute and differential pressure

1.6 WARRANTY

- A. Labor and materials for control systems shall be warranted for a period as specified under Warranty in FAR clause 52.246-21.
- B. Control system failures during the warranty period shall be adjusted, repaired, or replaced at no cost or reduction in service to the owner. The system includes all computer equipment, transmission equipment, and all sensors and control devices.
- C. Controls and Instrumentation subcontractor shall be responsible for temporary operations and maintenance of the control systems during the

construction period until final commissioning, training of facility operators and acceptance of the project by VA.

1.7 SUBMITTALS

- A. Submit shop drawings in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's literature and data for all components including the following:
 - 1. A wiring diagram for each type of input device and output device including DDC controllers, modems, repeaters, etc. Diagram shall show how the device is wired and powered, showing typical connections at the digital controllers and each power supply, as well as the device itself. Show for all field connected devices, including but not limited to, control relays, motor starters, electric or electronic actuators, and temperature pressure, flow and humidity sensors and transmitters.
 - 2. A diagram of each terminal strip, including digital controller terminal strips, terminal strip location, termination numbers and the associated point names.
 - 3. Control dampers and control valves schedule, including the size and pressure drop.
 - Installation instructions for smoke dampers and combination smoke/fire dampers, if furnished.
 - 5. Catalog cut sheets of all equipment used. This includes, but is not limited to DDC controllers, panels, peripherals, airflow measuring stations and associated components, and auxiliary control devices such as sensors, actuators, and control dampers. When manufacturer's cut sheets apply to a product series rather than a specific product, the data specifically applicable to the project shall be highlighted. Each submitted piece of literature and drawings should clearly reference the specification and/or drawings that it supposed to represent.
 - Sequence of operations for each HVAC system and the associated control diagrams. Equipment and control labels shall correspond to those shown on the drawings.
 - 7. Color prints of proposed graphics with a list of points for display.
 - 8. Furnish PICS for each BACNET compliant device.
- C. Product Certificates: Compliance with Article, QUALITY ASSURANCE.
- D. As Built Control Drawings:

- Furnish three (3) copies of as-built drawings for each control system. The documents shall be submitted for approval prior to final completion.
- 2. Furnish one (1) stick set of applicable control system prints for each mechanical system for wall mounting. The documents shall be submitted for approval prior to final completion.
- 3. Furnish one (1) CD-ROM in CAD DWG and/or .DXF format for the drawings noted in subparagraphs above.
- E. Operation and Maintenance (O/M) Manuals):
 - 1. Submit in accordance with Article, INSTRUCTIONS, in Specification Section 01 00 00, GENERAL REQUIREMENTS.
 - 2. Include the following documentation:
 - a. General description and specifications for all components, including logging on/off, alarm handling, producing trend reports, overriding computer control, and changing set points and other variables.
 - b. Detailed illustrations of all the control systems specified for ease of maintenance and repair/replacement procedures, and complete calibration procedures.
 - c. One copy of the final version of all software provided including operating systems, programming language, operator workstation software, and graphics software.
 - d. Complete troubleshooting procedures and guidelines for all systems.
 - e. Complete operating instructions for all systems.
 - f. Recommended preventive maintenance procedures for all system components including a schedule of tasks for inspection, cleaning and calibration. Provide a list of recommended spare parts needed to minimize downtime.
 - g. Licenses, guaranty, and other pertaining documents for all equipment and systems.
 - h. Training Manuals: Submit the course outline and training material to the Owner for approval three (3) weeks prior to the training to VA facility personnel. These persons will be responsible for maintaining and the operation of the control systems, including programming. The Owner reserves the right to modify any or all of the course outline and training material.
- F. Submit Performance Report to COTR prior to final inspection.

1.8 INSTRUCTIONS

- A. Instructions to VA operations personnel: Perform in accordance with Article, INSTRUCTIONS, in Specification Section 01 00 00, GENERAL REQUIREMENTS, and as noted below.
 - First Phase: Formal instructions to the VA facilities personnel for a total of 16 hours, conducted sometime between the completed installation and prior to the performance test period of the control system, at a time mutually agreeable to the Contractor and the VA.
 - 2. Second Phase: This phase of training shall comprise of on the job training during start-up, checkout period, and performance test period. VA facilities personnel will work with the Contractor's installation and test personnel on a daily basis during start-up and checkout period. During the performance test period, controls subcontractor will provide 8 hours of instructions to the VA facilities personnel.
 - The O/M Manuals shall contain approved submittals as outlined in Article 1.7, SUBMITTALS. The Controls subcontractor will review the manual contents with VA facilities personnel during second phase of training.
 - 4. Training by independent or franchised dealers who are not direct employees of the controls supplier will not be acceptable.

1.9 PROJECT CONDITIONS (ENVIRONMENTAL CONDITIONS OF OPERATION)

- A. The ECC and peripheral devices and system support equipment shall be designed to operate in ambient condition of 20 to 35 degrees C (65 to 90 degrees F) at a relative humidity of 20 to 80 percent noncondensing.
- B. The CUs and associated equipment used in controlled environment shall be mounted in NEMA 1 enclosures for operation at 0 to 50 degrees C (32 to 122 degrees F) at a relative humidity of 10 to 90 percent noncondensing.
- C. The CUs used outdoors shall be mounted in NEMA 4 waterproof enclosures, and shall be rated for operation at -40 to 65 degrees C (-40 to 150 degrees F).
- D. All electronic equipment shall operate properly with power fluctuations of plus 10 percent to minus 15 percent of nominal supply voltage.
- E. Sensors and controlling devices shall be designed to operate in the environment, which they are sensing or controlling.

1.10 APPLICABLE PUBLICATIONS

-		
A.		w form a part of this specification to the
	extent referenced. The publi	cations are referenced in the text by the
	basic designation only.	
в.	. American Society of Heating,	Refrigerating, and Air-Conditioning
	Engineers (ASHRAE):	
	Standard 135-04BACN	ET Building Automation and Control Networks
C.	. American Society of Mechanic	al Engineers (ASME):
	B16.18-01Cast	Copper Alloy Solder Joint Pressure
	Fitt	ings.
	B16.22-01Wrou	ght Copper and Copper Alloy Solder Joint
	Pres	sure Fittings.
	BPVC-CC-N-04Boil	er and Pressure Vessel Code
D.	. American Society of Testing	Materials (ASTM):
	B32-04Stan	dard Specification for Solder Metal
	B88-03Stan	dard Specifications for Seamless Copper
	Wate	r Tube
	B88M-05Stan	dard Specification for Seamless Copper
	Wate	r Tube (Metric)
	B280-03Stan	dard Specification for Seamless Copper Tube
	for	Air-Conditioning and Refrigeration Field
	Serv	ice
	D2737-03Stan	dard Specification for Polyethylene (PE)
	Plas	tic Tubing
Ε.	. Federal Communication Commis	sion (FCC):
	Rules and Regulations Title	47 Chapter 1-2001 Part 15Radio Frequency
	Devi	ces.
F.	. Institute of Electrical and	Electronic Engineers (IEEE):
	802.3-05Info	rmation Technology-Telecommunications and
	Info	rmation Exchange between Systems-Local and
	Metr	opolitan Area Networks- Specific
	Requ	irements-Part 3: Carrier Sense Multiple
	Acce	ss with Collision Detection (CSMA/CD)
	Acce	ss method and Physical Layer Specifications
G.	. Instrument Society of Americ	a (ISA):
	7.0.01-1996Qual	ity Standard for Instrument Air
H.	. National Fire Protection Ass	ociation (NFPA):
	70-2008Nati	onal Electric Code

90A-2009.....of Air-Conditioning and Ventilation Systems

I. Underwriter Laboratories Inc (UL):

94-06Tests for Flammability of Plastic Materials for
Parts and Devices and Appliances
294-05Access Control System Units
486A/486B-04Wire Connectors
555S-03Standard for Smoke Dampers
916-Rev 2-04Energy Management Equipment
1076-05 Units and Systems

PART 2 - PRODUCTS

2.1 CONTROLS SYSTEM ARCHITECTURE

- A. General
 - The Controls System shall utilize Metasys Extended Architecture. The Controls Systems shall consist of multiple Nodes and associated equipment connected by industry standard digital and communication network arrangements.
 - The Operator Workstations, Servers and principal network computer equipment shall be standard products of recognized major manufacturers available through normal PC and computer vendor channels - not "Clones" assembled by a third-party subcontractor.
 - Provide licenses for all software residing on and used by the Controls Systems and transfer these licenses to the Owner prior to completion.
 - 4. The networks shall, at minimum, comprise, as necessary, the following:
 - a. Network computer processing, data storage and communication equipment including Servers and digital data processors.
 - b. Routers, bridges, switches, hubs, modems, interfaces and the like communication equipment.
 - c. Active processing network area controllers connected to programmable field panels and controllers together with their power supplies and associated equipment.
 - d. Addressable elements, sensors, transducers and end devices.
 - e. Third-party equipment interfaces as required by the Contract Documents.
 - f. Other components required for a complete and working Control Systems as specified.

- B. The Specifications for the individual elements and component subsystems shall be minimum requirements and shall be augmented as necessary by the Contractor to achieve both compliance with all applicable codes, standards and to meet all requirements of the Contract Documents.
- C. Network Architecture
 - 1. The Controls Systems Application network shall utilize an open architecture capable of each and all of the following:
 - a. Utilizing standard Ethernet communications and operate at a minimum speed of 10/100 Mb/sec.
 - b. Connecting via BACNET with ANSI/ASHRAE Standard 135.
 - The networks shall utilize only copper and optical fiber communication media as appropriate and shall comply with applicable codes, ordinances and regulations.
 - 3. All necessary telephone lines, ISDN lines and internet Service Provider services and connections will be provided by the owner.
- D. Third Party Interfaces:
 - The Controls Systems shall include necessary hardware, equipment and software to allow data communications between the Controls Systems and building systems supplied by other trades.
 - 2. The other manufacturers and contractors supplying other associated systems and equipment will provide their necessary hardware, software and start-up at their cost and will cooperate fully with the Controls Contractor in a timely manner and at their cost to ensure complete functional integration.

2.2 DIRECT DIGITAL CONTROLLERS

- A. (NAC) Network Area Controllers shall be stand-alone, multi-tasking, multi-user, real-time digital processor complete with all hardware, software, and communications interfaces, power supplies. The Controls System shall be designed and implemented entirely for use and operation on the Internet. NACs shall have access to data within the industry standard IT network to the Data Server and other NACs as needed to accomplish required global control strategies.
 - NACs shall provide both standalone and networked direct digital control of mechanical and electrical building system controllers as required by the Specifications. The primary NAC shall support a minimum of [5,000] field points together with all associated features, sequences, schedules, applications required for a fully functional distributed processing operation.

- NACs shall monitor and report communication status to the Controls Systems Application. The Controls Systems shall provide a system advisory upon communication failure and restoration.
- 3. All NACs on the network shall be equipped with all software functionality necessary to operate the complete user interface, including graphics, via a Browser connected to the Node on the network or directly via a local port on the NAC.
- 4. All NAC shall be provided with face mounted LED type annunciation to continually display its operational mode, power and communications.
- 5. The controllers shall reside on the BACnet Ethernet (ISO 8802-3) local area network and provide Read (Initiate) and Write (Execute) services as defined in Clauses 15.5 and 15.8, respectively of ASHRAE Standard 135, to communicate BACnet objects. Objects supported shall include: Analog input, analog output, analog value, binary input, binary output, binary value, and device.
- 6. Each NAC shall be provided with the necessary un-interruptible power facilities to ensure its continued normal operation during periods of line power outages of, at minimum, 1-minute duration. Normal functionality shall include all normal software processing, communication with powered field devices and network communications with other powered Controls Systems NAC, Data Servers and OWS. Each NAC shall report its communication status to the Application. The Application shall provide a system advisory upon communication failure and restoration. Each NAC shall retain program, control algorithms, and setpoint information in non-volatile memory in the event of a power failure, and shall return to normal operation upon restoration of power.
- Each NAC shall have sufficient memory to support its operating system, database, and program requirements, including the following:
 a. Device and network management.
 - b. Data sharing.
 - c. Alarm and event management including custom alarm messages for each level alarm for the points noted in the I/O Schedule.
 - d. Energy management.
 - e. Historical trend data for points specified.
 - f. Maintenance report.
 - g. Scheduling.
 - h. Dial up and network communications.

i. Manual override monitoring.

- Each NAC shall support firmware upgrades without the need to replace hardware and shall have a minimum of 15 percent spare capacity of secondary system controllers, point capacity and programming functions.
- 9. Each NAC shall continuously perform self-diagnostics, communication diagnosis, and provide both local and remote annunciation of any detected component failures, low battery condition; and upon failure shall assume the predetermined failure mode.
- 10. Each NAC shall monitor the status of all overrides and inform the operator that automatic control has inhibited, and allow the operator to manually override automatic or centrally executed command.
- 11. Provide the capability to generate and modify the Controls Systems Application software-based sequences, database elements, associated operational definition information and user-required revisions to same at any designated Workstation together with the means to download same to the associated System Controllers.
- 12. In the event of loss of normal power, there shall be orderly shut down of the controllers to prevent the loss of database or software programming. When power is restored flash memory, battery backup or super capacitor will be automatically loaded into non-volatile flash memory and shall be incorporated for all programming data.
- B. Auxiliary Control Units (ACUs) shall be stand-alone, multi-tasking, multi-user, real time digital processor complete with all hardware, software and communication interfaces, power supplies, and input/output modular devices.
 - 1. ACUs shall either reside on the existing Metasys Network.
 - 2. All ACUs shall be provided with LED type annunciation to continually display its operational mode, power and communications.
 - 3. Each ACU shall have sufficient memory to support its operating system, database including the following:
 - a. Data sharing.
 - b. Device and network management.
 - c. Alarm and event management.
 - d. Scheduling.
 - e. Energy Management.

- 4. Each ACU shall support firmware upgrades without the need to replace hardware and shall have a minimum of 15 percent spare capacity of I/O functions. The type of spares shall be in the same proportion as the implemented functions on the controller, but in no case there shall be less than one point of each implemented I/O type.
- 5. Each ACU shall continuously perform self-diagnostics, communication diagnosis, and provide both local and remote annunciation of any detected component failures, low battery condition; and upon failure shall assume the predetermined failure mode.
- 6. In the event of loss of normal power, there shall be orderly shut down of the controllers to prevent the loss of database or software programming. When power is restored flash memory, battery backup or super capacitor will be automatically loaded into non-volatile flash memory and shall be incorporated for all programming data.
- C. Unitary Control Units (UCUs) shall be microprocessor-based. They shall be capable of stand-alone operation, continuing to provide stable control functions if communication is lost with the rest of the system.
 - Unitary Control Units shall either reside on the existing Metasys Network.
 - Each UCU shall have sufficient memory to support its own operating system, including data sharing.
 - 3. All UCUs shall be provided with LED type annunciation to continually display its operational mode, power and communications.
 - 4. In the event of loss of normal power, there shall be orderly shut down of the controllers to prevent the loss of database or software programming. When power is restored flash memory, battery backup or super capacitor will be automatically loaded into non-volatile flash memory and shall be incorporated for all programming data.
- D. Provide I/O module that connects sensors and actuators onto the field bus network for use by the direct digital controllers. I/O devices shall support the communication technology specified for each controller.
 - Analog input shall allow the monitoring of low voltage (0-10 VDC), current (4-20 ma), or resistance signals (thermistor, RTD). Analog input shall be compatible with, and field configurable to commonly available sensing devices. Analog output shall provide a modulating signal for these control devices.

- 2. Binary inputs shall allow the monitoring of on/off signals from remote devices. Binary inputs shall provide a wetting current of at least 12 milliamps to be compatible with commonly available control devices. Binary outputs shall provide on/off operation, or a pulsed low voltage signal for pulse width modulation control. Outputs shall be selectable for either normally open or normally closed operation.
- 3. Binary outputs on remote and auxiliary controllers shall have 3position (on/off/auto) override switches and status lights. Analog outputs on remote and auxiliary controllers shall have status lights and a 2-position (auto/manual) switch and manually adjustable potentiometer for manual override.
- 4. Each output point shall be provided with a light emitting diode (LED) to indicate status of outputs.
- E. Communication Ports:
 - NACs controllers in the DDC systems shall be connected in a system local area network using protocol defined by ASHRAE Standard 135, BACnet protocol.
 - 2. The control supplier shall provide connectors, repeaters, hubs, and routers necessary for inter-network communication.
 - 3. Minimum baud rate between the peer-to-peer controllers in the system LAN shall be maintained at the rate of 10 Mbps. Minimum baud for the low level controllers between UCUs and ACUs, ACUs and NAC's shall be maintained at the rate of 76 Kbps.
 - 4. Provide RS-232 port with DB-9 or RJ-11 connector for communication with each controller that will allow direct connection of standard printers, operator terminals, modems, and portable laptop operator's terminal. Controllers shall allow temporary use of portable devices without interrupting the normal operation of permanently connected modems, printers or terminals.
 - 5. Database, such as points; status information, reports, system software, custom programs of any one controller shall be readable by any other controller on the network.
- F. Diagnostic Devices (DD):
 - Provide a laptop computer capable of accessing all system data. This device may be connected to any point on the system network or may be connected directly to any digital controller for programming, setup, and troubleshooting.

a. 48 X CD RW Drive.

- b. 56K Internal Modem.
- c. 32MB video memory graphics.
- d. Ethernet IP network card.
- e. Operating system compatible with PC Microsoft XP professional listed under Operator Workstation.
- G. Electric Outlet: Provide a single phase, 120 VAC electrical receptacles inside or within 2 meters (6 feet) of the NAC and ACU enclosures for use with test equipment.
- H. Spare Equipment:
 - Provide spare digital controller (CU) boards and spare I/O boards as required. It shall be possible for trained hospital personnel to replace CU boards and load software via the Laptop computer or the ECC.
 - Provide a minimum of one spare digital controller board of each type and associated parts including batteries to make at least one complete set of DDC control equipment spares.
 - 3. If I/O boards are separate from the CU boards, provide two spare I/O boards for each spare CU board provided above.

2.3 DIRECT DIGITAL CONTROLLER SOFTWARE

- A. The software programs specified in this section shall be commercially available, concurrent, multi-tasking operating system and support the use of software application that operates under DOS or Microsoft Windows.
- B. All points shall be identified by up to 30-character point name and 16character point descriptor. The same names shall be used at the operator workstation.
- C. All control functions shall execute within the stand-alone control units via DDC algorithms. The VA shall be able to customize control strategies and sequences of operations defining the appropriate control loop algorithms and choosing the optimum loop parameters.
- D. All CU's shall be capable of being programmed to utilize stored default values for assured fail-safe operation of critical processes. Default values shall be invoked upon sensor failure or, if the primary value is normally provided by the central or another CU, or by loss of bus communication. Individual application software packages shall be structured to assume a fail-safe condition upon loss of input sensors. Loss of an input sensor shall result in output of a sensor-failed

message at the ECC workstation. Each ACU and RCU shall have capability for local readouts of all functions. The UCUs shall be read remotely.

- E. All DDC control loops shall be able to utilize any of the following control modes:
 - 1. Two position (on-off, slow-fast) control.
 - 2. Proportional control.
 - 3. Proportional plus integral (PI) control.
 - 4. Proportional plus integral plus derivative (PID) control. All PID programs shall automatically invoke integral wind up prevention routines whenever the controlled unit is off, under manual control of an automation system or time initiated program.
 - 5. Automatic tuning of control loops.
- F. System Security: Operator access shall be secured using individual password and operator's name. Passwords shall restrict the operator to the level of object, applications, and system functions assigned to him. A minimum of six (6) levels of security for operator access shall be provided.
- G. Application Software: The CUs shall provide the following programs as a minimum for the purpose of optimizing energy consumption while maintaining comfortable environment for occupants. All application software shall reside and run in the system digital controllers. Editing of the application shall occur at the operator workstation or via a portable workstation, when it is necessary, to access directly the programmable unit.
 - 1. Economizer: An economizer program shall be provided for VAV systems. This program shall control the position of air handler relief, return, and outdoors dampers. If the outdoor air dry bulb temperature and humidity fall below changeover set point the energy control center will modulate the dampers to provide 100 percent outdoor air. The operator shall be able to override the economizer cycle and return to minimum outdoor air operation at any time.
 - 2. Event Scheduling: Provide a comprehensive menu driven program to automatically start and stop designated points or a group of points according to a stored time. This program shall provide the capability to individually command a point or group of points. When points are assigned to one common load group it shall be possible to assign variable time advances/delays between each successive start or stop within that group. Scheduling shall be calendar based and

advance schedules may be defined up to one year in advance. Advance schedule shall override the day-to-day schedule. The operator shall be able to define the following information:

- a. Time, day.
- b. Commands such as on, off, auto.
- c. Time delays between successive commands.
- d. Manual overriding of each schedule.
- e. Allow operator intervention.
- 3. Alarm Reporting: The operator shall be able to determine the action to be taken in the event of an alarm. Alarms shall be routed to the appropriate workstations based on time and events. An alarm shall be able to start programs, login the event, print and display the messages. The system shall allow the operator to prioritize the alarms to minimize nuisance reporting and to speed operator's response to critical alarms. A minimum of six (6) priority levels of alarms shall be provided for each point.
- 4. Remote Communications: The system shall have the ability to dial out in the event of an alarm to workstations and alpha-numeric pagers. The alarm message shall include the name of the calling location, the device that generated the alarm, and the alarm message itself. The operator shall be able to remotely access and operate the system using dial up communications. Remote access shall allow the operator to function the same as local access.
- 5. Maintenance Management (PM): The program shall monitor equipment status and generate maintenance messages based upon the operators defined equipment run time, starts, and/or calendar date limits. A preventative maintenance alarm shall be printed indicating maintenance requirements based on pre-defined run time. Each preventive message shall include point description, limit criteria and preventative maintenance instruction assigned to that limit. A minimum of 480-character PM shall be provided for each component of units such as air handling units.

2.4 SENSORS (AIR, WATER AND STEAM)

- A. Temperature and Humidity Sensors:
 - Electronic Sensors: Provide all remote sensors as required for the systems. All sensors shall be vibration and corrosion resistant for wall, immersion, and/or duct mounting.

- Temperature Sensors: Thermistor type for terminal units and Resistance Temperature Device (RTD) with an integral transmitter type for all other sensors.
 - Duct sensors shall be rigid or averaging type as shown on drawings. Averaging sensor shall be a minimum of 1 linear ft of sensing element for each sq ft of cooling coil face area.
 - 2) Immersion sensors shall be provided with a separable well made of stainless steel, bronze or monel material. Pressure rating of well is to be consistent with the system pressure in which it is to be installed.
 - 3) Space sensors shall be equipped with set-point adjustment, override switch, display, and/or communication port as shown on the drawings. Match room thermostats, locking cover.
 - 4) Outdoor air temperature sensors shall have watertight inlet fittings and be shielded from direct sunlight.
 - Room security sensors shall have stainless steel cover plate with insulated back and security screws.
 - 6) Wire: Twisted, shielded-pair cable.
 - 7) Output Signal: 4-20 ma.
- b. Humidity Sensors: Bulk polymer sensing element type.
 - 1) Duct and room sensors shall have a sensing range of 20 to 80 percent with accuracy of \pm 2 to \pm 5 percent RH, including hysteresis, linearity, and repeatability.
 - Outdoor humidity sensors shall be furnished with element guard and mounting plate and have a sensing range of 0 to 100 percent RH.
 - 3) 4-20 ma continuous output signal.
- c. Static Pressure Sensors: Non-directional, temperature compensated.
 - 1) 4-20 ma output signal.
 - 2) 0 to 5 inches wg for duct static pressure range.
 - 3) 0 to 0.25 inch wg for Building static pressure range.

2.6 CONTROL CABLES

As specified in Division 26.

2.7 THERMOSTATS AND HUMIDISTATS

A. Room thermostats controlling heating and cooling devices shall have three modes of operation (heating - null or dead band - cooling). Wall mounted thermostats shall have // polished or brushed aluminum finish, setpoint range and temperature display and external adjustment:

- 1. Electronic Thermostats: Solid-state, microprocessor based, programmable to daily, weekend, and holiday schedules.
 - a. Public Space Thermostat: Public space temperature sensor shall be a platinum sensor and shall have a visible means of set point adjustment, via slider adjustment.
 - b. Patient Room Thermostats: Platinum sensor with set point adjustment and an indicator.
 - c. Mental Health Patient Room Sensors: Electronic duct sensor as noted under Article 2.4.
 - d. Battery replacement without program loss.
- B. Strap-on thermostats shall be enclosed in a dirt-and-moisture proof housing with fixed temperature switching point and single pole, double throw switch.
- C. Freezestats shall have a minimum of 300 mm (one linear foot) of sensing element for each 0.093 square meter (one square foot) of coil area. A freezing condition at any increment of 300 mm (one foot) anywhere along the sensing element shall be sufficient to operate the thermostatic element.

2.8 FINAL CONTROL ELEMENTS AND OPERATORS

- A. Fail Safe Operation: Control valves and dampers shall provide "fail safe" operation in either the normally open or normally closed position as required for freeze, moisture, and smoke or fire protection.
- B. Spring Ranges: Range as required for system sequencing and to provide tight shut-off.
- C. Power Operated Control Dampers (other than VAV Boxes): Factory fabricated, balanced type dampers. All modulating dampers shall be opposed blade type and gasketed. Blades for two-position, duct-mounted dampers shall be parallel, airfoil (streamlined) type for minimum noise generation and pressure drop.
 - Leakage: Except as specified in subparagraph 2 below, maximum leakage in closed position shall not exceed 7 L/S (15 CFMs) differential pressure for outside air and exhaust dampers and 200 L/S/ square meter (40 CFM/sq. ft.) at 50 mm (2 inches) differential pressure for other dampers.
 - 2. Frame shall be galvanized steel channel with seals as required to meet leakage criteria.

- 3. Blades shall be galvanized steel or aluminum, 200 mm (8 inch) maximum width, with edges sealed as required.
- 4. Bearing shall be nylon, bronze sleeve or ball type.
- 5. Hardware shall be zinc-plated steel. Connected rods and linkage shall be non-slip. Working parts of joints shall be brass, bronze, nylon or stainless steel.
- D. Operators shall be electric operating at 140 kPa (20 psig) as required for proper operation.
 - 1. See drawings for required control operation.
 - 2. Metal parts shall be aluminum, mill finish galvanized steel, or zinc plated steel or stainless steel.
 - 3. Maximum air velocity and pressure drop through free area the dampers:
 - a. Smoke damper in air handling unit; 210 meter per minute (700 fpm).
 - b. Duct mounted damper; 600 meter per minute (2000 fpm).
 - c. Maximum static pressure loss, 50 Pascal (0.20 inches water gage).
- E. Smoke Dampers: Dampers and operators are specified in Section 23 31 00, HVAC DUCTS AND CASINGS. Control of these dampers is specified under this Section.
- F. Control Valves:
 - Valves shall be rated for a minimum of 150 percent of system operating pressure at the valve location but not less than 900 kPa (125 psig).
 - 2. Valves 50 mm (2 inches) and smaller shall be bronze body with threaded or flare connections.
 - 3. Valves 60 mm (2 1/2 inches) and larger shall be bronze or iron body with flanged connections.
 - Brass or bronze seats except for valves controlling media above 100 degrees C (210 degrees F), which shall have stainless steel seats.
 - 5. Flow characteristics:
 - a. Three way valves shall have a linear relation or equal percentage relation of flow versus value position.
 - b. Two-way valves position versus flow relation shall be linear for steam and equal percentage for water flow control.
 - 6. Maximum pressure drop:
 - a. Two position steam control: 20 percent of inlet gauge pressure.

- b. Modulating Steam Control: 80 percent of inlet gauge pressure
 (acoustic velocity limitation).
- c. Modulating water flow control, greater of 3 meters (10 feet) of water or the pressure drop through the apparatus.
- d. Two position water valves shall be line size.
- G. Damper and Valve Operators and Relays:
 - Electric damper operator shall provide full modulating control of dampers. A linkage and pushrod shall be furnished for mounting the actuator on the damper frame internally in the duct or externally in the duct or externally on the duct wall, or shall be furnished with a direct-coupled design.

2.9 AIR FLOW CONTROL

A. Airflow and static pressure shall be controlled via digital controller (CUs) with inputs from airflow control measuring stations and static pressure inputs as specified. Controller outputs shall be true analog output signals to pneumatic positioners or variable frequency drives. Pulse width modulation outputs are not acceptable. The CUs shall include the capability to control via simple proportional (P) control, proportional plus integral (PI), proportional plus integral plus derivative (PID), and on-off. The airflow control programs shall be factory-tested programs that are documented in the literature of the control manufacturer.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. General:
 - Examine project plans for control devices and equipment locations; and report any discrepancies, conflicts, or omissions to COTR for resolution before proceeding for installation.
 - 2. Work Coordination: Section 00 72 00, GENERAL CONDITIONS.
 - Install equipment, piping, wiring /conduit parallel to or at right angles to building lines.
 - Install all equipment and piping in readily accessible locations. Do not run tubing and conduit concealed under insulation or inside ducts.
 - Mount control devices and conduit located on ducts and apparatus with external insulation on standoff support to avoid interference with insulation.

- Provide sufficient slack and flexible connections to allow for vibration of piping and equipment.
- 7. Run tubing and wire connecting devices on or in control cabinets parallel with the sides of the cabinet neatly racked to permit tracing.
- 8. Install equipment level and plum.
- B. Piping Installation:
 - 1. All piping associated with smoke control shall be hard drawn copper.
 - 2. Except for short apparatus connections, non-metallic tubing in all exposed locations, including mechanical rooms shall be protected from damage by installing the tubing in electric conduit or raceways. Provide protective grommet where tubing exits conduit.
 - Non-metallic tubing exposed to outdoors shall be protected by a sleeve or larger tubing.
 - In concealed but accessible locations such as above lay-in ceilings, non-metallic tubing may be run without conduit or raceway.
 - 5. All tubing which is not run in conduit or raceway, both metallic and non-metallic, shall be neatly routed and securely fastened to building structure at not more than 36-IN. intervals.
 - Welding shall be performed in accordance with Section 23 21 13, HYDRONIC PIPING and Section 23 22 13, STEAM AND CONDENSATE HEATING PIPING.
 - Label and identify control air piping in accordance with specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.
- C. Electrical Wiring Installation:
 - Install conduits and wiring in accordance with Specification Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS.
 - Install signal and communication cables in accordance with Specification Section 26 05 21, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW).
 - 3. Install conduit and wiring between operator workstation(s), digital controllers, electrical panels, indicating devices, instrumentation, miscellaneous alarm points, thermostats, and relays as shown on the drawings or as required under this section. All wiring shall be installed in conduits, except for wiring above accessible ceilings, which may be plenum rated cable with no conduit.

- 4. Install all electrical work required for a fully functional system and not shown on electrical plans or required by electrical specifications. Where low voltage power is required, provide suitable transformers.
- 5. Install all system components in accordance with local Building Code and National Electric Code.
 - a. Splices: Splices in shielded and coaxial cables shall consist of terminations and the use of shielded cable couplers. Terminations shall be in accessible locations. Cables shall be harnessed with cable ties.
 - b. Equipment: Fit all equipment contained in cabinets or panels with service loops, each loop being at least 300 mm (12 inches) long.
 Equipment for fiber optics system shall be rack mounted, as applicable, in ventilated, self-supporting, code gauge steel enclosure. Cables shall be supported for minimum sag.
 - c. Cable Runs: Keep cable runs as short as possible. Allow extra length for connecting to the terminal board. Do not bend flexible coaxial cables in a radius less than ten times the cable outside diameter.
 - d. Use vinyl tape, sleeves, or grommets to protect cables from vibration at points where they pass around sharp corners, through walls, panel cabinets, etc.
- Conceal cables, except in mechanical rooms and areas where other conduits and piping are exposed.
- 7. Permanently label or code each point of all field terminal strips to show the instrument or item served. Color-coded cable with cable diagrams may be used to accomplish cable identification.
- 8. Grounding: ground electrical systems per manufacturer's written requirements for proper and safe operation.
- D. Install Sensors and Controls:
 - 1. Temperature Sensors:
 - a. Install all sensors and instrumentation according to manufacturer's written instructions. Temperature sensor locations shall be readily accessible, permitting quick replacement and servicing of them without special skills and tools.
 - b. Calibrate sensors to accuracy specified, if not factory calibrated.

- c. Use of sensors shall be limited to its duty, e.g., duct sensor shall not be used in lieu of room sensor.
- d. Install room sensors permanently supported on wall frame. They shall be mounted at 1.5 meter (5.0 feet) above the finished floor.
- e. Mount sensors rigidly and adequately for the environment within which the sensor operates.
- f. Sensors used in mixing plenum shall be of the averaging of type. Averaging sensors shall be installed in a serpentine manner horizontally across duct. Each bend shall be supported with a capillary clip.
- g. All pipe mounted temperature sensors shall be installed in wells.
- h. All wires attached to sensors shall be air sealed in their conduits or in the wall to stop air transmitted from other areas affecting sensor reading.
- i. Permanently mark terminal blocks for identification. Protect all circuits to avoid interruption of service due to short-circuiting or other conditions. Line-protect all wiring that comes from external sources to the site from lightning and static electricity.
- 2. Pressure Sensors:
 - a. Install duct static pressure sensor tips facing directly downstream of airflow.
 - b. Install high-pressure side of the differential switch between the pump discharge and the check valve.
 - c. Install snubbers and isolation valves on steam pressure sensing devices.
- 3. Actuators:
 - Mount and link damper and valve actuators according to manufacturer's written instructions.
 - b. Check operation of damper/actuator combination to confirm that actuator modulates damper smoothly throughout stroke to both open and closed position.
 - c. Check operation of valve/actuator combination to confirm that actuator modulates valve smoothly in both open and closed position.
- 4. Flow Switches:

- a. Install flow switch according to manufacturer's written instructions.
- b. Mount flow switch a minimum of 5 pipe diameters up stream and 5 pipe diameters downstream or 600 mm (2 feet) whichever is greater, from fittings and other obstructions.
- c. Assure correct flow direction and alignment.
- d. Mount in horizontal piping-flow switch on top of the pipe.
- E. Installation of Network:
 - 1. Ethernet:
 - a. The network shall employ Ethernet LAN architecture, as defined by IEEE 802.3. The Network Interface shall be fully Internet Protocol (IP) compliant allowing connection to currently installed IEEE 802.3, Compliant Ethernet Networks.
 - b. The network shall directly support connectivity to a variety of cabling types. As a minimum provide the following connectivity:
 10 Base 2 (ThinNet RG-58 A/U Coaxial cabling with BNC connectors), 10 Base T (Twisted-Pair RJ-45 terminated UTP cabling).
 - 2. Third Party Interfaces: Contractor shall integrate real-time data from building systems by other trades and databases originating from other manufacturers as specified and required to make the system work as one system.
- F. Installation of Digital Controllers and Programming:
 - Provide a separate digital control panel for each major piece of equipment, such as air handling unit, chiller, pumping unit etc. Points used for control loop reset such as outdoor air, outdoor humidity, or space temperature could be located on any of the remote control units.
 - Provide sufficient internal memory for the specified control sequences and trend logging. There shall be a minimum of 25 percent of available memory free for future use.
 - 3. System point names shall be modular in design, permitting easy operator interface without the use of a written point index.
 - 4. Provide software programming for the applications intended for the systems specified, and adhere to the strategy algorithms provided.
 - 5. Provide graphics for each piece of equipment and floor plan in the building. This includes each chiller, cooling tower, air handling

unit, fan, terminal unit, boiler, pumping unit etc. These graphics shall show all points dynamically as specified in the point list.

3.2 SYSTEM VALIDATION AND DEMONSTRATION

- A. As part of final system acceptance, a System Demonstration is required (see below). Prior to start of this Demonstration, the contractor is to perform a complete Validation of all aspects of the Controls and Instrumentation System.
- B. Validation
 - 1. Prepare and submit for approval a Validation Test Plan including Test Procedures for the performance verification tests. Test Plan shall address all specified functions of the Engineering Control Center and all specified sequences of operation. Explain in detail actions and expected results used to demonstrate compliance with the requirements of this specification. Explain the method for simulating the necessary conditions of operation used to demonstrate performance of the system. Test Plan shall include a Test Check List to be used by the Installer's agent to check and initial that each test has been successfully completed. Deliver Test Plan documentation for the performance verification tests to the owner's representative 30 days prior to start of performance manual with performance verification test.
 - 2. After approval of the Validation Test Plan, Installer shall carry out all tests and procedures therein. Installer shall completely check out, calibrate, and test all connected hardware and software to insure that system performs in accordance with approved specifications and sequences of operation submitted. Installer shall complete and submit Test Check List.
- C. Demonstration
 - System operation and calibration to be demonstrated by the Installer in the presence of the Architect or Owner's representative on random samples of equipment as dictated by the Owner's representative. Should random sampling indicate improper commissioning, the owner reserves the right to subsequently witness complete calibration of the system at no addition cost to the owner.
 - Demonstrate to authorities that all required safeties and life safety functions are fully functional and complete.

- 3. Make accessible , personnel to provide necessary adjustments and corrections to systems as directed by balancing agency.
- 4. The following witnessed demonstrations of field control equipment shall be included:
 - a. Observe HVAC systems in shut down condition. Check dampers and valves for normal position.
 - b. Test application software for its ability to communicate with digital controllers, operator workstation, and uploading and downloading of control programs.
 - c. Demonstrate the software ability to edit the control program offline.
 - d. Demonstrate reporting of alarm conditions for each alarm and ensure that these alarms are received at the assigned location, including operator workstations.
 - e. Demonstrate ability of software program to function for the intended applications-trend reports, change in status etc.
 - f. Demonstrate via graphed trends to show the sequence of operation is executed in correct manner, and that the HVAC systems operate properly through the complete sequence of operation, e.g., seasonal change, occupied/unoccupied mode, and warm-up condition.
 - g. Demonstrate hardware interlocks and safeties functions, and that the control systems perform the correct sequence of operation after power loss and resumption of power loss.
 - h. Prepare and deliver to the VA graphed trends of all control loops to demonstrate that each control loop is stable and the set points are maintained.
 - i. Demonstrate that each control loop responds to set point adjustment and stabilizes within one (1) minute. Control loop trend data shall be instantaneous and the time between data points shall not be greater than one (1) minute.

- - - END - - -

SECTION 23 21 13

HYDRONIC PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

A. Water piping to connect HVAC equipment, including the following:

1.Heating hot water and drain piping.

2. Extension of domestic water make-up piping.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION: General mechanical requirements and items, which are common to more than one section of Division 23.
- D. Section 23 07 11, HVAC and BOILER PLANT INSULATION: Piping insulation.
- E. Section 23 23 00, REFRIGERANT PIPING: Refrigerant piping and refrigerants.
- F. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Temperature and pressure sensors and valve operators.

1.3 QUALITY ASSURANCE

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION, which includes welding qualifications.
- B. Submit prior to welding of steel piping a certificate of Welder's certification. The certificate shall be current and not more than one year old.
- C. For mechanical pressed sealed fittings, only tools of fitting manufacturer shall be used.
- D. Mechanical pressed fittings shall be installed by factory trained workers.
- E. All grooved joint couplings, fittings, valves, and specialties shall be the products of a single manufacturer. Grooving tools shall be the same manufacturer as the grooved components.
 - All castings used for coupling housings, fittings, valve bodies, etc., shall be date stamped for quality assurance and traceability.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Pipe and equipment supports.
 - 2. Pipe and tubing, with specification, class or type, and schedule.
 - Pipe fittings, including miscellaneous adapters and special fittings.
 - 4. Flanges, gaskets and bolting.
 - 5. Grooved joint couplings and fittings.
 - 6. Valves of all types.
 - 7. Strainers.
 - 8. Flexible connectors for water service.
 - 9. Pipe alignment guides.
 - 10. Expansion joints.
 - 11. Expansion compensators.
 - 12. All specified hydronic system components.
 - 13. Water flow measuring devices.
 - 14. Gages.
 - 15. Thermometers and test wells.
- C. Manufacturer's certified data report, Form No. U-1, for ASME pressure vessels:
 - 1. Expansion tanks.
- D. Submit the welder's qualifications in the form of a current (less than one year old) and formal certificate.
- E. Coordination Drawings: Refer to Article, SUBMITTALS of Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- F. As-Built Piping Diagrams: Provide drawing as follows for heating hot water system and other piping systems and equipment.
 - One wall-mounted stick file with complete set of prints. Mount stick file in the chiller plant or control room along with control diagram stick file.
 - 2. One complete set of reproducible drawings.
 - 3. One complete set of drawings in electronic Autocad and pdf format.

1.5 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. American National Standards Institute, Inc.

B. American Society of Mechanical Engineers/American National Standards Institute, Inc. (ASME/ANSI): B1.20.1-83(R2006).....Pipe Threads, General Purpose (Inch) B16.4-06.....Gray Iron Threaded FittingsB16.18-01 Cast Copper Alloy Solder joint Pressure fittings B16.23-02.....Cast Copper Alloy Solder joint Drainage fittings B40.100-05.....Pressure Gauges and Gauge Attachments C. American National Standards Institute, Inc./Fluid Controls Institute (ANSI/FCI): 70-2-2006.....Control Valve Seat Leakage D. American Society of Mechanical Engineers (ASME): B16.1-98.....Cast Iron Pipe Flanges and Flanged Fittings B16.3-2006.....Malleable Iron Threaded Fittings: Class 150 and 300 B16.4-2006.....Gray Iron Threaded Fittings: (Class 125 and 250) B16.5-2003.....Pipe Flanges and Flanged Fittings: NPS ½ through NPS 24 Metric/Inch Standard B16.9-07.....Factory Made Wrought Butt Welding Fittings B16.11-05.....Forged Fittings, Socket Welding and Threaded B16.18-01.....Cast Copper Alloy Solder Joint Pressure Fittings B16.22-01.....Wrought Copper and Bronze Solder Joint Pressure Fittings. B16.24-06.....Cast Copper Alloy Pipe Flanges and Flanged Fittings B16.39-06..... Malleable Iron Threaded Pipe Unions B16.42-06.....Ductile Iron Pipe Flanges and Flanged Fittings B31.1-08.....Power Piping E. American Society for Testing and Materials (ASTM): A47/A47M-99 (2004).....Ferritic Malleable Iron Castings A53/A53M-07.....Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless A106/A106M-08.....Standard Specification for Seamless Carbon Steel Pipe for High-Temperature Service

A126-04	.Standard Specification for Gray Iron Castings
	for Valves, Flanges, and Pipe Fittings
A183-03	Standard Specification for Carbon Steel Track Bolts and Nuts
A216/A216M-08	Standard Specification for Steel Castings,
	Carbon, Suitable for Fusion Welding, for High
	Temperature Service
A234/A234M-07	Piping Fittings of Wrought Carbon Steel and
	Alloy Steel for Moderate and High Temperature
	Service
A307-07	Standard Specification for Carbon Steel Bolts
	and Studs, 60,000 PSI Tensile Strength
A536-84 (2004)	Standard Specification for Ductile Iron Castings
A615/A615M-08	Deformed and Plain Carbon Steel Bars for
	Concrete Reinforcement
A653/A 653M-08	Steel Sheet, Zinc-Coated (Galvanized) or Zinc-
	Iron Alloy Coated (Galvannealed) By the Hot-Dip
	Process
В32-08	Standard Specification for Solder Metal
B62-02	Standard Specification for Composition Bronze or
	Ounce Metal Castings
B88-03	Standard Specification for Seamless Copper Water
	Tube
B209-07	Aluminum and Aluminum Alloy Sheet and Plate
C177-04	Standard Test Method for Steady State Heat Flux
	Measurements and Thermal Transmission Properties
	by Means of the Guarded Hot Plate Apparatus
C478-09	Precast Reinforced Concrete Manhole Sections
C533-07	Calcium Silicate Block and Pipe Thermal
	Insulation
C552-07	Cellular Glass Thermal Insulation
D3350-08	Polyethylene Plastics Pipe and Fittings
	Materials
C591-08	Unfaced Preformed Rigid Cellular
	Polyisocyanurate Thermal Insulation
D1784-08	Rigid Poly (Vinyl Chloride) (PVC) Compounds and
	Chlorinated Poly (Vinyl Chloride) (CPVC)
	Compound

D1785-06 Poly (Vinyl Chloride0 (PVC) Plastic Pipe, Schedules 40, 80 and 120 D2241-05 Poly (Vinyl Chloride) (PVC) Pressure Rated Pipe (SDR Series) F439-06 Standard Specification for Chlorinated Poly (Vinyl Chloride) (CPVC) Plastic Pipe Fittings, Schedule 80 F441/F441M-02 Standard Specification for Chlorinated Poly (Vinyl Chloride) (CPVC) Plastic Pipe, Schedules 40 and 80 F477-08 Elastomeric Seals Gaskets) for Joining Plastic Pipe F. American Water Works Association (AWWA): C110-08......Ductile Iron and Grey Iron Fittings for Water C203-02.....Coal Tar Protective Coatings and Linings for Steel Water Pipe Lines Enamel and Tape Hot Applied G. American Welding Society (AWS): B2.1-02.....Standard Welding Procedure Specification H. Copper Development Association, Inc. (CDA): CDA A4015-06.....Copper Tube Handbook I. Expansion Joint Manufacturer's Association, Inc. (EJMA): EMJA-2003..... Expansion Joint Manufacturer's Association Standards, Ninth Edition J. Manufacturers Standardization Society (MSS) of the Valve and Fitting Industry, Inc.: SP-67-02a.....Butterfly Valves SP-70-06.....Gray Iron Gate Valves, Flanged and Threaded Ends SP-71-05.....Gray Iron Swing Check Valves, Flanged and Threaded Ends SP-80-08.....Bronze Gate, Globe, Angle and Check Valves SP-85-02.....Cast Iron Globe and Angle Valves, Flanged and Threaded Ends SP-110-96.....Ball Valves Threaded, Socket-Welding, Solder Joint, Grooved and Flared Ends SP-125-00......Gray Iron and Ductile Iron In-line, Spring Loaded, Center-Guided Check Valves

K. National Sanitation Foundation/American National Standards Institute, Inc. (NSF/ANSI):

```
14-06.....Plastic Piping System Components and Related Materials
```

50-2009a.....Equipment for Swimming Pools, Spas, Hot Tubs and other Recreational Water Facilities – Evaluation criteria for materials, components, products, equipment and systems for use at recreational water facilities

61-2008..... Drinking Water System Components - Health Effects

L. Tubular Exchanger Manufacturers Association: TEMA 9th Edition, 2007

1.6 SPARE PARTS

- A. For mechanical pressed sealed fittings provide tools required for each pipe size used at the facility.
- PART 2 PRODUCTS

2.1 PIPE AND EQUIPMENT SUPPORTS, PIPE SLEEVES, AND WALL AND CEILING PLATES

A. Provide in accordance with Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.

2.2 PIPE AND TUBING

- A. Cooling Coil Condensate Drain Piping:
 - From air handling units: Copper water tube, ASTM B88, Type M, or schedule 40 PVC plastic piping.
 - From fan coil or other terminal units: Copper water tube, ASTM B88, Type L for runouts and Type M for mains.

2.3 FITTINGS FOR STEEL PIPE

- A. 50 mm (2 inches) and Smaller: Screwed or welded joints.
 - 1. Butt welding: ASME B16.9 with same wall thickness as connecting piping.
 - 2. Forged steel, socket welding or threaded: ASME B16.11.
 - 3. Screwed: 150 pound malleable iron, ASME B16.3. 125 pound cast iron, ASME B16.4, may be used in lieu of malleable iron. Bushing reduction of a single pipe size, or use of close nipples, is not acceptable.
 - 4. Unions: ASME B16.39.
 - 5. Water hose connection adapter: Brass, pipe thread to 20 mm (3/4 inch) garden hose thread, with hose cap nut.
- B. Welded Branch and Tap Connections: Forged steel weldolets, or branchlets and threadolets may be used for branch connections up to one

pipe size smaller than the main. Forged steel half-couplings, ASME B16.11 may be used for drain, vent and gage connections.

- C. Grooved Mechanical Pipe Couplings and Fittings (Contractor's Option): Grooved Mechanical Pipe Couplings and Fittings may be used, with cut or roll grooved pipe, in water service up to 110 degrees C (230 degrees F) in lieu of welded, screwed or flanged connections. All joints must be rigid type.
 - Grooved mechanical couplings: Malleable iron, ASTM A47 or ductile iron, ASTM A536, fabricated in two or more parts, securely held together by two or more track-head, square, or oval-neck bolts, ASTM A449 and A183.
 - 2. Gaskets: Rubber product recommended by the coupling manufacturer for the intended service.
 - 3. Grooved end fittings: Malleable iron, ASTM A47; ductile iron, ASTM A536; or steel, ASTM A53 or A106, designed to accept grooved mechanical couplings. Tap-in type branch connections are acceptable.

2.4 FITTINGS FOR COPPER TUBING

- A. Joints:
 - Solder Joints: Joints shall be made up in accordance with recommended practices of the materials applied. Apply 95/5 tin and antimony on all copper piping.
 - Contractor's Option: Mechanical press sealed fittings, double pressed type, NSF 50/61 approved, with EPDM (ethylene propylene diene monomer) non-toxic synthetic rubber sealing elements for up 65 mm (2-1/2 inch) and below are optional for above ground water piping only.
 - 3. Mechanically formed tee connection in water and drain piping: Form mechanically extracted collars in a continuous operation by drilling pilot hole and drawing out tube surface to form collar, having a height of not less than three times the thickness of tube wall. Adjustable collaring device shall insure proper tolerance and complete uniformity of the joint. Notch and dimple joining branch tube in a single process to provide free flow where the branch tube penetrates the fitting.
- B. Bronze Flanges and Flanged Fittings: ASME B16.24.
- C. Fittings: ANSI/ASME B16.18 cast copper or ANSI/ASME B16.22 solder wrought copper.

2.5 FITTINGS FOR PLASTIC PIPING

- A. Schedule 40, socket type for solvent welding.
- B. Schedule 40 PVC drain piping: Drainage pattern.
- C. Chemical feed piping for condenser water treatment: Chlorinated polyvinyl chloride (CPVC), Schedule 80, ASTM F439.

2.6 DIELECTRIC FITTINGS

- A. Provide where copper tubing and ferrous metal pipe are joined.
- B. 50 mm (2 inches) and Smaller: Threaded dielectric union, ASME B16.39.
- C. 65 mm (2 1/2 inches) and Larger: Flange union with dielectric gasket and bolt sleeves, ASME B16.42.
- D. Temperature Rating, 99 degrees C (210 degrees F).
- E. Contractor's option: On pipe sizes 2" and smaller, screwed end brass ball valves or dielectric nipples may be used in lieu of dielectric unions.

2.7 SCREWED JOINTS

- A. Pipe Thread: ANSI B1.20.
- B. Lubricant or Sealant: Oil and graphite or other compound approved for the intended service.

2.8 VALVES

- A. Asbestos packing is not acceptable.
- B. All valves of the same type shall be products of a single manufacturer.
- C. Provide chain operators for valves 150 mm (6 inches) and larger when the centerline is located 2400 mm (8 feet) or more above the floor or operating platform.
- D. Shut-Off Valves
 - Ball Valves (Pipe sizes 2" and smaller): MSS-SP 110, screwed or solder connections, brass or bronze body with chrome-plated ball with full port and Teflon seat at 2760 kPa (400 psig) working pressure rating. Provide stem extension to allow operation without interfering with pipe insulation.
- E. Globe and Angle Valves
 - 1. Globe Valves
 - a. 50 mm (2 inches) and smaller: MSS-SP 80, bronze, 1034 kPa (150 lb.) Globe valves shall be union bonnet with metal plug type disc.
 - 2. Angle Valves:

- a. 50 mm (2 inches) and smaller: MSS-SP 80, bronze, 1034 kPa (150 lb.) Angle valves shall be union bonnet with metal plug type disc.
- F. Check Valves
 - 1. Swing Check Valves:
 - a. 50 mm (2 inches) and smaller: MSS-SP 80, bronze, 1034 kPa (150 lb.), 45 degree swing disc.
 - 2. Non-Slam or Silent Check Valve: Spring loaded double disc swing check or internally guided flat disc lift type check for bubble tight shut-off. Provide where check valves are shown in chilled water and hot water piping. Check valves incorporating a balancing feature may be used.
 - a. Body: MSS-SP 125 cast iron, ASTM A126, Class B, or steel, ASTM A216, Class WCB, or ductile iron, ASTM 536, flanged, grooved, or wafer type.
 - b. Seat, disc and spring: 18-8 stainless steel, or bronze, ASTM B62.Seats may be elastomer material.
- G. Water Flow Balancing Valves: For flow regulation and shut-off. Valves shall be line size rather than reduced to control valve size.
 - 1. Ball or Globe style valve.
 - 2. A dual purpose flow balancing valve and adjustable flow meter, with bronze or cast iron body, calibrated position pointer, valved pressure taps or quick disconnects with integral check valves and preformed polyurethane insulating enclosure.
 - 3. Provide a readout kit including flow meter, readout probes, hoses, flow charts or calculator, and carrying case.
- H. Automatic Balancing Control Valves: Factory calibrated to maintain constant flow (plus or minus five percent) over system pressure fluctuations of at least 10 times the minimum required for control. Provide standard pressure taps and four sets of capacity charts. Valves shall be line size and be one of the following designs:
 - Gray iron (ASTM A126) or brass body rated 1205 kPa (175 psig) at 93 degrees C (200 degrees F), with stainless steel piston and spring.
 - Brass or ferrous body designed for 2067 kPa (300 psig) service at 121 degrees C (250 degrees F), with corrosion resistant, tamper proof, self-cleaning piston/spring assembly that is easily removable for inspection or replacement.

- Combination assemblies containing ball type shut-off valves, unions, flow regulators, strainers with blowdown valves and pressure temperature ports shall be acceptable.
- 4. Provide a readout kit including flow meter, probes, hoses, flow charts and carrying case.

2.9 WATER FLOW MEASURING DEVICES

- A. Minimum overall accuracy plus or minus three percent over a range of 70 to 110 percent of design flow. Select devices for not less than 110 percent of design flow rate.
- B. Venturi Type: Bronze, steel, or cast iron with bronze throat, with valved pressure sensing taps upstream and at the throat.
- C. Wafer Type Circuit Sensor: Cast iron wafer-type flow meter equipped with readout valves to facilitate the connecting of a differential pressure meter. Each readout valve shall be fitted with an integral check valve designed to minimize system fluid loss during the monitoring process.
- D. Self-Averaging Annular Sensor Type: Brass or stainless steel metering tube, shutoff valves and quick-coupling pressure connections. Metering tube shall be rotatable so all sensing ports may be pointed down-stream when unit is not in use.
- E. Insertion Turbine Type Sensor: Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- F. Ultrasonic Sensor
 - 1.The Ultrasonic Flow Meters and the accessories shall be suitable for continuous operation under an ambient temperature of 0-55 degrees C and Relative Humidity of 0-95 percent. All accessories required for mounting/erection of these instruments shall be furnished as necessary for completeness of the system.
 - 2. Flow Measurement: The Ultrasonic Flow shall be based on transittime flow measurement technique uses a pair of transducers with each transducer sending and receiving coded ultrasonic signals through the fluid. When the fluid is flowing, signal transit-time in the downstream direction is shorter than in the upstream direction; the difference between these transit times is proportional to the flow velocity. The Ultrasonic Flow Transmitter measures this time difference and uses programmed pipe parameters to determine flow rate and direction. Ultrasonic Flow Transmitters are classified as either wetted or non-wetted (clam-on). Clamp-on transducers are

clamped onto the outside of the pipe and never come into contact with the process fluid. Welled transducers are mounted into the pipe or flow cell in direct contact with the process fluid.

- 3. Accessories: All mounting hardware like clamping fixtures, mechanisms to remove the sensors on line, interconnecting cables, etc. is required to be supplied. Weather canopy for protection from direct sunlight and direct rain shall also be offered as an option. Material of all fittings shall be SS-316.
- G. Flow Measuring Device Identification:
 - 1. Metal tag attached by chain to the device.
 - Include meter or equipment number, manufacturer's name, meter model, flow rate factor and design flow rate in l/m (gpm).
- H. Portable Water Flow Indicating Meters:
 - Minimum 150 mm (6 inch) diameter dial, forged brass body, beryllium-copper bellows, designed for 1205 kPa (175 psig) working pressure at 121 degrees C (250 degrees F).
- I. Permanently Mounted Water Flow Indicating Meters: Minimum 150 mm (6 inch) diameter, or 450 mm (18 inch) long scale, for 120 percent of design flow rate, direct reading in lps (gpm), with three valve manifold and two shut-off valves.

2.10 FLEXIBLE CONNECTORS FOR WATER SERVICE

- A. Flanged Spool Connector:
 - Single arch or multiple arch type. Tube and cover shall be constructed of chlorobutyl elastomer with full faced integral flanges to provide a tight seal without gaskets. Connectors shall be internally reinforced with high strength synthetic fibers impregnated with rubber or synthetic compounds as recommended by connector manufacturer, and steel reinforcing rings.
 - 2. Working pressures and temperatures shall be as follows:
 - a. Connector sizes 50 mm to 100 mm (2 inches to 4 inches), 1137 kPa (165psig) at 121 degrees C (250 degrees F).
 - b. Connector sizes 125 mm to 300 mm (5 inches to 12 inches), 965 kPa (140 psig) at 121 degrees C (250 degrees F).
 - 3. Provide ductile iron retaining rings and control units.
- B. Mechanical Pipe Couplings:

See other fittings specified under Part 2, PRODUCTS.

2.11 HYDRONIC SYSTEM COMPONENTS

- A. Diaphragm Type Pre-Pressurized Expansion Tank: ASME Pressure Vessel Code construction for 861 kPa (125 psig) working pressure, welded steel shell, rust-proof coated, with a flexible elastomeric diaphragm suitable for a maximum operating temperature of 116 degrees C (240 degrees F). Provide Form No. U-1. Tank shall be equipped with system connection, drain connection, standard air fill valve and be factory pre-charged to a minimum of 83 kPa (12 psig).
- B. Pressure Relief Valve: Bronze or iron body and bronze or stainless steel trim, with testing lever. Comply with ASME Code for Pressure Vessels, Section 8, and bear ASME stamp.
- C. Automatic Air Vent Valves (where shown): Cast iron or semi-steel body, 1034 kPa (150 psig) working pressure, stainless steel float, valve, valve seat and mechanism, minimum 15 mm (1/2 inch) water connection and 6 mm (1/4 inch) air outlet. Air outlet shall be piped to the nearest floor drain.

2.12 GAGES, PRESSURE AND COMPOUND

- A. ASME B40.100, Accuracy Grade 1A, (pressure, vacuum, or compound for air, oil or water), initial mid-scale accuracy 1 percent of scale (Qualify grade), metal or phenolic case, 115 mm (4-1/2 inches) in diameter, 6 mm (1/4 inch) NPT bottom connection, white dial with black graduations and pointer, clear glass or acrylic plastic window, suitable for board mounting. Provide red "set hand" to indicate normal working pressure.
- B. Provide brass lever handle union cock. Provide brass/bronze pressure snubber for gages in water service.
- C. Range of Gages: Provide range equal to at least 130 percent of normal operating range.
 - For condenser water suction (compound): Minus 100 kPa (30 inches Hg) to plus 700 kPa (100 psig).

2.13 PRESSURE/TEMPERATURE TEST PROVISIONS

A. Pete's Plug: 6 mm (1/4 inch) MPT by 75 mm (3 inches) long, brass body and cap, with retained safety cap, nordel self-closing valve cores, permanently installed in piping where shown, or in lieu of pressure gage test connections shown on the drawings.

- B. Provide one each of the following test items to the Resident Engineer:
 - 1. 6 mm (1/4 inch) FPT by 3 mm (1/8 inch) diameter stainless steel
 pressure gage adapter probe for extra long test plug. PETE'S 500 XL
 is an example.
 - 2. 90 mm (3-1/2 inch) diameter, one percent accuracy, compound gage, -100 kPa (30 inches) Hg to 700 kPa (100 psig) range.
 - 3. 0 104 degrees C (220 degrees F) pocket thermometer one-half degree accuracy, 25 mm (one inch) dial, 125 mm (5 inch) long stainless steel stem, plastic case.

2.14 THERMOMETERS

- A. Organic liquid filled type, red or blue column, clear plastic window, with 150 mm (6 inch) brass stem, straight, fixed or adjustable angle as required for each in reading.
- B. Case: Chrome plated brass or aluminum with enamel finish.
- C. Scale: Not less than 225 mm (9 inches), range as described below, two degree graduations.
- D. Separable Socket (Well): Brass, extension neck type to clear pipe insulation.
- E. Scale ranges:
 - 1. Hot Water and Glycol-Water: -1 116 degrees C (30-240 degrees F).

2.15 FIRESTOPPING MATERIAL

Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.

PART 3 - EXECUTION

3.1 GENERAL

- A. The drawings show the general arrangement of pipe and equipment but do not show all required fittings and offsets that may be necessary to connect pipes to equipment, fan-coils, coils, radiators, etc., and to coordinate with other trades. Provide all necessary fittings, offsets and pipe runs based on field measurements and at no additional cost to the government. Coordinate with other trades for space available and relative location of HVAC equipment and accessories to be connected on ceiling grid. Pipe location on the drawings shall be altered by contractor where necessary to avoid interferences and clearance difficulties.
- B. Store materials to avoid excessive exposure to weather or foreign materials. Keep inside of piping relatively clean during installation and protect open ends when work is not in progress.

- C. Support piping securely. Refer to PART 3, Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION. Install heat exchangers at height sufficient to provide gravity flow of condensate to the flash tank and condensate pump.
- D. Install piping generally parallel to walls and column center lines, unless shown otherwise on the drawings. Space piping, including insulation, to provide 25 mm (one inch) minimum clearance between adjacent piping or other surface. Unless shown otherwise, slope drain piping down in the direction of flow not less than 25 mm (one inch) in 12 m (40 feet). Provide eccentric reducers to keep bottom of sloped piping flat.
- E. Locate and orient values to permit proper operation and access for maintenance of packing, seat and disc. Generally locate value stems in overhead piping in horizontal position. Provide a union adjacent to one end of all threaded end values. Control values usually require reducers to connect to pipe sizes shown on the drawing. Install butterfly values with the value open as recommended by the manufacturer to prevent binding of the disc in the seat.
- F. Offset equipment connections to allow valving off for maintenance and repair with minimal removal of piping. Provide flexibility in equipment connections and branch line take-offs with 3-elbow swing joints where noted on the drawings.
- G. Tee water piping runouts or branches into the side of mains or other branches. Avoid bull-head tees, which are two return lines entering opposite ends of a tee and exiting out the common side.
- H. Provide manual or automatic air vent at all piping system high points and drain valves at all low points. Install piping to floor drains from all automatic air vents.
- I. Connect piping to equipment as shown on the drawings. Install components furnished by others such as:
 - 1. Water treatment pot feeders.
 - Flow elements (orifice unions), control valve bodies, flow switches, pressure taps with valve, and wells for sensors.
- J. Thermometer Wells: In pipes 65 mm (2-1/2 inches) and smaller increase the pipe size to provide free area equal to the upstream pipe area.
- K. Firestopping: Fill openings around uninsulated piping penetrating floors or fire walls, with firestop material. For firestopping

insulated piping refer to Section 23 07 11, HVAC, PLUMBING, and BOILER PLANT INSULATION.

L. Where copper piping is connected to steel piping, provide dielectric connections.

3.2 PIPE JOINTS

- A. Welded: Beveling, spacing and other details shall conform to ASME B31.1 and AWS B2.1. See Welder's qualification requirements under "Quality Assurance" in Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Screwed: Threads shall conform to ASME B1.20; joint compound shall be applied to male threads only and joints made up so no more than three threads show. Coat exposed threads on steel pipe with joint compound, or red lead paint for corrosion protection.
- C. Mechanical Joint: Pipe grooving shall be in accordance with joint manufacturer's specifications. Lubricate gasket exterior including lips, pipe ends and housing interiors to prevent pinching the gasket during installation. Lubricant shall be as recommended by coupling manufacturer.
- D. 125 Pound Cast Iron Flange (Plain Face): Mating flange shall have raised face, if any, removed to avoid overstressing the cast iron flange.
- E. Solvent Welded Joints: As recommended by the manufacturer.

3.3 EXPANSION JOINTS (BELLOWS AND SLIP TYPE)

- A. Anchors and Guides: Provide type, quantity and spacing as recommended by manufacturer of expansion joint and as shown. A professional engineer shall verify in writing that anchors and guides are properly designed for forces and moments which will be imposed.
- B. Cold Set: Provide setting of joint travel at installation as recommended by the manufacturer for the ambient temperature during the installation.

3.4 LEAK TESTING ABOVEGROUND PIPING

- A. Inspect all joints and connections for leaks and workmanship and make corrections as necessary, to the satisfaction of the Resident Engineer. Tests may be either of those below, or a combination, as approved by the Resident Engineer.
- B. An operating test at design pressure, and for hot systems, design maximum temperature.

C. A hydrostatic test at 1.5 times design pressure. For water systems the design maximum pressure would usually be the static head, or expansion tank maximum pressure, plus pump head. Factory tested equipment (convertors, exchangers, coils, etc.) need not be field tested. Isolate equipment where necessary to avoid excessive pressure on mechanical seals and safety devices.

3.5 FLUSHING AND CLEANING PIPING SYSTEMS

- A. Water Piping: Clean systems as recommended by the suppliers of chemicals specified in Section 23 25 00, HVAC WATER TREATMENT.
 - 1. Initial flushing: Remove loose dirt, mill scale, metal chips, weld beads, rust, and like deleterious substances without damage to any system component. Provide temporary piping or hose to bypass coils, control valves, exchangers and other factory cleaned equipment unless acceptable means of protection are provided and subsequent inspection of hide-out areas takes place. Isolate or protect clean system components, including pumps and pressure vessels, and remove any component which may be damaged. Open all valves, drains, vents and strainers at all system levels. Remove plugs, caps, spool pieces, and components to facilitate early debris discharge from system. Sectionalize system to obtain debris carrying velocity of 1.8 m/S (6 feet per second), if possible. Connect dead-end supply and return headers as necessary. Flush bottoms of risers. Install temporary strainers where necessary to protect down-stream equipment. Supply and remove flushing water and drainage by various type hose, temporary and permanent piping and Contractor's booster pumps. Flush until clean as approved by the Resident Engineer.
 - 2. Cleaning: Using products supplied in Section 23 25 00, HVAC WATER TREATMENT, circulate systems at normal temperature to remove adherent organic soil, hydrocarbons, flux, pipe mill varnish, pipe joint compounds, iron oxide, and like deleterious substances not removed by flushing, without chemical or mechanical damage to any system component. Removal of tightly adherent mill scale is not required. Keep isolated equipment which is "clean" and where dead-end debris accumulation cannot occur. Sectionalize system if possible, to circulate at velocities not less than 1.8 m/S (6 feet per second). Circulate each section for not less than four hours. Blow-down all strainers, or remove and clean as frequently as necessary. Drain and prepare for final flushing.

3. Final Flushing: Return systems to conditions required by initial flushing after all cleaning solution has been displaced by clean make-up. Flush all dead ends and isolated clean equipment. Gently operate all valves to dislodge any debris in valve body by throttling velocity. Flush for not less than one hour.

3.6 OPERATING AND PERFORMANCE TEST AND INSTRUCTION

- A. Refer to PART 3, Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Adjust red set hand on pressure gages to normal working pressure.

- - - END - - -

SECTION 23 21 23

HYDRONIC PUMPS

PART 1 - GENERAL

1.1 DESCRIPTION

A. Hydronic pumps for Heating, Ventilating and Air Conditioning.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- D. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- E. Section 23 21 13, HYDRONIC PIPING.
- F. Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC and STEAM GENERATION EQUIPMENT.
- G. Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS.

1.3 QUALITY ASSURANCE

- A. Refer to Paragraph, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Design Criteria:
 - 1. Pumps design and manufacturer shall conform to Hydraulic Institute Standards.
 - Pump sizes, capacities, pressures, operating characteristics and efficiency shall be as scheduled.
 - 3. Head-capacity curves shall slope up to maximum head at shut-off. Curves shall be relatively flat for closed systems. Select pumps near the midrange of the curve, so the design capacity falls to the left of the best efficiency point, to allow a cushion for the usual drift to the right in operation,

without approaching the pump curve end point and possible cavitation and unstable operation. Select pumps for open systems so that required net positive suction head (NPSHR) does not exceed the net positive head available (NPSHA).

- 4. Pump Driver: Furnish with pump. Size shall be non-overloading at any point on the head-capacity curve, including in a parallel or series pumping installation with one pump in operation.
- 5. Provide all pumps with motors, impellers, drive assemblies, bearings, coupling guard and other accessories specified. Statically and dynamically balance all rotating parts.
- 6. Furnish each pump and motor with a nameplate giving the manufacturers name, serial number of pump, capacity in GPM and head in feet at design condition, horsepower, voltage, frequency, speed and full load current and motor efficiency.
- 7. Test all pumps before shipment. The manufacturer shall certify all pump ratings.
- After completion of balancing, provide replacement of impellers or trim impellers to provide specified flow at actual pumping head, as installed.
- C. Allowable Vibration Tolerance for Pump Units: Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Pumps and accessories.
 - 2. Motors and drives.

- C. Manufacturer's installation, maintenance and operating instructions, in accordance with Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- D. Characteristic Curves: Head-capacity, efficiency-capacity, brake horsepower-capacity, and NPSHR-capacity for each pump and for combined pumps in parallel or series service. Identify pump and show fluid pumped, specific gravity, pump speed and curves plotted from zero flow to maximum for the impeller being furnished and at least the maximum diameter impeller that can be used with the casing.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only:
- B. American Iron and Steel Institute (AISI):

AISI 1045Cold Drawn Carbon Steel Bar, Type 1045 AISI 416Type 416 Stainless Steel

C. American National Standards Institute (ANSI):

ANSI B15.1-00(R2008)..... Safety Standard for Mechanical Power Transmission Apparatus

ANSI B16.1-05Cast Iron Pipe Flanges and Flanged Fittings, Class 25, 125, 250 and 800

D. American Society for Testing and Materials (ASTM):

A48-03 (2008) Standard Specification for Gray Iron Castings

B62-2009 Standard Specification for Composition Bronze or Ounce Metal Castings

E. Maintenance and Operating Manuals in accordance with Section 01 00 00, General Requirements.

1.6 DEFINITIONS

- A. Capacity: Liters per second (L/s) (Gallons per minute (GPM) of the fluid pumped.
- B. Head: Total dynamic head in kPa (feet) of the fluid pumped.
- C. Flat head-capacity curve: Where the shutoff head is less than 1.16 times the head at the best efficiency point.

1.7 SPARE MATERIALS

Furnish one spare seal and casing gasket for each pump to the COTR.

PART 2 - PRODUCTS

2.1 CENTRIFUGAL PUMPS, BRONZE FITTED

A. General:

- Provide pumps that will operate continuously without overheating bearings or motors at every condition of operation on the pump curve, or produce noise audible outside the room or space in which installed.
- Provide pumps of size, type and capacity as indicated, complete with electric motor and drive assembly, unless otherwise indicated. Design pump casings for the indicated working pressure and factory test at 1½ times the designed pressure.
- Provide pumps of the same type, the product of a single manufacturer, with pump parts of the same size and type interchangeable.
- 4. General Construction Requirements
 - a. Balance: Rotating parts, statically and dynamically.
 - b. Construction: To permit servicing without breaking piping or motor connections.
 - c. Pump Motors: Provide high efficiency motors, inverter duty for variable speed service. Refer to Section 23 05 12,

GENERAL MOTOR REQUIREMNTS FOR HVAC and STEAM GENERATION EQUIPMENT. Motors shall be Open Drip Proof and operate at 1750 rpm unless noted otherwise.

- d. Heating pumps shall be suitable for handling water to 225°F.
- e. Provide coupling guards that meet ANSI B15.1, Section 8 and OSHA requirements.
- f. Pump Connections: Flanged.
- g. Pump shall be factory tested.
- h. Performance: As scheduled on the Contract Drawings.
- B. In-Line Type, Base Mounted End Suction or Double Suction Type:
 - 1. Casing and Bearing Housing: Close-grained cast iron, ASTM A48.
 - 2. Casing Wear Rings: Bronze.
 - Suction and Discharge: Plain face flange, 850 kPa (125 psig), ANSI B16.1.
 - 4. Casing Vent: Manual brass cock at high point.
 - Casing Drain and Gage Taps: 15 mm (1/2-inch) plugged connections minimum size.
 - 6. Impeller: Bronze, ASTM B62, enclosed type, keyed to shaft.
 - 7. Shaft: Steel, AISI Type 1045 or stainless steel.
 - 8. Shaft Seal: Manufacturer's standard mechanical type to suit pressure and temperature and fluid pumped.
 - 9. Shaft Sleeve: Bronze or stainless steel.
 - Motor: Furnish with pump. Refer to Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT.
 - 11.Provide line sized shut-off valve and suction strainer, maintain manufacturer recommended straight pipe length on pump

suction (with blow down valve). Contractor option: Provide suction diffuser as follows:

- a. Body: Cast iron with steel inlet vanes and combination diffuser-strainer-orifice cylinder with 5 mm (3/16-inch) diameter openings for pump protection. Provide taps for strainer blowdown and gage connections.
- b. Provide adjustable foot support for suction piping.
- c. Strainer free area: Not less than five times the suction piping.
- d. Provide disposable start-up strainer.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Follow manufacturer's written instructions for pump mounting and start-up. Access/Service space around pumps shall not be less than minimum space recommended by pumps manufacturer.
- B. Provide drains for bases and seals for base mounted pumps, piped to and discharging into floor drains.
- C. Coordinate location of thermometer and pressure gauges as per Section 23 21 13, HYDRONIC PIPING.

3.2 START-UP

- A. Verify that the piping system has been flushed, cleaned and filled.
- B. Lubricate pumps before start-up.
- C. Prime the pump, vent all air from the casing and verify that the rotation is correct. To avoid damage to mechanical seals, never start or run the pump in dry condition.
- D. Verify that correct size heaters-motor over-load devices are installed for each pump controller unit.

- E. Field modifications to the bearings and or impeller (including trimming) are not permitted. If the pump does not meet the specified vibration tolerance send the pump back to the manufacturer for a replacement pump. All modifications to the pump shall be performed at the factory.
- F. Ensure the disposable strainer is free of debris prior to testing and balancing of the hydronic system.
- G. After several days of operation, replace the disposable start-up strainer with a regular strainer in the suction diffuser.

- -- END - --

SECTION 23 22 13

STEAM AND CONDENSATE HEATING PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

A. Steam, condensate and vent piping inside buildings.

1.2 RELATED WORK

- A. General mechanical requirements and items, which are common to more than one section of Division 23: Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.
- B. Piping insulation: Section 23 07 11, HVAC, PLUMBING, AND BOILER PLANT INSULATION.
- C. Water treatment for open and closed systems: Section 23 25 00, HVAC WATER TREATMENT.
- D. Temperature and pressure sensors and valve operators: Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.

1.3 QUALITY ASSURANCE

A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION, which includes welding qualifications.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Pipe and equipment supports.
 - 2. Pipe and tubing, with specification, class or type, and schedule.

3. Pipe fittings, including miscellaneous adapters and special fittings.

- 4. Flanges, gaskets and bolting.
- 5. Valves of all types.
- 6. Strainers.
- 7. Pipe alignment guides.
- 8. All specified steam system components.
- C. As-Built Piping Diagrams: Provide drawing as follows for steam and steam condensate piping and other central plant equipment.
 - One wall-mounted stick file for prints. Mount stick file in the chiller plant or adjacent control room along with control diagram stick file.
 - 2. One set of reproducible drawings.

1.5 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. B. American Society of Mechanical Engineers/American National Standards Institute (ASME/ANSI): B1.20.1-83(R2006).....Pipe Threads, General Purpose (Inch) B16.4-2006.....Gray Iron Threaded Fittings C. American Society of Mechanical Engineers (ASME): B16.1-2005.....Gray Iron Pipe Flanges and Flanged Fittings B16.3-2006......Malleable Iron Threaded Fittings B16.9-2007......Factory-Made Wrought Buttwelding Fittings B16.11-2005......Forged Fittings, Socket-Welding and Threaded B16.14-91..... Ferrous Pipe Plugs, Bushings, and Locknuts with Pipe Threads B16.22-2001.....Wrought Copper and Copper Alloy Solder-Joint Pressure Fittings B16.23-2002.....Cast Copper Alloy Solder Joint Drainage Fittings B16.24-2006.....Cast Copper Alloy Pipe Flanges and Flanged Fittings, Class 150, 300, 400, 600, 900, 1500 and 2500 B16.39-98..... Malleable Iron Threaded Pipe Unions, Classes 150, 250, and 300 B31.1-2007.....Power Piping B31.9-2008.....Building Services Piping B40.100-2005.....Pressure Gauges and Gauge Attachments Boiler and Pressure Vessel Code: SEC VIII D1-2001, Pressure Vessels, Division 1 D. American Society for Testing and Materials (ASTM): A47-99..... Ferritic Malleable Iron Castings A53-2007......Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless A106-2008......Seamless Carbon Steel Pipe for High-Temperature Service A126-2004.....Standard Specification for Gray Iron Castings for Valves, Flanges, and Pipe Fittings

A181-2006.....Carbon Steel Forgings, for General-Purpose Piping A183-2003 Carbon Steel Track Bolts and Nuts A216-2008 Standard Specification for Steel Castings, Carbon, Suitable for Fusion Welding, for High Temperature Service A285-01 Pressure Vessel Plates, Carbon Steel, Low-and-Intermediate-Tensile Strength A307-2007 Carbon Steel Bolts and Studs, 60,000 PSI Tensile Strength A516-2006 Pressure Vessel Plates, Carbon Steel, for Moderate-and- Lower Temperature Service A536-84(2004)el Standard Specification for Ductile Iron Castings B32-2008 Solder Metal B61-2008 Steam or Valve Bronze Castings B62-2009 Composition Bronze or Ounce Metal Castings B88-2003 Seamless Copper Water Tube F439-06 Socket-Type Chlorinated Poly (Vinyl Chloride) (CPVC) Plastic Pipe Fittings, Schedule 80 F441-02(2008) Chlorinated Poly (Vinyl Chloride) (CPVC) Plastic Pipe, Schedules 40 and 80 E. American Welding Society (AWS): A5.8-2004..... Filler Metals for Brazing and Braze Welding B2.1-00......Welding Procedure and Performance Qualifications F. Manufacturers Standardization Society (MSS) of the Valve and Fitting Industry, Inc.: SP-67-95.....Butterfly Valves SP-70-98.....Cast Iron Gate Valves, Flanged and Threaded Ends SP-71-97.....Gray Iron Swing Check Valves, Flanged and Threaded Ends SP-72-99.....Ball Valves with Flanged or Butt-Welding Ends for General Service SP-78-98.....Cast Iron Plug Valves, Flanged and Threaded Ends SP-80-97.....Bronze Gate, Globe, Angle and Check Valves

SP-85-94.....Cast Iron Globe and Angle Valves, Flanged and Threaded Ends

G. Military Specifications (Mil. Spec.): MIL-S-901D-1989.....Shock Tests, H.I. (High Impact) Shipboard

Machinery, Equipment, and Systems

- H. National Board of Boiler and Pressure Vessel Inspectors (NB): Relieving Capacities of Safety Valves and Relief Valves
- I. Tubular Exchanger Manufacturers Association: TEMA 18th Edition, 2000
- PART 2 PRODUCTS

2.1 PIPE AND EQUIPMENT SUPPORTS, PIPE SLEEVES, AND WALL AND CEILING PLATES

A. Provide in accordance with Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.

2.2 PIPE AND TUBING

- A. Steam Piping: Steel, ASTM A53, Grade B, seamless or ERW; A106 Grade B, Seamless; Schedule 40.
- B. Steam Condensate and Pumped Condensate Piping:
 - Concealed above ceiling, in wall or chase: Copper water tube ASTM B88, Type K, hard drawn.
 - All other locations: Copper water tube ASTM B88, Type K, hard drawn; or steel, ASTM A53, Grade B, Seamless or ERW, or A106 Grade B Seamless, Schedule 80.
- C. Vent Piping: Steel, ASTM A53, Grade B, seamless or ERW; A106 Grade B, Seamless; Schedule 40, galvanized.

2.3 FITTINGS FOR STEEL PIPE

- A. 50 mm (2 inches) and Smaller: Screwed or welded.
 - 1. Butt welding: ASME B16.9 with same wall thickness as connecting piping.
 - 2. Forged steel, socket welding or threaded: ASME B16.11.
 - 3. Screwed: 150 pound malleable iron, ASME B16.3. 125 pound cast iron, ASME B16.4, may be used in lieu of malleable iron, except for steam and steam condensate piping. Provide 300 pound malleable iron, ASME B16.3 for steam and steam condensate piping. Cast iron fittings or piping is not acceptable for steam and steam condensate piping. Bushing reduction of a single pipe size, or use of close nipples, is not acceptable.
 - 4. Unions: ASME B16.39.

- 5. Steam line drip station and strainer quick-couple blowdown hose connection: Straight through, plug and socket, screw or cam locking type for 15 mm (1/2 inch) ID hose. No integral shut-off is required.
- B. Welded Branch and Tap Connections: Forged steel weldolets, or branchlets and threadolets may be used for branch connections up to one pipe size smaller than the main. Forged steel half-couplings, ASME B16.11 may be used for drain, vent and gage connections.

2.4 FITTINGS FOR COPPER TUBING

- A. Solder Joint:
 - Joints shall be made up in accordance with recommended practices of the materials applied. Apply 95/5 tin and antimony on all copper piping.
- B. Bronze Flanges and Flanged Fittings: ASME B16.24.
- C. Fittings: ANSI/ASME B16.18 cast copper or ANSI/ASME B16.22 solder wrought copper.

2.5 DIELECTRIC FITTINGS

- A. Provide where copper tubing and ferrous metal pipe are joined.
- B. 50 mm (2 inches) and Smaller: Threaded dielectric union, ASME B16.39.
- D. Temperature Rating, 121 degrees C (250 degrees F) for steam condensate and as required for steam service.
- E. Contractor's option: On pipe sizes 2" and smaller, screwed end brass gate valves or dielectric nipples may be used in lieu of dielectric unions.

2.6 SCREWED JOINTS

- A. Pipe Thread: ANSI B1.20.
- B. Lubricant or Sealant: Oil and graphite or other compound approved for the intended service.

2.7 VALVES

- A. Asbestos packing is not acceptable.
- B. All valves of the same type shall be products of a single manufacturer.
- C. Shut-Off Valves
 - 1. Gate Valves:
 - a. 50 mm (2 inches) and smaller: MSS-SP80, Bronze, 1034 kPa (150 lb.), wedge disc, rising stem, union bonnet.
- D. Globe and Angle Valves:
 - 1. Globe Valves:

- a. 50 mm (2 inches) and smaller: MSS-SP 80, bronze, 1034 kPa (150 lb.) Globe valves shall be union bonnet with metal plug type disc.
- 2. Angle Valves
 - a. 50 mm (2 inches) and smaller: MSS-SP 80, bronze, 1034 kPa (150 lb.) Angle valves shall be union bonnet with metal plug type disc.
- E. Swing Check Valves
 - 50 mm (2 inches) and smaller: MSS-SP 80, bronze, 1034 kPa (150 psig), 45 degree swing disc.
- F. Manual Radiator/Convector Valves: Brass, packless, with position indicator.

2.8 STRAINERS

- A. Basket or Y Type. Tee type is acceptable for gravity flow and pumped steam condensate service.
- B. High Pressure Steam: Rated 1034 kPa (150 psig) saturated steam.
 - 50 mm (2 inches) and smaller: Iron, ASTM All6 Grade B, or bronze, ASTM B-62 body with screwed connections (250 psig).
- C. All Other Services: Rated 861 kPa (125 psig) saturated steam.1. 50 mm (2 inches) and smaller: Cast iron or bronze.
- D. Screens: Bronze, monel metal or 18-8 stainless steel, free area not less than 2-1/2 times pipe area, with perforations as follows:
 - 75 mm (3 inches) and smaller: 20 mesh for steam and 1.1 mm (0.045 inch) diameter perforations for liquids.

2.9 PIPE ALIGNMENT

A. Guides: Provide factory-built guides along the pipe line to permit axial movement only and to restrain lateral and angular movement. Guides must be designed to withstand a minimum of 15 percent of the axial force which will be imposed on the expansion joints and anchors. Field-built guides may be used if detailed on the contract drawings.

2.10 STEAM SYSTEM COMPONENTS

- A. Safety Valves and Accessories: Comply with ASME Boiler and Pressure Vessel Code, Section VIII. Capacities shall be certified by National Board of Boiler and Pressure Vessel Inspectors, maximum accumulation 10 percent. Provide lifting lever. Provide drip pan elbow where shown.
- B. Steam PRV for Individual Equipment: Cast iron or bronze body, screwed or flanged ends, rated 861 kPa (125 psig) working pressure. Single-

seated, diaphragm operated, spring loaded, adjustable range, all parts renewable.

- C. Steam Trap: Each type of trap shall be the product of a single manufacturer. Provide trap sets at all low points and at 61 m (200 feet) intervals on the horizontal main lines.
 - Floats and linkages shall provide sufficient force to open trap valve over full operating pressure range available to the system. Unless otherwise indicated on the drawings, traps shall be sized for capacities indicated at minimum pressure drop as follows:
 - a. For equipment with modulating control valve: 1.7 kPa (1/4 psig), based on a condensate leg of 300 mm (12 inches) at the trap inlet and gravity flow to the receiver.
 - b. For main line drip trap sets and other trap sets at steam pressure: Up to 70 percent of design differential pressure. Condensate may be lifted to the return line.
 - Trap bodies: Bronze, cast iron, or semi-steel, constructed to permit ease of removal and servicing working parts without disturbing connecting piping. For systems without relief valve traps shall be
 Mechanism: Brass, stainless steel or corrosion resistant alloy. rated for the pressure upstream of the PRV supplying the system.
 - 3. Balanced pressure thermostatic elements: Phosphor bronze, stainless steel or monel metal.
 - 4. Valves and seats: Suitable hardened corrosion resistant alloy.
 - 6. Floats: Stainless steel.
 - 7. Inverted bucket traps: Provide bi-metallic thermostatic element for rapid release of non-condensables.

2.11 GAGES, PRESSURE AND COMPOUND

- A. ASME B40.1, Accuracy Grade 1A, (pressure, vacuum, or compound), initial mid-scale accuracy 1 percent of scale (Qualify grade), metal or phenolic case, 115 mm (4-1/2 inches) in diameter, 6 mm (1/4 inch) NPT bottom connection, white dial with black graduations and pointer, clear glass or acrylic plastic window, suitable for board mounting. Provide red "set hand" to indicate normal working pressure.
- B. Provide brass, lever handle union cock. Provide brass/bronze pressure snubber for gages in water service. Provide brass pigtail syphon for steam gages.
- C. Range of Gages: For services not listed provide range equal to at least 130 percent of normal operating range:

Low pressure steam and steam condensate to 103 kPa(15 psig)	0 to 207 kPa (30 psig).
Medium pressure steam and steam condensate nominal 413 kPa (60 psig)	0 to 689 kPa (100 psig).
High pressure steam and steam condensate nominal 620 kPa to 861 kPa (90 to 125 psig)	0 to 1378 kPa (200 psig).
Pumped condensate, steam condensate, gravity or vacuum	0 to 415 kPa (60 psig)
(30" HG to 30 psig)	

2.12 PRESSURE/TEMPERATURE TEST PROVISIONS

- A. Provide one each of the following test items to the Resident Engineer:
 - 6 mm (1/4 inch) FPT by 3 mm (1/8 inch) diameter stainless steel pressure gage adapter probe for extra long test plug. PETE'S 500 XL is an example.
 - 2. 90 mm (3-1/2 inch) diameter, one percent accuracy, compound gage, 762 mm (30 inches) Hg to 689 kPa (100 psig) range.
 - 3. 0 104 degrees C (32-220 degrees F) pocket thermometer one-half degree accuracy, 25 mm (one inch) dial, 125 mm (5 inch) long stainless steel stem, plastic case.

2.13 FIRESTOPPING MATERIAL

A. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.

PART 3 - EXECUTION

3.1 GENERAL

- A. The drawings show the general arrangement of pipe and equipment but do not show all required fittings and offsets that may be necessary to connect pipes to equipment, fan-coils, coils, radiators, etc., and to coordinate with other trades. Provide all necessary fittings, offsets and pipe runs based on field measurements and at no additional cost to the government. Coordinate with other trades for space available and relative location of HVAC equipment and accessories to be connected on ceiling grid. Pipe location on the drawings shall be altered by contractor where necessary to avoid interferences and clearance difficulties.
- B. Store materials to avoid excessive exposure to weather or foreign materials. Keep inside of piping relatively clean during installation and protect open ends when work is not in progress.

- C. Support piping securely. Refer to PART 3, Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION. Install convertors and other heat exchangers at height sufficient to provide gravity flow of condensate to the flash tank and condensate pump.
- D. Install piping generally parallel to walls and column center lines, unless shown otherwise on the drawings. Space piping, including insulation, to provide 25 mm (one inch) minimum clearance between adjacent piping or other surface. Unless shown otherwise, slope steam, condensate and drain piping down in the direction of flow not less than 25 mm (one inch) in 12 m (40 feet). Provide eccentric reducers to keep bottom of sloped piping flat.
- E. Locate and orient valves to permit proper operation and access for maintenance of packing, seat and disc. Generally locate valve stems in overhead piping in horizontal position. Provide a union adjacent to one end of all threaded end valves. Control valves usually require reducers to connect to pipe sizes shown on the drawing. Install butterfly valves with the valve open as recommended by the manufacturer to prevent binding of the disc in the seat.
- F. Offset equipment connections to allow valving off for maintenance and repair with minimal removal of piping. Provide flexibility in equipment connections and branch line take-offs with 3-elbow swing joints where noted on the drawings.
- G. Tee water piping runouts or branches into the side of mains or other branches. Avoid bull-head tees, which are two return lines entering opposite ends of a tee and exiting out the common side.
- H. Connect piping to equipment as shown on the drawings. Install components furnished by others such as:
 - Flow elements (orifice unions), control valve bodies, flow switches, pressure taps with valve, and wells for sensors.
- I. Firestopping: Fill openings around uninsulated piping penetrating floors or fire walls, with firestop material. For firestopping insulated piping refer to Section 23 07 11, HVAC, PLUMBING, and BOILER PLANT INSULATION.
- J. Where copper piping is connected to steel piping, provide dielectric connections.
- K. Pipe vents to the exterior. Where a combined vent is provided, the cross sectional area of the combined vent shall be equal to sum of individual vent areas. Slope vent piping one inch in 40 feet (0.25)

percent) in direction of flow. Provide a drip trap elbow on relief valve outlets if the vent rises to prevent backpressure. Terminate vent minimum 0.3 M (12 inches) above the roof or through the wall minimum 2.5 M (8 feet) above grade with down turned elbow.

3.2 PIPE JOINTS

- A. Welded: Beveling, spacing and other details shall conform to ASME B31.1 and AWS B2.1. See Welder's qualification requirements under "Quality Assurance" in Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Screwed: Threads shall conform to ASME B1.20; joint compound shall be applied to male threads only and joints made up so no more than three threads show. Coat exposed threads on steel pipe with joint compound, or red lead paint for corrosion protection.
- C. 125 Pound Cast Iron Flange (Plain Face): Mating flange shall have raised face, if any, removed to avoid overstressing the cast iron flange.

3.3 STEAM TRAP PIPING

A. Install to permit gravity flow to the trap. Provide gravity flow (avoid lifting condensate) from the trap where modulating control valves are used. Support traps weighing over 11 kg (25 pounds) independently of connecting piping.

3.4 LEAK TESTING

- A. Inspect all joints and connections for leaks and workmanship and make corrections as necessary, to the satisfaction of the Resident Engineer in accordance with the specified requirements. Testing shall be performed in accordance with the specification requirements.
- B. An operating test at design pressure, and for hot systems, design maximum temperature.
- C. A hydrostatic test at 1.5 times design pressure. For water systems the design maximum pressure would usually be the static head, or expansion tank maximum pressure, plus pump head. Factory tested equipment (convertors, exchangers, coils, etc.) need not be field tested. Avoid excessive pressure on mechanical seals and safety devices.

3.5 FLUSHING AND CLEANING PIPING SYSTEMS

A. Steam, Condensate and Vent Piping: No flushing or chemical cleaning required. Accomplish cleaning by pulling all strainer screens and cleaning all scale/dirt legs during start-up operation.

3.6 OPERATING AND PERFORMANCE TEST AND INSTRUCTION

- A. Refer to PART 3, Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Adjust red set hand on pressure gages to normal working pressure.

- - - E N D - - -

SECTION 23 23 00

REFRIGERANT PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Field refrigerant piping for direct expansion HVAC systems.
- B. Refrigerant piping shall be sized, selected, and designed either by the equipment manufacturer or in strict accordance with the manufacturer's published instructions. The schematic piping diagram shall show all accessories such as, stop valves, level indicators, liquid receivers, oil separator, gauges, thermostatic expansion valves, solenoid valves, moisture separators and driers to make a complete installation.
 - C. Definitions:
 - Refrigerating system: Combination of interconnected refrigerant-containing parts constituting one closed refrigeration circuit in which a refrigerant is circulated for the purpose of extracting heat.
 - a. Low side means the parts of a refrigerating system subjected to evaporator pressure.
 - b. High side means the parts of a refrigerating system subjected to condenser pressure.
 - Brazed joint: A gas-tight joint obtained by the joining of metal parts with alloys which melt at temperatures higher than 449 degrees C (840 degrees F) but less than the melting temperatures of the joined parts.

1.2 RELATED WORK

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION: General mechanical requirements and items, which are common to more than one section of Division 23.
- B. Section 23 07 11, HVAC, PLUMBING, and BOILER PLANT INSULATION: Requirements for piping insulation.
- C. Section 23 21 13, HYDRONIC PIPING: Requirements for water and drain piping and valves.
- D. Section 23 56 00 VARIABLE REFRIGERANT FLOW SYSTEMS.

1.3 QUALITY ASSURANCE

A. Refer to specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.

- B. Comply with ASHRAE Standard 15, Safety Code for Mechanical Refrigeration. The application of this Code is intended to assure the safe design, construction, installation, operation, and inspection of every refrigerating system employing a fluid which normally is vaporized and liquefied in its refrigerating cycle.
- C. Comply with ASME B31.5: Refrigerant Piping and Heat Transfer Components.
- D. Products shall comply with UL 207 "Refrigerant-Containing Components and Accessories, "Nonelectrical"; or UL 429 "Electrical Operated Valves."

1.4 SUBMITTALS

- A. Submit in accordance with specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Shop Drawings:
 - Complete information for components noted, including valves and refrigerant piping accessories, clearly presented, shall be included to determine compliance with drawings and specifications for components noted below:
 - a. Tubing and fittings
 - b. Valves
 - c. Strainers
 - d. Moisture-liquid indicators
 - e. Filter-driers
 - f. Flexible metal hose
 - g. Liquid-suction interchanges
 - h. Oil separators (when specified)
 - i. Gages
 - j. Pipe and equipment supports
 - k. Refrigerant and oil
 - 1. Soldering and brazing materials
 - Layout of refrigerant piping and accessories, including flow capacities, valves locations, and oil traps slopes of horizontal runs, floor/wall penetrations, and equipment connection details.
- C. Certification: Copies of certificates for welding procedure, performance qualification record and list of welders' names and symbols.
- D. Design Manual: Furnish two copies of design manual of refrigerant valves and accessories.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. B. Air Conditioning, Heating, and Refrigeration Institute (ARI/AHRI): 495-1999 (R2002).....Standard for Refrigerant Liquid Receivers 730-2005.....Flow Capacity Rating of Suction-Line Filters and Suction-Line Filter-Driers 750-2007..... Thermostatic Refrigerant Expansion Valves 760-2007..... Performance Rating of Solenoid Valves for Use with Volatile Refrigerants C. American Society of Heating Refrigerating and Air Conditioning Engineers (ASHRAE): ANSI/ASHRAE 15-2007.....Safety Standard for Refrigeration Systems (ANSI) ANSI/ASHRAE 17-2008.....Method of Testing Capacity of Thermostatic Refrigerant Expansion Valves (ANSI) 63.1-95 (RA 01).....Method of Testing Liquid Line Refrigerant Driers (ANSI)
 - D. American National Standards Institute (ANSI): ASME (ANSI)A13.1-2007...Scheme for Identification of Piping Systems Z535.1-2006.....Safety Color Code
 - E. American Society of Mechanical Engineers (ASME): ANSI/ASME B16.22-2001 (R2005) Wrought Copper and Copper Alloy Solder-Joint Pressure Fittings (ANSI) ANSI/ASME B16.24-2006 Cast Copper Alloy Pipe Flanges and Flanged Fittings, Class 150, 300, 400, 600, 900, 1500 and 2500 (ANSI) ANSI/ASME B31.5-2006....Refrigeration Piping and Heat Transfer Components (ANSI)

ANSI/ASME B40.100-2005..Pressure Gauges and Gauge Attachments ANSI/ASME B40.200-2008..Thermometers, Direct Reading and Remote Reading

F. American Society for Testing and Materials (ASTM) A126-04.....Standard Specification for Gray Iron Castings for Valves, Flanges, and Pipe FittingsB32-08 Standard Specification for Solder Metal B88-03....Standard Specification for Seamless Copper Water Tube B88M-05..... Standard Specification for Seamless Copper Water Tube (Metric)

B280-08.....Standard Specification for Seamless Copper Tube for Air Conditioning and Refrigeration Field Service

G. American Welding Society, Inc. (AWS):

Brazing Handbook

A5.8/A5.8M-04.....Standard Specification for Filler Metals for

- Brazing and Braze Welding
- H. Federal Specifications (Fed. Spec.)
 Fed. Spec. GG
- I. Underwriters Laboratories (U.L.): U.L.207-2009.....Standard for Refrigerant-Containing Components and Accessories, Nonelectrical

U.L.429-99 (Rev.2006)...Standard for Electrically Operated Valves

PART 2 - PRODUCTS

2.1 PIPING AND FITTINGS

- A. Refrigerant Piping: For piping up to 100 mm (4 inch) use Copper refrigerant tube, ASTM B280, cleaned, dehydrated and sealed, marked ACR on hard temper straight lengths. Coils shall be tagged ASTM B280 by the manufacturer. For piping over 100 mm (4 inch) use A53 Black SML steel.
- B. Water and Drain Piping: Copper water tube, ASTM B88M, Type B or C (ASTM B88, Type M or L). Optional drain piping material: Schedule 80 flame retardant Polypropylene plastic.
- C. Fittings, Valves and Accessories:
 - 1. Copper fittings: Wrought copper fittings, ASME B16.22.
 - a. Brazed Joints, refrigerant tubing: Cadmium free, AWS A5.8/A5.8M,45 percent silver brazing alloy, Class BAg-5.
 - b. Solder Joints, water and drain: 95-5 tin-antimony, ASTM B32
 (95TA).
 - 2. Steel fittings: ASTM wrought steel fittings.
 - a. Refrigerant piping Welded Joints.
 - 3. Flanges and flanged fittings: ASME B16.24.
 - 4. Refrigeration Valves:
 - a. Stop Valves: Brass or bronze alloy, packless, or packed type with gas tight cap, frost proof, back seating.
 - b. Pressure Relief Valves: Comply with ASME Boiler and PressureVessel Code; UL listed. Forged brass with nonferrous, corrosion

resistant internal working parts of high strength, cast iron bodies conforming to ASTM A126, Grade B. Set valves in accordance with ASHRAE Standard 15.

- c. Solenoid Valves: Comply with ARI 760 and UL 429, UL-listed, twoposition, direct acting or pilot-operated, moisture and vapor-proof type of corrosion resisting materials, designed for intended service, and solder-end connections. Fitted with suitable NEMA 250 enclosure of type required by location and normally closed holding coil.
- d. Thermostatic Expansion Valves: Comply with ARI 750. Brass body with stainless-steel or non-corrosive non ferrous internal parts, diaphragm and spring-loaded (direct-operated) type with sensing bulb and distributor having side connection for hot-gas bypass and external equalizer. Size and operating characteristics as recommended by manufacturer of evaporator and factory set for superheat requirements. Solder-end connections. Testing and rating in accordance with ASHRAE Standard 17.
- e. Check Valves: Brass or bronze alloy with swing or lift type, with tight closing resilient seals for silent operation; designed for low pressure drop, and with solder-end connections. Direction of flow shall be legibly and permanently indicated on the valve body.
- 5. Strainers: Designed to permit removing screen without removing strainer from piping system, and provided with screens 80 to 100 mesh in liquid lines DN 25 (NPS 1) and smaller, 60 mesh in liquid lines larger than DN 25 (NPS 1), and 40 mesh in suction lines. Provide strainers in liquid line serving each thermostatic expansion valve, and in suction line serving each refrigerant compressor not equipped with integral strainer.
- Refrigerant Moisture/Liquid Indicators: Double-ported type having heavy sight glasses sealed into forged bronze body and incorporating means of indicating refrigerant charge and moisture indication. Provide screwed brass seal caps.
- 7. Refrigerant Filter-Dryers: UL listed, angle or in-line type, as shown on drawings. Conform to ARI Standard 730 and ASHRAE Standard 63.1. Heavy gage steel shell protected with corrosion-resistant paint; perforated baffle plates to prevent desiccant bypass. Size as recommended by manufacturer for service and capacity of system with

connection not less than the line size in which installed. Filter driers with replaceable filters shall be furnished with one spare element of each type and size.

- 8. Flexible Metal Hose: Seamless bronze corrugated hose, covered with bronze wire braid, with standard copper tube ends. Provide in suction and discharge piping of each compressor.
- Water Piping Valves and Accessories: Refer to specification Section
 23 21 13, HYDRONIC PIPING.

2.2 GAGES

- A. Temperature Gages: Comply with ASME B40.200. Industrial-duty type and in required temperature range for service in which installed. Gages shall have Celsius scale in 1-degree (Fahrenheit scale in 2-degree) graduations and with black number on a white face. The pointer shall be adjustable. Rigid stem type temperature gages shall be provided in thermal wells located within 1525 mm (5 feet) of the finished floor. Universal adjustable angle type or remote element type temperature gages shall be provided in thermal wells located 1525 to 2135 mm (5 to 7 feet) above the finished floor. Remote element type temperature gages shall be provided in thermal wells located 2135 mm (7 feet) above the finished floor.
- B. Vacuum and Pressure Gages: Comply with ASME B40.100 and provide with throttling type needle valve or a pulsation dampener and shut-off valve. Gage shall be a minimum of 90 mm (3-1/2 inches) in diameter with a range from 0 kPa (0 psig) to approximately 1.5 times the maximum system working pressure. Each gage range shall be selected so that at normal operating pressure, the needle is within the middle-third of the range.
 - Suction: 101 kPa (30 inches Hg) vacuum to 1723 kPa (gage) (250 psig).
 - 2. Discharge: 0 to 3445 kPa (gage) (0 to 500 psig).

2.3 THERMOMETERS AND WELLS

A. Refer to specification Section 23 21 13, HYDRONIC PIPING.

2.4 PIPE SUPPORTS

A. Refer to specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.

2.5 REFRIGERANTS AND OIL

A. Provide EPA approved refrigerant and oil for proper system operation.

2.6 PIPE INSULATION FOR DX HVAC SYSTEMS

Refer to specification Section 23 07 11, HVAC, PLUMBING, and BOILER PLANT INSULATION.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install refrigerant piping and refrigerant containing parts in accordance with ASHRAE Standard 15 and ASME B31.5
 - Install piping as short as possible, with a minimum number of joints, elbow and fittings.
 - 2. Install piping with adequate clearance between pipe and adjacent walls and hangers to allow for service and inspection. Space piping, including insulation, to provide 25 mm (1 inch) minimum clearance between adjacent piping or other surface. Use pipe sleeves through walls, floors, and ceilings, sized to permit installation of pipes with full thickness insulation.
 - 3. Locate and orient values to permit proper operation and access for maintenance of packing, seat and disc. Generally locate value stems in overhead piping in horizontal position. Provide a union adjacent to one end of all threaded end values. Control values usually require reducers to connect to pipe sizes shown on the drawing.
 - 4. Use copper tubing in protective conduit when installed below ground.
 - 5. Install hangers and supports per ASME B31.5 and the refrigerant piping manufacturer's recommendations.
- B. Joint Construction:
 - 1. Brazed Joints: Comply with AWS "Brazing Handbook" and with filler materials complying with AWS A5.8/A5.8M.
 - a. Use Type BcuP, copper-phosphorus alloy for joining copper socket fittings with copper tubing.
 - b. Use Type BAg, cadmium-free silver alloy for joining copper with bronze or steel.
 - c. Swab fittings and valves with manufacturer's recommended cleaning fluid to remove oil and other compounds prior to installation.
 - d. Pass nitrogen gas through the pipe or tubing to prevent oxidation as each joint is brazed. Cap the system with a reusable plug after each brazing operation to retain the nitrogen and prevent entrance of air and moisture.
- C. Protect refrigerant system during construction against entrance of foreign matter, dirt and moisture; have open ends of piping and

connections to compressors, condensers, evaporators and other equipment tightly capped until assembly.

- D. Pipe relief valve discharge to outdoors for systems containing more than 45 kg (100 lbs) of refrigerant.
- E. Firestopping: Fill openings around uninsulated piping penetrating floors or fire walls, with firestop material. For firestopping insulated piping refer to Section 23 07 11, HVAC, PLUMBING, and BOILER PLANT INSULATION.

3.2 PIPE AND TUBING INSULATION

- A. Refer to specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Apply two coats of weather-resistant finish as recommended by the manufacturer to insulation exposed to outdoor weather.

3.3 SIGNS AND IDENTIFICATION

- A. Each refrigerating system erected on the premises shall be provided with an easily legible permanent sign securely attached and easily accessible, indicating thereon the name and address of the installer, the kind and total number of pounds of refrigerant required in the system for normal operations, and the field test pressure applied.
- B. Systems containing more than 50 kg (110 lb) of refrigerant shall be provided with durable signs, in accordance with ANSI A13.1 and ANSI Z535.1, having letters not less than 13 mm (1/2 inch) in height designating:
 - Valves and switches for controlling refrigerant flow, the ventilation and the refrigerant compressor(s).
 - Signs on all exposed high pressure and low pressure piping installed outside the machinery room, with name of the refrigerant and the letters "HP" or "LP."

3.4 FIELD QUALITY CONTROL

Prior to initial operation examine and inspect piping system for conformance to plans and specifications and ASME B31.5. Correct equipment, material, or work rejected because of defects or nonconformance with plans and specifications, and ANSI codes for pressure piping.

A. After completion of piping installation and prior to initial operation, conduct test on piping system according to ASME B31.5. Furnish materials and equipment required for tests. Perform tests in the presence of COTR. If the test fails, correct defects and perform the test again until it is satisfactorily done and all joints are proved tight.

- Every refrigerant-containing parts of the system that is erected on the premises, except compressors, condensers, evaporators, safety devices, pressure gages, control mechanisms and systems that are factory tested, shall be tested and proved tight after complete installation, and before operation.
- 2. The high and low side of each system shall be tested and proved tight at not less than the lower of the design pressure or the setting of the pressure-relief device protecting the high or low side of the system, respectively, except systems erected on the premises using non-toxic and non-flammable Group A1 refrigerants with copper tubing not exceeding DN 18 (NPS 5/8). This may be tested by means of the refrigerant charged into the system at the saturated vapor pressure of the refrigerant at 20 degrees C (68 degrees F) minimum.
- B. Test Medium: A suitable dry gas such as nitrogen or shall be used for pressure testing. The means used to build up test pressure shall have either a pressure-limiting device or pressure-reducing device with a pressure-relief device and a gage on the outlet side. The pressure relief device shall be set above the test pressure but low enough to prevent permanent deformation of the system components.

3.5 SYSTEM TEST AND CHARGING

- A. System Test and Charging: As recommended by the equipment manufacturer or as follows:
 - Connect a drum of refrigerant to charging connection and introduce enough refrigerant into system to raise the pressure to 70 kPa (10 psi) gage. Close valves and disconnect refrigerant drum. Test system for leaks with halide test torch or other approved method suitable for the test gas used. Repair all leaking joints and retest.
 - Connect a drum of dry nitrogen to charging valve and bring test pressure to design pressure for low side and for high side. Test entire system again for leaks.
 - 3. Evacuate the entire refrigerant system by the triplicate evacuation method with a vacuum pump equipped with an electronic gage reading in mPa (microns). Pull the system down to 665 mPa (500 microns) 665 mPa (2245.6 inches of mercury at 60 degrees F) and hold for four hours then break the vacuum with dry nitrogen (or refrigerant).

Repeat the evacuation two more times breaking the third vacuum with the refrigeration to be charged and charge with the proper volume of refrigerant.

- - - END - - -

SECTION 23 31 00

HVAC DUCTS AND CASINGS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Ductwork and accessories for HVAC including the following:
 - 1. Supply air, return air, outside air, exhaust.
- B. Definitions:
 - 1. SMACNA Standards as used in this specification means the HVAC Duct Construction Standards, Metal and Flexible.
 - Seal or Sealing: Use of liquid or mastic sealant, with or without compatible tape overlay, or gasketing of flanged joints, to keep air leakage at duct joints, seams and connections to an acceptable minimum.
 - 3. Duct Pressure Classification: SMACNA HVAC Duct Construction Standards, Metal and Flexible.

1.2 RELATED WORK

- A. Fire Stopping Material: Section 07 84 00, FIRESTOPPING.
- B. Outdoor and Exhaust Louvers: Section 08 90 00, LOUVERS and VENTS.
- C. General Mechanical Requirements: Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- D. Noise Level Requirements: Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- E. Duct Insulation: Section 23 07 11, HVAC, PLUMBING, and BOILER PLANT INSULATION
- F. Plumbing Connections: Section 22 11 00, FACILITY WATER DISTRIBUTION
- G. Return Air and Exhaust Air Fans: Section 23 34 00, HVAC FANS.
- H. Air Filters and Filters' Efficiencies: Section 23 40 00, HVAC AIR CLEANING DEVICES.
- I. Duct Mounted Instrumentation: Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- J. Testing and Balancing of Air Flows: Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.
- K. Smoke Detectors: Section 28 31 00, FIRE DETECTION and ALARM.

1.3 QUALITY ASSURANCE

A. Refer to article, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.

- B. Fire Safety Code: Comply with NFPA 90A.
- C. Duct System Construction and Installation: Referenced SMACNA Standards are the minimum acceptable quality.
- D. Duct Sealing, Air Leakage Criteria, and Air Leakage Tests: Ducts shall be sealed as per duct sealing requirements of SMACNA HVAC Air Duct Leakage Test Manual for duct pressure classes shown on the drawings.
- E. Duct accessories exposed to the air stream, such as dampers of all types (except smoke dampers) and access openings, shall be of the same material as the duct or provide at least the same level of corrosion resistance.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Rectangular ducts:
 - a. Schedules of duct systems, materials and selected SMACNA construction alternatives for joints, sealing, gage and reinforcement.
 - b. Duct liner.
 - c. Sealants and gaskets.
 - d. Access doors.
 - 2. Round and flat oval duct construction details:
 - a. Manufacturer's details for duct fittings.
 - b. Duct liner.
 - c. Sealants and gaskets.
 - d. Access sections.
 - e. Installation instructions.
 - 3. Volume dampers, back draft dampers.
 - 4. Upper hanger attachments.
 - 5. Fire dampers, fire doors, and smoke dampers with installation instructions.
 - Flexible ducts and clamps, with manufacturer's installation instructions.
 - 7. Flexible connections.
 - 8. Instrument test fittings.
 - 9.Details and design analysis of alternate or optional duct systems.
 - 10 COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- C. Coordination Drawings: Refer to article, SUBMITTALS, in Section 23 05

1.5 APPLICABLE PUBLICATIONS

Α.	The publications listed below form a part of this specification to the				
	extent referenced. The publications are referenced in the text by the				
	basic designation only.				
в.	American Society of Civil Engineers (ASCE):				
	ASCE7-05				
	Structures				
С.	. American Society for Testing and Materials (ASTM):				
	A167-99(2009)Standard Specification for Stainless and				
	Heat-Resisting Chromium-Nickel Steel Plate				
	Sheet, and Strip				
	A653-09for Steel Sheet,				
	Zinc-Coated (Galvanized) or Zinc-Iron Alloy				
	coated (Galvannealed) by the Hot-Dip process				
	A1011-09aStandard Specification for Steel, Sheet and				
	Strip, Hot rolled, Carbon, structural, High-				
	Strength Low-Alloy, High Strength Low-Alloy				
	with Improved Formability, and Ultra-High				
	Strength				
	B209-07				
	Aluminum-Alloy Sheet and Plate				
	C1071-05e1 Glass Duct				
	Lining Insulation (Thermal and Sound Absorbing				
	Material)				
	E84-09aBtandard Test Method for Surface Burning				
	Characteristics of Building Materials				
D.	National Fire Protection Association (NFPA):				
	90A-09of Air				
	Conditioning and Ventilating Systems				
	96-08 Control and Fire				
	Protection of Commercial Cooking Operations				
Ε.	Sheet Metal and Air Conditioning Contractors National Association				
	(SMACNA):				
	2nd Edition - 2005HVAC Duct Construction Standards, Metal and				
	Flexible				
	1st Edition - 1985HVAC Air Duct Leakage Test Manual				
	6th Edition - 2003Fibrous Glass Duct Construction Standards				

F. Underwriters Laboratories, Inc. (UL):

181-08......Factory-Made Air Ducts and Air Connectors
555-06Standard for Fire Dampers
555S-06Standard for Smoke Dampers

PART 2 - PRODUCTS

2.1 DUCT MATERIALS AND SEALANTS

- A. General: Except for systems specified otherwise, construct ducts, casings, and accessories of galvanized sheet steel, ASTM A653, coating G90; or, aluminum sheet, ASTM B209, alloy 1100, 3003 or 5052.
- B. Specified Corrosion Resistant Systems: Stainless steel sheet, ASTM A167, Class 302 or 304, Condition A (annealed) Finish No. 4 for exposed ducts and Finish No. 2B for concealed duct or ducts located in mechanical rooms.
- C. Joint Sealing: Refer to SMACNA HVAC Duct Construction Standards, paragraph S1.9.
 - 1. Sealant: Elastomeric compound, gun or brush grade, maximum 25 flame spread and 50 smoke developed (dry state) compounded specifically for sealing ductwork as recommended by the manufacturer. Generally provide liquid sealant, with or without compatible tape, for low clearance slip joints and heavy, permanently elastic, mastic type where clearances are larger. Oil base caulking and glazing compounds are not acceptable because they do not retain elasticity and bond.
 - Tape: Use only tape specifically designated by the sealant manufacturer and apply only over wet sealant. Pressure sensitive tape shall not be used on bare metal or on dry sealant.
 - 3. Gaskets in Flanged Joints: Soft neoprene.
- E. Approved factory made joints may be used.

2.2 DUCT CONSTRUCTION AND INSTALLATION

- A. Regardless of the pressure classifications outlined in the SMACNA Standards, fabricate and seal the ductwork in accordance with the following pressure classifications:
- B. Duct Pressure Classification:0 to 50 mm (2 inch) [Low pressure supply]Show pressure classifications on the floor plans.
- C. Seal Class: All ductwork shall receive Class A Seal
- D. Duct for Negative Pressure Up to 750 Pa (3 inch W.G.)
 - 1. Round Duct: Galvanized steel, spiral lock seam construction with standard slip joints.

- 2. Rectangular Duct: Galvanized steel, minimum 1.0 mm (20 gage), Pittsburgh lock seam, companion angle joints 32 mm by 3.2 mm (1-1/4 by 1/8 inch) minimum at not more than 2.4 m (8 feet) spacing. Approved pre-manufactured joints are acceptable in lieu of companion angles.
- E. Round and Flat Oval Ducts: Furnish duct and fittings made by the same manufacturer to insure good fit of slip joints. When submitted and approved in advance, round and flat oval duct, with size converted on the basis of equal pressure drop, may be furnished in lieu of rectangular duct design shown on the drawings.
 - Elbows: Diameters 80 through 200 mm (3 through 8 inches) shall be two sections die stamped, all others shall be gored construction, maximum 18 degree angle, with all seams continuously welded or standing seam. Coat galvanized areas of fittings damaged by welding with corrosion resistant aluminum paint or galvanized repair compound.
 - Provide bell mouth, conical tees or taps, laterals, reducers, and other low loss fittings as shown in SMACNA HVAC Duct Construction Standards.
 - Ribbed Duct Option: Lighter gage round/oval duct and fittings may be furnished provided certified tests indicating that the rigidity and performance is equivalent to SMACNA standard gage ducts are submitted.
 - a. Ducts: Manufacturer's published standard gage, G90 coating, spiral lock seam construction with an intermediate standing rib.
 - b. Fittings: May be manufacturer's standard as shown in published catalogs, fabricated by spot welding and bonding with neoprene base cement or machine formed seam in lieu of continuous welded seams.
 - Provide flat side reinforcement of oval ducts as recommended by the manufacturer and SMACNA HVAC Duct Construction Standard S3.13.
 Because of high pressure loss, do not use internal tie-rod reinforcement unless approved by the COTR.
- F. Casings and Plenums: Construct in accordance with SMACNA HVAC Duct Construction Standards Section 6, including curbs, access doors, pipe penetrations, eliminators and drain pans. Access doors shall be hollow metal, insulated, with latches and door pulls, 500 mm (20 inches) wide by 1200 - 1350 mm (48 - 54 inches) high. Provide view port in the doors

where shown. Provide drain for outside air louver plenum. Outside air plenum shall have exterior insulation. Drain piping shall be routed to the nearest floor drain.

- G. Volume Dampers: Single blade or opposed blade, multi-louver type as detailed in SMACNA Standards. Refer to SMACNA Detail Figure 2-12 for Single Blade and Figure 2.13 for Multi-blade Volume Dampers.
- H. Duct Hangers and Supports: Refer to SMACNA Standards Section IV. Avoid use of trapeze hangers for round duct.

2.3 DUCT ACCESS DOORS, PANELS AND SECTIONS

- A. Provide access doors, sized and located for maintenance work, upstream, in the following locations:
 - 1. Each duct mounted coil and humidifier.
 - 2. Each fire damper (for link service), smoke damper and automatic control damper.
 - 3. Each duct mounted smoke detector.
 - 4. For cleaning operating room supply air duct and kitchen hood exhaust duct, locate access doors at 6 m (20 feet) intervals and at each change in duct direction.
- B. Openings shall be as large as feasible in small ducts, 300 mm by 300 mm (12 inch by 12 inch) minimum where possible. Access sections in insulated ducts shall be double-wall, insulated. Transparent shatterproof covers are preferred for uninsulated ducts.
 - For rectangular ducts: Refer to SMACNA HVAC Duct Construction Standards (Figure 2-12).
 - 2. For round and flat oval duct: Refer to SMACNA HVAC duct Construction Standards (Figure 2-11).

2.4 FIRE DAMPERS

- A. Galvanized steel, interlocking blade type, UL listing and label, 1-1/2 hour rating, 70 degrees C (160 degrees F) fusible line, 100 percent free opening with no part of the blade stack or damper frame in the air stream.
- B. Fire dampers in wet air exhaust shall be of stainless steel construction, all others may be galvanized steel.
- C. Minimum requirements for fire dampers:
 - The damper frame may be of design and length as to function as the mounting sleeve, thus eliminating the need for a separate sleeve, as allowed by UL 555. Otherwise provide sleeves and mounting angles,

minimum 1.9 mm (14 gage), required to provide installation equivalent to the damper manufacturer's UL test installation.

2. Submit manufacturer's installation instructions conforming to UL rating test.

2.5 FLEXIBLE AIR DUCT

- A. General: Factory fabricated, complying with NFPA 90A for connectors not passing through floors of buildings. Flexible ducts shall not penetrate any fire or smoke barrier which is required to have a fire resistance rating of one hour or more. Flexible duct length shall not exceed 1.5 m (5 feet). Provide insulated acoustical air duct connectors in supply air duct systems and elsewhere as shown.
- B. Flexible ducts shall be listed by Underwriters Laboratories, Inc., complying with UL 181. Ducts larger than 200 mm (8 inches) in diameter shall be Class 1. Ducts 200 mm (8 inches) in diameter and smaller may be Class 1 or Class 2.
- C. Insulated Flexible Air Duct: Factory made including mineral fiber insulation with maximum C factor of 0.25 at 24 degrees C (75 degrees F) mean temperature, encased with a low permeability moisture barrier outer jacket, having a puncture resistance of not less than 50 Beach Units. Acoustic insertion loss shall not be less than 3 dB per 300 mm (foot) of straight duct, at 500 Hz, based on 150 mm (6 inch) duct, of 750 m/min (2500 fpm).
- D. Application Criteria:
 - Temperature range: -18 to 93 degrees C (0 to 200 degrees F) internal.
 - 2. Maximum working velocity: 1200 m/min (4000 feet per minute).
 - 3. Minimum working pressure, inches of water gage: 2500 Pa (10 inches) positive, 500 Pa (2 inches) negative.
- E. Duct Clamps: 100 percent nylon strap, 80 kg (175 pounds) minimum loop tensile strength manufactured for this purpose or stainless steel strap with cadmium plated worm gear tightening device. Apply clamps with sealant and as approved for UL 181, Class 1 installation.

2.6 FLEXIBLE DUCT CONNECTIONS

A. Where duct connections are made to fans and air handling units, install a non-combustible flexible connection of 822 g (29 ounce) neoprene coated fiberglass fabric approximately 150 mm (6 inches) wide. For connections exposed to sun and weather provide hypalon coating in lieu of neoprene. Burning characteristics shall conform to NFPA 90A. Securely fasten flexible connections to round ducts with stainless steel or zinc-coated iron draw bands with worm gear fastener. For rectangular connections, crimp fabric to sheet metal and fasten sheet metal to ducts by screws 50 mm (2 inches) on center. Fabric shall not be stressed other than by air pressure. Allow at least 25 mm (one inch) slack to insure that no vibration is transmitted.

2.7 FIRESTOPPING MATERIAL

A. Refer to Section 07 84 00, FIRESTOPPING.

2.8 DUCT MOUNTEDTHERMOMETER (AIR)

- A. Stem Type Thermometers: ASTM E1, 7 inch scale, red appearing liquid, lens front tube, cast aluminum case with enamel finish and clear glass or polycarbonate window, brass stem, 2 percent of scale accuracy to ASTM E77 scale calibrated in degrees Fahrenheit.
- B. Thermometer Supports:
 - Socket: Brass separable sockets for thermometer stems with or without extensions as required, and with cap and chain.
 - 2. Flange: 3 inch outside diameter reversible flange, designed to fasten to sheet metal air ducts, with brass perforated stem.

2.9 DUCT MOUNTEDTEMPERATURE SENSOR (AIR)

A. Refer to Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.

2.10 INSTRUMENT TEST FITTINGS

- A. Manufactured type with a minimum 50 mm (two inch) length for insulated duct, and a minimum 25 mm (one inch) length for duct not insulated. Test hole shall have a flat gasket for rectangular ducts and a concave gasket for round ducts at the base, and a screw cap to prevent air leakage.
- B. Provide instrument test holes at each duct or casing mounted temperature sensor or transmitter, and at entering and leaving side of each heating coil, cooling coil, and heat recovery unit.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with provisions of Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION, particularly regarding coordination with other trades and work in existing buildings.
- B. Fabricate and install ductwork and accessories in accordance with referenced SMACNA Standards:
 - 1. Drawings show the general layout of ductwork and accessories but do not show all required fittings and offsets that may be necessary to

connect ducts to equipment, boxes, diffusers, grilles, etc., and to coordinate with other trades. Fabricate ductwork based on field measurements. Provide all necessary fittings and offsets at no additional cost to the government. Coordinate with other trades for space available and relative location of HVAC equipment and accessories on ceiling grid. Duct sizes on the drawings are inside dimensions which shall be altered by Contractor to other dimensions with the same air handling characteristics where necessary to avoid interferences and clearance difficulties.

- 2. Provide duct transitions, offsets and connections to dampers, coils, and other equipment in accordance with SMACNA Standards, Section II. Provide streamliner, when an obstruction cannot be avoided and must be taken in by a duct. Repair galvanized areas with galvanizing repair compound.
- 3. Provide bolted construction and tie-rod reinforcement in accordance with SMACNA Standards.
- 4. Construct casings, eliminators, and pipe penetrations in accordance with SMACNA Standards, Chapter 6. Design casing access doors to swing against air pressure so that pressure helps to maintain a tight seal.
- C. Install duct hangers and supports in accordance with SMACNA Standards, Chapter 4.
- D. Install fire dampers in accordance with the manufacturer's instructions to conform to the installation used for the rating test. Install fire dampers at locations indicated and where ducts penetrate fire rated walls. Install with required perimeter mounting angles, sleeves, breakaway duct connections, corrosion resistant springs, bearings, bushings and hinges per UL and NFPA. Demonstrate re-setting of fire dampers to the COTR.
- E. Seal openings around duct penetrations of floors and fire rated partitions with fire stop material as required by NFPA 90A.
- F. Flexible duct installation: Refer to SMACNA Standards, Chapter 3. Ducts shall be continuous, single pieces not over 1.5 m (5 feet) long (NFPA 90A), as straight and short as feasible, adequately supported. Centerline radius of bends shall be not less than two duct diameters. Make connections with clamps as recommended by SMACNA. Clamp per SMACNA with one clamp on the core duct and one on the insulation jacket. Flexible ducts shall not penetrate floors, or any chase or partition

designated as a fire or smoke barrier, including corridor partitions fire rated one hour or two hour. Support ducts SMACNA Standards.

- G. Where diffusers, registers and grilles cannot be installed to avoid seeing inside the duct, paint the inside of the duct with flat black paint to reduce visibility.
- H. Control Damper Installation:
 - Provide necessary blank-off plates required to install dampers that are smaller than duct size. Provide necessary transitions required to install dampers larger than duct size.
 - Assemble multiple sections dampers with required interconnecting linkage and extend required number of shafts through duct for external mounting of damper motors.
 - 3. Provide necessary sheet metal baffle plates to eliminate stratification and provide air volumes specified. Locate baffles by experimentation, and affix and seal permanently in place, only after stratification problem has been eliminated.
 - Install all damper control/adjustment devices on stand-offs to allow complete coverage of insulation.
- I. Protection and Cleaning: Adequately protect equipment and materials against physical damage. Place equipment in first class operating condition, or return to source of supply for repair or replacement, as determined by COTR. Protect equipment and ducts during construction against entry of foreign matter to the inside and clean both inside and outside before operation and painting. When new ducts are connected to existing ductwork, clean both new and existing ductwork by mopping and vacuum cleaning inside and outside before operation.

3.2 DUCT LEAKAGE TESTS AND REPAIR

- A. Ductwork leakage testing shall be performed by the Testing and Balancing Contractor directly contracted by the General Contractor and independent of the Sheet Metal Contractor.
- B. Ductwork leakage testing shall be performed for the entire air distribution system (including all supply, return, exhaust and relief ductwork), section by section, including fans, coils and filter sections. Based upon satisfactory initial duct leakage test results, the scope of the testing may be reduced by the COTR on ductwork constructed to the 500 Pa (2" WG) duct pressure classification. In no case shall the leakage testing of ductwork constructed above the 500 Pa

(2" WG) duct pressure classification or ductwork located in shafts or other inaccessible areas be eliminated.

- C. Test procedure, apparatus and report shall conform to SMACNA Leakage Test manual. The maximum leakage rate allowed is 4 percent of the design air flow rate.
- D. All ductwork shall be leak tested first before enclosed in a shaft or covered in other inaccessible areas.
- E. All tests shall be performed in the presence of the COTR and the Test and Balance agency. The Test and Balance agency shall measure and record duct leakage and report to the COTR and identify leakage source with excessive leakage.
- F. If any portion of the duct system tested fails to meet the permissible leakage level, the Contractor shall rectify sealing of ductwork to bring it into compliance and shall retest it until acceptable leakage is demonstrated to the COTR.
- G. All tests and necessary repairs shall be completed prior to insulation or concealment of ductwork.
- H. Make sure all openings used for testing flow and temperatures by TAB Contractor are sealed properly.

3.3 TESTING, ADJUSTING AND BALANCING (TAB)

A. Refer to Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.

3.4 OPERATING AND PERFORMANCE TESTS

A. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION

- - - END - - -

SECTION 23 34 00

HVAC FANS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Fans for heating, ventilating and air conditioning.
- B. Product Definitions: AMCA Publication 99, Standard 1-66.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.
- D. Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT.
- E. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- F. Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.
- G. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- H. Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS.

1.3 QUALITY ASSURANCE

- A. Refer to paragraph, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION.
- B. Fans and power ventilators shall be listed in the current edition of AMCA 261, and shall bear the AMCA performance seal.
- C. Operating Limits for Centrifugal Fans: AMCA 99 (Class I, II, and III).
- D. Fans and power ventilators shall comply with the following standards:
 - 1. Testing and Rating: AMCA 210.
 - 2. Sound Rating: AMCA 300.
- E. Vibration Tolerance for Fans and Power Ventilators: Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- F. Performance Criteria:
 - The fan schedule shall show the design air volume and static pressure. Select the fan motor HP by increasing the fan BHP by 10 percent to account for the drive losses and field conditions.
 - 2. Select the fan operating point as follows:
 - a. Forward Curve and Axial Flow Fans: Right hand side of peak pressure point
 - b. Air Foil, Backward Inclined, or Tubular: At or near the peak static efficiency

- G. Safety Criteria: Provide manufacturer's standard screen on fan inlet and discharge where exposed to operating and maintenance personnel.
- H. Corrosion Protection:
 - All steel shall be mill-galvanized, or phosphatized and coated with minimum two coats, corrosion resistant enamel paint. Manufacturers paint and paint system shall meet the minimum specifications of: ASTM D1735 water fog; ASTM B117 salt spray; ASTM D3359 adhesion; and ASTM G152 and G153 for carbon arc light apparatus for exposure of non-metallic material.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturers Literature and Data:
 - 1. Fan sections, motors and drives.
 - Centrifugal fans, motors, drives, accessories and coatings.
 a. In-line centrifugal fans.
- C. Certified Sound power levels for each fan.
- D. Motor ratings types, electrical characteristics and accessories.
- E. Belt guards.
- F. Maintenance and Operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
- G. Certified fan performance curves for each fan showing cubic feet per minute (CFM) versus static pressure, efficiency, and horsepower for design point of operation.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Movement and Control Association International, Inc. (AMCA): 99-86.....Standards Handbook 210-06....Laboratory Methods of Testing Fans for Aerodynamic Performance Rating 261-09....Directory of Products Licensed to bear the AMCA Certified Ratings Seal - Published Annually 300-08....Reverberant Room Method for Sound Testing of Fans
- C. American Society for Testing and Materials (ASTM):

B117-07a.....Standard Practice for Operating Salt Spray (Fog) Apparatus D1735-08.....Standard Practice for Testing Water Resistance of Coatings Using Water Fog Apparatus D3359-08..... Standard Test Methods for Measuring Adhesion by Tape Test G152-06.....Standard Practice for Operating Open Flame Carbon Arc Light Apparatus for Exposure of Non-Metallic Materials G153-04.....Standard Practice for Operating Enclosed Carbon Arc Light Apparatus for Exposure of Non-Metallic Materials D. National Fire Protection Association (NFPA): NFPA 96-08..... Standard for Ventilation Control and Fire Protection of Commercial Cooking Operations E. National Sanitation Foundation (NSF): 37-07.....Air Curtains for Entrance Ways in Food and Food Service Establishments F. Underwriters Laboratories, Inc. (UL):

181-2005..... Air Connectory Made Air Ducts and Air Connectors

1.6 EXTRA MATERIALS

Provide one additional set of belts for all belt-driven fans.

PART 2 - PRODUCTS

2.1 CENTRIFUGAL FANS

- A. Standards and Performance Criteria: Refer to Paragraph, QUALITY ASSURANCE. Record factory vibration test results on the fan or furnish to the Contractor.
- B. Fan arrangement, unless noted or approved otherwise:
 - 1. DWDl fans: Arrangement 3.
 - 2. SWSl fans: Arrangement 1, 3, 9 or 10.
- C. Construction: Wheel diameters and outlet areas shall be in accordance with AMCA standards.
 - Housing: Low carbon steel, arc welded throughout, braced and supported by structural channel or angle iron to prevent vibration or pulsation, flanged outlet, inlet fully streamlined. Provide lifting clips, and casing drain. Provide manufacturer's standard

access door. Provide 12.5 mm (1/2 inches) wire mesh screens for fan inlets without duct connections.

- 2. Wheel: Steel plate with die formed blades welded or riveted in place, factory balanced statically and dynamically.
- 3. Shaft: Designed to operate at no more than 70 percent of the first critical speed at the top of the speed range of the fans class.
- 4. Bearings: Heavy duty ball or roller type sized to produce a Bl0 life of not less than 50,000 hours, and an average fatigue life of 200,000 hours. Extend filled lubrication tubes for interior bearings or ducted units to outside of housing.
- 5. Belts: Oil resistant, non-sparking and non-static.
- 6. Belt Drives: Factory installed with final alignment belt adjustment made after installation.
- 7. Motors and Fan Wheel Pulleys: Adjustable pitch for use with motors through 15HP, fixed pitch for use with motors larger than 15HP. Select pulleys so that pitch adjustment is at the middle of the adjustment range at fan design conditions.
- 8. Motor, adjustable motor base, drive and guard: Furnish from factory with fan. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION for specifications. Provide protective sheet metal enclosure for fans located outdoors.
- 9. Furnish variable speed fan motor controllers where shown on the drawings. Refer to Section, MOTOR STARTERS. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION for controller/motor combination requirements.

2.2 CENTRIFUGAL CEILING FANS (SMALL CABINET FAN)

- A. Standards and Performance Criteria: Refer to Paragraph, QUALITY ASSURANCE.
- B. Steel housing, baked enamel finish, direct connected fan assembly, attached grille. Provide gravity back draft assembly, aluminum wall cap and bird or insect screen
- C. Acoustical Lining: 12.5 mm (1/2 inch) thick mineral fiber, dark finish. Comply with UL 181 for erosion.
- D. Motor: Shaded pole or permanent split capacitor, sleeve bearings, supported by steel brackets in combination with rubber isolators.
- E. Ceiling Grille, (Where indicated): White plastic egg crate design, 80 percent free area.

F. Control: Provide solid state speed control (located at unit) for final air balancing.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install fan, motor and drive in accordance with manufacturer's instructions.
- B. Align fan and motor sheaves to allow belts to run true and straight.
- C. Bolt equipment to curbs with galvanized lag bolts.
- D. Install vibration control devices as shown on drawings and specified in Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.

3.2 PRE-OPERATION MAINTENANCE

- A. Lubricate bearings, pulleys, belts and other moving parts with manufacturer recommended lubricants.
- B. Rotate impeller by hand and check for shifting during shipment and check all bolts, collars, and other parts for tightness.
- C. Clean fan interiors to remove foreign material and construction dirt and dust.

3.3 START-UP AND INSTRUCTIONS

- A. Verify operation of motor, drive system and fan wheel according to the drawings and specifications.
- B. Check vibration and correct as necessary for air balance work.
- C. After air balancing is complete and permanent sheaves are in place perform necessary field mechanical balancing to meet vibration tolerance in Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.

- - - END - - -

SECTION 23 37 00

AIR OUTLETS AND INLETS

PART 1 - GENERAL

1.1 DESCRIPTION OF WORK

Air distribution diffusers, registers and grilles, with application for air outlets and inlets.

1.2 RELATED DIVISIONS AND SECTIONS

- A. Section 01 00 00 GENERAL REQUIREMENTS
- B. Sections 08 90 00 LOUVERS AND VENTS
- C. Section 23 05 11 COMMON WORK RESULTS FOR HVAC
- D. Section 23 31 00 DUCTS AND CASINGS
- E. Section 23 34 00 FANS
- F. Section 23 70 00 VARIABLE REFRIGERANT FLOW SYSTEMS

1.3 QUALITY ASSURANCE

Diffusers, Registers and Grilles: Test and rate in accordance with ASHRAE Standard 70 and ARI Standard 890.

1.4 SUBMITTALS

- A. Submit in accordance with Division 1 and Section 15050.
- B. Statement indicating compliance with ASHRAE and ARI standards.
- C. Manufacturer's technical product data, installation instructions and accessories:
 - Diffusers

Registers

Grilles

1.5 APPLICABLE PUBLICATIONS

The publications form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation.

1.6 PROJECT CONDITIONS

- A. Coordinate with ceiling, floor, and wall construction and materials.
- B. Coordinate with lights, speakers, sprinklers, and other ceiling elements.

PART 2 - PRODUCTS

2.1 DIFFUSERS

A. Factory-fabricated steel or aluminum with fixed or adjustable air discharge pattern as indicated.

- B. Unless otherwise indicated, provide removable internal parts including the volume regulators and each velocity equalizing device.
- C. Factory-fabricated opposed-blade, gang-operated volume regulator with accessible operator and removable key, unless indicated otherwise.

2.2 REGISTERS

Factory-fabricated steel or aluminum with face-operated, opposed-blade, volume-control damper.

2.3 GRILLES

Factory-fabricated steel or aluminum without volume-control damper.

2.4 DAMPER REMOTE CONTROL

Where indicated, provide remote control equal to Young Regulator Series 700.

2.5 OUTLET/INLET TYPE

Air delivery, performance, noise level, function, and type suitable for the duty intended and equal in these respects to the following:

- A. Supply-Air, Side-Wall Registers, Steel Construction:
 - Types SR-1: Titus 300 R horizontal face, double deflection steel register with individually adjustable front and rear vanes set on 3/4-inch centers. Unit shall be complete with opposed-blade damper, plaster frame, continuous gasket and phosphate coating and baked white enamel finish.
- B. Return or Exhaust Air, Side-Wall Registers, Steel Construction:
 - Types RR-1: Titus 350 RF horizontal face, steel hinged register with stationary deflecting vanes set on 3/4-inch centers. Complete with 1-inch filters, opposed-blade damper, plaster frame, continuous gasket, phosphate coating and baked white enamel finish.
 - Manufacturers: Anemostat, Carnes, Krueger, Metalair, Nailor, Price, Titus, Tuttle & Bailey.

PART 3 - EXECUTION

3.1 DIFFUSERS, REGISTERS, GRILLES

- A. Provide diffusers, registers, and grilles to distribute the quantity of air specified evenly over the intended space without causing dead spots or air velocities exceeding 50 fpm in the occupied zone.
- B. Coordinate location with lighting and ceiling pattern. Perform minor duct modifications to suit.
- C. Add internal baffles where necessary to avoid drafts due to air impingement on nearby partitions, columns, etc.

- - - END - - -

SECTION 23 40 00

HVAC AIR CLEANING DEVICES

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Air filters for heating, ventilating and air conditioning.
- B. Definitions: Refer to ASHRAE Standard 52.2 for definitions of face velocity, net effective filtering area, media velocity, initial resistance (pressure drop), MERV (Minimum Efficiency Reporting Value), PSE (Particle Size Efficiency), particle size ranges for each MERV number, dust holding capacity and explanation of electrostatic media based filtration products versus mechanical filtration products. Refer to ASHRAE Standard 52.2 Appendix J for definition of MERV-A.

1.2 RELATED WORK

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION: General mechanical requirements and items, which are common to more than one section of Division 23.
- B. Section 23 70 00 VARIABLE REFRIGERANT FLOW SYSTEMS.

1.3 QUALITY ASSURANCE

- A. Air Filter Performance Report for Extended Surface Filters:
 - 1. Submit a test report for each Grade of filter being offered. The report shall not be more than three (3) years old and prepared by using test equipment, method and duct section as specified by ASHRAE Standard 52.2 for type filter under test and acceptable to COTR, indicating that filters comply with the requirements of this specification. Filters utilizing partial or complete synthetic media will be tested in compliance with pre-conditioning steps as stated in Appendix J. All testing is to be conducted on filters with a nominal 24 inch by 24 inch face dimension. Test for 150 m/min (500 fpm) will be accepted for lower velocity rated filters provided the test report of an independent testing laboratory complies with all the requirements of this specification.
- 2. Government Option: The Government at its option may take one of the filters for each different type submitted and run an independent test to determine if the filter meets the requirements of this specification. When the filter meets the requirements, the Government will pay for the test. When the filter does not meet the specification requirements, the manufacturer will be required to pay

for the test and replace the filters with filters that will perform as required by the specifications.

- B. Filter Warranty for Extended Surface Filters: Guarantee the filters against leakage, blow-outs, and other deficiencies during their normal useful life, up to the time that the filter reaches the final pressure drop. Defective filters shall be replaced at no cost to the Government.
- C. Comply with UL Standard 900 for flame test.
- D. Nameplates: Each filter shall bear a label or name plate indicating manufacturer's name, filter size, rated efficiency, UL classification, and file number.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Extended surface filters.
 - 2. Holding frames. Identify locations.
 - 3. Side access housings. Identify locations, verify insulated doors.
- C. Air Filter performance reports.
- D. Suppliers warranty.
- E. Field test results for HEPA filters as per paragraph 2.3.E.3.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only.
- B. American Society of Heating, Refrigerating and Air-conditioning Engineers, Inc. (ASHRAE): 52.2-2007......Method of Testing General Ventilation Air-

Cleaning Devices for Removal Efficiency by Particle Size, including Appendix J

- C. American Society of Mechanical Engineers (ASME): NQA-1-2008.....Quality Assurance Requirements for Nuclear Facilities Applications
- D. Underwriters Laboratories, Inc. (UL):
 - 900; Revision 15 July 2009 Test Performance of Air Filter Units

PART 2 - PRODUCTS

2.1 REPLACEMENT FILTER ELEMENTS TO BE FURNISHED

A. To allow temporary use of HVAC systems for testing and in accordance with Paragraph, TEMPORARY USE OF MECHANICAL AND ELECTRICAL SYSTEMS in

Section 01 00 00, GENERAL REQUIREMENTS, provide one complete set of spare filters to the COTR.

B. The COTR will direct whether these additional filters will either be installed as replacements for dirty units or turned over to VA for future use as replacements.

2.2 EXTENDED SURFACE AIR FILTERS

- A. Use factory assembled air filters of the extended surface type with supported or non-supported cartridges for removal of particulate matter in air conditioning, heating and ventilating systems. Filter units shall be of the extended surface type fabricated for disposal when the contaminant load limit is reached as indicated by maximum (final) pressure drop.
- B. Filter Classification: UL listed and approved conforming to UL Standard 900.
- C. HVAC Filter Types

HVAC Filter Types Table 2.2C					
MERV Value ASHRAE 52.2	MERV-A Value ASHRAE 62.2 Appendix J	Application	Particle Size	Thickness /Type	
8	8-A	Pre-Filter	3 to 10 Microns	50 mm (2-inch) Throwaway	

2.3 HVAC EQUIPMENT FACTORY FILTERS

- A. Manufacturer standard filters within fabricated packaged equipment should be specified with the equipment and should adhere to industry standard.
- B. Cleanable filters are not permitted.
- C. Automatic Roll Type filters are not permitted.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install supports, filters and gages in accordance with manufacturer's instructions.

3.2 START-UP AND TEMPORARY USE

- A. Clean and vacuum air handling units and plenums prior to starting air handling systems.
- B. Install or deliver replacement filter units as directed by the COTR.

- - - END - - -

SECTION 237010

VARIABLE REFRIGERANT SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION OF WORK

Variable capacity, heat pump heat recovery air conditioning system.

1.2 RELATED DIVISIONS AND SECTIONS

- A. Section 01 00 00 GENERAL REQUIREMENTS
- B. Section 23 05 11 BASIC MECHANICAL MATERIALS AND METHODS
- C. Section 23 05 93 TESTING, ADJUSTING, AND BALANCING
- D. Section 23 07 11 MECHANICAL INSULATION
- E. Section 23 21 13 BUILDING SERVICES PIPING
- F. Section 23 31 00 DUCTS AND DUCT ACCESSORIES
- G. Section 23 37 00- AIR OUTLETS AND INLETS
- H. Division 26 ELECTRICAL

1.3 QUALITY ASSURANCE

- A. Equipment specified shall meet all requirements of ASHRAE Standard 90.1-2010 Section 6.
- B. Provide UL label on electric powered equipment or certification that equipment has been tested by a testing agency approved by local authority and is equivalent in safety to UL labeled equipment.
- C. Variable Refrigerant System:
 - Manufacturer shall have a minimum of ten years experience in the U.S. market.
 - Installing Contractor shall be trained and authorized by the system manufacturer. Installing Contractor shall have at least one variable refrigerant system installed, serviced, and operational for a minimum of one year.
 - The units shall be listed by Electrical Laboratories (ETL) and bear the ETL label.
 - A full charge of R-410A for the air-source unit only shall be provided.

- 5. Each VRF system shall be certified to, and meet or exceed the minimum efficiencies of AHRI Standard 1230, supported by submitted, certified test results including IEER and COP@17F ratings.
- Provide completely de-rated capacities at design conditions for all zones of each VRF system.
- 7. If an "or-equal" manufacturer is proposed, the Contractor shall submit a complete system re-design for Engineer review and approval. System re-design shall include all components, refrigerant piping, controls, etc., as required to provide a complete, operational system equal to the system specified in the Contract Documents. Submittal shall include complete coordination drawings as specified in Division 01 and Section 23 05 11. Any "or-equal" manufacturers shall be provided at no additional cost to the Owner and shall be complete in all respects.

1.4 SUBMITTALS

- A. Submit in accordance with Division 1 and Section 23 05 11.
- B. Manufacturer's technical product data, including installation instructions, performance data, accessories, supports, fittings, finishes, construction details, and dimensions of components: Refrigeration System Specialties Variable Refrigerant Flow Zoning System including: Variable Refrigerant Installer Qualifications & Experience Outdoor Air-source Heat Recovery Units Indoor Fan Coil Terminal Units Branch Circuit Controller Centralized Controller Remote Controllers Power Supply Unit
- C. Manufacturer's sound power levels for motorized equipment.
- D. Contractor Installation Drawings: Submit, prior to installation of mechanical and plumbing systems, two copies of installation drawings (minimum scale - 1/8-inch = 1-foot) showing equipment, ductwork, piping, plumbing, and electrical work, coordinated with each other and with the structure and, where relevant to this work, existing mechanical, plumbing, fire protection, and electrical services. These

drawings shall not be construed as shop drawings that require review and action by the Architect or Engineer.

1.5 APPLICABLE PUBLICATIONS

The publications form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation.

1.6 PROJECT CONDITIONS

- A. Provide all material and equipment specified in this section with performance requirements as stated herein or on the drawings.
- B. Except where specified, equipment and system capacities and performance requirements are scheduled on the drawings.

1.7 WARRANTY

- A. If not specifically required for a longer term, the warranty term shall be in accordance with General Conditions Building Projects, Article 51.
- B. All systems shall be verified by performance of a commissioning process and documented with a completed commissioning report submitted to the Manufacturer and Owner.
- C. Variable Refrigerant System:
 - The units shall be covered by an extended manufacturer's limited warranty for a period of five (5) years from date of installation.
 - The compressor shall have a manufacturer's limited warranty for a period of seven (7) years from date of installation.

PART 2 - PRODUCTS

2.1 VARIABLE REFRIGERANT FLOW ZONING SYSTEM (VRFZ)

A. System Description

- Provide a variable capacity, heat pump heat recovery air conditioning system equal to Mitsubishi Electric CITY MULTI VRFZ (Variable Refrigerant Flow Zoning) System. The variable refrigerant systems shall be cooling only (Mitsubishi M-Series)or simultaneous cooling and heating split system heat pump (MitsubishiR2-Series)based on alternate deducts.
- The system shall consist of outdoor unit air-source unit(s) (), BC (Branch Circuit) Controller(s), multiple indoor units, and a Direct

Digital Control (DDC) system. Each indoor unit shall be capable of operating in any mode independently of other indoor units. The system shall be capable of changing mode (cooling to heating, heating to cooling) with no interruption to system operation.

- 3. Each indoor fan coil terminal unit shall be independently controlled.
- 4. The system components, including direct digital controls shall be the product of a single manufacturer.
- 5. Manufacturers: Mitsubishi Electric, Daikin AC, or approved equal.

2.2 OUTDOOR AIR-SOURCE HEAT RECOVERY UNITS

- A. Drawing Designation: ACCU--X
- B. General:

The outdoor air-source heat recovery units, , shall be equipped with multiple circuit boards as required to interface to the direct digital controls system and shall perform all functions necessary for operation. The outdoor unit shall have a powder coated finish. The outdoor unit shall be completely factory assembled, piped and wired. Each unit shall be run tested at the factory.

- 1. For outdoor units consisting of multiple units, provide all required refrigerant piping, twining kits, and accessories to provide a complete, operational unit. All units requiring a factory supplied twinning kits shall be piped together in the field, without the need for equalizing line(s). If an alternate manufacturer is selected, any additional material, cost, and labor to install additional lines shall be incurred by the contractor.
- 2. Outdoor unit shall have a sound rating no higher than 60 dB(A) individually or 64 dB(A) twinned. Units shall have a sound rating no higher than 50 dB(A) individually or 53 dB(A) twinned while in night mode operation. If an alternate manufacturer is selected, any additional material, cost, and labor to meet published sound levels shall be incurred by the contractor.
- 3. Both refrigerant lines from the outdoor unit to the BC (Branch Circuit) Controller (Single or Main) shall be insulated.
- 4. There shall be no more than 3 branch circuit controllers connected to any one outdoor unit. Alternative manufacturers shall submit redesign indicating location and quantity of all controllers. It is the Contractor's responsibility to field verify all existing

conditions and coordinate the location of alternative manufacturer's equipment and refrigerant pipe routing.

- 5. Outdoor unit shall be able to connect to up to 50 indoor units depending upon model.
- 6. The outdoor unit shall have an accumulator with refrigerant level sensors and controls.
- 7. The outdoor unit shall have a high pressure safety switch, overcurrent protection, crankcase heater and DC bus protection.
- 8. The outdoor unit shall have the ability to operate with a maximum height difference of 164 feet and have total refrigerant tubing length of 1804-2625 feet. The greatest length is not to exceed 541 feet between outdoor unit and the indoor units without the need for line size changes or traps.
- 9. The outdoor unit shall be capable of operating in heating mode down to -4°F ambient temperature or cooling mode down to 23°F ambient temperature, without additional low ambient controls. If an alternate manufacturer is selected, any additional material, cost, and labor to meet low ambient operating condition and performance shall be incurred by the contractor.
- 10. Provide manufacturer supplied low ambient kit to permit the outdoor unit to operate in cooling mode down to $-10^{\circ}F$.
- 11. Manufacturer supplied low ambient kit shall be provided with predesigned control box rated for outdoor installation and capable of controlling kit operation automatically in all outdoor unit operation modes.
- 12. Manufacturer supplied low ambient kit shall be listed by Electrical Laboratories (ETL) and bear the ETL label.
- 13. Manufacturer supplied low ambient kit shall be factory tested in low ambient temperature chamber to ensure operation. Factory performance testing data shall be available when requested.
- 14. The outdoor unit shall not cease operation in any mode based solely on outdoor ambient temperature.
- 15. The outdoor unit shall have a high efficiency oil separator plus additional logic controls to ensure adequate oil volume in the compressor is maintained.
- 16. Unit shall defrost all circuits simultaneously in order to resume full heating more quickly. Partial defrost which may extend "no or reduced heating" periods shall not be allowed.

- C. Unit Cabinet:
 - The casing(s) shall be fabricated of galvanized steel, bonderized and finished with a powder coated baked enamel.
- D. Fan:
 - Each outdoor unit module shall be furnished with one direct drive, variable speed propeller type fan. The fan shall be factory set for operation under 0 in. WG external static pressure, but capable of normal operation under a maximum of 0.24 in. WG external static pressure via dipswitch.
 - 2. All fan motors shall have inherent protection, have permanently lubricated bearings, and be completely variable speed.
 - 3. All fan motors shall be mounted for quiet operation.
 - All fans shall be provided with a raised guard to prevent contact with moving parts.
 - 5. The outdoor unit shall have vertical discharge airflow.
- E. Refrigerant: R-410A
- F. Coil:
 - 1. The outdoor coil shall be of nonferrous construction with lanced or corrugated plate fins on copper tubing.
 - 2. The coil fins shall have a factory applied corrosion resistant bluefin finish.
 - 3. The coil shall be protected with an integral metal guard.
 - 4. Refrigerant flow from the outdoor unit shall be controlled by means of an inverter driven compressor.
 - 5. The outdoor coil shall include 4 circuits with two position valves for each circuit, except for the last stage.
- G. Compressor:
 - Each outdoor unit module shall be equipped with one inverter driven scroll hermetic compressor. Non inverter-driven compressors shall not be allowed.
 - 2. A crankcase heater(s) shall be factory mounted on the compressor(s).
 - 3. The outdoor unit compressor shall have an inverter to modulate capacity. The capacity shall be completely variable with a turndown of 19%-5% of rated capacity, depending upon unit size.
 - 4. The compressor will be equipped with an internal thermal overload.
 - 5. The compressor shall be mounted to avoid the transmission of vibration.

- 6. Field-installed oil equalization lines between modules are not allowed. Prior to bidding, manufacturers requiring equalization must submit oil line sizing calculations specific to each system and module placement for this project.
- H. Electrical:
 - The outdoor unit electrical power shall be 208/230, 3-phase, 60 hertz.
 - The outdoor unit shall be capable of satisfactory operation within voltage limits of 187-228 volts (208V/60Hz) or 207-253V (230V/60Hz) as required by the electrical drawings.
 - 3. The outdoor unit shall be controlled by integral microprocessors.
 - 4. The control circuit between the indoor units, BC Controller and the outdoor unit shall be 24VDC completed using a 2-conductor, twisted pair shielded cable to provide total integration of the system.

2.3 BRANCH CIRCUIT (BC) CONTROLLERS

- A. General
 - 1. The BC (Branch Circuit) Controllers shall be specifically used with $\ensuremath{\mathtt{R-410A}}\xspace.$
 - Units shall be equipped with a circuit board that interfaces to the direct digital control system and shall perform all functions necessary for operation.
 - 3. The BC controller shall be completely factory assembled, piped and wired.
 - 4. Each unit shall be run tested at the factory.
 - 5. Unit shall be mounted indoors as indicated on the drawings.
 - The sum of connected capacity of all indoor air handlers shall range from 50 to 150 percent of rated capacity.
 - 7. The main BC controller shall connect one R-410A outdoor unit to multiple indoor units.
 - Each BC controller branch shall connect to indoor units not exceeding 54,000 Btu/h per branch.
 - BC controller model shall have at least 10 branches. Where system has more than 10 indoor units, controller shall have at least 16 branches.
- B. BC Unit Cabinet
 - 1. The casing shall be fabricated of galvanized steel.
 - 2. Each cabinet shall house a liquid-gas separator and multiple refrigeration control valves.

- 3. The unit shall house two tube-in-tube heat exchangers.
- C. Refrigerant: R-410A refrigerant shall be provided.
- D. Refrigerant Valves
 - The unit shall be furnished with multiple two position refrigerant valves.
 - Each circuit shall have one (54,000 Btu/h or smaller indoor unit section) two-position liquid line valve, and a two-position suction line valve.
 - 3. When connecting a 54,000 Btu/h or larger indoor unit section, two branch circuits shall be joined together at the branch controller to deliver an appropriate amount of refrigerant. The two refrigerant valves shall operate simultaneously.
 - Linear electronic expansion valve shall be used to control the variable refrigerant flow.
- E. Integral Drain Pan and Condensate Pump: An integral positively sloped condensate pan and drain shall be provided. Provide a secondary drain pan, liquid level sensor, and condensate pump, sized as required and recommended by system manufacturer.
- F. Electrical
 - The unit electrical power shall be 208/230 volts, 1 phase, 60 hertz.
 - The unit shall be capable of satisfactory operation within voltage limits of 187-228 volts (208V/60Hz) or 207-253V (230V/60Hz) as required by the electrical drawings.
 - The BC Controller shall be controlled by integral microprocessors.
 - 4. The control circuit between the indoor units and the outdoor unit shall be 24VDC completed using a 2-conductor, twisted pair shielded cable to provide total integration of the system.

2.4 TYPE B - CEILING-CONCEALED DUCTED INDOOR UNIT

- A. Drawing Designation: FCU-405B-X
- B. General: The ducted indoor unit shall be a ceiling-concealed ducted indoor fan coil design that mounts above the ceiling with a 2-position, field adjustable return and a fixed horizontal discharge supply and shall have a modulating linear expansion device. The unit shall be used with the outdoor heat recovery unit, other indoor units and BC

Controller. The PEFY shall support individual control using direct digital controllers.

B. Indoor Unit. The indoor unit shall be factory assembled, wired and run tested. Contained within the unit shall be all factory wiring, piping, electronic modulating linear expansion device, control circuit board and fan motor. The unit shall have a self-diagnostic function, 3-minute time delay mechanism, and an auto restart function. Indoor unit and refrigerant pipes shall be charged with dehydrated air before shipment from the factory.

C. Unit Cabinet:

- 1. The unit shall be, ceiling-concealed, ducted.
- 2. The cabinet panel shall have provisions for a field installed filtered outside air intake.
- D. Fan:
 - 1. External static pressure settings from 0.14 to 0.60 in. WG.
 - The indoor unit fan shall be an assembly with one or two Sirocco fan(s) direct driven by a single motor.
 - The indoor fan shall be statically and dynamically balanced and run on a motor with permanently lubricated bearings.
 - 4. The indoor fan shall consist of three (3) speeds, High, Mid, and Low plus the Auto-Fan function
 - 5. The indoor unit shall have a ducted air outlet system and ducted return air system.
- E. Filter:
 - 1. Filtration shall be provided at the return air register filterreturn grille. Refer to Specification Section 23 37 00.
- F. Coil:
 - The indoor coil shall be of nonferrous construction with smooth plate fins on copper tubing.
 - The tubing shall have inner grooves for high efficiency heat exchange.
 - 3. All tube joints shall be brazed with phos-copper or silver alloy.
 - 4. The coils shall be pressure tested at the factory.
 - 5. A condensate pan and drain shall be provided under the coil.
 - 6. The condensate shall be gravity drained from the fan coil.
 - 7. Both refrigerant lines to the indoor units shall be insulated.
- G. Electrical:
 - 1. The unit electrical power shall be 208/230 volts, 1-phase, 60 hertz.

- The system shall be capable of satisfactory operation within voltage limits of 187-228 volts (208V/60Hz) or 207-253 volts (230V/60Hz) as required by the electrical drawings.
- H. Controls: The unit shall use controls provided by the manufacturer to perform functions necessary to operate the system.

2.5 CONTROLS

- A. General: The direct digital control system (CITY MULTI Controls Network (CMCN)) shall be capable of supporting remote controllers, system controllers, centralized controllers, an integrated web based interface, graphical user workstation, and system integration to a future Building Management Systems via BACnet (connection provided under a separate contract).
- B. Electrical Characteristics
 - The controls network shall operate at 24 volt DC. Controller power and communications shall be via a common non-polar communications box.
 - 2. Control wiring shall be installed in a system daisy chain configuration from indoor unit to ME remote controller to indoor unit, to the BC controller (main and subs, if applicable) and to the outdoor unit. Control wiring to remote controllers shall be run from the indoor unit terminal block to the controller associated with that unit.
 - 3. Control wiring for system controllers and centralized controllers shall be installed in a daisy chain configuration from outdoor unit to outdoor unit, to system controllers, to the power supply.
 - 4. Central controller shall be capable of being networked with other central controllers.
 - 5. Wiring shall be 2-conductor (16 AWG), twisted shielded pair, stranded wire, as defined by the Design Tool AutoCAD output.
 - 6. Network wiring shall be CAT-5e with RJ-45 connection.
- C. Controls Network
 - The controls network consists of remote controllers, centralized controllers, and integrated web based interface communicating over a high-speed communication bus.
 - The controls network shall support operation monitoring, scheduling, error e-mail distribution, personal browsers, online maintenance support, and integration with Building Management Systems (BMS) using BACnet interface.

- D. Remote Controller
 - 1. Drawing Designation: RC
 - 2. The indoor unit Remote Controller (Mitsubishi Model Simple MA PAC-YT51CRB) shall be capable of controlling up to 16 indoor units (defined as 1 group). The Remote Controller shall be compact in size, approximately 3" x 5" and have limited user functionality. The controller shall support temperature display selection of Fahrenheit or Celsius. The Remote Controller shall allow the user to change on/off, mode (cool, heat, auto (R2-Series only), dry, and fan), temperature setting, and fan speed setting. The Remote Controller shall be able to limit the set temperature range from the Remote Controller. The room temperature shall be sensed at either the Remote Controller or the Indoor Unit dependent on the indoor unit dipswitch setting. The Remote Controller shall display a four-digit error code in the event of system abnormality/error.
 - 3. The Remote Controller shall require no addressing. The Remote Controller shall connect using two-wire, stranded, non-polar control wire to TB15 connection terminal on the indoor unit. The Remote Controller (PAC-YT51CRB) shall require cross-over wiring for grouping across indoor units.
- E. Centralized Controller
 - 1. Drawing Designation: CC
 - The Centralized Controller (CITY MULTI GB-50A) shall be capable of controlling via a PC a maximum of 50 indoor units across multiple air-source units.
 - 3. The centralized controller shall be powered from a power supply unit (specified elsewhere in this section).
 - 4. The centralized controller shall support operation superceding that of the remote controllers, system configuration, daily/weekly/annual scheduling, monitoring of operation status, error e-mail notification, online maintenance tool and malfunction monitoring.
 - 5. The centralized controller shall have basic operation controls, which can be applied to an individual indoor unit, a group of indoor units (up to 50 indoor units), or all indoor units (collective batch operation).

- 6. This basic control set of operation controls for the centralized controller shall include: On/Off Operation Mode (Cool, Heat, Auto, Dry and Fan) Temperature Setpoint Fan Speed Setting Airflow Direction Setting Error E-mail Notification Online Maintenance
- 7. The centralized controller shall be able to enable or disable operation of local remote controllers via the PC.
- 8. The centralized controller shall allow the user to define daily, weekly, and annual schedules with operations consisting of on/off, mode selection, temperature setting, and permit/prohibit of remote controllers.
- 9. Standard software functions shall allow the building manager to securely log into each centralized controller via the PC's web browse to support operation monitoring, scheduling, error e-mail, and online maintenance diagnostics.
- 10. Standard software functions shall not expire.
- BACnet interface shall be available through software operating on a dedicated PC and a centralized controller license.
- 12. Optional software functions shall require advance purchasing and can only be activated upon receipt of a license number from the manufacturer. The optional software functions shall be licensed for a fixed term, subject to renewal and associated fees upon term expiration.
- F. Control System Integration: The control system shall be capable of supporting integration with a remote Building Automation System (BAS) via BACnet interface.
- G. Power Supply
 - The power supply (CITY MULTI PAC-SC50KUA-F) shall supply 12 volt DC for the centralized controlelr and 24 volt DC for the central control transmission.
 - The power supply can power a maximum of two centralized controllers.
- H. Control Center (Graphic User Interface)

- The control center shall be PC based and include the following Energy Star labeled equipment:
 - PC: Pentium 4; 3.4 gigahertz; 200 gigabit GP harddrive; 512 MB RAM.
 - Keyboard
 - Graphic Color Display Monitor: 19-inch flat panel VGA
 - 8xDVD/CR-RW Combo Drive
 - Mouse
 - Surge Protection
 - Battery Backup
 - Color Inkjet Printer
- 2. The control center shall be capable of performing the following functions:
 - Monitoring
 - Energy Management
 - Operator Interface
 - Programmable
 - Expandable
 - Self-diagnostics
 - Default Operating Procedures
 - Alarms
 - Remote Communications
 - Remote Control Point Adjustment
 - Graphic Panels
- 3. The control center shall have reporting capabilities definable and changeable by the operator. Automatic report generation capabilities shall be included.

2.6 **REFRIGERATION SYSTEM SPECIALTIES**

- A. Comply with ASHRAE Standard 15-2004 "Safety Code for Mechanical Refrigeration" and ANSI/ASME B31.5.
- B. Refrigerant Strainers: Brass shell and end connections, brazed joints, monel screen, 100 mesh, UL listed, 350 psi working pressure.
- C. Moisture-Liquid Indicators: Forged brass, single port, removable cap, polished optical glass, solder connections, UL listed, 200 degrees F temperature rating, 500 psi working pressure.

- D. Refrigerant Filter-Dryers: Steel shell, ceramic fired desiccant core, solder connections, UL listed, 500 psi (3450 kPa) working pressure.
- E. Evaporator Pressure Regulators: Provide corrosion-resistant, spring loaded, stainless steel springs, pressure operated, evaporator pressure regulator, in size and working pressure indicated, with copper connections.
- F. Refrigerant Discharge Line Mufflers: Provide discharge line mufflers as recommended by equipment manufacturer for use in service indicated, UL listed.
- G. Manufacturers: Alco Controls, Henry Valve, Parker Hannifin, Sporlan Valve.

PART 3 - EXECUTION

3.1 VARIABLE REFRIGERANT HEAT RECOVERY SYSTEM

- A. Install the units as indicated on the drawings and in accordance with manufacturer's recommendations, and provide initial start-up.
- B. Provide protection for units during construction.
- C. Provide secondary condensate drain pan under each fan coil terminal unit, branch circuit controller, ERV, and elsewhere as indicated on drawings.
- D. Controls: Provide all necessary labor, materials, equipment, software, etc., as required to integrate all equipment into a single complete operational system.
- E. Instruction: Representative shall instruct Owner's designee for a total of three 8-hour days, of which at least one day will occur after 30 days' operation by the designee. At conclusion of instructions, manufacturer shall advise Owner, in writing, whether designee is qualified to have charge of the installation.
- F. Provide complete system commissioning as specified in Section 15960.

3.2 REFRIGERATION SYSTEM SPECIALTIES

- A. Install in accordance with manufacturer's instructions.
- B. Set pressure regulators as indicated or required.

3.3 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.
- B. Perform tests and inspections.

- Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
- C. Tests and Inspections:
 - Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 - 2. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 - Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- D. Remove and replace malfunctioning units and retest as specified above.
- E. Prepare test and inspection reports.
- F. Field Quality Control is applicable to all HVAC equipment specified in Section 23 70 00.

- - - END - - -

SECTION 23 84 00

HUMIDITY CONTROL EQUIPMENT

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies dehumidifier units for stand-alone units use for dehumidifying air.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS: Requirements for pre-test of equipment.
- B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General mechanical requirements and items, which are common to more than one section of Division 23.
- C. Section 23 23 00, REFRIGERANT PIPING: Requirements for field refrigerant piping.
- D. Section 23 21 13, HYDRONIC PIPING: Requirements for field hot water piping.
- E. Section 23 22 13, STEAM AND CONDENSATE HEATING PIPING: Requirements for field steam and condensate piping.
- F. Section 23 31 00, HVAC DUCTS AND CASINGS: Requirements for sheet metal ducts and fittings.
- G. Section 23 40 00, HVAC AIR CLEANING DEVICES: Requirements for filters including efficiency.
- H. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Requirements for controls and instrumentation.
- I. Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC: Requirements for testing, adjusting and balancing of HVAC system.
- J. Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC AND STEAM GENERATION EQUIPMENT: Requirements for HVAC motors.
- K. Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS: Requirements for motor starters.

1.3 QUALITY ASSURANCE

- A. Refer to the GENERAL CONDITIONS.
- B. Refer to specification Section 01 00 00, GENERAL REQUIREMENTS for performance tests and instructions to VA personnel.
- C. Refer to paragraph, QUALITY ASSURANCE, in specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

D. Unit(s) shall be provided by a manufacturer who has been manufacturing desiccant dehumidifiers and have been in satisfactory service for at least three (3) years.

1.4 SUBMITTALS

- A. Submit in accordance with specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - Technical data on design operating inlet and outlet conditions, air flows with diagram showing air volumes and conditions throughout the system, dehumidification capacity, filtration and fan motor and electrical power data.
 - 2. A general arrangement diagram with overall dimensions showing all major components with overall dimensions, utility and duct work connections, bolting arrangement, operating weight and required service and equipment removal clearances.
 - 3. Control diagrams for stand alone use for dehumidifying air,
- C. Shop drawings shall indicate assembly, unit dimensions, weight loading, required clearances, construction details, and field connection details.
- D. Submit fan curves with specified operating point clearly plotted and sound power levels for both fan outlet and casing radiation at rated capacity.
- E. Submit unit control system documentation required for interface with BACnet protocol DDC control system. Submit BACnet compliant Protocol Implementation Conformance Statement (PICS) for all controllers.
- F. Submit electrical requirements for power supply wiring including wiring diagrams for interlock and control wiring, clearly indicating factory-installed and field-installed wiring.
- G. Certificate: Evidence of satisfactory performance on three similar installations.
- H. Provide installation, operating and maintenance instructions, in accordance with Article, INSTRUCTIONS, in specification Section 01 00 00, GENERAL REQUIREMENTS.
- I. Performance test report: In accordance with PART 3.
- J. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in

accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air-conditioning, Heating and Refrigeration Institute (AHRI) 410-01......Forced-Circulation Air-Cooling and Air-

Heating Coils

C. Air Movement and Control Association (AMCA): 99-10.....Standards Handbook

210-07.....Laboratory Methods of Testing Fans for Aerodynamic Performance Rating (ANSI) 301-06....Laboratory Methods of Testing Fans for

Aerodynamic Performance Rating (ANSI)

D. American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE)

52.2-07.....METHOD OF TESTING General Ventilation Air Cleaning Devices for Removal Efficiency by Particle Size (ANSI)

62.1-10.....Ventilation for Acceptable Indoor Air
Quality (ANSI)

E. American Bearing Manufacturers Association (ABMA)

9-1990 (R2008)....Load Ratings and Fatigue Life for Ball Bearings (ANSI)

F. National Fire Protection Association (NFPA) 90A-09.....Standard for the Installation of Air-Conditioning and Ventilating Systems

1.6 QUALITY ASSURANCE

- A. Fan Performance Ratings: Conform to AMCA 210 and bear the AMCA Certified Rating Seal.
- B. Sound Ratings: AMCA 301; tested to AMCA 300 and bear AMCA Certified Sound Rating Seal.
- C. Fabrication: Conform to AMCA 99.
- D. Air Coils: Certify capacities, pressure drops, and selection procedures in accordance with AHRI 410.

E. Product of manufacturer regularly engaged in production of pool dehumidification equipment who issues complete catalog data on total product.

1.7 DELIVERY, STORAGE, AND HANDLING

- A. Accept products on site in factory-fabricated protective containers, with factory-installed shipping skids and lifting lugs. Inspect for damage.
- B. Store in clean dry place and protect from weather and construction traffic. Handle carefully to avoid damage to components, enclosures and finish.
- C. Comply with manufacturer's rigging and installation instructions.

1.8 PROJECT CONDITIONS

Do not operate units for any purpose, temporary or permanent, until ductwork is clean, filters are in place, bearings lubricated, fan has been test run, all piping is connected and energized and all wiring complete and tested.

1.9 ADDITIONAL REQUIREMENTS

- A. Provide one additional set of fan belts and disposable panel filters for each unit.
- B. CORROSION PROTECTION

For air-handling unit mounted coils provide the following corrosion treatment:

- 1. Epoxy Immersion Coating Electrically Deposited: The multistage corrosion-resistant coating application comprises of cleaning (heated alkaline immersion bath) and reverse-osmosis immersion rinse prior to the start of the coating process. The coating thickness shall be maintained between 0.6-mil and 1.2mil. Before the coils are subjected to high-temperature oven cure, they are treated to permeate immersion rinse and spray. Where the coils are subject to UV exposure, UV protection spray treatment comprising of UV-resistant urethane mastic topcoat shall be applied. Provide complete coating process traceability for each coil and minimum five years of limited warranty.
- 2. The coating process shall such that uniform coating thickness is maintained at the fin edges. The quality control shall be maintained by ensuring compliance to the applicable ASTM Standards for the following:

- a. Salt Spray Resistance (Minimum 6,000 Hours)
- b. Humidity Resistance (Minimum 1,000 Hours)
- c. Water Immersion (Minimum 260 Hours)
- d. Cross-Hatch Adhesion (Minimum 4B-5B Rating)
- e. Impact Resistance (Up to 160 Inch/Pound)3.
- 3. Casing Surfaces (Exterior and Interior): All exposed and accessible exterior and interior metal surfaces shall be protected with a water-reducible acrylic with stainless steel pigment spray-applied over the manufacturer's standard finish. The spray coating thickness shall be 2-4 mils and provide minimum salt-spray resistance of 1,000 hours (ASTM B117) and 500 hours UV resistance (ASTM D4587).

PART 2 - PRODUCTS

2.1 DEHUMIDIFIER UNITS

- A. General: Units shall be complete, factory assembled, and tested; and of sizes, arrangements, capacities, and performance as scheduled and as specified in the schedules shown in the drawings; and for indoor stand alone use for dehumidifying air.
 - Dehumidification shall be accomplished by use of a desiccant to absorb water vapor and maintain humidity control level independent of load variations within design limit
 - Unit(s) shall be capable and designed for year-round, 24hours-a-day operation; and requiring only connections of ducts, utilities, and remote sensors, controllers, and monitors.
- B. Casing:
 - Double-wall constructionwith corrosion-protective removable panelswith neoprene gaskets, minimum 50-mm (2-inch) thick thermal insulation fill, stainless steel fasteners, knockouts for electrical through the side of the unit, condensate drain connection, and lifting lugs.
 - 2. The unit housing the internal partitions shall be constructed of minimum 18 gage galvanized steel or aluminum pre-insulated double wall panels with a minimum of 50-mm (2-inch) thermal insulation. The base shall be all welded, structural steel or formed 14-gage, galvanized steel. Units shall have cross supports for each major component and base channels and lifting eyes to facilitate rigging. The units shall be of

water and air tight construction over all with interior air tight construction between various sections of the units. Adjoining panels shall be sealed with a silicon compound or heavy duty compression type gaskets. Leakage rate shall not exceed 2 percent at a pressure of 746 Pa (3.0 inches water gage).

- 3. All non-pre-insulated exterior panels shall be insulated with minimum 25-mm (1-inch) vinyl- or foil-faced fiberglass insulation without exposed edges, and secured by permanent mechanical fasteners.
- 4. All exterior panels shall be constructed with corrosionprotective coating on the manufacturer's standard coating.
- 5. All internal air-processing and air-treatment components shall be removable through removable access panels without dismantling plenums or ductwork.
- Access panels shall be provided with resilient gaskets and quick-release hardware.
- Access doors for filters and control adjustment shall have corrosion-resistant, continuous hinge or heavy-duty, multiple hinges.
- 8. Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1-2007.
- C. Dehumidifier:
 - . 1. Dehumidifier shall rotary type, designed for continuous operation, and arranged to provide a counter flow of process and reactivation air streams with full-face pressure seals or low-friction contact seals on both sides to prevent cross leakage for external static pressure of up to 622 Pa (2.5 inches w.g.)
 - Desiccant rotor shall have synthesized silica gel, enhanced with titanium, bonded to a ceramic matrix, with filled voids and encapsulating the ceramic. Driver shall be a motor with adjustable drive sheaves and belt-tensioning idler pulley or adjustable motor mount.
 - 3. The rotary desiccant shall transfer water in the vapor phase. The design and geometry shall provide for laminar flow over the operating range for minimum pressure loss with maximum

transfer surface and minimum power requirements. The desiccant shall be a permanent integral part of the structure.

- D. Heat Exchanger:
 - 1. The heat exchanger shall be constructed of non-hygroscopic material with corrosion protection, described above for the coils and surfaces thermal wheel to prevent the transfer of water vapor or an air-to-air heat pipe with copper tubes and aluminum fins, fabricated with capillary wick structure charged with ozone friendly refrigerant to be used in the process and reactivation air steams. Refrigerant shall comply with ASHRAE 15, Group 1. For thermal wheel, supply and cooling air streams shall be counter flow and the component provided with full face contact seals on both sides to prevent leakage. The heat transfer effectiveness of the heat exchanger shall be minimum 80 percent with a maximum air pressure loss of 125 Pa (0.50 inch w.g.)
 - 2. Electric motor shall be fractional-horsepower with closecoupled speed reducer and a belt drive with belt tensioning system for the thermal wheel.
- E. Controls and Wiring: Factory-installed microprocessor type to control and monitor unit and communicate to central-control processor, and shall operate dehumidification units and maintain humidity and temperature set points. The controller shall be connected to the building DDC control system via an open protocol BACnet interface.
 - 1. The unit shall have a factory wired and unit mounted central, electrical control panel with a single power supply connection. All internal wiring shall be in accordance with the National Electrical Code. Unit shall have a non-fused main power disconnect and control components required for automatic operation based on signals from space mounted humidity and temperature controls. Control panel shall have terminals for remote control devices.
 - Controls shall be capable of shutting down the dehumidifier when humidity loads are reduced and the process shall be reversed when there is an increase in humidity loads.
 - Reactivation energy shall be automatically reduced at lower than design humidity loads.

- 4. Carbon dioxide sensor mounted in return air shall operate minimum outdoor-air damper position.
- 5. Discharge-air, outdoor-air, conditioned-space, control setpoint-temperature, and outdoor-air enthalpy shall be displayed with a LCD in control panel.
- 6. Filter pressure drop and alarm shall be displayed by an LCD in control panel.
- 7. Airflow, fans, system, unit operation, and operating mode status shall be displayed in control panel.
- F. Fan Section:

Housed Centrifugal Fans

- Supply fan, shall be centrifugal, galvanized steel with baked enamel finish, and shall be belt driven with adjustable sheaves and self-aligning, grease-lubricated ball bearings with extended grease fittings easily accessible inside the casing for process and reactivation air as scheduled.
- Fans shall be AMCA class II construction, double-width, and double-inlet centrifugal forward cured or backward inclined or plug type, factory dynamically balanced and rated in accordance with AMCA standard 210.
- 3. Fan sized for greater than 3000 CFM shall be belt driven. Belts shall be sized for 150 percent of fan motor HP.
- 4. Fans shall be vibration isolated internally or externally.
- 5. Fan motor and Drive: Motors shall be nominal 1750 RPM. Motor for reactivation fan may be direct-drive 3500 RPM. Motors shall be NEMA MG 1 Design B with open drip-proof housing and a minimum service factor of 1.15 complying with requirements in specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- 6. General: Fans shall be Class II (minimum) construction with single inlet, aluminum wheel and stamped air-foil aluminum blades. The fan wheel shall be mounted on the directly-driven motor shaft in AMCA Arrangement 4.
- G. Filter Section: Pleated, disposable pre-filters in supply-air . Filters shall be 50 mm (2 inches) thick, installed in filter rack, 30 percent minimum efficiency with a minimum efficiency report value (MERV) of 7 according to ASHRAE 52.2 and 90 percent average arrestance according to ASHRAE 52.1 H.

- H. Evaporative Cooler: Factory-assembled and wired unit with intake grilles, bituminous-coated sump, and individually removable, aspen wood fiber pads with anti-rot salts
 - Water Circulation system: Sump pump with strainer, water distribution troughs at top of cooler pads, float-operated makeup valve, and drain connections.
 - Automatic Drain System: Two-way normal open drain valve, three-way, float-operated makeup water valve, and ambient thermostat.
 - 3. Comply with applicable requirements in ASHRAE 62.1-2007.
- L. Refrigeration Package: Comply with ASHRAE 15, "Safety Code for Mechanical Refrigeration."
 - Energy Efficiency: Equal to or greater than prescribed by ASHRAE/IESNA 90.1-2010, "Energy Standard for Buildings except Low-Rise Residential Buildings."
 - 2. Refrigerant Coils: Copper tubes with mechanically bonded aluminum fins; factory fabricated and tested according to ASHRAE 33 and AHRI 410; with multiple refrigerant circuits, seamless-copper headers with brazed connections, and galvanized-steel frame. Coil and fins shall have a polyester coating. Coils shall have a minimum 300-psig (2070-kPa) working-pressure rating and be factory tested to 450 psig (3105 kPa), and to 300 psig (2070 kPa) while underwater.
 - 3. Compressors: Hermetic rotary compressors with integral vibration isolators and crankcase heaters that de-energize during compressor operation; with thermal-expansion valves, filter-dryers, sight glasses, compressor service valves, and liquid- and suction-line service valves.
 - Number of Refrigerant Circuits: Two for compressor capacities more than 7-1/2 tons.
 - 5. Refrigerant: R-407C
 - Capacity Control: Cylinder unloaders with steps as scheduled for reciprocating compressors Hot-gas bypass valve and piping on one compressor
- M. Safety Devices:
 - Low-Pressure Cutout: Manual reset after three auto-reset failures.
 - 2. High-Pressure Cutout: Manual reset.

- 3. Compressor Motor Overload Protection: Manual reset.
- 4. Antirecycling Timing Device: Prevent compressor restart for five minutes after shutdown.
- 5. Adjustable, Low-Ambient, Head-Pressure Control: Designed to operate at temperatures as low as 0 deg F (minus 18 deg C) by cycling condenser fans and controlling speed of last fan of each circuit.
- Oil-Pressure Switch: Designed to shut down compressors on low oil pressure.
- N. Condenser Fans: Propeller-type fans directly driven by motors with permanently lubricated bearings and internal thermaloverload protection.
- O. Drain Pan and Connection: Stainless steel and complying with ASHRAE 62.1-2007.
- Ρ.
- Q. Remote-control panel shall contain controls and indicator lights consisting of the following:
 - 1. On-off fan switch.
 - 2. Minimum outdoor-air damper potentiometer position LCD.
 - 3. Supply-fan operating indicator light.
 - 4. Mechanical cooling malfunction indicator light.
 - 5. Clogged filter indicator light.
- R. Electrical Convenience Outlet: 120-V ac fused, duplex straightblade receptacles separately fused and located inside dehumidification unit casing.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Follow equipment manufacturer's written instructions for handling and installation of equipment.
- B. Adjust seals and purge of rotating wheels as recommended by the manufacturer.
- C. Verify correct settings and installation of controls.
- D. Install seismic restraints for equipment in seismic areas as required under specification Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.
- E. Install vibration-control devices.
 - Units with Internally Isolated Fans: Secure units to anchor bolts installed in concrete bases.

2. Suspended Units: Suspend units from structural-steel support frame using threaded steel rods and spring hangers.

3.2 CONNECTIONS

- A. Connect condensate drain pans using minimum DN 32 NPS 1-1/4copper tubing. Extend to nearest equipment or floor drain. Construct deep trap at connection to drain pan, and install clean out at changes in direction.
- B. Refrigerant Piping: Comply with applicable requirements in Section 23 23 00, REFRIGERANT PIPING. Connect to supply and return coil tappings with shutoff valve and union or flange at each connection.
- C. Ground equipment according to Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.
- D. Connect wiring according to Section 26 05 21, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW).
- E. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.

3.3 STARTUP SERVICE

- A. Perform the following final checks before startup:
 - 1. Verify that shipping, blocking, and bracing are removed.
 - Verify that unit is secure on mountings and supporting devices and that connection to piping, ducts, and electrical systems are complete. Verify that proper thermal-overload protection is installed in motors, starters, and disconnect switches.
 - 3. Perform cleaning and adjusting specified in this Section.
 - Disconnect fan drive from motor, verify proper motor rotation direction, and verify free fan wheel rotation and smooth bearing operations. Reconnect fan drive system, align belts, and install belt guards.
 - Verify lubrication of bearings, pulleys, belts, and other moving parts.
 - Set outside- and return-air mixing dampers to minimum outdoorair setting.
 - 7. Install clean filters.

- Verify that manual and automatic volume control and fire and smoke dampers in connected duct systems are in fully open position.
- B. Perform the following starting procedures for dehumidification units:
 - Energize motor; verify proper operation of motor, drive system, and fan wheel. Adjust fan to indicated rpm. Replace malfunctioning motors, bearings, and fan wheels.
 - 2. Measure and record motor electrical values for voltage and amperage.
 - 3. Manually operate dampers from fully closed to fully open position and record fan performance.
- C. Complete installation and startup checks according to manufacturer's written instructions.
- D. Startup Report: Report findings during startup. Identify startup steps, corrective measures taken, and final results.
- E. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the Resident Engineer and Commissioning Agent. Provide a minimum of 7 days prior notice.

3.4 ADJUSTING

- A. Adjust damper linkages for proper damper operation.
- B. Adjust initial temperature and humidity set points.

3.5 CLEANING

- A. Clean dehumidification units internally, on completion of installation, according to manufacturer's written instructions. Clean fan interiors to remove foreign material and construction dirt and dust. Vacuum clean fan wheels, cabinets, and coils' entering-air face.
- B. After completing system installation, testing, and startup service of dehumidification units, clean filter housings and install new filters.

3.6 INSTRUCTIONS

Provide services of manufacturer's technical representative for eight hours to instruct VA personnel in operation and maintenance of desiccant dehumidifiers.

3.7 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of units.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS.

- - - E N D- - -

SECTION 26 05 11

REQUIREMENTS FOR ELECTRICAL INSTALLATIONS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section applies to all sections of Division 26.
- B. Furnish and install electrical wiring, systems, equipment and accessories in accordance with the specifications and drawings. Capacities and ratings of motors, transformers, cable, panelboards, and other items and arrangements for the specified items are shown on drawings.
- C. Wiring ampacities specified or shown on the drawings are based on copper conductors, with the conduit and raceways accordingly sized. Aluminum conductors are prohibited.

1.2 MINIMUM REQUIREMENTS

- A. References to the International Building Code (IBC), National Electrical Code (NEC), Underwriters Laboratories, Inc. (UL) and National Fire Protection Association (NFPA) are minimum installation requirement standards.
- B. Drawings and other specification sections shall govern in those instances where requirements are greater than those specified in the above standards.

1.3 TEST STANDARDS

- A. All materials and equipment shall be listed, labeled or certified by a nationally recognized testing laboratory to meet Underwriters Laboratories, Inc., standards where test standards have been established. Equipment and materials which are not covered by UL Standards will be accepted provided equipment and material is listed, labeled, certified or otherwise determined to meet safety requirements of a nationally recognized testing laboratory. Equipment of a class which no nationally recognized testing laboratory accepts, certifies, lists, labels, or determines to be safe, will be considered if inspected or tested in accordance with national industrial standards, such as NEMA, or ANSI. Evidence of compliance shall include certified test reports and definitive shop drawings.
- B. Definitions:

- 1. Listed; Equipment, materials, or services included in a list published by an organization that is acceptable to the authority having jurisdiction and concerned with evaluation of products or services, that maintains periodic inspection of production or listed equipment or materials or periodic evaluation of services, and whose listing states that the equipment, material, or services either meets appropriate designated standards or has been tested and found suitable for a specified purpose.
- 2. Labeled; Equipment or materials to which has been attached a label, symbol, or other identifying mark of an organization that is acceptable to the authority having jurisdiction and concerned with product evaluation, that maintains periodic inspection of production of labeled equipment or materials, and by whose labeling the manufacturer indicates compliance with appropriate standards or performance in a specified manner.
- 3. Certified; equipment or product which:
 - a. Has been tested and found by a nationally recognized testing laboratory to meet nationally recognized standards or to be safe for use in a specified manner.
 - b. Production of equipment or product is periodically inspected by a nationally recognized testing laboratory.
 - c. Bears a label, tag, or other record of certification.
- Nationally recognized testing laboratory; laboratory which is approved, in accordance with OSHA regulations, by the Secretary of Labor.

1.4 QUALIFICATIONS (PRODUCTS AND SERVICES)

- A. Manufacturers Qualifications: The manufacturer shall regularly and presently produce, as one of the manufacturer's principal products, the equipment and material specified for this project, and shall have manufactured the item for at least three years.
- B. Product Qualification:
 - Manufacturer's product shall have been in satisfactory operation, on three installations of similar size and type as this project, for approximately three years.
 - The Government reserves the right to require the Contractor to submit a list of installations where the products have been in operation before approval.

C. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render satisfactory service to this installation within eight hours of receipt of notification that service is needed. Submit name and address of service organizations.

1.5 APPLICABLE PUBLICATIONS

Applicable publications listed in all Sections of Division are the latest issue, unless otherwise noted.

1.6 MANUFACTURED PRODUCTS

- A. Materials and equipment furnished shall be of current production by manufacturers regularly engaged in the manufacture of such items, for which replacement parts shall be available.
- B. When more than one unit of the same class or type of equipment is required, such units shall be the product of a single manufacturer.
- C. Equipment Assemblies and Components:
 - 1. Components of an assembled unit need not be products of the same manufacturer.
 - Manufacturers of equipment assemblies, which include components made by others, shall assume complete responsibility for the final assembled unit.
 - 3. Components shall be compatible with each other and with the total assembly for the intended service.
 - 4. Constituent parts which are similar shall be the product of a single manufacturer.
- D. Factory wiring shall be identified on the equipment being furnished and on all wiring diagrams.
- E. When Factory Testing Is Specified:
 - The Government shall have the option of witnessing factory tests. The contractor shall notify the VA through the COTR a minimum of 15 working days prior to the manufacturers making the factory tests.
 - Four copies of certified test reports containing all test data shall be furnished to the COTR prior to final inspection and not more than 90 days after completion of the tests.
 - 3. When equipment fails to meet factory test and re-inspection is required, the contractor shall be liable for all additional expenses, including expenses of the Government.

1.7 EQUIPMENT REQUIREMENTS

Where variations from the contract requirements are requested in accordance with the GENERAL CONDITIONS and Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, the connecting work and related components shall include, but not be limited to additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods.

1.8 EQUIPMENT PROTECTION

- A. Equipment and materials shall be protected during shipment and storage against physical damage, vermin, dirt, corrosive substances, fumes, moisture, cold and rain.
 - Store equipment indoors in clean dry space with uniform temperature to prevent condensation. Equipment shall include but not be limited to panelboards, transformers, , motor controllers, enclosures, controllers, circuit protective devices, cables, wire, light fixtures, electronic equipment, and accessories.
 - During installation, equipment shall be protected against entry of foreign matter; and be vacuum-cleaned both inside and outside before testing and operating. Compressed air shall not be used to clean equipment. Remove loose packing and flammable materials from inside equipment.
 - Damaged equipment shall be, as determined by the COTR, placed in first class operating condition or be returned to the source of supply for repair or replacement.
 - 4. Painted surfaces shall be protected with factory installed removable heavy kraft paper, sheet vinyl or equal.
 - 5. Damaged paint on equipment and materials shall be refinished with the same quality of paint and workmanship as used by the manufacturer so repaired areas are not obvious.

1.9 WORK PERFORMANCE

- A. All electrical work must comply with the requirements of NFPA 70 (NEC), NFPA 70B, NFPA 70E, OSHA Part 1910 subpart J, OSHA Part 1910 subpart S and OSHA Part 1910 subpart K in addition to other references required by contract.
- B. Job site safety and worker safety is the responsibility of the contractor.
- C. Electrical work shall be accomplished with all affected circuits or equipment de-energized. When an electrical outage cannot be

accomplished in this manner for the required work, the following requirements are mandatory:

- Electricians must use full protective equipment (i.e., certified and tested insulating material to cover exposed energized electrical components, certified and tested insulated tools, etc.) while working on energized systems in accordance with NFPA 70E.
- 2. Electricians must wear personal protective equipment while working on energized systems in accordance with NFPA 70E.
- 3. Before initiating any work, a job specific work plan must be developed by the contractor with a peer review conducted and documented by the COTR and Medical Center staff. The work plan must include procedures to be used on and near the live electrical equipment, barriers to be installed, safety equipment to be used and exit pathways.
- 4. Work on energized circuits or equipment cannot begin until prior written approval is obtained from the COTR.
- D. For work on existing stations, arrange, phase and perform work to assure electrical service for other buildings at all times. Refer to Article OPERATIONS AND STORAGE AREAS under Section 01 00 00, GENERAL REQUIREMENTS.
- E. New work shall be installed and connected to existing work neatly, safely and professionally. Disturbed or damaged work shall be replaced or repaired to its prior conditions, as required by Section 01 00 00, GENERAL REQUIREMENTS.
- F. Coordinate location of equipment and conduit with other trades to minimize interferences.

1.10 EQUIPMENT INSTALLATION AND REQUIREMENTS

- A. Equipment location shall be as close as practical to locations shown on the drawings.
- B. Working spaces shall not be less than specified in the NEC for all voltages specified.
- C. Inaccessible Equipment:
 - Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance, the equipment shall be removed and reinstalled as directed at no additional cost to the Government.
 - "Conveniently accessible" is defined as being capable of being reached quickly for operation, maintenance, or inspections without

the use of ladders, or without climbing or crawling under or over obstacles such as, but not limited to, motors, pumps, belt guards, transformers, piping, ductwork, conduit and raceways.

1.11 EQUIPMENT IDENTIFICATION

- A. In addition to the requirements of the NEC, install an identification sign which clearly indicates information required for use and maintenance of items such as panelboards, cabinets, motor controllers (starters), safety switches, separately enclosed circuit breakers, individual breakers and motor control assemblies, control devices and other significant equipment.
- B. Nameplates for Normal Power System equipment shall be laminated black phenolic resin with a white core with engraved lettering. Nameplates for Essential Electrical System (EES) equipment, as defined in the NEC, shall be laminated red phenolic resin with a white core with engraved lettering. Lettering shall be a minimum of 1/2 inch [12mm] high. Nameplates shall indicate equipment designation, rated bus amperage, voltage, number of phases, number of wires, and type of EES power branch as applicable. Secure nameplates with screws.

1.12 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. The Government's approval shall be obtained for all equipment and material before delivery to the job site. Delivery, storage or installation of equipment or material which has not had prior approval will not be permitted at the job site.
- C. All submittals shall include adequate descriptive literature, catalog cuts, shop drawings and other data necessary for the Government to ascertain that the proposed equipment and materials comply with specification requirements. Catalog cuts submitted for approval shall be legible and clearly identify equipment being submitted.
- D. Submittals for individual systems and equipment assemblies which consist of more than one item or component shall be made for the system or assembly as a whole. Partial submittals will not be considered for approval.
 - 1. Mark the submittals, "SUBMITTED UNDER SECTION_____".
 - 2. Submittals shall be marked to show specification reference including the section and paragraph numbers.
 - 3. Submit each section separately.

- E. The submittals shall include the following:
 - Information that confirms compliance with contract requirements. Include the manufacturer's name, model or catalog numbers, catalog information, technical data sheets, shop drawings, pictures, nameplate data and test reports as required.
 - Elementary and interconnection wiring diagrams for communication and signal systems, control systems and equipment assemblies. All terminal points and wiring shall be identified on wiring diagrams.
 - 3. Parts list which shall include those replacement parts recommended by the equipment manufacturer.
- F. Manuals: Submit in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
 - Maintenance and Operation Manuals: Submit as required for systems and equipment specified in the technical sections. Furnish four copies, bound in hardback binders, (manufacturer's standard binders) or an approved equivalent. Furnish one complete manual as specified in the technical section but in no case later than prior to performance of systems or equipment test, and furnish the remaining manuals prior to contract completion.
 - 2. Inscribe the following identification on the cover: the words "MAINTENANCE AND OPERATION MANUAL," the name and location of the system, equipment, building, name of Contractor, and contract number. Include in the manual the names, addresses, and telephone numbers of each subcontractor installing the system or equipment and the local representatives for the system or equipment.
 - 3. Provide a "Table of Contents" and assemble the manual to conform to the table of contents, with tab sheets placed before instructions covering the subject. The instructions shall be legible and easily read, with large sheets of drawings folded in.
 - 4. The manuals shall include:
 - a. Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of the equipment.
 - b. A control sequence describing start-up, operation, and shutdown.
 - c. Description of the function of each principal item of equipment.
 - d. Installation instructions.
 - e. Safety precautions for operation and maintenance.
 - f. Diagrams and illustrations.

- g. Periodic maintenance and testing procedures and frequencies, including replacement parts numbers and replacement frequencies.
- h. Performance data.
- i. Pictorial "exploded" parts list with part numbers. Emphasis shall be placed on the use of special tools and instruments. The list shall indicate sources of supply, recommended spare parts, and name of servicing organization.
- j. List of factory approved or qualified permanent servicing organizations for equipment repair and periodic testing and maintenance, including addresses and factory certification qualifications.
- G. Approvals will be based on complete submission of manuals together with shop drawings.
- H. After approval and prior to installation, furnish the COTR with one sample of each of the following:
 - A 300 mm (12 inch) length of each type and size of wire and cable along with the tag from the coils of reels from which the samples were taken.
 - 2. Each type of conduit coupling, bushing and termination fitting.
 - 3. Conduit hangers, clamps and supports.
 - 4. Duct sealing compound.
 - 5. Each type of receptacle, toggle switch, occupancy sensor, outlet box, manual motor starter, device wall plate, engraved nameplate, wire and cable splicing and terminating material, and branch circuit single pole molded case circuit breaker.

1.13 SINGULAR NUMBER

Where any device or part of equipment is referred to in these specifications in the singular number (e.g., "the switch"), this reference shall be deemed to apply to as many such devices as are required to complete the installation as shown on the drawings.

1.14 ACCEPTANCE CHECKS AND TESTS

The contractor shall furnish the instruments, materials and labor for field tests.

1.15 TRAINING

- A. Training shall be provided in accordance with Article 1.25, INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS.
- B. Training shall be provided for the particular equipment or system as required in each associated specification.

C. A training schedule shall be developed and submitted by the contractor and approved by the COTR at least 30 days prior to the planned training.

- - - END - - -

SECTION 26 05 19

LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW)

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies the furnishing, installation, and connection of the low voltage power and lighting wiring.

1.2 RELATED WORK

A. Sealing around penetrations to maintain the integrity of time rated construction: Section

07 84 00, FIRESTOPPING.

- B. General electrical requirements that are common to more than one section in Division 26: Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- C. Conduits for cables and wiring: Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS.
- D. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents: Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.

1.3 SUBMITTALS

- A. In accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, furnish the following:
 - 1. Manufacturer's Literature and Data: Showing each cable type and rating.
 - Certificates: Two weeks prior to final inspection, deliver to the COTR four copies of the certification that the material is in accordance with the drawings and specifications and has been properly installed.

1.4 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are reference in the text by the basic designation only.
- B. American Society of Testing Material (ASTM):

D2301-04.....Standard Specification for Vinyl Chloride Plastic Pressure Sensitive Electrical Insulating Tape

C. Federal Specifications (Fed. Spec.): A-A-59544-00.....Cable and Wire, Electrical (Power, Fixed Installation) D. National Fire Protection Association (NFPA): 70-05..... Code (NEC) E. Underwriters Laboratories, Inc. (UL): 44-02.....Thermoset-Insulated Wires and Cables 83-03..... Thermoplastic-Insulated Wires and Cables 467-01.....Electrical Grounding and Bonding Equipment 486A-01..... Wire Connectors and Soldering Lugs for Use with Copper Conductors 486C-02.....Splicing Wire Connectors 486D-02..... Insulated Wire Connector Systems for Underground Use or in Damp or Wet Locations 486E-00......Equipment Wiring Terminals for Use with Aluminum and/or Copper Conductors 493-01..... Thermoplastic-Insulated Underground Feeder and Branch Circuit Cable 514B-02.....Fittings for Cable and Conduit 1479-03.....Fire Tests of Through-Penetration Fire Stops

PART 2 - PRODUCTS

2.1 CABLE AND WIRE (POWER AND LIGHTING)

- A. Cable and Wire shall be in accordance with Fed. Spec. A-A-59544, except as hereinafter specified.
- B. Single Conductor:
 - 1. Shall be annealed copper.
 - Shall be stranded for sizes No. 8 AWG and larger, solid for sizes No. 10 AWG and smaller.
 - Shall be minimum size No. 12 AWG, except where smaller sizes are allowed herein.
- C. Insulation: THW, XHHW, or dual rated THHN-THWN shall be in accordance with UL 44, and 83.
- D. Color Code:
 - Secondary service, feeder and branch circuit conductors shall be color coded as follows:

208/120 volt	Phase	480/277 volt
Black	А	Brown

Red	В	Orange
Blue	С	Yellow
White	Neutral	Gray *
* or white with colored (other than green) tracer.		

- a. The lighting circuit "switch legs" and 3-way switch "traveling wires" shall have color coding unique and distinct (i.e. pink and purple) from the color coding indicated above. The unique color codes shall be solid and in accordance with the NEC. Field coordinate for a final color coding with the COTR.
- Use solid color compound or solid color coating for No. 12 AWG and No. 10 AWG branch circuit conductors and neutral sizes.
- 3. Phase conductors No. 8 AWG and larger shall be color-coded using one of the following methods:
 - a. Solid color compound or solid color coating.
 - b. Stripes, bands, or hash marks of color specified above.
 - c. Color as specified using 19 mm (3/4 inch) wide tape. Apply tape in half overlapping turns for a minimum of 75 mm (three inches) for terminal points, and in junction boxes, pull boxes and troughs, Apply the last two laps of tape with no tension to prevent possible unwinding. Where cable markings are covered by tape, apply tags to cable stating size and insulation type.
- 4. For modifications and additions to existing wiring systems, color coding shall conform to the existing wiring system.
- 5. Color code for isolated power system wiring shall be in accordance with the NEC.

2.2 SPLICES AND JOINTS

- A. In accordance with UL 486A, C, D, E and NEC.
- B. Branch circuits (No. 10 AWG and smaller):
 - Connectors: Solderless, screw-on, reusable pressure cable type, 600 volt, 105 degree C with integral insulation, approved for copper and aluminum conductors.
 - 2. The integral insulator shall have a skirt to completely cover the stripped wires.
 - 3. The number, size, and combination of conductors, as listed on the manufacturers packaging shall be strictly complied with.

- C. Feeder Circuits:
 - 1. Connectors shall be indent, hex screw, or bolt clamp-type of high conductivity and corrosion-resistant material.
 - Field installed compression connectors for cable sizes 250 kcmil and larger shall have not less than two clamping elements or compression indents per wire.
 - 3. Insulate splices and joints with materials approved for the particular use, location, voltage, and temperature. Insulate with not less than that of the conductor level that is being joined.
 - 4. Plastic electrical insulating tape: ASTM D2304 shall apply, flame retardant, cold and weather resistant.

2.3 CONTROL WIRING

- A. Unless otherwise specified in other sections of these specifications, control wiring shall be as specified for power and lighting wiring, except the minimum size shall be not less than No. 14 AWG.
- B. Control wiring shall be large enough so that the voltage drop under inrush conditions does not adversely affect operation of the controls.

2.4 WIRE LUBRICATING COMPOUND

- A. Suitable for the wire insulation and conduit it is used with, and shall not harden or become adhesive.
- B. Shall not be used on wire for isolated type electrical power systems.

2.5 FIREPROOFING TAPE

- A. The tape shall consist of a flexible, conformable fabric of organic composition coated one side with flame-retardant elastomer.
- B. The tape shall be self-extinguishing and shall not support combustion. It shall be arc-proof and fireproof.
- C. The tape shall not deteriorate when subjected to water, gases, salt water, sewage, or fungus and be resistant to sunlight and ultraviolet light.
- D. The finished application shall withstand a 200-ampere arc for not less than 30 seconds.
- E. Securing tape: Glass cloth electrical tape not less than 0.18 mm (7 mils) thick, and 19 mm (3/4 inch) wide.

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

- A. Install in accordance with the NEC, and as specified.
- B. Install all wiring in raceway systems, except where direct burial or HCF Type MC cables are used.

- C. Splice cables and wires only in outlet boxes, junction boxes, and pull boxes.
- D. Wires of different systems (i.e. 120V, 277V) shall not be installed in the same conduit or junction box system.
- E. Install cable supports for all vertical feeders in accordance with the NEC. Provide split wedge type which firmly clamps each individual cable and tightens due to cable weight.
- F. For panelboards, cabinets, wireways, switches, and equipment assemblies, neatly form, train, and tie the cables in individual circuits.
- G. Wire Pulling:
 - 1. Provide installation equipment that will prevent the cutting or abrasion of insulation during pulling of cables.
 - 2. Use ropes made of nonmetallic material for pulling feeders.
 - Attach pulling lines for feeders by means of either woven basket grips or pulling eyes attached directly to the conductors, as approved by the COTR.
 - 4. Pull in multiple cables together in a single conduit.
- H. No more than (3) single-phase branch circuits shall be installed in any one conduit.
- I. The wires shall be derated in accordance with NEC Article 310. Neutral wires, under conditions defined by the NEC, shall be considered current-carrying conductors.

3.2 SPLICE INSTALLATION

- A. Splices and terminations shall be mechanically and electrically secure.
- B. Where the Government determines that unsatisfactory splices or terminations have been installed, remove the devices and install approved devices at no additional cost to the Government.

3.3 CONTROL AND SIGNAL WIRING INSTALLATION

- A. Unless otherwise specified in other sections, install wiring and connect to equipment/devices to perform the required functions as shown and specified.
- B. Except where otherwise required, install a separate power supply circuit for each system so that malfunctions in any system will not affect other systems.
- C. Where separate power supply circuits are not shown, connect the systems to the nearest panelboards of suitable voltages, which are intended to

supply such systems and have suitable spare circuit breakers or space for installation.

- D. Install a red warning indicator on the handle of the branch circuit breaker for the power supply circuit for each system to prevent accidental de-energizing of the systems.
- E. System voltages shall be 120 volts or lower where shown on the drawings or as required by the NEC.

3.4 CONTROL AND SIGNAL SYSTEM IDENTIFICATION

- A. Install a permanent wire marker on each wire at each termination.
- B. Identifying numbers and letters on the wire markers shall correspond to those on the wiring diagrams used for installing the systems.
- C. Wire markers shall retain their markings after cleaning.

3.5 FEEDER IDENTIFICATION

In each interior pulbox and junction box, install metal tags on each circuit cables and wires to clearly designate their circuit identification and voltage.

3.6 EXISITNG WIRING

Unless specifically indicated on the plans, existing wiring shall not be reused for the new installation. Only wiring that conforms to the specifications and applicable codes may be reused. If existing wiring does not meet these requirements, existing wiring may not be reused and new wires shall be installed.

3.7 FIELD TESTING

- A. Feeders and branch circuits shall have their insulation tested after installation and before connection to utilization devices such as fixtures, motors, or appliances.
- B. Tests shall be performed by megger and conductors shall test free from short-circuits and grounds.
- C. Test conductor phase-to-phase and phase-to-ground.
- D. The Contractor shall furnish the instruments, materials, and labor for these tests.

- - - END - - -

SECTION 26 05 26

GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies general grounding and bonding requirements of electrical equipment operations and to provide a low impedance path for possible ground fault currents.
- B. "Grounding electrode system" refers to all electrodes required by NEC, as well as including made, supplementary, lightning protection system grounding electrodes.
- C. The terms "connect" and "bond" are used interchangeably in this specification and have the same meaning.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items that are common to more than one section of Division 26.
- B. Section 26 05 21, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW): Low Voltage power and lighting wiring.

1.3 SUBMITTALS

- A. Submit in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- B. Shop Drawings:
 - Sufficient information, clearly presented, shall be included to determine compliance with drawings and specifications.
 - Include the location of system grounding electrode connections and the routing of aboveground and underground grounding electrode conductors.
- C. Test Reports: Provide certified test reports of ground resistance.
- D. Certifications: Two weeks prior to final inspection, submit four copies of the following to the COTR:
 - Certification that the materials and installation is in accordance with the drawings and specifications.
 - 2. Certification, by the Contractor, that the complete installation has been properly installed and tested.

1.4 APPLICABLE PUBLICATIONS

Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the

extent referenced. Publications are referenced in the text by the basic designation only.

A. American Society for Testing and Materials (ASTM):

B1-2001.....for Hard-Drawn Copper Wire

B8-2004.....Standard Specification for Concentric-Lay-Stranded Copper Conductors, Hard, Medium-Hard, or Soft

B. Institute of Electrical and Electronics Engineers, Inc. (IEEE): 81-1983......IEEE Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials

of a Ground System

- C. National Fire Protection Association (NFPA): 70-2005.....National Electrical Code (NEC) 99-2005.....Health Care Facilities
- D. Underwriters Laboratories, Inc. (UL):

44-2005Thermoset-Insulated Wires and Cables 83-2003Thermoplastic-Insulated Wires and Cables 467-2004Grounding and Bonding Equipment 486A-486B-2003Wire Connectors

PART 2 - PRODUCTS

2.1 GROUNDING AND BONDING CONDUCTORS

- A. Equipment grounding conductors shall be UL 83 insulated stranded copper, except that sizes 6 mm² (10 AWG) and smaller shall be solid copper. Insulation color shall be continuous green for all equipment grounding conductors, except that wire sizes 25 mm² (4 AWG) and larger shall be permitted to be identified per NEC.
- B. Bonding conductors shall be ASTM B8 bare stranded copper, except that sizes 6 mm² (10 AWG) and smaller shall be ASTM B1 solid bare copper wire.
- C.Electrical System Grounding: Conductor sizes shall not be less than what is shown on the drawings and not less than required by the NEC, whichever is greater.

2.2 SPLICES AND TERMINATION COMPONENTS

Components shall meet or exceed UL 467 and be clearly marked with the manufacturer, catalog number, and permitted conductor size(s).

2.3 GROUND CONNECTIONS

A. Above Grade:

- Bonding Jumpers: compression type connectors, using zinc-plated fasteners and external tooth lockwashers.
- 2. Ground Busbars: Two-hole compression type lugs using tin-plated copper or copper alloy bolts and nuts.
- 3. Rack and Cabinet Ground Bars: one-hole compression-type lugs using zinc-plated or copper alloy fasteners.

2.4 EQUIPMENT RACK AND CABINET GROUND BARS

Provide solid copper ground bars designed for mounting on the framework of open or cabinet-enclosed equipment racks with minimum dimensions of 4 mm thick by 19 mm wide $(3/8 \text{ inch } x \frac{3}{4} \text{ inch})$.

2.5 GROUND TERMINAL BLOCKS

At any equipment mounting location (e.g. backboards and hinged cover enclosures) where rack-type ground bars cannot be mounted, provide screw lug-type terminal blocks.

2.6 SPLICE CASE GROUND ACCESSORIES

Splice case grounding and bonding accessories shall be supplied by the splice case manufacturer when available. Otherwise, use 16 mm² (6 AWG) insulated ground wire with shield bonding connectors.

PART 3 - EXECUTION

3.1 GENERAL

- A. Ground in accordance with the NEC, as shown on drawings, and as hereinafter specified.
- B. System Grounding:
 - Secondary service neutrals: Ground at the supply side of the secondary disconnecting means and at the related transformers.
 - Separately derived systems (transformers downstream from the service entrance): Ground the secondary neutral.
 - Isolation transformers and isolated power systems shall not be system grounded.
- C. Equipment Grounding: Metallic structures (including ductwork and building steel), enclosures, raceways, junction boxes, outlet boxes, cabinets, machine frames, and other conductive items in close proximity with electrical circuits shall be bonded and grounded.

3.2 INACCESSIBLE GROUNDING CONNECTIONS

Make grounding connections, which are buried or otherwise normally inaccessible (except connections for which periodic testing access is required) by exothermic weld.

3.3 SECONDARY EQUIPMENT AND CIRCUITS

- A. Main Bonding Jumper: Bond the secondary service neutral to the ground bus in the service equipment.
- B. Metallic Piping, Building Steel, and Supplemental Electrode(s):
 - Provide a grounding electrode conductor sized per NEC between the service equipment ground bus and all metallic water and gas pipe systems, building steel, and supplemental or made electrodes. Jumper insulating joints in the metallic piping. All connections to electrodes shall be made with fittings that conform to UL 467.
 - 2. Provide a supplemental ground electrode and bond to the grounding electrode system.
- C. Service Disconnect (Separate Individual Enclosure): Provide a ground bar bolted to the enclosure with lugs for connecting the various grounding conductors.
- D. Switchgear, Switchboards, Unit Substations:
 - Connect the various feeder equipment grounding conductors to the ground bus in the enclosure with suitable pressure connectors.
 - 2. For service entrance equipment, connect the grounding electrode conductor to the ground bus.
 - Connect metallic conduits, which terminate without mechanical connection to the housing, by grounding bushings and grounding conductor to the equipment ground bus.
- E. Transformers:
 - Separately derived systems (transformers downstream from service equipment): Ground the secondary neutral at the transformer. Provide a grounding electrode conductor from the transformer to the nearest component of the grounding electrode system.
- F. Conduit Systems:
 - 1. Ground all metallic conduit systems. All metallic conduit systems shall contain an equipment grounding conductor.
 - Non-metallic conduit systems shall contain an equipment grounding conductor, except that non-metallic feeder conduits which carry a grounded conductor from exterior transformers to interior or building-mounted service entrance equipment need not contain an equipment grounding conductor.
 - 3. Conduit containing only a grounding conductor, and which is provided for mechanical protection of the conductor, shall be bonded to that conductor at the entrance and exit from the conduit.

- G. Feeders and Branch Circuits: Install equipment grounding conductors with all feeders and power and lighting branch circuits.
- H. Boxes, Cabinets, Enclosures, and Panelboards:
 - Bond the equipment grounding conductor to each pullbox, junction box, outlet box, device box, cabinets, and other enclosures through which the conductor passes (except for special grounding systems for intensive care units and other critical units shown).
 - 2. Provide lugs in each box and enclosure for equipment grounding conductor termination.
 - 3. Provide ground bars in panelboards, bolted to the housing, with sufficient lugs to terminate the equipment grounding conductors.
- I. Motors and Starters: Provide lugs in motor terminal box and starter housing or motor control center compartment to terminate equipment grounding conductors.
- J. Receptacles shall not be grounded through their mounting screws. Ground with a jumper from the receptacle green ground terminal to the device box ground screw and the branch circuit equipment grounding conductor.
- K. Ground lighting fixtures to the equipment grounding conductor of the wiring system when the green ground is provided; otherwise, ground the fixtures through the conduit systems. Fixtures connected with flexible conduit shall have a green ground wire included with the power wires from the fixture through the flexible conduit to the first outlet box.
- L. Fixed electrical appliances and equipment shall be provided with a ground lug for termination of the equipment grounding conductor.
- M. Panelboard Bonding: The equipment grounding terminal buses of the normal and essential branch circuit panelboards serving the same individual patient vicinity shall be bonded together with an insulated continuous copper conductor not less than 16 mm² (10 AWG). These conductors shall be installed in rigid metal conduit.

3.4 CORROSION INHIBITORS

When making ground and ground bonding connections, apply a corrosion inhibitor to all contact surfaces. Use corrosion inhibitor appropriate for protecting a connection between the metals used.

3.5 CONDUCTIVE PIPING

A. Bond all conductive piping systems, interior and exterior, to the building to the grounding electrode system. Bonding connections shall be made as close as practical to the equipment ground bus. B. In operating rooms and at intensive care and coronary care type beds, bond the gases and suction piping, at the outlets, directly to the room or patient ground bus.

3.6 ELECTRICAL ROOM GROUNDING

Building Earth Ground Busbars: Provide ground busbar hardware at each electrical room and connect to pigtail extensions of the building grounding ring.

3.7 WIREWAY GROUNDING

- A. Ground and Bond Metallic Wireway Systems as follows:
 - Bond the metallic structures of wireway to provide 100 percent electrical continuity throughout the wireway system by connecting a 16 mm² (6 AWG) bonding jumper at all intermediate metallic enclosures and across all section junctions.
 - Install insulated 16 mm² (6 AWG) bonding jumpers between the wireway system bonded as required in paragraph 1 above, and the closest building ground at each end and approximately every 16 meters (50 feet).
 - 3. Use insulated 16 mm² (6 AWG) bonding jumpers to ground or bond metallic wireway at each end at all intermediate metallic enclosures and cross all section junctions.
 - 4. Use insulated 16 mm² (6 AWG) bonding jumpers to ground cable tray to column-mounted building ground plates (pads) at each end and approximately every 15 meters.

3.8 GROUND RESISTANCE

- A. Grounding system resistance to ground shall not exceed 5 ohms. Make necessary modifications or additions to the grounding electrode system for compliance without additional cost to the Government. Final tests shall assure that this requirement is met.
- B. Resistance of the grounding electrode system shall be measured using a four-terminal fall-of-potential method as defined in IEEE 81. Ground resistance measurements shall be made before the electrical distribution system is energized and shall be made in normally dry conditions not less than 48 hours after the last rainfall. Resistance measurements of separate grounding electrode systems shall be made before the systems are bonded together below grade. The combined resistance of separate systems may be used to meet the required resistance, but the specified number of electrodes must still be provided.

- C. Services at power company interface points shall comply with the power company ground resistance requirements.
- D. Below-grade connections shall be visually inspected by the COTR prior to backfilling. The Contractor shall notify the COTR 24 hours before the connections are ready for inspection.

- - - END - - -

SECTION 26 05 33

RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, and connection of conduit, fittings, and boxes to form complete, coordinated, grounded raceway systems. Raceways are required for all wiring unless shown or specified otherwise.
- B. Definitions: The term conduit, as used in this specification, shall mean any or all of the raceway types specified.

1.2 RELATED WORK

- A. Mounting board for telephone closets: Section 06 10 00, ROUGH CARPENTRY.
- B. Sealing around penetrations to maintain the integrity of fire rated construction: Section 07 84 00, FIRESTOPPING.
- C. Fabrications for the deflection of water away from the building envelope at penetrations: Section 07 60 00, FLASHING AND SHEET METAL.
- D. Sealing around conduit penetrations through the building envelope to prevent moisture migration into the building: Section 07 92 00, JOINT SEALANTS.
- E. Identification and painting of conduit and other devices: Section 09 91 00, PAINTING.
- F. General electrical requirements and items that is common to more than one section of Division 26: Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- G. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents: Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.

1.3 SUBMITTALS

In accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, furnish the following:

A. Shop Drawings:

- 1. Size and location of main feeders;
- 2. Size and location of panels and pull boxes
- 3. Layout of required conduit penetrations through structural elements.

- 4. The specific item proposed and its area of application shall be identified on the catalog cuts.
- B. Certification: Prior to final inspection, deliver to the COTR four copies of the certification that the material is in accordance with the drawings and specifications and has been properly installed.

1.4 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
- B. National Fire Protection Association (NFPA):

```
70-05.....National Electrical Code (NEC)
```

C. Underwriters Laboratories, Inc. (UL):

1-03......Flexible Metal Conduit 5-01.....Surface Metal Raceway and Fittings 6-03.....Rigid Metal Conduit 50-03.....Enclosures for Electrical Equipment 360-03.....Liquid-Tight Flexible Steel Conduit 467-01.....Grounding and Bonding Equipment 514A-01.....Metallic Outlet Boxes 514B-02.....Fittings for Cable and Conduit 797-03.....Electrical Metallic Tubing 1242-00.....Intermediate Metal Conduit D. National Electrical Manufacturers Association (NEMA):

FB1-03.....Fittings, Cast Metal Boxes and Conduit Bodies for Conduit, Electrical Metallic Tubing and Cable

PART 2 - PRODUCTS

2.1 MATERIAL

- A. Conduit Size: In accordance with the NEC, but not less than 20 mm (3/4 inch) unless otherwise shown. Where permitted by the NEC, 20 mm (3/4 inch) flexible conduit may be used for tap connections to recessed lighting fixtures.
- B. Conduit:
 - 1. Rigid galvanized steel: Shall Conform to UL 6, ANSI C80.1.
 - 2. Rigid aluminum: Shall Conform to UL 6A, ANSI C80.5.
 - 3. Rigid intermediate steel conduit (IMC): Shall Conform to UL 1242, ANSI C80.6.

- Electrical metallic tubing (EMT): Shall Conform to UL 797, ANSI C80.3. Maximum size not to exceed 105 mm (4 inch) and shall be permitted only with cable rated 600 volts or less.
- 5. Flexible galvanized steel conduit: Shall Conform to UL 1.
- 6. Liquid-tight flexible metal conduit: Shall Conform to UL 360.
- 7. Surface metal raceway: Shall Conform to UL 5.
- C. Conduit Fittings:
 - 1. Rigid steel and IMC conduit fittings:
 - a. Fittings shall meet the requirements of UL 514B and ANSI/ NEMA FB1.
 - a. Standard threaded couplings, locknuts, bushings, and elbows: Only steel or malleable iron materials are acceptable. Integral retractable type IMC couplings are also acceptable.
 - b. Locknuts: Bonding type with sharp edges for digging into the metal wall of an enclosure.
 - c. Bushings: Metallic insulating type, consisting of an insulating insert molded or locked into the metallic body of the fitting. Bushings made entirely of metal or nonmetallic material are not permitted.
 - d. Erickson (union-type) and set screw type couplings: Approved for use in concrete are permitted for use to complete a conduit run where conduit is installed in concrete. Use set screws of case hardened steel with hex head and cup point to firmly seat in conduit wall for positive ground. Tightening of set screws with pliers is prohibited.
 - 2. Rigid aluminum conduit fittings:
 - a. Standard threaded couplings, locknuts, bushings, and elbows: Malleable iron, steel or aluminum alloy materials; Zinc or cadmium plate iron or steel fittings. Aluminum fittings containing more than 0.4 percent copper are prohibited.
 - b. Locknuts and bushings: As specified for rigid steel and IMC conduit.
 - c. Set screw fittings: Not permitted for use with aluminum conduit.
 - 3. Electrical metallic tubing fittings:
 - a. Fittings shall meet the requirements of UL 514B and ANSI/ NEMA FB1.
 - b. Only steel or malleable iron materials are acceptable.

- c. Couplings and connectors: Concrete tight and rain tight, with connectors having insulated throats. Use gland and ring compression type couplings and connectors for conduit sizes 50 mm (2 inches) and smaller. Use set screw type couplings with four set screws each for conduit sizes over 50 mm (2 inches). Use set screws of case-hardened steel with hex head and cup point to firmly seat in wall of conduit for positive grounding.
- d. Indent type connectors or couplings are prohibited.
- e. Die-cast or pressure-cast zinc-alloy fittings or fittings made of "pot metal" are prohibited.
- 4. Flexible steel conduit fittings:
 - a. Conform to UL 514B. Only steel or malleable iron materials are acceptable.
 - b. Clamp type, with insulated throat.
- 5. Liquid-tight flexible metal conduit fittings:
 - a. Fittings shall meet the requirements of UL 514B and ANSI/ NEMA FB1.
 - b. Only steel or malleable iron materials are acceptable.
 - c. Fittings must incorporate a threaded grounding cone, a steel or plastic compression ring, and a gland for tightening. Connectors shall have insulated throats.
- 6. Surface metal raceway fittings: As recommended by the raceway manufacturer.
- 7. Expansion and deflection couplings:
 - a. Conform to UL 467 and UL 514B.
 - b. Accommodate, 19 mm (0.75 inch) deflection, expansion, or contraction in any direction, and allow 30 degree angular deflections.
 - c. Include internal flexible metal braid sized to guarantee conduit ground continuity and fault currents in accordance with UL 467, and the NEC code tables for ground conductors.
 - d. Jacket: Flexible, corrosion-resistant, watertight, moisture and heat resistant molded rubber material with stainless steel jacket clamps.
- D. Conduit Supports:
 - Parts and hardware: Zinc-coat or provide equivalent corrosion protection.

- Individual Conduit Hangers: Designed for the purpose, having a pre-assembled closure bolt and nut, and provisions for receiving a hanger rod.
- 3. Multiple conduit (trapeze) hangers: Not less than 38 mm by 38 mm (1-1/2 by 1-1/2 inch), 12 gage steel, cold formed, lipped channels; with not less than 9 mm (3/8 inch) diameter steel hanger rods.
- Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion.
- E. Outlet, Junction, and Pull Boxes:
 - 1. UL-50 and UL-514A.
 - 2. Cast metal where required by the NEC or shown, and equipped with rustproof boxes.
 - 3. Sheet metal boxes: Galvanized steel, except where otherwise shown.
 - 4. Flush mounted wall or ceiling boxes shall be installed with raised covers so that front face of raised cover is flush with the wall. Surface mounted wall or ceiling boxes shall be installed with surface style flat or raised covers.
- F. Wireways: Equip with hinged covers, except where removable covers are shown.

PART 3 - EXECUTION

3.1 PENETRATIONS

- A. Cutting or Holes:
 - Locate holes in advance where they are proposed in the structural sections such as ribs or beams. Obtain the approval of the COTR prior to drilling through structural sections.
 - Cut holes through concrete and masonry in new and existing structures with a diamond core drill or concrete saw. Pneumatic hammer, impact electric, hand or manual hammer type drills are not allowed, except where permitted by the COTR as required by limited working space.
- B. Fire Stop: Where conduits, wireways, and other electrical raceways pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING, with rock wool fiber or silicone foam sealant only. Completely fill and seal clearances between raceways and openings with the fire stop material.

C. Waterproofing: At floor, exterior wall, and roof conduit penetrations, completely seal clearances around the conduit and make watertight as specified in Section 07 92 00, JOINT SEALANTS.

3.2 INSTALLATION, GENERAL

- A. In accordance with UL, NEC, as shown, and as hereinafter specified.
- B. Essential (Emergency) raceway systems shall be entirely independent of other raceway systems, except where specifically "accepted" by NEC Article 517.
- C. Install conduit as follows:
 - 1. In complete runs before pulling in cables or wires.
 - 2. Flattened, dented, or deformed conduit is not permitted. Remove and replace the damaged conduits with new undamaged material.
 - 3. Assure conduit installation does not encroach into the ceiling height head room, walkways, or doorways.
 - 4. Cut square with a hacksaw, ream, remove burrs, and draw up tight.
 - 5. Mechanically and electrically continuous.
 - 6. Independently support conduit at 8'0" on center. Do not use other supports i.e., (suspended ceilings, suspended ceiling supporting members, lighting fixtures, conduits, mechanical piping, or mechanical ducts).
 - Support within 300 mm (1 foot) of changes of direction, and within 300 mm (1 foot) of each enclosure to which connected.
 - 8. Close ends of empty conduit with plugs or caps at the rough-in stage to prevent entry of debris, until wires are pulled in.
 - 9. Conduit installations under fume and vent hoods are prohibited.
 - 10. Secure conduits to cabinets, junction boxes, pull boxes and outlet boxes with bonding type locknuts. For rigid and IMC conduit installations, provide a locknut on the inside of the enclosure, made up wrench tight. Do not make conduit connections to junction box covers.
 - 11. Flashing of penetrations of the roof membrane is specified in Section 07 60 00, FLASHING AND SHEET METAL.
 - 12. Do not use aluminum conduits in wet locations.
 - 13. Unless otherwise indicated on the drawings or specified herein, all conduits shall be installed concealed within finished walls, floors and ceilings.
- D. Conduit Bends:
 - 1. Make bends with standard conduit bending machines.

- 2. Conduit hickey may be used for slight offsets, and for straightening stubbed out conduits.
- 3. Bending of conduits with a pipe tee or vise is prohibited.
- E. Layout and Homeruns:
 - 1. Install conduit with wiring, including homeruns, as shown.
 - Deviations: Make only where necessary to avoid interferences and only after drawings showing the proposed deviations have been submitted approved by the COTR.

3.3 CONCEALED WORK INSTALLATION

- A. In Concrete:
 - 1. Conduit: Rigid steel, IMC or EMT. Do not install EMT in concrete slabs that are in contact with soil, gravel or vapor barriers.
 - 2. Align and run conduit in direct lines.
 - 3. Install conduit through concrete beams only when the following occurs:
 - a. Where shown on the structural drawings.
 - b. As approved by the COTR prior to construction, and after submittal of drawing showing location, size, and position of each penetration.
 - Installation of conduit in concrete that is less than 75 mm (3 inches) thick is prohibited.
 - a. Conduit outside diameter larger than 1/3 of the slab thickness is prohibited.
 - b. Space between conduits in slabs: Approximately six conduit diameters apart, except one conduit diameter at conduit crossings.
 - c. Install conduits approximately in the center of the slab so that there will be a minimum of 19 mm (3/4 inch) of concrete around the conduits.
 - 5. Make couplings and connections watertight. Use thread compounds that are UL approved conductive type to insure low resistance ground continuity through the conduits. Tightening set screws with pliers is prohibited.
- B. Furred or Suspended Ceilings and in Walls:
 - 1. Conduit for conductors above 600 volts:
 - a. Rigid steel or rigid aluminum.
 - b. Aluminum conduit mixed indiscriminately with other types in the same system is prohibited.

- 2. Conduit for conductors 600 volts and below:
 - a. Rigid steel, IMC, rigid aluminum, or EMT. Different type conduits mixed indiscriminately in the same system is prohibited.
- 3. Align and run conduit parallel or perpendicular to the building lines.
- Connect recessed lighting fixtures to conduit runs with maximum 1800 mm (six feet) of flexible metal conduit extending from a junction box to the fixture.
- 5. Tightening set screws with pliers is prohibited.

3.4 EXPOSED WORK INSTALLATION

- A. Unless otherwise indicated on the drawings, exposed conduit is only permitted in mechanical and electrical rooms.
- B. Conduit for Conductors 600 volts and below:
 - 1. Rigid steel, IMC, rigid aluminum, or EMT. Different type of conduits mixed indiscriminately in the system is prohibited.
- C. Align and run conduit parallel or perpendicular to the building lines.
- D. Install horizontal runs close to the ceiling or beams and secure with conduit straps.
- E. Support horizontal or vertical runs at not over 2400 mm (eight foot) intervals.
- F. Surface metal raceways: Use only where shown.
- G. Painting:
 - 1. Paint exposed conduit as specified in Section 09 91 00, PAINTING.
 - 2. Paint all conduits containing cables rated over 600 volts safety orange. Refer to Section 09 91 00, PAINTING for preparation, paint type, and exact color. In addition, paint legends, using 50 mm (two inch) high black numerals and letters, showing the cable voltage rating. Provide legends where conduits pass through walls and floors and at maximum 6000 mm (20 foot) intervals in between.

3.5 WET OR DAMP LOCATIONS

- A. Unless otherwise shown, use conduits of rigid steel or IMC.
- B. Provide sealing fittings, to prevent passage of water vapor, where conduits pass from warm to cold locations, i.e., (refrigerated spaces, constant temperature rooms, air conditioned spaces building exterior walls, roofs) or similar spaces.
- C. Unless otherwise shown, use rigid steel or IMC conduit within 1500 mm (5 feet) of the exterior and below concrete building slabs in contact with soil, gravel, or vapor barriers. Conduit shall include an outer

factory coating of .5 mm (20 mil) bonded PVC or field coat with asphaltum before installation. After installation, completely coat damaged areas of coating.

3.6 MOTORS AND VIBRATING EQUIPMENT

- A. Use flexible metal conduit for connections to motors and other electrical equipment subject to movement, vibration, misalignment, cramped quarters, or noise transmission.
- B. Provide liquid-tight flexible metal conduit for installation in exterior locations, moisture or humidity laden atmosphere, corrosive atmosphere, water or spray wash-down operations, inside (air stream) of HVAC units, and locations subject to seepage or dripping of oil, grease or water. Provide a green ground wire with flexible metal conduit.

3.7 EXPANSION JOINTS

- A. Conduits 75 mm (3 inches) and larger, that are secured to the building structure on opposite sides of a building expansion joint, require expansion and deflection couplings. Install the couplings in accordance with the manufacturer's recommendations.
- B. Provide conduits smaller than 75 mm (3 inches) with junction boxes on both sides of the expansion joint. Connect conduits to junction boxes with sufficient slack of flexible conduit to produce 125 mm (5 inch) vertical drop midway between the ends. Flexible conduit shall have a copper green ground bonding jumper installed. In lieu of this flexible conduit, expansion and deflection couplings as specified above for 375 mm (15 inches) and larger conduits are acceptable.
- C. Install expansion and deflection couplings where shown.

3.8 CONDUIT SUPPORTS, INSTALLATION

- A. Safe working load shall not exceed 1/4 of proof test load of fastening devices.
- B. Use pipe straps or individual conduit hangers for supporting individual conduits. Maximum distance between supports is 2.5 m (8 foot) on center.
- C. Support multiple conduit runs with trapeze hangers. Use trapeze hangers that are designed to support a load equal to or greater than the sum of the weights of the conduits, wires, hanger itself, and 90 kg (200 pounds). Attach each conduit with U-bolts or other approved fasteners.
- D. Support conduit independently of junction boxes, pull boxes, fixtures, suspended ceiling T-bars, angle supports, and similar items.
- E. Fasteners and Supports in Solid Masonry and Concrete:

- 1. New Construction: Use steel or malleable iron concrete inserts set in place prior to placing the concrete.
- 2. Existing Construction:
 - a. Steel expansion anchors not less than 6 mm (1/4 inch) bolt size and not less than 28 mm (1-1/8 inch) embedment.
 - b. Power set fasteners not less than 6 mm (1/4 inch) diameter with depth of penetration not less than 75 mm (3 inches).
 - c. Use vibration and shock resistant anchors and fasteners for attaching to concrete ceilings.
- F. Hollow Masonry: Toggle bolts are permitted.
- G. Bolts supported only by plaster or gypsum wallboard are not acceptable.
- H. Metal Structures: Use machine screw fasteners or other devices specifically designed and approved for the application.
- I. Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited.
- J. Chain, wire, or perforated strap shall not be used to support or fasten conduit.
- K. Spring steel type supports or fasteners are prohibited for all uses except: Horizontal and vertical supports/fasteners within walls.
- L. Vertical Supports: Vertical conduit runs shall have riser clamps and supports in accordance with the NEC and as shown. Provide supports for cable and wire with fittings that include internal wedges and retaining collars.

3.9 BOX INSTALLATION

- A. Boxes for Concealed Conduits:
 - 1. Flush mounted.
 - 2. Provide raised covers for boxes to suit the wall or ceiling, construction and finish.
- B. In addition to boxes shown, install additional boxes where needed to prevent damage to cables and wires during pulling in operations.
- C. Remove only knockouts as required and plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes.
- D. Outlet boxes in the same wall mounted back-to-back are prohibited. A minimum 600 mm (24 inch), center-to-center lateral spacing shall be maintained between boxes.)

- E. Minimum size of outlet boxes for ground fault interrupter (GFI) receptacles is 100 mm (4 inches) square by 55 mm (2-1/8 inches) deep, with device covers for the wall material and thickness involved.
- F. Stencil or install phenolic nameplates on covers of the boxes identified on riser diagrams; for example "SIG-FA JB No. 1".
- G. On all Branch Circuit junction box covers, identify the circuits with black marker.

- - - END - - -

SECTION 26 09 23

LIGHTING CONTROLS

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies the furnishing, installation and connection of the lighting controls.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General requirements that are common to more than one section of Division 26.
- B. Section 26 05 21, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW): Cables and wiring.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.
- D. Section 26 27 26, WIRING DEVICES: Wiring devices used for control of the lighting systems.

1.3 QUALITY ASSURANCE

Refer to Paragraph, QUALIFICATIONS, in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. In accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, submit the following:
- B. Product Data: For each type of lighting control, submit the following information.
 - 1. Manufacturer's catalog data.
 - 2. Wiring schematic and connection diagram.
 - 3. Installation details.
- C. Manuals:
 - Submit, simultaneously with the shop drawings companion copies of complete maintenance and operating manuals including technical data sheets, and information for ordering replacement parts.
 - Two weeks prior to the final inspection, submit four copies of the final updated maintenance and operating manuals, including any changes, to the COTR.
- D. Certifications:
 - Two weeks prior to final inspection, submit four copies of the following certifications to the COTR:

a. Certification by the Contractor that the equipment has been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. Green Seal (GS):
 GC-12.....Occupancy Sensors
- C. Illuminating Engineering Society of North America (IESNA): IESNA LM-48Guide for Calibration of Photoelectric Control Devices
- D. National Electrical Manufacturer's Association (NEMA)
 - C136.10.....American National Standard for Roadway Lighting Equipment-Locking-Type Photocontrol Devices and Mating Receptacles - Physical and Electrical Interchangeability and Testing ICS-1....Standard for Industrial Control and Systems General Requirements ICS-2....Standard for Industrial Control and Systems:
 - Controllers, Contractors, and Overload Relays Rated Not More than 2000 Volts AC or 750 Volts DC: Part 8 - Disconnect Devices for Use in Industrial Control Equipment
 - ICS-6.....Standard for Industrial Controls and Systems Enclosures
- E. Underwriters Laboratories, Inc. (UL):
 - 20.....Standard for General-Use Snap Switches
 - 773.....Standard for Plug-In Locking Type Photocontrols for Use with Area Lighting
 - 773A Nonindustrial Photoelectric Switches for Lighting Control
 - 98.....Enclosed and Dead-Front Switches
 - 917.....Clock Operated Switches

PART 2 - PRODUCTS

2.1 OUTDOOR PHOTOELECTRIC SWITCHES

A. Thermal type photo controller with SPST dry contacts rated for 1800 VA tungsten or 1000 VA inductive, complying with UL 773A.

- 1. Light-Level Monitoring Range: 1.5 to 5FC on ; 3-15FC off.
- 2. Time Delay: 15-second minimum.
- 3. Mounting: stem-and-swivel type with accessories as required.
- 4. Temperature operating range: $-40^{\circ}F$ to $158^{\circ}F$.
- 5. Housing construction: high impact polycarbonate.
- 6. components: dual temperature compensating bi-metal blades, snap action contact blades, chemically treated/polymer encapsulated cadmium sulfide photocell, silver alloy contacts and composite resistor.

2.2 INDOOR OCCUPANCY SENSORS

- A. Wall- or ceiling-mounting, solid-state units with a power supply and relay unit, suitable for the environmental conditions in which installed.
 - Operation: Unless otherwise indicated, turn lights on when covered area is occupied and off when unoccupied; with a 1 to 15 minute adjustable time delay for turning lights off.
 - Sensor Output: Contacts rated to operate the connected relay. Sensor shall be powered from the relay unit.
 - 3. Relay Unit: Dry contacts rated for 20A ballast load at 120V and 277V, for 13A tungsten at 120V, and for 1 hp at 120V.
 - 4. Mounting:
 - a. Sensor: Suitable for mounting in any position on a standard outlet box.
 - b. Time-Delay and Sensitivity Adjustments: Recessed and concealed behind hinged door.
 - 5. Indicator: LED, to show when motion is being detected during testing and normal operation of the sensor.
 - 6. Bypass Switch: Override the on function in case of sensor failure.
 - 7. Manual/automatic selector switch.
 - Automatic Light-Level Sensor: Adjustable from 2 to 200 fc; keep lighting off when selected lighting level is present.
 - Faceplate for Wall-Switch Replacement Type: Refer to wall plate material and color requirements for toggle switches, as specified in Section 26 27 26, WIRING DEVICES.
- B. Dual-technology Type: Ceiling mounting; combination PIR and ultrasonic detection methods, field-selectable.
 - 1. Sensitivity Adjustment: Separate for each sensing technology.

- 2. Detector Sensitivity: Detect occurrences of 6-inch minimum movement of any portion of a human body that presents a target of not less than 36 sq. in. and detect a person of average size and weight moving not less than 12 inches in either a horizontal or a vertical manner at an approximate speed of 12 inches/s.
- Detection Coverage (Standard Room): Detect occupancy anywhere within a circular area of 1000 sq. ft. when mounted on a 96-inchhigh ceiling.
- Sensor Output: Contacts rated to operate the connected relay, complying with UL 773A. Sensor is powered from the power pack.
- 5. Power Pack: Dry contacts rated for 20-A ballast load at 120- and 277-V ac, for 13-A tungsten at 120-V ac, and for 1 hp at 120-V ac. Sensor has 24-V dc, 150-mA, Class 2 power source, as defined by NFPA 70.

PART 3 - EXECUTION

3.1 INSTALLATION:

- A. Installation shall be in accordance with the NEC, manufacturer's instructions and as shown on the drawings or specified.
- B. Aim outdoor photocell switch according to manufacturer's recommendations. Set adjustable window slide for 1 footcandle photocell turn-on.
- C. Aiming for wall-mounted and ceiling-mounted motion sensor switches shall be per manufacturer's recommendations.
- D. Set occupancy sensor "on" duration to 15 minutes.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations.
- B. Upon completion of installation, conduct an operating test to show that equipment operates in accordance with requirements of this section.
- D. Test occupancy sensors for proper operation. Observe for light control over entire area being covered.

3.3 FOLLOW-UP VERIFICATION

Upon completion of acceptance checks and tests, the Contractor shall show by demonstration in service that the lighting control devices are in good operating condition and properly performing the intended function.

- - - END - - -

SECTION 26 24 16

PANELBOARDS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of panelboards.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits.

1.3 QUALITY ASSURANCE

A. Refer to Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES), in Section26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit six copies of the following in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Include electrical ratings, dimensions, mounting details, materials, required clearances, terminations, weight, circuit breakers, wiring and connection diagrams, accessories, and nameplate data.
 - 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, complete maintenance and operating manuals including technical data sheets, wiring diagrams, and information for ordering circuit breakers and replacement parts.
 - Include schematic diagrams, with all terminals identified, matching terminal identification in the panelboards.

- Include information for testing, repair, troubleshooting, assembly, and disassembly.
- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the panelboards conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the panelboards have been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. International Code Council (ICC):

IBC-12.....International Building Code

C. National Electrical Manufacturers Association (NEMA): PB 1-11.....Panelboards 250-08.....Enclosures for Electrical Equipment (1,000V

Maximum)

- D. National Fire Protection Association (NFPA): 70-11.....National Electrical Code (NEC) 70E-12.....Standard for Electrical Safety in the Workplace E. Underwriters Laboratories, Inc. (UL):
 - 50-95..... Enclosures for Electrical Equipment
 - 67-09....Panelboards
 - 489-09..... Molded Case Circuit Breakers and Circuit Breaker Enclosures

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

- A. Panelboards shall be in accordance with NEC, NEMA, UL, as specified, and as shown on the drawings.
- B. Panelboards shall have main breaker or main lugs, bus size, voltage, phases, number of circuit breaker mounting spaces, top or bottom feed, flush or surface mounting, branch circuit breakers, and accessories as shown on the drawings.

- C. Panelboards shall be completely factory-assembled with molded case circuit breakers and integral accessories as shown on the drawings or specified herein.
- D. Non-reduced size copper bus bars, rigidly supported on molded insulators, and fabricated for bolt-on type circuit breakers.
- E. Bus bar connections to the branch circuit breakers shall be the "distributed phase" or "phase sequence" type.
- F. Mechanical lugs furnished with panelboards shall be cast, stamped, or machined metal alloys listed for use with the conductors to which they will be connected.
- G. Neutral bus shall be 100% rated, mounted on insulated supports.
- H. Grounding bus bar shall be equipped with screws or lugs for the connection of equipment grounding conductors.
- I. Bus bars shall be braced for the available short-circuit current as shown on the drawings, but not be less than 10,000 A symmetrical for 120/208 V panelboards.
- J. Series-rated panelboards are not permitted.

2.2 ENCLOSURES AND TRIMS

- A. Enclosures:
 - Provide galvanized steel enclosures, with NEMA rating as shown on the drawings or as required for the environmental conditions in which installed.
 - 2. Enclosures shall not have ventilating openings.
 - 3. Enclosures may be of one-piece formed steel or of formed sheet steel with end and side panels welded, riveted, or bolted as required.
 - 4. Provide manufacturer's standard option for prepunched knockouts on top and bottom endwalls.
 - 5. Include removable inner dead front cover, independent of the panelboard cover.
- B. Trims:
 - 1. Hinged "door-in-door" type.
 - Interior hinged door with hand-operated latch or latches, as required to provide access only to circuit breaker operating handles, not to energized parts.
 - Outer hinged door shall be securely mounted to the panelboard enclosure with factory bolts, screws, clips, or other fasteners, requiring a key or tool for entry. Hand-operated latches are not acceptable.

- 4. Inner and outer doors shall open left to right.
- 5. Trims shall be flush or surface type as shown on the drawings.

2.3 MOLDED CASE CIRCUIT BREAKERS

- A. Circuit breakers shall be per UL, NEC, as shown on the drawings, and as specified.
- B. Circuit breakers shall be bolt-on type.
- C. Circuit breakers shall have minimum interrupting rating as required to withstand the available fault current, but not less than: 1. 120/208 V Panelboard: 10,000 A symmetrical.
- D. Circuit breakers shall have automatic, trip free, non-adjustable, inverse time, and instantaneous magnetic trips for less than 400 A frame. Circuit breakers with 400 A frames and above shall have magnetic trip, adjustable from 5x to 10x. Breaker magnetic trip setting shall be set to maximum, unless otherwise noted.
- E. Circuit breaker features shall be as follows:
 - 1. A rugged, integral housing of molded insulating material.
 - 2. Silver alloy contacts.
 - 3. Arc quenchers and phase barriers for each pole.
 - 4. Quick-make, quick-break, operating mechanisms.
 - 5. A trip element for each pole, thermal magnetic type with long time delay and instantaneous characteristics, a common trip bar for all poles and a single operator.
 - 6. Electrically and mechanically trip free.
 - An operating handle which indicates closed, tripped, and open positions.
 - 8. An overload on one pole of a multi-pole breaker shall automatically cause all the poles of the breaker to open.
 - 9. Ground fault current interrupting breakers, shunt trip breakers, lighting control breakers (including accessories to switch line currents), or other accessory devices or functions shall be provided where shown on the drawings.
- 10. For circuit breakers being added to existing panelboards, coordinate the breaker type with existing panelboards. Modify the panel directory accordingly.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the manufacturer's instructions, the NEC, as shown on the drawings, and as specified.
- B. Locate panelboards so that the present and future conduits can be conveniently connected.
- C. Install a printed schedule of circuits in each panelboard after approval by the COTR. Schedules shall reflect final load descriptions, room numbers, and room names connected to each circuit breaker. Schedules shall be printed on the panelboard directory cards and be installed in the appropriate panelboards
- D. Mount panelboards such that the maximum height of the top circuit breaker above the finished floor shall not exceed 1980 mm (78 inches).
- E. Provide blank cover for each unused circuit breaker mounting space.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.
 - c. Verify appropriate anchorage and required area clearances.
 - d. Verify that circuit breaker sizes and types correspond to approved shop drawings.
 - e. To verify tightness of accessible bolted electrical connections, use the calibrated torque-wrench method or perform thermographic survey after energization.
 - f. Vacuum-clean enclosure interior. Clean enclosure exterior.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks, settings, and tests, the Contractor shall demonstrate that the panelboards are in good operating condition and properly performing the intended function.

- - - END - - -

SECTION 26 27 26

WIRING DEVICES

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies the furnishing, installation and connection of wiring devices.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements that are common to more than one section of Division 26.
- B. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits and outlets boxes.
- C. Section 26 05 21, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW): Cables and wiring.
- D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.

1.3 QUALITY ASSURANCE

Refer to Paragraph, QUALIFICATIONS, in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. In accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, submit the following:
- B. Shop Drawings:
 - Sufficient information, clearly presented, shall be included to determine compliance with drawings and specifications.
 - 2. Include electrical ratings, dimensions, mounting details, construction materials, grade and termination information.
- C. Manuals: Two weeks prior to final inspection, deliver four copies of the following to the COTR: Technical data sheets and information for ordering replacement units.
- D. Certifications: Two weeks prior to final inspection, submit four copies of the following to the COTR: Certification by the Contractor that the devices comply with the drawings and specifications, and have been properly installed, aligned, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by basic designation only.
- B. National Fire Protection Association (NFPA): 70.....National Electrical Code (NEC)
- C. National Electrical Manufacturers Association (NEMA):WD 1......General Color Requirements for Wiring DevicesWD 6Wiring Devices Dimensional Requirements
- D. Underwriter's Laboratories, Inc. (UL):

5.....Surface Metal Raceways and Fittings
20.....General-Use Snap Switches
231....Power Outlets
467....Grounding and Bonding Equipment
498....Attachment Plugs and Receptacles
943....Ground-Fault Circuit-Interrupters

PART 2 - PRODUCTS

2.1 RECEPTACLES

- A. General: All receptacles shall be listed by Underwriters Laboratories, Inc., and conform to NEMA WD 6.
 - Mounting straps shall be plated steel, with break-off plaster ears and shall include a self-grounding feature. Terminal screws shall be brass, brass plated or a copper alloy metal.
 - Receptacles shall have provisions for back wiring with separate metal clamp type terminals (four min.) and side wiring from four captively held binding screws.
- B. Duplex Receptacles: Hospital-grade, single phase, 20 ampere, 120 volts, 2-pole, 3-wire, and conform to the NEMA 5-20R configuration in NEMA WD 6. The duplex type shall have break-off feature for two-circuit operation. The ungrounded pole of each receptacle shall be provided with a separate terminal.
 - 1. Bodies shall be ivory in color.
 - Switched duplex receptacles shall be wired so that only the top receptacle is switched. The remaining receptacle shall be unswitched.
 - 3. Duplex Receptacles on Emergency Circuit:

- a. In rooms without emergency powered general lighting, the emergency receptacles shall be of the self-illuminated type.
- Ground Fault Interrupter Duplex Receptacles: Shall be an integral unit, hospital-grade, suitable for mounting in a standard outlet box.
 - a. Ground fault interrupter shall be consist of a differential current transformer, solid state sensing circuitry and a circuit interrupter switch. Device shall have nominal sensitivity to ground leakage current of five milliamperes and shall function to interrupt the current supply for any value of ground leakage current above five milliamperes (+ or - 1 milliamp) on the load side of the device. Device shall have a minimum nominal tripping time of 1/30th of a second.
 - b. Ground Fault Interrupter Duplex Receptacles (not hospital-grade) shall be the same as ground fault interrupter hospital-grade receptacles except for the "hospital-grade" listing.
- 5. Safety Type Duplex Receptacles:
 - a. Bodies shall be gray in color.
 - 1) Shall permit current to flow only while a standard plug is in the proper position in the receptacle.
 - Screws exposed while the wall plates are in place shall be the tamperproof type.
- 6. Duplex Receptacles (not hospital grade): Shall be the same as hospital grade duplex receptacles except for the "hospital grade" listing and as follows.
 - a. Bodies shall be brown phenolic compound supported by a plated steel mounting strap having plaster ears.
- C. Receptacles; 20, 30 and 50 ampere, 250 volts: Shall be complete with appropriate cord grip plug. Devices shall meet UL 231.
- D. Weatherproof Receptacles: Shall consist of a duplex receptacle, mounted in box with a gasketed, weatherproof, cast metal cover plate and cap over each receptacle opening. The cap shall be permanently attached to the cover plate by a spring-hinged flap. The weatherproof integrity shall not be affected when heavy duty specification or hospital grade attachment plug caps are inserted. Cover plates on outlet boxes mounted flush in the wall shall be gasketed to the wall in a watertight manner.

2.2 TOGGLE SWITCHES

- A. Toggle Switches: Shall be totally enclosed tumbler type with bodies of phenolic compound. Toggle handles shall be ivory in color unless otherwise specified. The rocker type switch is not acceptable and will not be approved.
 - 1. Switches installed in hazardous areas shall be explosion proof type in accordance with the NEC and as shown on the drawings.
 - 2. Shall be single unit toggle, butt contact, quiet AC type, heavy-duty general-purpose use with an integral self grounding mounting strap with break-off plasters ears and provisions for back wiring with separate metal wiring clamps and side wiring with captively held binding screws.
 - 3. Ratings:
 - a. 120 volt circuits: 20 amperes at 120-277 volts AC.
 - b. 277 volt circuits: 20 amperes at 120-277 volts AC.

2.3 WALL PLATES

- A. Wall plates for switches and receptacles shall be type 302 stainless steel. Oversize plates are not acceptable.
- B. Standard NEMA design, so that products of different manufacturers will be interchangeable. Dimensions for openings in wall plates shall be accordance with NEMA WD 6.
- C. For receptacles or switches mounted adjacent to each other, wall plates shall be common for each group of receptacles or switches.
- D. In psychiatric areas, wall plates shall be 302 stainless steel, have tamperproof screws and beveled edges.
- E. Wall plates for data, telephone or other communication outlets shall be as specified in the associated specification.
- F. Duplex Receptacles on Emergency Circuit:
 - 1. Bodies shall be red in color. Wall plates shall be red with the word "EMERGENCY" engraved in 6 mm, (1/4 inch) white letters.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC and as shown as on the drawings.
- B. Ground terminal of each receptacle shall be bonded to the outlet box with an approved green bonding jumper, and also connected to the green equipment grounding conductor.

- C. Outlet boxes for light switches shall be mounted on the strike side of doors.
- D. Provide barriers in multi-gang outlet boxes to separate systems of different voltages, Normal Power and Emergency Power systems, and in compliance with the NEC.
- E. Coordinate with other work, including painting, electrical boxes and wiring installations, as necessary to interface installation of wiring devices with other work. Coordinate the electrical work with the work of other trades to ensure that wiring device flush outlets are positioned with box openings aligned with the face of the surrounding finish material. Pay special attention to installations in cabinet work, and in connection with laboratory equipment.
- F. Exact field locations of floors, walls, partitions, doors, windows, and equipment may vary from locations shown on the drawings. Prior to locating sleeves, boxes and chases for roughing-in of conduit and equipment, the Contractor shall coordinate exact field location of the above items with other trades. In addition, check for exact direction of door swings so that local switches are properly located on the strike side.
- G. Install wall switches 48 inches [1200mm] above floor, OFF position down.
- H. Install convenience receptacles 18 inches [450mm] above floor, and 6 inches [152mm] above counter backsplash or workbenches. Install specific-use receptacles at heights shown on the drawings.
- I. Label device plates with a permanent adhesive label listing panel and circuit feeding the wiring device.
- J. Test wiring devices for damaged conductors, high circuit resistance, poor connections, inadequate fault current path, defective devices, or similar problems using a portable receptacle tester. Correct circuit conditions, remove malfunctioning units and replace with new, and retest as specified above.
- K. Test GFCI devices for tripping values specified in UL 1436 and UL 943.

- - - END - - -

SECTION 26 29 11

MOTOR STARTERS

PART 1 - GENERAL

1.1 DESCRIPTION

All motor starters and variable speed motor controllers, including installation and connection (whether furnished with the equipment specified in other Divisions or otherwise), shall meet these specifications.

1.2 RELATED WORK

- A. Other sections which specify motor driven equipment
- C. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items that are common to more than one Section of Division 26.
- D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.

1.3 QUALITY ASSURANCE

Refer to Paragraph, QUALIFICATIONS, in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

Submit in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS:

- A. Shop Drawings:
 - 1. Sufficient information, clearly presented, shall be included to determine compliance with drawings and specifications.
 - Include electrical ratings, dimensions, weights, mounting details, materials, running over current protection, size of enclosure, over current protection, wiring diagrams, starting characteristics, interlocking and accessories.
- B. Manuals:
 - Submit, simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals, including technical data sheets, wiring diagrams and information for ordering replacement parts.
 - a. Wiring diagrams shall have their terminals identified to facilitate installation, maintenance and operation.

- b. Wiring diagrams shall indicate internal wiring for each item of equipment and interconnections between the items of equipment.
- c. Elementary schematic diagrams shall be provided for clarity of operation.
- 2. Two weeks prior to the project final inspection, submit four copies of the final updated maintenance and operating manual to the COTR.
- C. Certification: Two weeks prior to final inspection, unless otherwise noted, submit four copies of the following certifications to the COTR:
 - Certification that the equipment has been properly installed, adjusted, and tested.
 - Certification by the manufacturer that medium voltage motor controller(s) conforms to the requirements of the drawings and specifications. This certification must be furnished to the COTR prior to shipping the controller(s) to the job site.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by basic designation only.
- B. Institute of Electrical and Electronic Engineers (IEEE): 519..... Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems C37.90.1.....Standard Surge Withstand Capability (SWC) Tests for Protective Relays and Relay Systems C. National Electrical Manufacturers Association (NEMA): ICS 1.....Industrial Control and Systems General Requirements ICS 1.1.....Safety Guidelines for the Application, Installation and Maintenance of Solid State Control ICS 2.....Industrial Control and Systems, Controllers, Contactors and Overload Relays Rated 600 Volts DC ICS 6..... Industrial Control and Systems Enclosures ICS 7..... Adjustable-Speed Drives

ICS 7.1.....Safety Standards for Construction and Guide for Selection, Installation and Operation of Adjustable-Speed Drive Systems

- D. National Fire Protection Association (NFPA): 70.....National Electrical Code (NEC)
- E. Underwriters Laboratories Inc. (UL): 508.....Industrial Control Equipment

PART 2 - PRODUCTS

2.1 MOTOR STARTERS, GENERAL

- A. Shall be in accordance with the requirements of the IEEE, NEC, NEMA (ICS 1, ICS 1.1, ICS 2, ICS 6, ICS 7 and ICS 7.1) and UL.
- B. Shall have the following features:
 - 1. Separately enclosed unless part of another assembly.
 - Circuit breakers and safety switches within the motor controller enclosures shall have external operating handles with lock-open padlocking provisions and shall indicate the ON and OFF positions.
 - 3. Motor control circuits:
 - a. Shall operate at not more than 120 volts.
 - b. Shall be grounded except as follows:
 - 1) Where isolated control circuits are shown.
 - 2) Where manufacturers of equipment assemblies recommend that the control circuits be isolated.
 - c. Incorporate a separate, heavy duty, control transformer within each motor controller enclosure to provide the control voltage for each motor operating over 120 volts.
 - d. Incorporate over current protection for both primary and secondary windings of the control power transformers in accordance with the NEC.
 - 4. Overload current protective devices:
 - b. Overload relay (solid state type.
 - a. One for each pole.
 - b. Manual reset on the door of each motor controller enclosure.
 - c. Correctly sized for the associated motor's rated full load current.
 - d. Check every motor controller after installation and verify that correct sizes of protective devices have been installed.
 - e. Deliver four copies of a summarized list to the COTR, which indicates and adequately identifies every motor controller

installed. Include the catalog numbers for the correct sizes of protective devices for the motor controllers.

- 5. Hand-Off-Automatic (H-O-A) switch is required unless specifically stated on the drawings as not required for a particular starter. H-O-A switch is required for manual motor starters.
- 6. Incorporate into each control circuit a 120-volt, solid state time delay relay (ON delay), minimum adjustable range from 0.3 to 10 minutes, with transient protection. Time delay relay is not required where H-O-A switch is not required.
- 7. Unless noted otherwise, equip with not less than two normally open and two normally closed auxiliary contacts. Provide green run pilot lights and H-O-A control devices as indicated, operable at front of enclosure without opening enclosure. Push buttons, selector switches, pilot lights, etc., shall be interchangeable.
- 8. Enclosures:
 - a. Shall be the NEMA types shown on the drawings for the motor controllers and shall be the NEMA types which are the most suitable for the environmental conditions where the motor controllers are being installed.
 - b. Doors mechanically interlocked to prevent opening unless the breaker or switch within the enclosure is open. Provision for padlock must be provided.
 - c. Enclosures shall be primed and finish coated at the factory with the manufacturer's prime coat and standard finish.
- C. Motor controllers incorporated with equipment assemblies shall also be designed for the specific requirements of the assemblies.
- D. Additional requirements for specific motor controllers, as indicated in other sections, shall also apply.
- E. Provide a disconnecting means or safety switch near and within sight of each motor. Provide all wiring and conduit required to facilitate a complete installation.

2.2 MANUAL MOTOR STARTERS

- A. Shall be in accordance with applicable requirements of 2.1 above.
- B. Manual motor starters.
 - Starters shall be general-purpose Class A, manually operated type with full voltage controller for induction motors, rated in horsepower.

- Units shall include overload protection, red pilot light, NO, NC auxiliary contacts and toggle operator.
- C. Fractional horsepower manual motor starters.
 - 1. Starters shall be general-purpose Class A, manually operated with full voltage controller for fractional horsepower induction motors.
 - 2. Units shall include thermal overload protection, H-O-A switch, red pilot light and toggle operator.
- D. Motor starting switches.
 - Switches shall be general-purpose Class A, manually operated type with full voltage controller for fractional horsepower induction motors.
 - Units shall include thermal overload protection, red pilot light, NO and NC auxiliary contacts and toggle operator.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install motor control equipment in accordance with manufacturer's recommendations, the NEC, NEMA and as shown on the drawings.
- B. Furnish and install heater elements in motor starters and to match the installed motor characteristics. Submit a list of all motors listing motor nameplate rating and heater element installed.
- C. Motor Data: Provide neatly-typed label inside each motor starter enclosure door identifying motor served, nameplate horsepower, full load amperes, code letter, service factor, voltage/phase rating and heater element installed.
- D. Connect hand-off auto selector switches so that automatic control only is by-passed in "manual" position and any safety controls are not by-passed.
- E. Install manual motor starters in flush enclosures in finished areas.
- F. Examine control diagrams indicated before ordering motor controllers. Should conflicting data exist in specifications, drawings and diagrams, request corrected data prior to placing orders.

3.2 ADJUSTING

- A. Set field-adjustable switches, auxiliary relays, time-delay relays, timers, and overload-relay pickup and trip ranges.
- B. Adjust overload-relay heaters or settings if power factor correction capacitors are connected to the load side of the overload relays.
- C. Adjust trip settings of MCPs and thermal-magnetic circuit breakers with adjustable instantaneous trip elements. Initially adjust at six times

the motor nameplate full-load ampere ratings and attempt to start motors several times, allowing for motor cooldown between starts. If tripping occurs on motor inrush, adjust settings in increments until motors start without tripping. Do not exceed eight times the motor full-load amperes (or 11 times for NEMA Premium Efficient motors if required). Where these maximum settings do not allow starting of a motor, notify COTR before increasing settings.

3.3 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. Include the following visual and mechanical inspections and electrical tests:
 - 1. Visual and Mechanical Inspection
 - a. Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.
 - c. Inspect contactors.
 - d. Clean motor starters and variable speed motor controllers.
 - e. Verify overload element ratings are correct for their applications.
 - f. If motor-running protection is provided by fuses, verify correct fuse rating.
 - g. Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method in accordance with manufacturer's published data.
 - 2. Variable speed motor controllers:
 - a. Final programming and connections to variable speed motor controllers shall be by a factory-trained technician. Set all programmable functions of the variable speed motor controllers to meet the requirements and conditions of use.
 - b. Test all control and safety features of the variable frequency drive.

3.4 FOLLOW-UP VERIFICATION

Upon completion of acceptance checks, settings, and tests, the Contractor shall show by demonstration in service that the motor starters and variable speed motor controllers are in good operating condition and properly performing the intended functions.

3.5 SPARE PARTS

Two weeks prior to the final inspection, provide one complete set of spare fuses (including heater elements) for each starter/controller installed on this project.

- - - END - - -

SECTION 26 29 21

DISCONNECT SWITCHES

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies the furnishing, installation and connection of low voltage disconnect switches.

1.2 RELATED WORK

- A. General electrical requirements and items that is common to more than one section of Division 26: Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- B. Conduits for cables and wiring: Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS.
- C. Cables and wiring: Section 26 05 21, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW.
- D. Motor rated toggle switches: Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS.
- E. Requirements for personnel safety and to provide a low impedance path for possible ground faults: Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.

1.3 SUBMITTALS

- A. Submit in accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- B. Shop Drawings:
 - Include sufficient information, clearly presented to determine compliance with drawings and specifications.
 - Include electrical ratings, dimensions, mounting details, materials, enclosure types, fuse type and class.
 - 3. Show the specific switch and fuse proposed for each specific piece of equipment or circuit.
- C. Manuals:
 - Provide complete maintenance and operating manuals for disconnect switches, including technical data sheets, wiring diagrams, and information for ordering replacement parts. Deliver four copies to the COTR two weeks prior to final inspection.
 - Identify terminals on wiring diagrams to facilitate maintenance and operation.

3. Wiring diagrams shall indicate internal wiring and any interlocking.

D. Certification: Two weeks prior to final inspection, deliver to the COTR four copies of the certification that the equipment has been properly installed, adjusted, and tested.

1.4 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only.
- B. National Electrical Manufacturers Association (NEMA): KS 1-01..... Enclosed and Miscellaneous Distribution

Equipment Switches (600 Volts Maximum)

- C. National Fire Protection Association (NFPA): 70-05.....National Electrical Code (NEC)
- D. Underwriters Laboratories, Inc. (UL):
 - 98-98..... Enclosed and Dead-Front Switches

198C-89......High-Interrupting-Capacity Fuses, Current

Limiting Types

198E-94.....Class R Fuses

977-99..... Fused Power-Circuit Devices

PART 2 - PRODUCTS

2.1 LOW VOLTAGE FUSIBLE SWITCHES RATED 600 AMPERES AND LESS

- A. Shall be quick-make, quick-break type in accordance with UL 98, NEMA KS 1 and NEC.
- B. Shall have a minimum duty rating, NEMA classification General Duty (GD) for 240 volts.
- C. Shall be horsepower rated.
- D. Shall have the following features:
 - 1. Switch mechanism shall be the quick-make, quick-break type.
 - 2. Copper blades, visible in the OFF position.
 - 3. An arc chute for each pole.
 - 4. External operating handle shall indicate ON and OFF position and shall have lock-open padlocking provisions.
 - Mechanical interlock shall permit opening of the door only when the switch is in the OFF position, defeatable by a special tool to permit inspection.
 - 6. Fuse holders for the sizes and types of fuses specified.

- 7. Solid neutral for each switch being installed in a circuit which includes a neutral conductor.
- 8. Ground Lugs: One for each ground conductor.
- 9. Enclosures:
 - a. Shall be the NEMA types shown on the drawings for the switches.
 - b. Where the types of switch enclosures are not shown, they shall be the NEMA types which are most suitable for the environmental conditions where the switches are being installed. Unless otherwise indicated on the plans, all outdoor switches shall be NEMA 3R.
 - c. Shall be finished with manufacturer's standard gray baked enamel paint over pretreated steel (for the type of enclosure required).

2.2 LOW VOLTAGE UNFUSED SWITCHES RATED 600 AMPERES AND LESS

Shall be the same as Low Voltage Fusible Switches Rated 600 Amperes and Less, but no fuses.

2.3 MOTOR RATED TOGGLE SWITCHES

Refer to Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS for motor rated toggle switches.

2.4 IDENTIFICATION SIGNS

- A. Install nameplate identification signs on each disconnect switch to identify the equipment controlled.
- B. Nameplates shall be laminated black phenolic resin with a white core, with engraved lettering, a minimum of 6 mm (1/4-inch) high. Secure nameplates with screws.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install disconnect switches in accordance with the NEC and as shown on the drawings.
- B. Fusible disconnect switches shall be furnished complete with fuses.

3.2 SPARE PARTS

Two weeks prior to the final inspection, furnish one complete set of spare fuses for each fusible disconnect switch installed on the project. Deliver the spare fuses to the COTR.

- - - END - - -

SECTION 26 51 00

INTERIOR LIGHTING

PART 1 - GENERAL

1.1 DESCRIPTION:

This section specifies the furnishing, installation and connection of the interior lighting systems.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General requirements that are common to more than one section of Division 26.
- B. Section 26 05 21, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW): Cables and wiring.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.
- D. Section 26 27 26, WIRING DEVICES: Wiring devices used for control of the lighting systems.

1.3 QUALITY ASSURANCE

Refer to Paragraph, QUALIFICATIONS, in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. In accordance with Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, submit the following:
- B. Product Data: For each type of lighting fixture (luminaire) designated on the LIGHTING FIXTURE SCHEDULE, arranged in order of fixture designation, submit the following information.
 - Material and construction details include information on housing, optics system and lens/diffuser.
 - 2. Physical dimensions and description.
 - 3. Wiring schematic and connection diagram.
 - 4. Installation details.
 - 5. Energy efficiency data.
 - Photometric data based on laboratory tests complying with IESNA Lighting Measurements, testing and calculation guides.
 - Lamp data including lumen output (initial and mean), color rendition index (CRI), rated life (hours) and color temperature (degrees Kelvin).

- Ballast data including ballast type, starting method, ambient temperature, ballast factor, sound rating, system watts and total harmonic distortion (THD).
- C. Manuals:
 - Submit, simultaneously with the shop drawings companion copies of complete maintenance and operating manuals including technical data sheets, and information for ordering replacement parts.
 - Two weeks prior to the final inspection, submit four copies of the final updated maintenance and operating manuals, including any changes, to the COTR.
- D. Certifications:
 - Two weeks prior to final inspection, submit four copies of the following certifications to the COTR:
 - a. Certification by the Contractor that the equipment has been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. Institute of Electrical and Electronic Engineers (IEEE): C62.41-91.....Guide on the Surge Environment in Low Voltage (1000V and less) AC Power Circuits
- C. National Fire Protection Association (NFPA): 70.....National Electrical Code (NEC) 101....Life Safety Code
- D. National Electrical Manufacturer's Association (NEMA): C82.1-97.....Ballasts for Fluorescent Lamps - Specifications C82.2-02.....Method of Measurement of Fluorescent Lamp

Ballasts

C82.11-02..... High Frequency Fluorescent Lamp Ballasts

E. Underwriters Laboratories, Inc. (UL):

496-96.....Edison-Base Lampholders
542-99....Lampholders, Starters, and Starter Holders for
Fluorescent Lamps
924-95....Emergency Lighting and Power Equipment
935-01....Fluorescent-Lamp Ballasts
1598-00...Luminaires

1574-04.....Standard for Track Lighting Systems
2108-04.....Standard for Low-Voltage Lighting Systems
8750-08....Light Emitting Diode (LED) Light Sources for
Use in Lighting Products

F. Federal Communications Commission (FCC): Code of Federal Regulations (CFR), Title 47, Part 18

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, product(s) indicated on Luminaire Schedule.

2.2 LIGHTING FIXTURES (LUMINAIRES)

- A. Shall be in accordance with NFPA 70 and UL 1598, as shown on drawings, and as specified.
- B. Sheet Metal:
 - Shall be formed to prevent warping and sagging. Housing, trim and lens frame shall be true, straight (unless intentionally curved) and parallel to each other as designed.
 - Wireways and fittings shall be free of burrs and sharp edges and shall accommodate internal and branch circuit wiring without damage to the wiring.
 - 3. When installed, any exposed fixture housing surface, trim frame, door frame and lens frame shall be free of light leaks; lens doors shall close in a light tight manner.
 - 4. Hinged door closure frames shall operate smoothly without binding when the fixture is in the installed position, latches shall function easily by finger action without the use of tools.
- C. Ballasts shall be serviceable while the fixture is in its normally installed position, and shall not be mounted to removable reflectors or wireway covers unless so specified.
- D. Lamp Sockets:
 - Fluorescent: Lampholder contacts shall be the biting edge type or phosphorous-bronze with silver flash contact surface type and shall conform to the applicable requirements of UL 542. Lamp holders for bi-pin lamps shall be of the telescoping compression type, or of the single slot entry type requiring a one-quarter turn of the lamp after insertion.

2. High Intensity Discharge (H.I.D.): Shall have porcelain enclosures.

- E. Recessed fixtures mounted in an insulated ceiling shall be listed for use in insulated ceilings.
- F. Mechanical Safety: Lighting fixture closures (lens doors, trim frame, hinged housings, etc.) shall be retained in a secure manner by captive screws, chains, captive hinges or fasteners such that they cannot be accidentally dislodged during normal operation or routine maintenance.
- G. Metal Finishes:
 - 1. The manufacturer shall apply standard finish (unless otherwise specified) over a corrosion resistant primer, after cleaning to free the metal surfaces of rust, grease, dirt and other deposits. Edges of pre-finished sheet metal exposed during forming, stamping or shearing processes shall be finished in a similar corrosion resistant manner to match the adjacent surface(s). Fixture finish shall be free of stains or evidence of rusting, blistering, or flaking, and shall be applied after fabrication.
 - Interior light reflecting finishes shall be white with not less than 85 percent reflectances, except where otherwise shown on the drawing.
 - 3. Exterior finishes shall be as shown on the drawings.
- H. Lighting fixtures shall have a specific means for grounding metallic wireways and housings to an equipment grounding conductor.
- I. Light Transmitting Components for Fluorescent Fixtures:
 - 1. Shall be 100 percent virgin acrylic.
 - Flat lens panels shall have not less than 1/8 inch [3.2mm] of average thickness. The average thickness shall be determined by adding the maximum thickness to the minimum unpenetrated thickness and dividing the sum by 2.
 - 3. Unless otherwise specified, lenses, diffusers and louvers shall be retained firmly in a metal frame by clips or clamping ring in such a manner as to allow expansion and contraction of the lens without distortion or cracking.
- J. Compact fluorescent fixtures shall be manufactured specifically for compact fluorescent lamps with ballast integral to the fixture. Assemblies designed to retrofit incandescent fixtures are prohibited except when specifically indicated for renovation of existing fixtures (not the lamp). Fixtures shall be designed for lamps as specified.

2.3 BALLASTS

- A. Linear Fluorescent Lamp Ballasts: 120 Volts electronic programmedstart type, complying with UL 935 and with ANSI C 82.11, designed for type and quantity of lamps indicated. Ballast shall be designed for full light output unless dimmer or bi-level control is indicated; including the following features:
 - 1. Lamp end-of-life detection and shutdown circuit (T5 lamps only).
 - 2. Automatic lamp starting after lamp replacement.
 - 3. Sound Rating: Class A.
 - 4. Total Harmonic Distortion Rating: 10 percent or less.
 - 5. Transient Voltage Protection: IEEE C62.41.1 and IEEE C62.41.2, Category A or better.
 - 6. Operating Frequency: 20 kHz or higher.
 - 7. Lamp Current Crest Factor: 1.7 or less.
 - 8. Ballast Factor: 0.87 or higher unless otherwise indicated.
 - 9. Power Factor: 0.98 or higher.
 - 10. Interference: Comply with 47 CFT 18, Ch.1, Subpart C, for limitations on electromagnetic and radio-frequency interference for non-consumer equipment.
 - 11. To facilitate multi-level lamp switching, lamps within fixture shall be wired with the outermost lamp at both sides of the fixture on the same ballast, the next inward pair on another ballast and so on to the innermost lamp (or pair of lamps). Within a given room, each switch shall uniformly control the same corresponding lamp (or lamp pairs) in all fixture units that are being controlled.
 - 12. Where three-lamp fixtures are indicated, unless switching arrangements dictate otherwise, utilize a common two-lamp ballast to operate the center lamp in pairs of adjacent units that are mounted in a continuous row. The ballast fixture and slave-lamp fixture shall be factory wired with leads or plug devices to facilitate this circuiting. Individually mounted fixtures and the odd fixture in a row shall utilize a single-lamp ballast for operation of the center lamp.
 - 13. Dimming ballasts shall be as per above, except dimmable from 100% to 5 % of rated lamp lumens.

- B. Compact Fluorescent Lamp Ballasts: Multi-voltage (120 277V), electronic-programmed rapid-start type, complying with UL 935 and with ANSI C 82.11, designed for type and quantity of lamps indicated. Ballast shall be designed for full light output unless dimmer or bilevel control is indicated; including the following features:
 - 1. Lamp end-of-life detection and shutdown circuit.
 - 2. Automatic lamp starting after lamp replacement.
 - 3. Sound Rating: Class A.
 - 4. Total Harmonic Distortion Rating: 10 percent or less.
 - 5. Transient Voltage Protection: IEEE C62.41.1 and IEEE C62.41.2, Category A or better.
 - 6. Operating Frequency: 20 kHz or higher.
 - 7. Lamp Current Crest Factor: 1.7 or less.
 - 8. Ballast Factor: 0.95 or higher unless otherwise indicated.
 - 9. Power Factor: 0.98 or higher.
 - 10. Interference: Comply with 47 CFR 18, Ch. 1, Subpart C, for limitations on electromagnetic and radio-frequency interference for non-consumer equipment.
 - 11. Dimming ballasts shall be as per above, except dimmable from 100% to 5% of rated lamp lumens.

2.4 LED DRIVERS

- A. Description: Electronic solid state type. Comply with the following:
 - Ten-year operational life while operating at maximum case temperature and 90 percent non-condensing relative humidity.
 - Designed and tested to withstand electrostatic discharges up to 15,000
 - Electrolytic capacitors to operate at least 20 degrees C below the capacitor's maximum temperature rating when the driver is under fully-loaded conditions and under maximum case temperature.
 - 4. Maximum inrush current of 2 amperes for 120V and 277V drivers.
 - 5. Withstand up to a 4,000 volt surge without impairment of performance as defined by ANSI C62.41 Category A.
 - 6. Manufactured in a facility that employ ESD reduction practices in compliance with ANSI/ESD S20.20.
 - 7. Inaudible in a 27 dBA ambient.
 - No visible change in light output with a variation of plus/minus 10 percent line voltage input.

- 9. Total Harmonic Distortion less than 20 percent and meet ANSI C82.11 maximum allowable THD requirements.
- 10. Drivers to track evenly across:
 - a. Multiple fixtures.
 - b. All light levels.
- 11. Constant current drivers must provide models to:
 - a. Support from 200mA to 2.1Amps (in 10mA steps) to ensure a compatible driver exists
 - b. Support LED arrays up to 40W
- 12. Constant voltage drivers must provide models to:

a. Support from 10Volts to 40Volts (in 0.5V steps) to ensure a compatible driver exists

- b. Support LED arrays up to 40W
- 13. Configuration tool must be available to optimize the following for LED fixtures:
 - a. Light level
 - b. Efficacy
 - c. Thermal performance
- 14. Driver must be capable of operating from a supply voltage of 120 through 277VAC at 60Hz for 3-wire models.
- 15. Provide integral fault protection to prevent driver failure in the event of an input mis-wire.

2.5 EMERGENCY LIGHTING UNIT

- A. Complete, self-contained unit with batteries, battery charger, one or more local or remote lamp heads with lamps, under-voltage relay, and test switch. Comply with UL 924.
 - Enclosure: Shall be impact-resistant thermoplastic which will protect components from dust, moisture, and oxidizing fumes from the battery. Enclosure shall be suitable for the environmental conditions in which installed.
 - 2. Lamp Heads: Horizontally and vertically adjustable, mounted on the face of the unit, except where otherwise indicated.
 - Lamps: Shall be sealed-beam MR-16 halogen, rated not less than 12watts at the specified DC voltage.
 - Battery: Shall be maintenance-free nickel-cadmium. Minimum normal life shall be 10years.
 - 5. Battery Charger: Dry-type full-wave rectifier with charging rates to maintain the battery in fully-charged condition during normal

operation, and to automatically recharge the battery within 12 hours following a 1-1/2 hour continuous discharge.

 Integral Self-Test: Automatically initiates test of unit emergency operation at required intervals. Test failure is annunciated by an integral audible alarm and a flashing LED.

2.6 LAMPS

- A. Linear and U-shaped T5 and T8 Fluorescent Lamps:
 - 1. Rapid start fluorescent lamps shall comply with ANSI C78.1; and instant-start lamps shall comply with ANSI C78.3.
 - 2. Chromacity of fluorescent lamps shall comply with ANSI C78.376.
 - 3. Except as indicated below, lamps shall be low-mercury energy saving type, have a color temperature between 3500° and 4100°K, a Color Rendering Index (CRI) of greater than 70, average rated life of 20,000 hours, and be suitable for use with dimming ballasts, unless otherwise indicated. Low mercury lamps shall have passed the EPA Toxicity Characteristic Leachate Procedure (TCLP) for mercury by using the lamp sample preparation procedure described in NEMA LL b. Other areas as indicated on the drawings.
- B. Compact Fluorescent Lamps:
 - 1. T4, CRI 80 (minimum), color temperature 3500 K, and suitable for use with dimming ballasts, unless otherwise indicated.
- C. Long Twin-Tube Fluorescent Lamps:
 - 1. T5, CRI 80 (minimum), color temperature between 3500° and 4100°K, 20,000 hours average rated life.

2.7 EXIT LIGHT FIXTURES

- A. Exit light fixtures shall meet applicable requirements of NFPA 101 and UL 924.
- B. Housing and Canopy:
 - 1. Shall be made of die-cast aluminum.
 - 2. Optional steel housing shall be a minimum 20 gauge thick or equivalent strength aluminum.
 - Steel housing shall have baked enamel over corrosion resistant, matte black or ivory white primer.
- C. Door frame shall be cast or extruded aluminum, and hinged with latch.
- D. Finish shall be satin or fine-grain brushed aluminum.
- E. There shall be no radioactive material used in the fixtures.
- F. Fixtures:
 - 1. Maximum fixture wattage shall be 1 watt or less.

- 2. Inscription panels shall be cast or stamped aluminum a minimum of 0.090 inch [2.25mm] thick, stenciled with 6 inch [150mm] high letters, baked with red color stable plastic or fiberglass. Lamps shall be luminous Light Emitting Diodes (LED) mounted in center of letters on red color stable plastic or fiberglass. The LED shall be rated minimum 25 years life.
- 3. Double-Faced Fixtures: Provide double-faced fixtures where required or as shown on drawings.
- 4. Directional Arrows: Provide directional arrows as part of the inscription panel where required or as shown on drawings. Directional arrows shall be the "chevron-type" of similar size and width as the letters and meet the requirements of NFPA 101.
- G. Voltages: Refer to Lighting Fixture Schedule.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC, manufacturer's instructions and as shown on the drawings or specified.
- B. Align, mount and level the lighting fixtures uniformly.
- C. Lighting Fixture Supports:
 - Shall provide support for all of the fixtures. Supports may be anchored to channels of the ceiling construction, to the structural slab or to structural members within a partition, or above a suspended ceiling.
 - 2. Shall maintain the fixture positions after cleaning and relamping.
 - 3. Shall support the lighting fixtures without causing the ceiling or partition to deflect.
 - 4. Hardware for recessed fluorescent fixtures:
 - a. Where the suspended ceiling system is supported at the four corners of the fixture opening, hardware devices shall clamp the fixture to the ceiling system structural members, or plaster frame at not less than four points in such a manner as to resist spreading of the support members and safely lock the fixture into the ceiling system.
 - b. Where the suspended ceiling system is not supported at the four corners of the fixture opening, hardware devices shall independently support the fixture from the building structure at four points.

- 5. Hardware for surface mounting fluorescent fixtures to suspended ceilings:
 - a. In addition to being secured to any required outlet box, fixtures shall be bolted to a grid ceiling system at four points spaced near the corners of each fixture. The bolts shall be not less than 1/4 inch [6mm] secured to channel members attached to and spanning the tops of the ceiling structural grid members. Non-turning studs may be attached to the ceiling structural grid members or spanning channels by special clips designed for the purpose, provided they lock into place and require simple tools for removal.
 - b. In addition to being secured to any required outlet box, fixtures shall be bolted to ceiling structural members at four points spaced near the corners of each fixture. Pre-positioned 1/4 inch [6mm] studs or threaded plaster inserts secured to ceiling structural members shall be used to bolt the fixtures to the ceiling. In lieu of the above, 1/4 inch [6mm] toggle bolts may be used on new or existing ceiling provided the plaster and lath can safely support the fixtures without sagging or cracking.//
- 6. Surface mounted lighting fixtures:
 - a. Fixtures shall be bolted against the ceiling independent of the outlet box at four points spaced near the corners of each unit. The bolts (or stud-clips) shall be minimum 1/4-20 [6mm] bolt, secured to main ceiling runners and/or secured to cross runners. Non-turning studs may be attached to the main ceiling runners and cross runners with special non-friction clip devices designed for the purpose, provided they bolt through the runner, or are also secured to the building structure by 12 gauge safety hangers. Studs or bolts securing fixtures weighing in excess of 56 pounds [25kg] shall be supported directly from the building structure.
 - b. Where ceiling cross runners are installed for support of lighting fixtures they must have a carrying capacity equal to that of the main ceiling runners and be rigidly secured to the main runners.
 - c. Fixtures less than 15 pounds [6.8kg] in weight and occupying less than two square feet [600mm x 600mm] of ceiling area may, (when designed for the purpose) be supported directly from the outlet box when all the following conditions are met.

- Screws attaching the fixture to the outlet box pass through round holes (not key-hole slots) in the fixture body.
- The outlet box is attached to a main ceiling runner (or cross runner) with approved hardware.
- The outlet box is supported vertically from the building structure.
- d. Fixtures mounted in open construction shall be secured directly to the building structure with approved bolting and clamping devices.
- 7. Single or double pendant-mounted lighting fixtures:
 - a. Each stem shall be supported by an approved outlet box, mounted swivel joint and canopy which holds the stem captive and provides spring load (or approved equivalent) dampening of fixture oscillations. Outlet box shall be supported vertically from the building structure.
- 8. Outlet boxes for support of lighting fixtures (where permitted) shall be secured directly to the building structure with approved devices or supported vertically in a hung ceiling from the building structure with a nine gauge wire hanger, and be secured by an approved device to a main ceiling runner or cross runner to prevent any horizontal movement relative to the ceiling.
- E. Furnish and install the specified lamps for all lighting fixtures installed and all existing lighting fixtures reinstalled under this project.
- F. Coordinate between the electrical and ceiling trades to ascertain that approved lighting fixtures are furnished in the proper sizes and installed with the proper devices (hangers, clips, trim frames, flanges), to match the ceiling system being installed.
- G. Bond lighting fixtures and metal accessories to the grounding system as specified in Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.
- H. Exercise electronic dimming ballasts over full range of dimming capability by operating the control devices(s) in the presence of the COTR. Observe for visually detectable flicker over full dimming range.
- Burn-in all lamps that require specific aging period to operate properly, prior to occupancy by Government. Burn-in period to be 40 hours minimum, unless a lesser period is specifically recommended by lamp manufacturer. Burn-in fluorescent and compact fluorescent lamps intended to be dimmed,

for at least 100 hours at full voltage. Replace any lamps and ballasts which fail during burn-in.

J. At completion of project, relamp/reballast fixtures which have failed lamps/ballasts. Clean fixtures, lenses, diffusers and louvers that have accumulated dust/dirt/fingerprints during construction. Replace damaged lenses, diffusers and louvers with new.

- - - END - - -

SECTION 27 05 11

REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This Section, Requirements for Communications Installations, applies to all sections of Division 27.
- B. Furnish and install communications cabling, systems, equipment, and accessories in accordance with the specifications and drawings. Capacities and ratings of transformers, cable, and other items and arrangements for the specified items are shown on drawings.

1.2 MINIMUM REQUIREMENTS

- A. References to industry and trade association standards and codes are minimum installation requirement standards.
- B. Drawings and other specification sections shall govern in those instances where requirements are greater than those specified in the above standards.

1.3 QUALIFICATIONS (PRODUCTS AND SERVICES)

- A. Manufacturers Qualifications: The manufacturer shall regularly and presently produce, as one of the manufacturer's principal products, the equipment and material specified for this project, and shall have manufactured the item for at least three years.
- B. Product Qualification:
 - Manufacturer's product shall have been in satisfactory operation, on three installations of similar size and type as this project, for approximately three years.
 - 2. The Government reserves the right to require the Contractor to submit a list of installations where the products have been in operation before approval.
- C. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render satisfactory service to this installation within eight hours of receipt of notification that service is needed. Submit name and address of service organizations.

1.4 MANUFACTURED PRODUCTS

- A. Materials and equipment furnished shall be of current production by manufacturers regularly engaged in the manufacture of such items, for which replacement parts shall be available.
- B. When more than one unit of the same class of equipment is required, such units shall be the product of a single manufacturer.
- C. Equipment Assemblies and Components:
 - Components of an assembled unit need not be products of the same manufacturer.
 - Manufacturers of equipment assemblies, which include components made by others, shall assume complete responsibility for the final assembled unit.
 - 3. Components shall be compatible with each other and with the total assembly for the intended service.
 - 4. Constituent parts which are similar shall be the product of a single manufacturer.
- D. Factory wiring shall be identified on the equipment being furnished and on all wiring diagrams.
- E. When Factory Testing Is Specified:
 - The Government shall have the option of witnessing factory tests. The contractor shall notify the VA through the COTR a minimum of 15 working days prior to the manufacturers making the factory tests.
 - Four copies of certified test reports containing all test data shall be furnished to the COTR prior to final inspection and not more than 90 days after completion of the tests.
 - 3. When equipment fails to meet factory test and re-inspection is required, the contractor shall be liable for all additional expenses, including expenses of the Government.

1.5 EQUIPMENT REQUIREMENTS

Where variations from the contract requirements are requested in accordance with the GENERAL CONDITIONS and Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, the connecting work and related components shall include, but not be limited to additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods.

1.6 EQUIPMENT PROTECTION

A. Equipment and materials shall be protected during shipment and storage against physical damage, dirt, moisture, cold and rain:

- During installation, enclosures, equipment, controls, controllers, circuit protective devices, and other like items, shall be protected against entry of foreign matter; and be vacuum cleaned both inside and outside before testing and operating and repainting if required.
- Damaged equipment shall be, as determined by the COTR, placed in first class operating condition or be returned to the source of supply for repair or replacement.
- 3. Painted surfaces shall be protected with factory installed removable heavy kraft paper, sheet vinyl or equal.
- 4. Damaged paint on equipment and materials shall be refinished with the same quality of paint and workmanship as used by the manufacturer so repaired areas are not obvious.

1.7 WORK PERFORMANCE

- A. Job site safety and worker safety is the responsibility of the contractor.
- B. For work on existing stations, arrange, phase and perform work to assure communications service for other buildings at all times. Refer to Article OPERATIONS AND STORAGE AREAS under Section 01 00 00, GENERAL REQUIREMENTS.
- C. New work shall be installed and connected to existing work neatly and carefully. Disturbed or damaged work shall be replaced or repaired to its prior conditions, as required by Section 01 00 00, GENERAL REQUIREMENTS.
- D. Coordinate location of equipment and pathways with other trades to minimize interferences. See the GENERAL CONDITIONS.

1.8 EQUIPMENT INSTALLATION AND REQUIREMENTS

- A. Equipment location shall be as close as practical to locations shown on the drawings.
- B. Inaccessible Equipment:
 - Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance, the equipment shall be removed and reinstalled as directed at no additional cost to the Government.
 - "Conveniently accessible" is defined as being capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as, but not limited to, motors, pumps, belt guards, transformers, piping, ductwork, conduit and raceways.

1.9 EQUIPMENT IDENTIFICATION

- A. Install an identification sign which clearly indicates information required for use and maintenance of equipment.
- B. Nameplates shall be laminated black phenolic resin with a white core with engraved lettering, a minimum of 6 mm (1/4 inch) high. Secure nameplates with screws. Nameplates that are furnished by manufacturer as a standard catalog item, or where other method of identification is herein specified, are exceptions.

1.10 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. The Government's approval shall be obtained for all equipment and material before delivery to the job site. Delivery, storage, or installation of equipment or material which has not had prior approval will not be permitted at the job site.
- C. All submittals shall include adequate descriptive literature, catalog cuts, shop drawings, and other data necessary for the Government to ascertain that the proposed equipment and materials comply with specification requirements. Catalog cuts submitted for approval shall be legible and clearly identify equipment being submitted.
- D. Submittals for individual systems and equipment assemblies which consist of more than one item or component shall be made for the system or assembly as a whole. Partial submittals will not be considered for approval.
 - 1. Mark the submittals, "SUBMITTED UNDER SECTION_____".
 - 2. Submittals shall be marked to show specification reference including the section and paragraph numbers.
 - 3. Submit each section separately.
- E. The submittals shall include the following:
 - Information that confirms compliance with contract requirements. Include the manufacturer's name, model or catalog numbers, catalog information, technical data sheets, shop drawings, pictures, nameplate data and test reports as required.
 - Elementary and interconnection wiring diagrams for communication and signal systems, control system and equipment assemblies. All terminal points and wiring shall be identified on wiring diagrams.

- Parts list which shall include those replacement parts recommended by the equipment manufacturer, quantity of parts, current price and availability of each part.
- F. Manuals: Submit in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
 - 1. Maintenance and Operation Manuals: Submit as required for systems and equipment specified in the technical sections. Furnish four copies, bound in hardback binders, (manufacturer's standard binders) or an approved equivalent. Furnish one complete manual as specified in the technical section but in no case later than prior to performance of systems or equipment test, and furnish the remaining manuals prior to contract completion.
 - 2. Inscribe the following identification on the cover: the words "MAINTENANCE AND OPERATION MANUAL," the name and location of the system, equipment, building, name of Contractor, and contract number. Include in the manual the names, addresses, and telephone numbers of each subcontractor installing the system or equipment and the local representatives for the system or equipment.
 - 3. Provide a "Table of Contents" and assemble the manual to conform to the table of contents, with tab sheets placed before instructions covering the subject. The instructions shall be legible and easily read, with large sheets of drawings folded in.
 - 4. The manuals shall include:
 - a. Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of the equipment.
 - b. A control sequence describing start-up, operation, and shutdown.
 - c. Description of the function of each principal item of equipment.
 - d. Installation and maintenance instructions.
 - e. Safety precautions.
 - f. Diagrams and illustrations.
 - g. Testing methods.
 - h. Performance data.
 - i. Pictorial "exploded" parts list with part numbers. Emphasis shall be placed on the use of special tools and instruments. The list shall indicate sources of supply, recommended spare parts, and name of servicing organization.

- j. Appendix; list qualified permanent servicing organizations for support of the equipment, including addresses and certified qualifications.
- G. Approvals will be based on complete submission of manuals together with shop drawings.
- H. After approval and prior to installation, furnish the COTR with one sample of each of the following:
 - A 300 mm (12 inch) length of each type and size of wire and cable along with the tag from the coils of reels from which the samples were taken.
 - 2. Each type of conduit and pathway coupling, bushing and termination fitting.
 - 3. Raceway and pathway hangers, clamps and supports.
 - 4. Duct sealing compound.
- I. In addition to the requirement of SUBMITTALS, the VA reserves the right to request the manufacturer to arrange for a VA representative to see typical active systems in operation, when there has been no prior experience with the manufacturer or the type of equipment being submitted.

1.11 SINGULAR NUMBER

Where any device or part of equipment is referred to in these specifications in the singular number (e.g., "the switch"), this reference shall be deemed to apply to as many such devices as are required to complete the installation as shown on the drawings.

1.12 TRAINING

- A. Training shall be provided in accordance with Article, INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS.
- B. Training shall be provided for the particular equipment or system as required in each associated specification.
- C. A training schedule shall be developed and submitted by the contractor and approved by the COTR at least 30 days prior to the planned training.

- - - END - - -

SECTION 27 05 26

GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies general grounding and bonding requirements of telecommunication installations for equipment operations.
- B. "Grounding electrode system" refers to all electrodes required by NEC, as well as including made, supplementary, telecommunications system grounding electrodes.
- C. The terms "connect" and "bond" are used interchangeably in this specification and have the same meaning.

1.2 RELATED WORK

A. Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS: General electrical requirements and items that are common to more than one section of Division 27.

1.3 SUBMITTALS

- A. Submit in accordance with Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- B. Shop Drawings:
 - Sufficient information, clearly presented, shall be included to determine compliance with drawings and specifications.
 - Include the location of system grounding electrode connections and the routing of aboveground and underground grounding electrode conductors.
- C. Test Reports: Provide certified test reports of ground resistance.
- D. Certifications: Two weeks prior to final inspection, submit four copies of the following to the COTR:
 - Certification that the materials and installation is in accordance with the drawings and specifications.
 - 2. Certification, by the Contractor, that the complete installation has been properly installed and tested.

1.4 APPLICABLE PUBLICATIONS

Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by the basic designation only. A. American Society for Testing and Materials (ASTM):

B1-2001.....Standard Specification for Hard-Drawn Copper Wire

B8-2004.....Standard Specification for Concentric-Lay-Stranded Copper Conductors, Hard, Medium-Hard, or Soft

of a Ground System

C. National Fire Protection Association (NFPA):

70-2005.....National Electrical Code (NEC)

D. Telecommunications Industry Association, (TIA) J-STO-607-A-2002.....Commercial Building Grounding (Earthing) and

Bonding Requirements for Telecommunications

E. Underwriters Laboratories, Inc. (UL):

44-2005Thermoset-Insulated Wires and Cables 83-2003Thermoplastic-Insulated Wires and Cables 467-2004Grounding and Bonding Equipment 486A-486B-2003Wire Connectors

PART 2 - PRODUCTS

2.1 GROUNDING AND BONDING CONDUCTORS

- A. Equipment grounding conductors shall be UL 83 insulated stranded copper, except that sizes 6 mm² (10 AWG) and smaller shall be solid copper. Insulation color shall be continuous green for all equipment grounding conductors, except that wire sizes 25 mm² (4 AWG) and larger shall be permitted to be identified per NEC.
- B. Bonding conductors shall be ASTM B8 bare stranded copper, except that sizes 6 mm² (10 AWG) and smaller shall be ASTM B1 solid bare copper wire.

2.3 SPLICES AND TERMINATION COMPONENTS

Components shall meet or exceed UL 467 and be clearly marked with the manufacturer, catalog number, and permitted conductor size(s).

2.4 TELECOMMUNICATION SYSTEM GROUND BUSBARS

A. Provide solid copper busbar, pre-drilled from two-hole lug connections with a minimum thickness of 6 mm (1/4 inch) for wall and backboard mounting using standard insulators sized as follows:

1. Room Signal Grounding: 300 mm x 100 mm (12 inches x 4 inch).

2. Master Signal Ground: 600 mm x 100 mm (24 inches x 4 inch).

2.5 GROUND CONNECTIONS

- A. Above Grade:
 - 1. Bonding Jumpers: compression type connectors, using zinc-plated fasteners and external tooth lockwashers.
 - 2. Ground Busbars: Two-hole compression type lugs using tin-plated copper or copper alloy bolts and nuts.
 - 3. Rack and Cabinet Ground Bars: one-hole compression-type lugs using zinc-plated or copper alloy fasteners.
- B. Cable Shields: Make ground connections to multipair communications cables with metallic shields using shield bonding connectors with screw stud connection.

2.6 EQUIPMENT RACK AND CABINET GROUND BARS

Provide solid copper ground bars designed for mounting on the framework of open or cabinet-enclosed equipment racks with minimum dimensions of 4 mm thick by 19 mm wide $(3/8 \text{ inch x } \frac{3}{4} \text{ inch})$.

2.7 GROUND TERMINAL BLOCKS

At any equipment mounting location (e.g. backboards and hinged cover enclosures) where rack-type ground bars cannot be mounted, provide screw lug-type terminal blocks.

2.8 SPLICE CASE GROUND ACCESSORIES

Splice case grounding and bonding accessories shall be supplied by the splice case manufacturer when available. Otherwise, use 16 mm² (6 AWG) insulated ground wire with shield bonding connectors.

PART 3 - EXECUTION

3.1 GENERAL

- A. Ground in accordance with the NEC, as shown on drawings, and as hereinafter specified.
- B. System Grounding:
 - Secondary service neutrals: Ground at the supply side of the secondary disconnecting means and at the related transformers.
 - Separately derived systems (transformers downstream from the service entrance): Ground the secondary neutral.
 - 3. Isolation transformers and isolated power systems shall not be system grounded.
- C. Equipment Grounding: Metallic structures (including ductwork and building steel), enclosures, raceways, junction boxes, outlet boxes,

cabinets, machine frames, and other conductive items in close proximity with electrical circuits shall be bonded and grounded.

3.2 INACCESSIBLE GROUNDING CONNECTIONS

Make grounding connections, which are buried or otherwise normally inaccessible (except connections for which periodic testing access is required) by exothermic weld.

3.3 SECONDARY EQUIPMENT AND CIRCUITS

- A. Main Bonding Jumper: Bond the secondary service neutral to the ground bus in the service equipment.
- B. Metallic Piping, Building Steel, and Supplemental Electrode(s):
 - Provide a grounding electrode conductor sized per NEC between the service equipment ground bus and all metallic water and gas pipe systems, building steel, and supplemental or made electrodes. Jumper insulating joints in the metallic piping. All connections to electrodes shall be made with fittings that conform to UL 467.
 - 2. Provide a supplemental ground electrode and bond to the grounding electrode system.
- F. Conduit Systems:
 - 1. Ground all metallic conduit systems. All metallic conduit systems shall contain an equipment grounding conductor.
 - Non-metallic conduit systems shall contain an equipment grounding conductor, except that non-metallic feeder conduits which carry a grounded conductor from exterior transformers to interior or building-mounted service entrance equipment need not contain an equipment grounding conductor.
 - 3. Conduit containing only a grounding conductor, and which is provided for mechanical protection of the conductor, shall be bonded to that conductor at the entrance and exit from the conduit.
- G. Feeders and Branch Circuits: Install equipment grounding conductors with all feeders and power and lighting branch circuits.
- H. Boxes, Cabinets, Enclosures, and Panelboards:
 - Bond the equipment grounding conductor to each pullbox, junction box, outlet box, device box, cabinets, and other enclosures through which the conductor passes (except for special grounding systems for intensive care units and other critical units shown).
 - 2. Provide lugs in each box and enclosure for equipment grounding conductor termination.

- 3. Provide ground bars in panelboards, bolted to the housing, with sufficient lugs to terminate the equipment grounding conductors.
- J. Receptacles shall not be grounded through their mounting screws. Ground with a jumper from the receptacle green ground terminal to the device box ground screw and the branch circuit equipment grounding conductor.

3.4 CORROSION INHIBITORS

When making ground and ground bonding connections, apply a corrosion inhibitor to all contact surfaces. Use corrosion inhibitor appropriate for protecting a connection between the metals used.

3.5 CONDUCTIVE PIPING

- A. Bond all conductive piping systems, interior and exterior, to the building to the grounding electrode system. Bonding connections shall be made as close as practical to the equipment ground bus.
- B. In operating rooms and at intensive care and coronary care type beds, bond the gases and suction piping, at the outlets, directly to the room or patient ground bus.

3.6 TELECOMMUNICATIONS SYSTEM

- A. Bond telecommunications system grounding equipment to the electrical grounding electrode system.
- B. Furnish and install all wire and hardware required to properly ground, bond and connect communications raceway, cable tray, metallic cable shields, and equipment to a ground source.
- C. Ground bonding jumpers shall be continuous with no splices. Use the shortest length of bonding jumper possible.
- D. Provide ground paths that are permanent and continuous with a resistance of 1 ohm or less from raceway, cable tray, and equipment connections to the building grounding electrode. The resistance across individual bonding connections shall be 10 milli ohms or less.
- E. COTRAbove-Grade Grounding Connections: When making bolted or screwed connections to attach bonding jumpers, remove paint to expose the entire contact surface by grinding where necessary; thoroughly clean all connector, plate and other contact surfaces; and apply an appropriate corrosion inhibitor to all surfaces before joining.
- F. Bonding Jumpers:
 - Use insulated ground wire of the size and type shown on the Drawings or use a minimum of 16 mm² (6 AWG) insulated copper wire.

- 2. Assemble bonding jumpers using insulated ground wire terminated with compression connectors.
- Use compression connectors of proper size for conductors specified. Use connector manufacturer's compression tool.
- H. Bonding Jumper Fasteners:
 - 1. Conduit: Fasten bonding jumpers using screw lugs on grounding bushings or conduit strut clamps, or the clamp pads on push-type conduit fasteners. When screw lug connection to a conduit strut clamp is not possible, fasten the plain end of a bonding jumper wire by slipping the plain end under the conduit strut clamp pad; tighten the clamp screw firmly. Where appropriate, use zinc-plated external tooth lockwashers.
 - 2. Wireway and Cable Tray: Fasten bonding jumpers using zinc-plated bolts, external tooth lockwashers, and nuts. Install protective cover, e.g., zinc-plated acorn nuts on any bolts extending into wireway or cable tray to prevent cable damage.
 - Ground Plates and Busbars: Fasten bonding jumpers using two-hole compression lugs. Use tin-plated copper or copper alloy bolts, external tooth lockwashers, and nuts.
 - 4. Unistrut and Raised Floor Stringers: Fasten bonding jumpers using zinc-plated, self-drill screws and external tooth lockwashers.

3.7 COMMUNICATION ROOM GROUNDING

- A. Telecommunications Ground Busbars:
 - Provide communications room telecommunications ground busbar hardware at 950 mm (18 inches) at locations indicated on the Drawings.
 - 2. Connect the telecommunications room ground busbars to other room grounding busbars as indicated on the Grounding Riser diagram.
- B. Telephone-Type Cable Rack Systems: aluminum pan installed on telephonetype cable rack serves as the primary ground conductor within the communications room. Make ground connections by installing the following bonding jumpers:
 - Install a 16 mm² (6 AWG) bonding between the telecommunications ground busbar and the nearest access to the aluminum pan installed on the cable rack.

2. Use 16 mm² (6 AWG) bonding jumpers across aluminum pan junctions.C. Self-Supporting and Cabinet-Mounted Equipment Rack Ground Bars:

- When ground bars are provided at the rear of lineup of bolted together equipment racks, bond the copper ground bars together using solid copper splice plates supplied by the ground bar manufacturer.
- Bond together nonadjacent ground bars on equipment racks and cabinets with 16 mm² (6 AWG) insulated copper wire bonding jumpers attached at each end with compression-type connectors and mounting bolts.
- 3. Provide a 16 mm² (6 AWG) bonding jumper between the rack and/or cabinet ground busbar and the aluminum pan of an overhead cable tray or the raised floor stringer as appropriate.
- D. Backboards: Provide a screw lug-type terminal block or drilled and tapped copper strip near the top of backboards used for communications cross-connect systems. Connect backboard ground terminals to the aluminum pan in the telephone-type cable tray using an insulated 16 mm² (16 AWG) bonding jumper.
- E. Other Communication Room Ground Systems: Ground all metallic conduit, wireways, and other metallic equipment located away from equipment racks or cabinets to the cable tray pan or the telecommunications ground busbar, whichever is closer, using insulated 16 mm² (6 AWG) ground wire bonding jumpers.

3.8 COMMUNICATIONS CABLE GROUNDING

- A. Bond all metallic cable sheaths in multipair communications cables together at each splicing and/or terminating location to provide 100 percent metallic sheath continuity throughout the communications distribution system.
 - At terminal points, install a cable shield bonding connector provide a screw stud connection for ground wire. Use a bonding jumper to connect the cable shield connector to an appropriate ground source like the rack or cabinet ground bar.
 - 2. Bond all metallic cable shields together within splice closures using cable shield bonding connectors or the splice case grounding and bonding accessories provided by the splice case manufacturer. When an external ground connection is provided as part of splice closure, connect to an approved ground source and all other metallic components and equipment at that location.

3.9 COMMUNCIATIONS RACEWAY GROUNDING

- A. Conduit: Use insulated 16 mm² (6 AWG) bonding jumpers to ground metallic conduit at each end and to bond at all intermediate metallic enclosures.
- B. Wireway: use insulated 16 mm² (6 AWG) bonding jumpers to ground or bond metallic wireway at each end at all intermediate metallic enclosures and across all section junctions.

3.10 GROUND RESISTANCE

- A. Grounding system resistance to ground shall not exceed 5 ohms. Make necessary modifications or additions to the grounding electrode system for compliance without additional cost to the Government. Final tests shall assure that this requirement is met.
- B. Resistance of the grounding electrode system shall be measured using a four-terminal fall-of-potential method as defined in IEEE 81. Ground resistance measurements shall be made before the electrical distribution system is energized and shall be made in normally dry conditions not less than 48 hours after the last rainfall. Resistance measurements of separate grounding electrode systems shall be made before the systems are bonded together below grade. The combined resistance of separate systems may be used to meet the required resistance, but the specified number of electrodes must still be provided.
- C. Services at power company interface points shall comply with the power company ground resistance requirements.

- - - END - - -

SECTION 27 05 33

RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, and connection of conduit, fittings, and boxes to form complete, coordinated, raceway systems. Raceways are required for all communications cabling unless shown or specified otherwise.
- B. Definitions: The term conduit, as used in this specification, shall mean any or all of the raceway types specified.

1.2 RELATED WORK

- A. Sealing around penetrations to maintain the integrity of fire rated construction: Section 07 84 00, FIRESTOPPING.
- B. Identification and painting of conduit and other devices: Section 09 91 00, PAINTING.
- C. General electrical requirements and items that is common to more than one section of Division 27: Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- D. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents: Section 27 05 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS.

1.3 SUBMITTALS

In accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, furnish the following:

- A. Shop Drawings:
 - 1. Size and location of panels and pull boxes
 - 2. Layout of required conduit penetrations through structural elements.
 - 3. The specific item proposed and its area of application shall be identified on the catalog cuts.
- B. Certification: Prior to final inspection, deliver to the COTRCOTR four copies of the certification that the material is in accordance with the drawings and specifications and has been properly installed.

1.4 APPLICABLE PUBLICATIONS

A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent

referenced. Publications are referenced in the text by the basic designation only.

- B. National Fire Protection Association (NFPA): 70-05.....National Electrical Code (NEC)
- C. Underwriters Laboratories, Inc. (UL):

1-03.....Flexible Metal Conduit

5-01.....Surface Metal Raceway and Fittings

- 6-03.....Rigid Metal Conduit
- 50-03..... Enclosures for Electrical Equipment

360-03.....Liquid-Tight Flexible Steel Conduit

467-01.....Grounding and Bonding Equipment

514A-01.....Metallic Outlet Boxes

514B-02.....Fittings for Cable and Conduit

797-03.....Electrical Metallic Tubing

- 1242-00.....Intermediate Metal Conduit
- D. National Electrical Manufacturers Association (NEMA): FB1-03.....Fittings, Cast Metal Boxes and Conduit Bodies for Conduit, Electrical Metallic Tubing and

Cable

PART 2 - PRODUCTS

2.1 MATERIAL

- A. Conduit Size: In accordance with the NEC, but not less than 13 mm (1/2 inch) unless otherwise shown. Where permitted by the NEC, 13 mm (1/2 inch) flexible conduit may be used for tap connections to recessed lighting fixtures.
- B. Conduit:
 - 1. Rigid galvanized steel: Shall Conform to UL 6, ANSI C80.1.
 - 2. Rigid aluminum: Shall Conform to UL 6A, ANSI C80.5.
 - Rigid intermediate steel conduit (IMC): Shall Conform to UL 1242, ANSI C80.6.
 - Electrical metallic tubing (EMT): Shall Conform to UL 797, ANSI C80.3. Maximum size not to exceed 105 mm (4 inch) and shall be permitted only with cable rated 600 volts or less.
 - 5. Flexible galvanized steel conduit: Shall Conform to UL 1.
 - 6. Liquid-tight flexible metal conduit: Shall Conform to UL 360.
 - 8. Surface metal raceway: Shall Conform to UL 5.
- C. Conduit Fittings:
 - 1. Rigid steel and IMC conduit fittings:

- a. Fittings shall meet the requirements of UL 514B and ANSI/ NEMA FB1.
- a. Standard threaded couplings, locknuts, bushings, and elbows: Only steel or malleable iron materials are acceptable. Integral retractable type IMC couplings are also acceptable.
- b. Locknuts: Bonding type with sharp edges for digging into the metal wall of an enclosure.
- c. Bushings: Metallic insulating type, consisting of an insulating insert molded or locked into the metallic body of the fitting. Bushings made entirely of metal or nonmetallic material are not permitted.
- d. Erickson (union-type) and set screw type couplings: Approved for use in concrete are permitted for use to complete a conduit run where conduit is installed in concrete. Use set screws of case hardened steel with hex head and cup point to firmly seat in conduit wall for positive ground. Tightening of set screws with pliers is prohibited.
- e. Sealing fittings: Threaded cast iron type. Use continuous drain type sealing fittings to prevent passage of water vapor. In concealed work, install fittings in flush steel boxes with blank cover plates having the same finishes as that of other electrical plates in the room.
- 2. Rigid aluminum conduit fittings:
 - a. Standard threaded couplings, locknuts, bushings, and elbows: Malleable iron, steel or aluminum alloy materials; Zinc or cadmium plate iron or steel fittings. Aluminum fittings containing more than 0.4 percent copper are prohibited.
 - b. Locknuts and bushings: As specified for rigid steel and IMC conduit.

c. Set screw fittings: Not permitted for use with aluminum conduit.

- 3. Electrical metallic tubing fittings:
 - a. Fittings shall meet the requirements of UL 514B and ANSI/ NEMA FB1.
 - b. Only steel or malleable iron materials are acceptable.
 - c. Couplings and connectors: Concrete tight and rain tight, with connectors having insulated throats. Use gland and ring compression type couplings and connectors for conduit sizes 50 mm (2 inches) and smaller. Use set screw type couplings with four

set screws each for conduit sizes over 50 mm (2 inches). Use set screws of case-hardened steel with hex head and cup point to firmly seat in wall of conduit for positive grounding.

- d. Indent type connectors or couplings are prohibited.
- e. Die-cast or pressure-cast zinc-alloy fittings or fittings made of "pot metal" are prohibited.
- 4. Flexible steel conduit fittings:
 - a. Conform to UL 514B. Only steel or malleable iron materials are acceptable.
 - b. Clamp type, with insulated throat.
- 5. Liquid-tight flexible metal conduit fittings:
 - a. Fittings shall meet the requirements of UL 514B and ANSI/ NEMA FB1.
 - b. Only steel or malleable iron materials are acceptable.
 - c. Fittings must incorporate a threaded grounding cone, a steel or plastic compression ring, and a gland for tightening. Connectors shall have insulated throats.
- Surface metal raceway fittings: As recommended by the raceway manufacturer.
- 7. Expansion and deflection couplings:
 - a. Conform to UL 467 and UL 514B.
 - b. Accommodate, 19 mm (0.75 inch) deflection, expansion, or contraction in any direction, and allow 30 degree angular deflections.
 - c. Include internal flexible metal braid sized to guarantee conduit ground continuity and fault currents in accordance with UL 467, and the NEC code tables for ground conductors.
 - d. Jacket: Flexible, corrosion-resistant, watertight, moisture and heat resistant molded rubber material with stainless steel jacket clamps.
- D. Conduit Supports:
 - Parts and hardware: Zinc-coat or provide equivalent corrosion protection.
 - Individual Conduit Hangers: Designed for the purpose, having a pre-assembled closure bolt and nut, and provisions for receiving a hanger rod.

- 3. Multiple conduit (trapeze) hangers: Not less than 38 mm by 38 mm (1-1/2 by 1-1/2 inch), 12 gage steel, cold formed, lipped channels; with not less than 9 mm (3/8 inch) diameter steel hanger rods.
- 4. Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion.
- E. Outlet, Junction, and Pull Boxes:
 - 1. UL-50 and UL-514A.
 - 2. Cast metal where required by the NEC or shown, and equipped with rustproof boxes.
 - 3. Sheet metal boxes: Galvanized steel, except where otherwise shown.
 - 4. Flush mounted wall or ceiling boxes shall be installed with raised covers so that front face of raised cover is flush with the wall. Surface mounted wall or ceiling boxes shall be installed with surface style flat or raised covers.
- F. Wireways: Equip with hinged covers, except where removable covers are shown.

PART 3 - EXECUTION

3.1 PENETRATIONS

- A. Cutting or Holes:
 - Locate holes in advance where they are proposed in the structural sections such as ribs or beams. Obtain the approval of the COTR prior to drilling through structural sections.
 - 2. Cut holes through concrete and masonry in new and existing structures with a diamond core drill or concrete saw. Pneumatic hammer, impact electric, hand or manual hammer type drills are not allowed, except where permitted by the COTR as required by limited working space.
- B. Fire Stop: Where conduits, wireways, and other communications raceways pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING, with rock wool fiber or silicone foam sealant only. Completely fill and seal clearances between raceways and openings with the fire stop material.

3.2 INSTALLATION, GENERAL

- A. Install conduit as follows:
 - 1. In complete runs before pulling in cables or wires.

- 2. Flattened, dented, or deformed conduit is not permitted. Remove and replace the damaged conduits with new undamaged material.
- Assure conduit installation does not encroach into the ceiling height head room, walkways, or doorways.
- 4. Cut square with a hacksaw, ream, remove burrs, and draw up tight.
- 5. Mechanically continuous.
- 6. Independently support conduit at 8'0" on center. Do not use other supports i.e., (suspended ceilings, suspended ceiling supporting members, lighting fixtures, conduits, mechanical piping, or mechanical ducts).
- Support within 300 mm (1 foot) of changes of direction, and within 300 mm (1 foot) of each enclosure to which connected.
- 8. Close ends of empty conduit with plugs or caps at the rough-in stage to prevent entry of debris, until wires are pulled in.
- 9. Conduit installations under fume and vent hoods are prohibited.
- 10. Secure conduits to cabinets, junction boxes, pull boxes and outlet boxes with bonding type locknuts. For rigid and IMC conduit installations, provide a locknut on the inside of the enclosure, made up wrench tight. Do not make conduit connections to junction box covers.
- 11. Flashing of penetrations of the roof membrane is specified in Section 07 60 00, FLASHING AND SHEET METAL.
- 12. Do not use aluminum conduits in wet locations.
- 13. Unless otherwise indicated on the drawings or specified herein, all conduits shall be installed concealed within finished walls, floors and ceilings.
- B. Conduit Bends:
 - 1. Make bends with standard conduit bending machines.
 - Conduit hickey may be used for slight offsets, and for straightening stubbed out conduits.
 - 3. Bending of conduits with a pipe tee or vise is prohibited.
- C. Layout and Homeruns:
 - Deviations: Make only where necessary to avoid interferences and only after drawings showing the proposed deviations have been submitted approved by the COTR .

3.3 CONCEALED WORK INSTALLATION

A. In Concrete:

- 1. Conduit: Rigid steel, IMC or EMT. Do not install EMT in concrete slabs that are in contact with soil, gravel or vapor barriers.
- 2. Align and run conduit in direct lines.
- 3. Install conduit through concrete beams only when the following occurs:
 - a. Where shown on the structural drawings.
 - b. As approved by the COTR prior to construction, and after submittal of drawing showing location, size, and position of each penetration.
- Installation of conduit in concrete that is less than 75 mm (3 inches) thick is prohibited.
 - a. Conduit outside diameter larger than 1/3 of the slab thickness is prohibited.
 - b. Space between conduits in slabs: Approximately six conduit diameters apart, except one conduit diameter at conduit crossings.
 - c. Install conduits approximately in the center of the slab so that there will be a minimum of 19 mm (3/4 inch) of concrete around the conduits.
- 5. Make couplings and connections watertight. Use thread compounds that are UL approved conductive type to insure low resistance ground continuity through the conduits. Tightening set screws with pliers is prohibited.
- B. Furred or Suspended Ceilings and in Walls:
 - 1. Conduit for conductors above 600 volts:
 - a. Rigid steel or rigid aluminum.
 - b. Aluminum conduit mixed indiscriminately with other types in the same system is prohibited.
 - 2. Conduit for conductors 600 volts and below:
 - a. Rigid steel, IMC, rigid aluminum, or EMT. Different type conduits mixed indiscriminately in the same system is prohibited.
 - Align and run conduit parallel or perpendicular to the building lines.
 - Connect recessed lighting fixtures to conduit runs with maximum 1800 mm (six feet) of flexible metal conduit extending from a junction box to the fixture.
 - 5. Tightening set screws with pliers is prohibited.

3.4 EXPOSED WORK INSTALLATION

- A. Unless otherwise indicated on the drawings, exposed conduit is only permitted in mechanical and electrical rooms.
- B. Conduit for Conductors 600 volts and below:
 - Rigid steel, IMC, rigid aluminum, or EMT. Different type of conduits mixed indiscriminately in the system is prohibited.
- C. Align and run conduit parallel or perpendicular to the building lines.
- D. Install horizontal runs close to the ceiling or beams and secure with conduit straps.
- E. Support horizontal or vertical runs at not over 2400 mm (eight foot) intervals.
- F. Surface metal raceways: Use only where shown.
- G. Painting:
 - 1. Paint exposed conduit as specified in Section09 91 00, PAINTING.
 - 2. Paint all conduits containing cables rated over 600 volts safety orange. Refer to Section 09 91 00, PAINTING for preparation, paint type, and exact color. In addition, paint legends, using 50 mm (two inch) high black numerals and letters, showing the cable voltage rating. Provide legends where conduits pass through walls and floors and at maximum 6000 mm (20 foot) intervals in between.

3.5 EXPANSION JOINTS

- A. Conduits 75 mm (3 inches) and larger, that are secured to the building structure on opposite sides of a building expansion joint, require expansion and deflection couplings. Install the couplings in accordance with the manufacturer's recommendations.
- B. Provide conduits smaller than 75 mm (3 inches) with junction boxes on both sides of the expansion joint. Connect conduits to junction boxes with sufficient slack of flexible conduit to produce 125 mm (5 inch) vertical drop midway between the ends. Flexible conduit shall have a copper green ground bonding jumper installed. In lieu of this flexible conduit, expansion and deflection couplings as specified above for 375 mm (15 inches) and larger conduits are acceptable.
- C. Install expansion and deflection couplings where shown.

3.6 CONDUIT SUPPORTS, INSTALLATION

A. Safe working load shall not exceed 1/4 of proof test load of fastening devices.

- B. Use pipe straps or individual conduit hangers for supporting individual conduits. Maximum distance between supports is 2.5 m (8 foot) on center.
- C. Support multiple conduit runs with trapeze hangers. Use trapeze hangers that are designed to support a load equal to or greater than the sum of the weights of the conduits, wires, hanger itself, and 90 kg (200 pounds). Attach each conduit with U-bolts or other approved fasteners.
- D. Support conduit independently of junction boxes, pull boxes, fixtures, suspended ceiling T-bars, angle supports, and similar items.
- E. Fasteners and Supports in Solid Masonry and Concrete:
 - New Construction: Use steel or malleable iron concrete inserts set in place prior to placing the concrete.
 - 2. Existing Construction:
 - a. Steel expansion anchors not less than 6 mm (1/4 inch) bolt size and not less than 28 mm (1-1/8 inch) embedment.
 - b. Power set fasteners not less than 6 mm (1/4 inch) diameter with depth of penetration not less than 75 mm (3 inches).
 - c. Use vibration and shock resistant anchors and fasteners for attaching to concrete ceilings.
- F. Hollow Masonry: Toggle bolts are permitted.
- G. Bolts supported only by plaster or gypsum wallboard are not acceptable.
- H. Metal Structures: Use machine screw fasteners or other devices specifically designed and approved for the application.
- Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited.
- J. Chain, wire, or perforated strap shall not be used to support or fasten conduit.
- K. Spring steel type supports or fasteners are prohibited for all uses except: Horizontal and vertical supports/fasteners within walls.
- L. Vertical Supports: Vertical conduit runs shall have riser clamps and supports in accordance with the NEC and as shown. Provide supports for cable and wire with fittings that include internal wedges and retaining collars.

3.7 BOX INSTALLATION

- A. Boxes for Concealed Conduits:
 - 1. Flush mounted.

- 2. Provide raised covers for boxes to suit the wall or ceiling, construction and finish.
- B. In addition to boxes shown, install additional boxes where needed to prevent damage to cables and wires during pulling in operations.
- C. Remove only knockouts as required and plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes.
- D. Stencil or install phenolic nameplates on covers of the boxes identified on riser diagrams; for example "SIG-FA JB No. 1".

3.11 COMMUNICATION SYSTEM CONDUIT

- A. Install the communication raceway system as shown on drawings.
- B. Minimum conduit size of 19 mm (3/4 inch), but not less than the size shown on the drawings.
- C. All conduit ends shall be equipped with insulated bushings.
- D. All 100 mm (four inch) conduits within buildings shall include pull boxes after every two 90 degree bends. Size boxes per the NEC.
- E. Vertical conduits/sleeves through closets floors shall terminate not less than 75 mm (3 inches) below the floor and not less than 75 mm (3 inches) below the ceiling of the floor below.
- F. Terminate conduit runs to/from a backboard in a closet or interstitial space at the top or bottom of the backboard. Conduits shall enter communication closets next to the wall and be flush with the backboard.
- G. Were drilling is necessary for vertical conduits, locate holes so as not to affect structural sections such as ribs or beams.
- H. All empty conduits located in communication closets or on backboards shall be sealed with a standard non-hardening duct seal compound to prevent the entrance of moisture and gases and to meet fire resistance requirements.
- I. Conduit runs shall contain no more than four quarter turns (90 degree bends) between pull boxes/backboards. Minimum radius of communication conduit bends shall be as follows (special long radius):

Sizes of Conduit Trade Size	Radius of Conduit Bends mm, Inches
3/4	150 (6)
1	230 (9)
1-1/4	350 (14)
1-1/2	430 (17)
2	525 (21)
2-1/2	635 (25)
3	775 (31)
3-1/2	900 (36)
4	1125 (45)

- J. Furnish and install 19 mm (3/4 inch) thick fire retardant plywood specified in Section 06 10 00, ROUGH CARPENTRY on the wall of communication closets where shown on drawings . Mount the plywood with the bottom edge 300 mm (one foot) above the finished floor.
- K. Furnish and pull wire in all empty conduits. (Sleeves through floor are exceptions).

- - - END - - -

SECTION 28 31 00

FIRE DETECTION AND ALARM

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section of the specifications includes the furnishing, installation, and connection of the fire alarm equipment to form a complete coordinated system ready for operation. It shall include, but not be limited to, alarm initiating devices, alarm notification appliances, control units, fire safety control devices, power supplies, and wiring as shown on the drawings and specified. The fire alarm system shall not be combined with other systems such as building automation, energy management, security, etc.
- B. Fire alarm systems shall comply with requirements of the most recent VA FIRE PROTECTION DESIGN MANUAL and NFPA 72 unless variations to NFPA 72 are specifically identified within these contract documents by the following notation: "variation". The design, system layout, document submittal preparation, and supervision of installation and testing shall be provided by a technician that is certified NICET level III or a registered fire protection engineer. The NICET certified technician shall be on site for the supervision and testing of the system. Factory engineers from the equipment manufacturer, thoroughly familiar and knowledgeable with all equipment utilized, shall provide additional technical support at the site as required by the COTRor his authorized representative. Installers shall have a minimum of 2 years experience installing fire alarm systems.
- C. Fire alarm signals: Building shall have a general evacuation fire alarm signal in accordance with ASA S3.41 to notify all occupants in the respective building to evacuate.
- D. Alarm signals (by device), supervisory signals (by device) and system trouble signals (by device not reporting) shall be distinctly transmitted to the main fire alarm system control unit located in the fire department.
- E. The main fire alarm control unit shall automatically transmit alarm signals to a listed central station using a digital alarm communicator transmitter in accordance with NFPA 72.

1.2 SCOPE

- A. A fully addressable fire alarm system as an extension of an existing EST-3 addressable fire alarm system shall be designed and installed in accordance with the specifications and drawings. Device location and wiring runs shown on the drawings are for reference only unless specifically dimensioned. Actual locations shall be in accordance with NFPA 72 and this specification.
- B. All existing fire alarm equipment, wiring, devices and sub-systems that are not shown to be reused shall be removed. All existing fire alarm conduit not reused shall be removed.
- C. Existing fire alarm bells, chimes, door holders, 120VAC duct smoke detectors, valve tamper switches and waterflow/pressure switches may be reused only as specifically indicated on the drawings and provided the equipment:
 - 1. Meets this specification section
 - 2. Is UL listed or FM approved
 - 3. Is compatible with new equipment being installed
 - 4. Is verified as operable through contractor testing and inspection
 - 5. Is warranted as new by the contractor.
- D. Existing 120 VAC duct smoke detectors, waterflow/pressure switches, and valve tamper switches if reused by the Contractor shall be equipped with an addressable interface device compatible with the new equipment being installed.
- E. Existing reused equipment shall be covered as new equipment under the Warranty specified herein.
- F. Basic Performance:
 - Alarm and trouble signals from each building fire alarm control panel shall be digitally encoded by UL listed electronic devices onto a multiplexed communication system.
 - Response time between alarm initiation (contact closure) and recording at the main fire alarm control unit (appearance on alphanumeric read out) shall not exceed 5 seconds.
 - 3. The signaling line circuits (SLC) between building fire alarm control units shall be wired Style 7 in accordance with NFPA 72. Isolation shall be provided so that no more than one building can be lost due to a short circuit fault.
 - 4. Initiating device circuits (IDC) shall be wired Style C in accordance with NFPA 72.

- 5. Signaling line circuits (SLC) within buildings shall be wired Style 4 in accordance with NFPA 72. Individual signaling line circuits shall be limited to covering 22,500 square feet (2,090 square meters) of floor space or 3 floors whichever is less.
- 6. Notification appliance circuits (NAC) shall be wired Style Y in accordance with NFPA 72.

1.3 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. Requirements for procedures for submittals.
- B. Section 07 84 00 FIRESTOPPING. Requirements for fire proofing wall penetrations.

1.4 SUBMITTALS

- A. General: Submit 5 copies in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, and Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- B. Drawings:
 - Prepare drawings using AutoCAD Release 14 software and include all contractors information. Layering shall be by VA criteria as provided by the Contracting Officer's Technical Representative (COTR). Bid drawing files on AutoCAD will be provided to the Contractor at the pre-construction meeting. The contractor shall be responsible for verifying all critical dimensions shown on the drawings provided by VA.
 - 2. Floor plans: Provide locations of all devices (with device number at each addressable device corresponding to control unit programming), appliances, panels, equipment, junction/terminal cabinets/boxes, risers, electrical power connections, individual circuits and raceway routing, system zoning; number, size, and type of raceways and conductors in each raceway; conduit fill calculations with cross section area percent fill for each type and size of conductor and raceway. Only those devices connected and incorporated into the final system shall be on these floor plans. Do not show any removed devices on the floor plans. Show all interfaces for all fire safety functions.
 - 3. Riser diagrams: Provide, for the entire system, the number, size and type of riser raceways and conductors in each riser raceway and number of each type device per floor and zone. Show door holder interface, elevator control interface, HVAC shutdown interface, fire

extinguishing system interface, and all other fire safety interfaces. Show wiring Styles on the riser diagram for all circuits. Provide diagrams both on a per building and campus wide basis.

- 4. Detailed wiring diagrams: Provide for control panels, modules, power supplies, electrical power connections, auxiliary relays and annunciators showing termination identifications, size and type conductors, circuit boards, LED lamps, indicators, adjustable controls, switches, ribbon connectors, wiring harnesses, terminal strips and connectors, spare zones/circuits. Diagrams shall be drawn to a scale sufficient to show spatial relationships between components, enclosures and equipment configuration.
- 5. Two weeks prior to final inspection, the Contractor shall deliver to the COTR 3 sets of as-built drawings and one set of the as-built drawing computer files (using AutoCAD 2007 or later). As-built drawings (floor plans) shall show all new and/or existing conduit used for the fire alarm system.
- C. Manuals:
 - Submit simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals including technical data sheets for all items used in the system, power requirements, device wiring diagrams, dimensions, and information for ordering replacement parts.
 - a. Wiring diagrams shall have their terminals identified to facilitate installation, operation, expansion and maintenance.
 - b. Wiring diagrams shall indicate internal wiring for each item of equipment and the interconnections between the items of equipment.
 - c. Include complete listing of all software used and installation and operation instructions including the input/output matrix chart.
 - d. Provide a clear and concise description of operation that gives, in detail, the information required to properly operate, inspect, test and maintain the equipment and system. Provide all manufacturer's installation limitations including but not limited to circuit length limitations.
 - e. Complete listing of all digitized voice messages.

- f. Provide standby battery calculations under normal operating and alarm modes. Battery calculations shall include the magnets for holding the doors open for one minute.
- g. Include information indicating who will provide emergency service and perform post contract maintenance.
- h. Provide a replacement parts list with current prices. Include a list of recommended spare parts, tools, and instruments for testing and maintenance purposes.
- i. A computerized preventive maintenance schedule for all equipment. The schedule shall be provided on disk in a computer format acceptable to the VAMC and shall describe the protocol for preventive maintenance of all equipment. The schedule shall include the required times for systematic examination, adjustment and cleaning of all equipment. A print out of the schedule shall also be provided in the manual. Provide the disk in a pocket within the manual.
- j. Furnish manuals in 3 ring loose-leaf binder or manufacturer's standard binder.
- k. A print out for all devices proposed on each signaling line circuit with spare capacity indicated.
- 2. Two weeks prior to final inspection, deliver 4 copies of the final updated maintenance and operating manual to the COTR.
 - a. The manual shall be updated to include any information necessitated by the maintenance and operating manual approval.
 - b. Complete "As installed" wiring and schematic diagrams shall be included that shows all items of equipment and their interconnecting wiring. Show all final terminal identifications.
 - c. Complete listing of all programming information, including all control events per device including an updated input/output matrix.
 - d. Certificate of Installation as required by NFPA 72 for each building. The certificate shall identify any variations from the National Fire Alarm Code.
 - e. Certificate from equipment manufacturer assuring compliance with all manufacturers installation requirements and satisfactory system operation.
- D. Certifications:

- 1. Together with the shop drawing submittal, submit the technician's NICET level III fire alarm certification as well as certification from the control unit manufacturer that the proposed performer of contract maintenance is an authorized representative of the major equipment manufacturer. Include in the certification the names and addresses of the proposed supervisor of installation and the proposed performer of contract maintenance. Also include the name and title of the manufacturer's representative who makes the certification.
- 2. Together with the shop drawing submittal, submit a certification from either the control unit manufacturer or the manufacturer of each component (e.g., smoke detector) that the components being furnished are compatible with the control unit.
- 3. Together with the shop drawing submittal, submit a certification from the major equipment manufacturer that the wiring and connection diagrams meet this specification, UL and NFPA 72 requirements.

1.5 WARRANTY

All work performed and all material and equipment furnished under this contract shall be free from defects and shall remain so for a period of one year from the date of acceptance of the entire installation by the Contracting Officer.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. The publications are referenced in text by the basic designation only and the latest editions of these publications shall be applicable.
- B. National Fire Protection Association (NFPA): NFPA 13Standard for the Installation of Sprinkler Systems, 2010 edition NFPA 14Standard for the Installation of Standpipes and Hose Systems, 2010 edition NFPA 20Standard for the Installation of Stationary Pumps for Fire Protection, 2010 edition NFPA 70.....National Electrical Code (NEC), 2010 edition NFPA 72.....National Fire Alarm Code, 2010 edition

NFPA 90A.....Standard for the Installation of Air Conditioning and Ventilating Systems, 2009 edition

NFPA 101.....Life Safety Code, 2009 edition

- C. Underwriters Laboratories, Inc. (UL): Fire Protection Equipment Directory
- D. Factory Mutual Research Corp (FM): Approval Guide, 2007-2011
- E. American National Standards Institute (ANSI): S3.41.....Audible Emergency Evacuation Signal, 1990 edition, reaffirmed 2008
- F. International Code Council, International Building Code (IBC), 2009 edition

PART 2- PRODUCTS

2.1 EQUIPMENT AND MATERIALS, GENERAL

A. Existing equipment may be reused only where indicated on the drawings. All addressable equipment and components shall be new and the manufacturer's current model. All equipment shall be tested and listed by Underwriters Laboratories, Inc. or Factory Mutual Research Corporation for use as part of a fire alarm system. The authorized representative of the manufacturer of the major equipment shall certify that the installation complies with all manufacturer's requirements and that satisfactory total system operation has been achieved.

2.2 CONDUIT, BOXES, AND WIRE

- A. Conduit shall be in accordance with Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS and as follows:
 - 1. All new conduit shall be installed in accordance with NFPA 70.
 - 2. Conduit fill shall not exceed 40 percent of interior cross sectional area.
 - 3. All new conduit shall be 3/4 inch (19 mm) minimum.
- B. Wire:
 - 1. Wiring shall be in accordance with NEC article 760, Section 26 05 21 LOW VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES, and as recommended by the manufacturer of the addressable fire alarm system to extend an existing addressable system. All wires shall be color coded. Number and size of conductors shall be as recommended by the fire alarm system manufacturer, but not less than 18 AWG for initiating device circuits and 14 AWG for notification device circuits.

- 2. Addressable circuits and wiring used for the multiplex communication loop shall be twisted and shielded unless specifically accepted by the fire alarm equipment manufacturer in writing.
- 3. Any fire alarm system wiring that extends outside of a building shall have additional power surge protection to protect equipment from physical damage and false signals due to lightning, voltage and current induced transients. Protection devices shall be shown on the submittal drawings and shall be UL listed or in accordance with written manufacturer's requirements.
- C. Terminal Boxes, Junction Boxes, and Cabinets:
 - 1. Shall be galvanized steel in accordance with UL requirements.
 - 2. All boxes shall be sized and installed in accordance with NFPA 70.
 - 3. covers shall be repainted red in accordance with Section 09 91 00, PAINTING and shall be identified with white markings as "FA" for junction boxes and as "FIRE ALARM SYSTEM" for cabinets and terminal boxes. Lettering shall be a minimum of 3/4 inch (19 mm) high.
 - 4. Terminal boxes and cabinets shall have a volume 50 percent greater than required by the NFPA 70. Minimum sized wire shall be considered as 14 AWG for calculation purposes.
 - 5. Terminal boxes and cabinets shall have identified pressure type terminal strips and shall be located at the base of each riser. Terminal strips shall be labeled as specified or as approved by the COTR.

2.3 FIRE ALARM CONTROL UNIT

- A. General:
 - 1. A fully addressable fire alarm system used as an extension of an existing fire alarm system shall be provided with a fire alarm control unit and shall operate as a supervised zoned fire alarm system. The addressable fire alarm control unit shall be interfaced with the existing non-addressable fire alarm control unit such that an alarm signal on one unit shall cause an alarm signal on the other unit. The addressable fire alarm control unit shall be located in the same room or space as the existing fire alarm control unit.
 - 2. Each power source shall be supervised from the other source for loss of power.
 - 3. All circuits shall be monitored for integrity.

- Visually and audibly annunciate any trouble condition including, but not limited to main power failure, grounds and system wiring derangement.
- B. Enclosure:
 - The control unit shall be housed in a cabinet suitable for both recessed and surface mounting. Cabinet and front shall be corrosion protected, given a rust-resistant prime coat, and manufacturer's standard finish.
 - 2. Cabinet shall contain all necessary relays, terminals, lamps, and legend plates to provide control for the system.
- D. Power Supply:
 - The control unit shall derive its normal power from a 120 volt, 60 Hz dedicated supply connected to the emergency power system. Standby power shall be provided by a 24 volt DC battery as hereinafter specified. The normal power shall be transformed, rectified, coordinated, and interfaced with the standby battery and charger.
 - The door holder power shall be arranged so that momentary or sustained loss of main operating power shall not cause the release of any door.
 - 3. Power supply for new smoke detectors shall be taken from the addressable fire alarm control unit.
 - Provide protectors to protect the fire alarm equipment from damage due to lightning or voltage and current transients.
 - 5. Provide new separate and direct ground lines to the outside to protect the equipment from unwanted grounds.
- E. Circuit Supervision: Each alarm initiating device circuit, signaling line circuit, and notification appliance circuit, shall be supervised against the occurrence of a break or ground fault condition in the field wiring. These conditions shall cause a trouble signal to sound in the control unit until manually silenced by an off switch.
- F. Supervisory Devices: All sprinkler system valves, standpipe control valves, post indicator valves (PIV), and main gate valves shall be supervised for off-normal position. Closing a valve shall sound a supervisory signal at the control unit until silenced by an off switch. The specific location of all closed valves shall be identified at the control unit. Valve operation shall not cause an alarm signal. Low air pressure switches and duct detectors shall be monitored as supervisory

signals. The power supply to the elevator shunt trip breaker shall be monitored by the fire alarm system as a supervisory signal.

- G. Trouble signals:
 - 1. Arrange the trouble signals for automatic reset (non-latching).
 - 2. System trouble switch off and on lamps shall be visible through the control unit door.
- H. Function Switches: Provide the following switches in addition to any other switches required for the system:
 - Remote Alarm Transmission By-pass Switch: Shall prevent transmission of all signals to the main fire alarm control unit when in the "off" position. A system trouble signal shall be energized when switch is in the off position.
 - Alarm Off Switch: Shall disconnect power to alarm notification circuits on the local building alarm system. A system trouble signal shall be activated when switch is in the off position.
 - 3. Trouble Silence Switch: Shall silence the trouble signal whenever the trouble silence switch is operated. This switch shall not reset the trouble signal.
 - Reset Switch: Shall reset the system after an alarm, provided the initiating device has been reset. The system shall lock in alarm until reset.
 - 5. Lamp Test Switch: A test switch or other approved convenient means shall be provided to test the indicator lamps.
 - 6. Drill Switch: Shall activate all notification devices without tripping the remote alarm transmitter. This switch is required only for general evacuation systems specified herein.
 - 7. Door Holder By-Pass Switch: Shall prevent doors from releasing during fire alarm tests. A system trouble alarm shall be energized when switch is in the abnormal position.
 - 8. Elevator recall By-Pass Switch: Shall prevent the elevators from recalling upon operation of any of the devices installed to perform that function. A system trouble alarm shall be energized when the switch is in the abnormal position.
 - 9. HVAC/Smoke Damper By-Pass: Provide a means to disable HVAC fans from shutting down and/or smoke dampers from closing upon operation of an initiating device designed to interconnect with these devices.
- I. Remote Transmissions:

- Provide capability and equipment for transmission of alarm, supervisory and trouble signals to the main fire alarm control unit.
- Transmitters shall be compatible with the systems and equipment they are connected to such as timing, operation and other required features.
- J. Remote Control Capability: Each building fire alarm control unit shall be installed and programmed so that each must be reset locally after an alarm, before the main fire alarm control unit can be reset. After the local building fire alarm control unit has been reset, then the all system acknowledge, reset, silence or disabling functions can be operated by the main fire alarm control unit
- K. System Expansion: Design the control units and enclosures so that the system can be expanded in the future (to include the addition of 20 percent more alarm initiating, alarm notification and door holder circuits) without disruption or replacement of the existing control unit and secondary power supply.

2.4 STANDBY POWER SUPPLY

- A. Uninterrupted Power Supply (UPS):
 - 1. The UPS system shall be comprised of a static inverter, a precision battery float charger, and sealed maintenance free batteries.
 - 2. Under normal operating conditions, the load shall be filtered through a ferroresonant transformer.
 - 3. When normal AC power fails, the inverter shall supply AC power to the transformer from the battery source. There shall be no break in output of the system during transfer of the system from normal to battery supply or back to normal.
 - 4. Batteries shall be sealed, gel cell type.
 - 5. UPS system shall be sized to operate the central processor, CRT, printer, and all other directly connected equipment for 5 minutes upon a normal AC power failure.

B. Batteries:

- Battery shall be of the sealed, maintenance free type, 24-volt nominal.
- Battery shall have sufficient capacity to power the fire alarm system for not less than 24 hours plus 5 minutes of alarm to an end voltage of 1.14 volts per cell, upon a normal AC power failure.

- 3. Battery racks shall be steel with an alkali-resistant finish. Batteries shall be secured in seismic areas 2B, 3, or 4 as defined by the Uniform Building Code.
- C. Battery Charger:
 - Shall be completely automatic, with constant potential charger maintaining the battery fully charged under all service conditions. Charger shall operate from a 120-volt, 60 hertz emergency power source.
 - 2. Shall be rated for fully charging a completely discharged battery within 48 hours while simultaneously supplying any loads connected to the battery.
 - 3. Shall have protection to prevent discharge through the charger.
 - 4. Shall have protection for overloads and short circuits on both AC and DC sides.
 - 5. A trouble condition shall actuate the fire alarm trouble signal.
 - 6. Charger shall have automatic AC line voltage regulation, automatic current-limiting features, and adjustable voltage controls.

2.5 ALARM NOTIFICATION APPLIANCES

- A. Strobes:
 - Xenon flash tube type minimum 15 candela in toilet rooms and 75 candela in all other areas with a flash rate of 1 HZ. Strobes shall be synchronized where required by the National Fire Alarm Code (NFPA 72).
 - Backplate shall be red with 1/2 inch (13 mm) permanent red letters. Lettering to read "Fire", be oriented on the wall or ceiling properly, and be visible from all viewing directions.
 - 3. Each strobe circuit shall have a minimum of 20 percent spare capacity.
 - 4. Strobes may be combined with the audible notification appliances specified herein.
- B. Horns:
 - 1. Shall be electric, utilizing solid state electronic technology operating on a nominal 24 VDC.
 - 2. Shall be a minimum nominal rating of 80 dBA at 10 feet (3,000 mm).
 - 3. Mount on removable adapter plates on conduit boxes.
 - 4. Horns located outdoors shall be of weatherproof type with metal housing and protective grille.
 - 5. Each horn circuit shall have a minimum of 20 percent spare capacity.

2.6 ALARM INITIATING DEVICES

- A. Manual Fire Alarm Stations:
 - 1. Shall be non-breakglass, address reporting type.
 - Station front shall be constructed of a durable material such as cast or extruded metal or high impact plastic. Stations shall be semi-flush type.
 - Stations shall be of single action pull down type with suitable operating instructions provided on front in raised or depressed letters, and clearly labeled "FIRE".
 - 4. Operating handles shall be constructed of a durable material. On operation, the lever shall lock in alarm position and remain so until reset. A key shall be required to gain front access for resetting, or conducting tests and drills.
 - 5. Unless otherwise specified, all exposed parts shall be red in color and have a smooth, hard, durable finish.
- B. Smoke Detectors:
 - Smoke detectors shall be photoelectric type and UL listed for use with the fire alarm control unit being furnished.
 - Smoke detectors shall be addressable type complying with applicable UL Standards for system type detectors. Smoke detectors shall be installed in accordance with the manufacturer's recommendations and NFPA 72.
 - 3. Detectors shall have an indication lamp to denote an alarm condition. Provide remote indicator lamps and identification plates where detectors are concealed from view. Locate the remote indicator lamps and identification plates flush mounted on walls so they can be observed from a normal standing position.
 - 4. All spot type and duct type detectors installed shall be of the photoelectric type.
 - 5. Photoelectric detectors shall be factory calibrated and readily field adjustable. The sensitivity of any photoelectric detector shall be factory set at 3.0 plus or minus 0.25 percent obscuration per foot.
 - 6. Detectors shall provide a visual trouble indication if they drift out of sensitivity range or fail internal diagnostics. Detectors shall also provide visual indication of sensitivity level upon testing. Detectors, along with the fire alarm control units shall be UL listed for testing the sensitivity of the detectors.

- C. Heat Detectors:
 - Heat detectors shall be of the addressable restorable rate compensated fixed-temperature spot type.
 - Detectors shall have a minimum smooth ceiling rating of 2,500 square feet (230 square meters).
 - 3. Ordinary temperature (135 degrees F (57 degrees C)) heat detectors shall be utilized in elevator shafts and elevator mechanical rooms. Intermediate temperature rated (200 degrees F (93 degrees C)) heat detectors shall be utilized in all other areas.
 - 4. Provide a remote indicator lamp, key test station and identification nameplate (e.g. "Heat Detector - Elevator P-______) for each elevator group. Locate key test station in plain view on elevator machine room wall.
- D. Water Flow and Pressure Switches:
 - Wet pipe water flow switches and dry pipe alarm pressure switches for sprinkler systems shall be connected to the fire alarm system by way of an address reporting interface device.
 - All new water flow switches shall be of a single manufacturer and series and non-accumulative retard type. Connect all switches shown on the approved shop drawings.
 - 3. All new switches shall have an alarm transmission delay time that is conveniently adjustable from 0 to 60 seconds. Initial settings shall be 30-45 seconds. Timing shall be recorded and documented during testing.
- E. Extinguishing System Connections:
 - 1. Kitchen Range Hood and Duct Suppression Systems:
 - a. Each suppression system shall be equipped with a micro-switch connected to the building fire alarm control unit. Discharge of a suppression system shall automatically send a alarm signal to the building fire detection and alarm system for annunciation.
 - b. Operation of this suppression system shall also automatically shut off all sources of fuel and heat to all equipment requiring protection under the same hood.
 - 2. Each gaseous suppression system shall be monitored for system alarm and system trouble conditions via addressable interface devices.

2.7 SUPERVISORY DEVICES

A. Duct Smoke Detectors:

- Duct smoke detectors shall be provided and connected by way of an address reporting interface device. Detectors shall be provided with an approved duct housing mounted exterior to the duct, and shall have perforated sampling tubes extending across the full width of the duct (wall to wall). Detector placement shall be such that there is uniform airflow in the cross section of the duct.
- 2. Interlocking with fans shall be provided in accordance with NFPA 90A and as specified hereinafter under Part 3.2, "TYPICAL OPERATION".
- 3. Provide remote indicator lamps, key test stations and identification nameplates (e.g. "DUCT SMOKE DETECTOR AHU-X") for all duct detectors. Locate key test stations in plain view on walls or ceilings so that they can be observed and operated from a normal standing position.
- B. Sprinkler and Standpipe System Supervisory Switches:
 - Each sprinkler system water supply control valve, riser valve or zone control valve, and each standpipe system riser control valve shall be equipped with a supervisory switch. Standpipe hose valves, and test and drain valves shall not be equipped with supervisory switches.
 - 2. PIV (post indicator valve) or main gate valve shall be equipped with a supervisory switch.
 - 3. Valve supervisory switches shall be connected to the fire alarm system by way of address reporting interface device. Connect tamper switches for all control valves shown on the approved shop drawings.
 - 4. The mechanism shall be contained in a weatherproof die-cast aluminum housing that shall provide a 3/4 inch (19 mm) tapped conduit entrance and incorporate the necessary facilities for attachment to the valves.
 - 5. The entire installed assembly shall be tamper-proof and arranged to cause a switch operation if the housing cover is removed or if the unit is removed from its mounting.

2.8 ADDRESS REPORTING INTERFACE DEVICE

- A. Shall have unique addresses that reports directly to the addressable fire alarm panel.
- B. Shall be configurable to monitor normally open or normally closed devices for both alarm and trouble conditions.

- C. Shall have terminal designations clearly differentiating between the circuit to which they are reporting from and the device that they are monitoring.
- D. Shall be UL listed for fire alarm use and compatibility with the panel to which they are connected.
- E. Shall be mounted in weatherproof housings if mounted exterior to a building.

2.9 UTILITY LOCKS AND KEYS:

- A. All key operated test switches, control units, annunciator panels and lockable cabinets shall be provided with a single standardized utility lock and key.
- B. Key-operated manual fire alarm stations shall have a single standardized lock and key separate from the control equipment.
- C. All keys shall be delivered to the COTR.

2.10 SPARE AND REPLACEMENT PARTS

- A. Provide spare and replacement parts as follows:
 - 1. Manual pull stations 5
 - 3. Heat detectors 2 of each type
 - 4. Fire alarm strobes 5
 - 6. Smoke detectors 20
 - 7. Duct smoke detectors with all appurtenances 1
 - 8. Sprinkler system water flow switch 1 of each size
 - 9. Sprinkler system water pressure switch 1 of each type
 - 10. Sprinkler valve tamper switch 1 of each type
 - 11. Control equipment utility locksets 5
 - 12. Control equipment keys 25
 - 15. Monitor modules 3
 - 16. Control modules 3
 - 17. Fire alarm SLC cable (same as installed) 500 feet (152 m)
- C. Spare and replacement parts shall be in original packaging and submitted to the COTR.
- D. Furnish and install a storage cabinet of sufficient size and suitable for storing spare equipment. Doors shall include a pad locking device. Padlock to be provided by the VA. Location of cabinet to be determined by the COTR.
- E. Provide to the VA, all hardware, software, programming tools, license and documentation necessary to permanently modify the fire alarm system <u>on site</u>. The minimum level of modification includes addition and

deletion of devices, circuits, zones and changes to system description, system operation, and digitized evacuation and instructional messages.

2.11 INSTRUCTION CHART:

Provide a typewritten instruction card mounted behind a Lexan plastic or glass cover in a stainless steel or aluminum frame with a backplate. Install the frame in a conspicuous location observable from each control unit where operations are performed. The card shall show those steps to be taken by an operator when a signal is received under all conditions, normal, alarm, supervisory, and trouble. Provide an additional copy with the binder for the input output matrix for the sequence of operation. The instructions shall be approved by the COTR before being posted.

PART 3 - EXECUTION

3.1 INSTALLATION:

- A. Installation shall be in accordance with NFPA 70, 72, 90A, and 101 as shown on the drawings, and as recommended by the major equipment manufacturer. Fire alarm wiring shall be installed in conduit. All conduit and wire shall be installed in accordance with, Section 26 05 LOW VOLTAGE ELECTRICAL POWER CONDUCTORS, Section 26 05 26 GROUNDING AND BONDING FOR ELECTRICAL SYSTEAMS, Section 26 05 33 RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS, and all penetrations of smoke and fire barriers shall be protected as required by Section 07 84 00, FIRESTOPPING.
- B. All conduits, junction boxes, conduit supports and hangers shall be concealed in finished areas and may be exposed in unfinished areas.
- C. All new and reused exposed conduits shall be painted in accordance with Section 09 91 00, PAINTING to match surrounding finished areas and red in unfinished areas.
- D. All existing accessible fire alarm conduit not reused shall be removed.
- E. Existing devices that are reused shall be properly mounted and installed. Where devices are installed on existing shallow backboxes, extension rings of the same material, color and texture of the new fire alarm devices shall be used. Mounting surfaces shall be cut and patched in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Restoration, and be re-painted in accordance with Section 09 91 00, PAINTING as necessary to match existing.
- F. All fire detection and alarm system devices, control units and remote annunciators shall be flush mounted when located in finished areas and

may be surface mounted when located in unfinished areas. Exact locations are to be approved by the COTR.

- H. Strobes shall be flush wall mounted with the bottom of the unit located 80 inches (2,000 mm) above the floor or 6 inches (150 mm) below ceiling, whichever is lower. Locate and mount to maintain a minimum 36 inches (900 mm) clearance from side obstructions.
- I. Manual pull stations shall be installed not less than 42 inches (1,050 mm) or more than 48 inches (1,200 mm) from finished floor to bottom of device and within 60 inches (1,500 mm) of a stairway or an exit door.
- J. Where possible, locate water flow and pressure switches a minimum of 12 inches (300 mm) from a fitting that changes the direction of the flow and a minimum of 36 inches (900 mm) from a valve.
- K. Mount valve tamper switches so as not to interfere with the normal operation of the valve and adjust to operate within 2 revolutions toward the closed position of the valve control, or when the stem has moved no more than 1/5 of the distance from its normal position.
- L. Connect flow and tamper switches installed under Section 21 13 13, WET-PIPE SPRINKLER SYSTEMS.
- M. Connect combination closer-holders installed under Section 08 71 00, DOOR HARDWARE.

3.2 TYPICAL OPERATION

- A. Activation of any manual pull station, water flow or pressure switch, heat detector, kitchen hood suppression system, gaseous suppression system, or smoke detector shall cause the following operations to occur:
 - For sprinkler protected buildings, flash strobes continuously only in the zone of alarm. For buildings without sprinkler protection throughout, flash strobes continuously only on the floor of alarm.
 - Continuously sound a temporal pattern general alarm and flash all strobes in the building in alarm until reset at the local fire alarm control unit in Building.
 - 3. Release only the magnetic door holders in the smoke zone on the floor from which alarm was initiated after the alert signal.
 - Transmit a separate alarm signal, via the main fire alarm control unit to the fire department.
 - 5. Unlock the electrically locked exit doors within the zone of alarm.
- B. Heat detectors in elevator machine rooms shall, in addition to the above functions, disconnect all power to all elevators served by that

machine room after a time delay. The time delay shall be programmed within the fire alarm system programming and be equal to the time it takes for the car to travel from the highest to the lowest level, plus 10 seconds.

- C. Smoke detectors in the remaining elevator lobbies, elevator machine room, or top of hoistway shall, in addition to the above functions, return all elevators in the bank to the primary floor.
- D. Operation of a smoke detector at a corridor door used for automatic closing shall also release only the magnetic door holders on that floor in that smoke zone .
- E. Operation of duct smoke detectors shall cause a system supervisory condition and shut down the ventilation system and close the associated smoke dampers as appropriate.
- F. Operation of any sprinkler or standpipe system valve supervisory switch, high/low air pressure switch, or fire pump alarm switch shall cause a system supervisory condition.
- G. Alarm verification shall not be used for smoke detectors installed for the purpose of early warning.

3.3 TESTS

- A. Provide the service of a NICET level III, competent, factory-trained engineer or technician authorized by the manufacturer of the fire alarm equipment to technically supervise and participate during all of the adjustments and tests for the system. Make all adjustments and tests in the presence of the COTR.
- B. When the systems have been completed and prior to the scheduling of the final inspection, furnish testing equipment and perform the following tests in the presence of the COTR. When any defects are detected, make repairs or install replacement components, and repeat the tests until such time that the complete fire alarm systems meets all contract requirements. After the system has passed the initial test and been approved by the COTR, the contractor may request a final inspection.
 - Before energizing the cables and wires, check for correct connections and test for short circuits, ground faults, continuity, and insulation.
 - Test the insulation on all installed cable and wiring by standard methods as recommended by the equipment manufacturer.

- Run water through all flow switches. Check time delay on water flow switches. Submit a report listing all water flow switch operations and their retard time in seconds.
- 4. Open each alarm initiating and notification circuit to see if trouble signal actuates.
- 5. Ground each alarm initiation and notification circuit and verify response of trouble signals.

3.4 FINAL INSPECTION AND ACCEPTANCE

- A. Prior to final acceptance a minimum 30 day "burn-in" period shall be provided. The purpose shall be to allow equipment to stabilize and potential installation and software problems and equipment malfunctions to be identified and corrected. During this diagnostic period, all system operations and malfunctions shall be recorded. Final acceptance will be made upon successful completion of the "burn-in" period and where the last 14 days is without a system or equipment malfunction.
- B. At the final inspection a factory trained representative of the manufacturer of the major equipment shall repeat the tests in Article 3.3 TESTS and those required by NFPA 72. In addition the representative shall demonstrate that the systems function properly in every respect. The demonstration shall be made in the presence of a VA representative.

3.5 INSTRUCTION

- A. The manufacturer's authorized representative shall provide instruction and training to the VA as follows:
 - Six 1-hour sessions to engineering staff, security police and central attendant personnel for simple operation of the system. Two sessions at the start of installation, 2 sessions at the completion of installation and 2 sessions 3 months after the completion of installation.
 - Four 2-hour sessions to engineering staff for detailed operation of the system. Two sessions at the completion of installation and 2 sessions 3 months after the completion of installation.
 - 3. Three 8-hour sessions to electrical technicians for maintaining, programming, modifying, and repairing the system at the completion of installation and one 8-hour refresher session 3 months after the completion of installation.
- B. The Contractor and/or the Systems Manufacturer's representative shall provide a typewritten "Sequence of Operation" including a trouble shooting guide of the entire system for submittal to the VA. The

sequence of operation will be shown for each input in the system in a matrix format and provided in a loose leaf binder. When reading the sequence of operation, the reader will be able to quickly and easily determine what output will occur upon activation of any input in the system. The INPUT/OUTPUT matrix format shall be as shown in Appendix A to NFPA 72.

C. Furnish the services of a competent instructor for instructing personnel in the programming requirements necessary for system expansion. Such programming shall include addition or deletion of devices, zones, indicating circuits and printer/display text.

- - - END - - -

SECTION 31 20 00 EARTHWORK

PART 1 - GENERAL

1.1 DESCRIPTION OF WORK:

- A. This section specifies the requirements for furnishing all equipment, materials, labor, tools, and techniques for earthwork including, but not limited to, the following:
 - 1. Site preparation.
 - 2. Excavation.
 - 3. Underpinning.
 - 4. Filling and backfilling.
 - 5. Grading.
 - 6. Soil Disposal.
 - 7. Clean Up.

1.2 DEFINITIONS:

- A. Unsuitable Materials:
 - Fills: Topsoil; frozen materials; construction materials and materials subject to decomposition; clods of clay and stones larger than 75 mm (3 inches); organic material, including silts, which are unstable; and inorganic materials, including silts, too wet to be stable and any material with a liquid limit and plasticity index exceeding 40 and 15 respectively. Unsatisfactory soils also include satisfactory soils not maintained within 2 percent of optimum moisture content at time of compaction, as defined by ASTM D698.
 - Existing Subgrade (Except Footing Subgrade): Same materials as

 A.1, that are not capable of direct support of slabs, pavement,
 and similar items with possible exception of improvement by
 compaction, proofrolling, or similar methods.
 - 3. Existing Subgrade (Footings Only): Same as paragraph 1, but comply with the geotechnical report recommendations (Triad Project no. 03-19-0876, Report of Geotechnical Exploration - VA Medical Center C Pod Building Addition dated February 7th, 2020). Excavate to acceptable strata subject to COR's approval.
- B. Building Earthwork: Earthwork operations required in area enclosed by a line located 1500 mm (5 feet) outside of principal building perimeter.

It also includes earthwork required for auxiliary structures and buildings.

07-01-16

- C. Trench Earthwork: Trenchwork required for utility lines.
- D. Site Earthwork: Earthwork operations required in area outside of a line located 1500 mm (5 feet) outside of principal building perimeter and within new construction area with exceptions noted above.
- E. Degree of compaction: Degree of compaction is expressed as a percentage of maximum density obtained by laboratory test procedure. This percentage of maximum density is obtained through use of data provided from results of field test procedures presented in ASTM D1556, ASTM D2167, and ASTM D6938.
- F. Fill: Satisfactory soil materials used to raise existing grades. In the Construction Documents, the term "fill" means fill or backfill as appropriate.
- G. Backfill: Soil materials or controlled low strength material used to fill an excavation.
- H. Unauthorized excavation: Removal of materials beyond indicated subgrade elevations or indicated lines and dimensions without written authorization by the COR. No payment will be made for unauthorized excavation or remedial work required to correct unauthorized excavation.
- I. Authorized additional excavation: Removal of additional material authorized by the COR based on the determination by the Government's soils testing agency that unsuitable bearing materials are encountered at required sub-grade elevations. Removal of unsuitable material and its replacement as directed will be paid on basis of Conditions of the Contract relative to changes in work.
- J. Subgrade: The undisturbed earth or the compacted soil layer immediately below granular sub-base, drainage fill, or topsoil materials.
- K. Structure: Buildings, foundations, slabs, tanks, curbs, mechanical and electrical appurtenances, or other man-made stationary features constructed above or below the ground surface.
- L. Borrow: Satisfactory soil imported from off-site for use as fill or backfill.
- M. Drainage course: Layer supporting slab-on-grade used to minimize capillary flow of pore water.

N. Bedding course: Layer placed over the excavated sub-grade in a trench before laying pipe. Bedding course shall extend up to the springline of the pipe.

07-01-16

- O. Sub-base Course: Layer placed between the sub-grade and base course for asphalt paving or layer placed between the sub-grade and a concrete pavement or walk.
- P. Utilities include on-site underground pipes, conduits, ducts, and cables as well as underground services within buildings.
- Q. Debris: Debris includes all materials located within the designated work area not covered in the other definitions and shall include but not be limited to items like vehicles, equipment, appliances, building materials or remains thereof, tires, any solid or liquid chemicals or products stored or found in containers or spilled on the ground.
- R. Contaminated soils: Soil that contains contaminates as defined and determined by the COR or the Government's testing agency.

1.3 RELATED WORK:

- A. Materials testing and inspection during construction: Section 01 45 29, TESTING LABORATORY SERVICES.
- B. Safety requirements : Section 00 72 00, GENERAL CONDITIONS, Article, ACCIDENT PREVENTION.
- C. Protection of existing utilities, fire protection services, existing equipment, roads, and pavements: Section 01 00 00, GENERAL REQUIREMENTS.
- D. Subsurface Investigation: Section 01 00 00, GENERAL REQUIREMENTS, Article, PHYSICAL DATA.
- E. Erosion Control: Section 01 57 19, TEMPORARY ENVIRONMENTAL CONTROLS, and Section 32 90 00, PLANTING.

1.4 CLASSIFICATION OF EXCAVATION:

- A. Unclassified Excavation: Removal and disposal of pavements and other man-made obstructions visible on surface; utilities, and other items including underground structures indicated to be demolished and removed; together with any type of materials regardless of character of material and obstructions encountered.
- B. Rock Excavation:

- 1. Trenches and Pits: Removal and disposal of solid, homogenous, interlocking crystalline material with firmly cemented, laminated, or foliated masses or conglomerate deposits that cannot be excavated with a late-model, track-mounted hydraulic excavator; equipped with a 1050 mm (42 inch) wide, short-tip-radius rock bucket; rated at not less than 103 kW (138 hp) flywheel power with bucket-curling force of not less than 125 kN (28,090 lbf) and stick-crowd force of not less than 84.5 kN (19,000 lbf); measured according to SAE J-1179. Trenches in excess of 3000 mm (10 feet) wide and pits in excess of 9000 mm (30 feet) in either length or width are classified as open excavation.
- 2. Open Excavation: Removal and disposal of solid, homogenous, interlocking crystalline material firmly cemented, laminated, or foliated masses or conglomerate deposits that cannot be dislodged and excavated with a late-model, track-mounted loader; rated at not less than 157 kW (210 hp) flywheel power and developing a minimum of 216 kN (48,510 lbf) breakout force; measured according to SAE J-732.
- 3. Other types of materials classified as rock are unstratified masses, conglomerated deposits and boulders of rock material exceeding 0.76 m3 (1 cubic yard) for open excavation, or 0.57 m3 (3/4 cubic yard) for footing and trench excavation that cannot be removed by rock excavating equipment equivalent to the above in size and performance ratings, without systematic drilling, ram hammering, ripping, or blasting, when permitted.
- 4. Definitions of rock and guidelines for equipment are presented for general information purposes only. The Contractor is expected to use the information presented in the Geotechnical Engineering Report to evaluate the extent and competency of the rock and to determine both quantity estimations and removal equipment and efforts.

1.5 MEASUREMENT AND PAYMENT FOR EXCAVATION:

A. Measurement: The unit of measurement for excavation and borrow will be the cubic yard, computed by the average end area method from cross sections taken before and after the excavation and borrow operations, including the excavation for ditches, gutters, and channel changes, when the material is acceptably utilized or disposed of as herein specified. Quantities should be computed by a Registered Professional

07-01-16

Land Surveyor or Registered Civil Engineer, specified in Section 01 00 00, GENERAL REQUIREMENTS. The measurement will include authorized excavation for rock, authorized excavation of satisfactory subgrade soil, and the volume of loose, scattered rocks and boulders collected within the limits of the work; allowance will be made on the same basis for selected backfill ordered as replacement. The measurement will not include the volume of subgrade material or other material used for purposes other than directed. The volume of overburden stripped from borrow pits and the volume of excavation for ditches to drain borrow its, unless used as borrow material, will not be measured for payment. The measurement will not include the volume of any excavation performed prior to taking of elevations and measurements of the undisturbed grade.

1.6 MEASUREMENT AND PAYMENT FOR ROCK EXCAVATION:

- A. Measurement: Cross section and measure uncovered and separated materials, and compute quantities by Registered Professional Land Surveyor or Registered Civil Engineer, specified in Section 01 00 00, GENERAL REQUIREMENTS. Do not measure quantities beyond the following limits:
 - 600 mm (24 inches) from outside face of concrete work for which forms are required, except for footings.
 - 2. 300 mm (12 inches) from outside of perimeter of formed footings.
 - 3. 150 mm (6 inches) below bottom of pipe and not more than pipe diameter plus 600 mm (24 inches) in width for pipe trenches.
 - From outside dimensions of concrete work for which no forms are required (trenches, conduits, and similar items not requiring forms).
- B. Payment: No separate payment shall be made for rock excavation quantities shown. Contract price and time will be adjusted for overruns or underruns in accordance with Articles, DIFFERING SITE CONDITIONS, CHANGES and CHANGES-SUPPLEMENT of the GENERAL CONDITIONS as applicable.
- C. Payment for Differing Site Conditions: When rock excavation, as classified, is encountered, contract price and time will be adjusted in accordance with Articles, DIFFERING SITE CONDITIONS, CHANGES and CHANGES-SUPPLEMENT of the GENERAL CONDITIONS as applicable.

1.7 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Rock Excavation Report:
 - 1. Certification of rock quantities excavated.
 - 2. Excavation method.
 - 3. Labor.
 - 4. Equipment.
 - 5. Land Surveyor's or Civil Engineer's name and official registration stamp.
 - 6. Plot plan showing elevation.
- C. Furnish to COR:
 - Contactor shall furnish resumes with all personnel involved in the project including Project Manager, Superintendent, and on-site Engineer. Project Manager and Superintendent should have at least 3 years of experience on projects of similar size.
 - 2. Soil samples.
 - a. Classification in accordance with ASTM D2487 for each on-site or borrow soil material proposed for fill, backfill, engineered fill, or structural fill.
 - b. Laboratory compaction curve in accordance with ASTM D698 for each on site or borrow soil material proposed for fill, backfill, engineered fill, or structural fill.
 - c. Test reports for compliance with ASTM D2940 requirements for subbase material.
 - d. Pre-excavation photographs and videotape in the vicinity of the existing structures to document existing site features, including surfaces finishes, cracks, or other structural blemishes that might be misconstrued as damage caused by earthwork operations.
 - e. The Contractor shall submit a scale plan daily that defines the location, limits, and depths of the area excavated.
 - 3. Contractor shall submit procedure and location for disposal of unused satisfactory material. Proposed source of borrow material. Notification of encountering rock in the project. Advance notice on the opening of excavation or borrow areas. Advance notice on shoulder construction for rigid pavements.

1.8 APPLICABLE PUBLICATIONS:

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only.
- B. American Association of State Highway and Transportation Officials (AASHTO): T99-10.....Standard Method of Test for Moisture-Density Relations of Soils Using a 2.5 kg (5.5 lb) Rammer and a 305 mm (12 inch) Drop T180-10.....Standard Method of Test for Moisture-Density Relations of Soils using a 4.54 kg (10 lb) Rammer and a 457 mm (18 inch) Drop C. American Society for Testing and Materials (ASTM): C33-03.....Concrete Aggregate D448-08.....Standard Classification for Sizes of Aggregate for Road and Bridge Construction D698-07e1.....Standard Test Method for Laboratory Compaction Characteristics of Soil Using Standard Effort $(12,400 \text{ ft. } lbf/ft^3 (600 \text{ kN } m/m^3))$ D1140-00.....Amount of Material in Soils Finer than the No. 200 (75-micrometer) Sieve D1556-07.....Standard Test Method for Density and Unit Weight of Soil in Place by the Sand Cone Method D1557-09..... Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft³ (2700 kN m/m³)) D2167-08.....Standard Test Method for Density and Unit Weight of Soil in Place by the Rubber Balloon Method D2487-11.....of Soils for Engineering Purposes (Unified Soil Classification System) D2940-09.....Standard Specifications for Graded Aggregate Material for Bases or Subbases for Highways or Airports

07-01-16 D6938-10.....Standard Test Method for In-Place Density and Water Content of Soil and Soil-Aggregate by Nuclear Methods (Shallow Depth

D. Society of Automotive Engineers (SAE): J732-07.....Specification Definitions - Loaders

J1179-08......Hydraulic Excavator and Backhoe Digging Forces

PART 2 - PRODUCTS

2.1 MATERIALS:

- A. General: Provide borrow soil material when sufficient satisfactory soil materials are not available from excavations.
- B. Fills: Material in compliance with ASTM D2487 Soil Classification Groups GW, GP, GM, SW, SP, SM, SC, and ML, or any combination of these groups; free of rock or gravel larger than 75 mm (3 inches) in any dimension, debris, waste, frozen materials, vegetation, and other deleterious matter. Material approved from on site or off site sources having a minimum dry density of 1760 kg/m3 (110 pcf), a maximum Plasticity Index of 15, and a maximum Liquid Limit of 40.
- C. Engineered Fill: Naturally or artificially graded mixture of compliance with ASTM D2487 Soil Classification Groups GW, GP, GM, SW, SP, SM, SC, and ML, or any combination of these groups, or as approved by the Engineer or material with at least 90 percent passing a 37.5-mm (1 1/2inch) sieve and not more than 12 percent passing a 75-µm (No. 200) sieve, per ASTM D2940;.
- D. Bedding: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D2940; except with 100 percent passing a 25 mm (1 inch) sieve and not more than 8 percent passing a 75-µm (No. 200) sieve.
- E. Drainage Fill: Washed, narrowly graded mixture of crushed stone, or crushed or uncrushed gravel; ASTM D448; coarse-aggregate grading Size 57; with 100 percent passing a 37.5 mm (1 1/2-inch) sieve and 0 to 5 percent passing a 2.36 mm (No. 8) sieve.
- F. Granular Fill:
 - Under concrete slab, granular fill shall consist of clean, poorly graded crushed rock, crushed gravel, or uncrushed gravel placed beneath a building slab with or without a vapor barrier to cut off the capillary flow of pore water to the area immediately below.

Fine aggregate grading shall conform to ASTM C 33 with a maximum of 3 percent by weight passing ASTM D 1140, 75 micrometers (No. 200) sieve and no more than 2 percent by weight passing the coarse aggregate Size 57, 67, or 77.

07-01-16

- 2. Bedding for sanitary and storm sewer pipe, crushed stone or gravel graded from 13 mm (1/2 inch) to 4.75 mm (No 4), per ASTM D2940.
- G. Requirements for Offsite Soils: Offsite soils brought in for use as backfill shall be tested for TPH, BTEX and full TCLP including ignitability, corrosivity and reactivity. Backfill shall contain less than 100 parts per million (ppm) of total hydrocarbons (TPH) and less than 10 ppm of the sum of Benzene, Toleune, Ethyl Benzene, and Xylene (BTEX) and shall not fail the TCLP test. TPH concentrations shall be determined by using EPA 600/4-79/020 Method 418.1. BTEX concentrations shall be determined by using EPA SW-846.3-3a Method 5030/8020. TCLP shall be performed in accordance with EPA SW-846.3-3a Method 1311. Provide Borrow Site Testing for TPH, BTEX and TCLP from a composite sample of material from the borrow site, with at least one test from each borrow site.
- H. Buried Warning and Identification Tape: Polyethylene plastic and metallic core or metallic-faced, acid- and alkali-resistant polyethylene plastic warning tape manufactured specifically for warning and identification of buried utility lines. Provide tape on rolls, 3 inch minimum width, color coded as specific below for the intended utility with warning and identification imprinted in bold black letters continuously over the entire tape length. Warning and identification to read, "CAUTION, BURIED (intended service) LINE BELOW" or similar wording. Color and printing shall be permanent, Unaffected by moisture or soil. Warning tape color codes:

Red:	Electric
Yellow:	Gas, Oil, Dangerous Materials
Orange:	Telephone and Other Communications
Blue:	Water Systems
Green:	Sewer Systems
White:	Steam Systems
Gray:	Compressed Air

- I. Warning Tape for Metallic Piping: Acid and alkali-resistant polyethylene plastic tape conforming to the width, color, and printing requirements specified above. Minimum thickness of tape shall be 0.076 mm (0.003 inch). Tape shall have a minimum strength of 10.3 MPa (1500 psi) lengthwise, and 8.6 MPa (1250 psi) crosswise, with a maximum 350 percent elongation.
- J. Detectable Warning Tape for Non-Metallic Piping: Polyethylene plastic tape conforming to the width, color, and printing requirements specified above. Minimum thickness of the tape shall be 0.102 mm (0.004 inch). Tape shall have a minimum strength of 10.3 MPa (1500 psi) lengthwise and 8.6 MPa (1250 psi) crosswise. Tape shall be manufactured with integral wires, foil backing, or other means of enabling detection by a metal detector when tape is buried up to 0.9 m (3 feet) deep. Encase metallic element of the tape in a protective jacket or provide with other means of corrosion protection.
- K. Detection Wire for Non-Metallic Piping: Detection wire shall be Insulated single strand, solid copper with a minimum of 12 AWG.

PART 3 - EXECUTION

3.1 SITE PREPARATION:

- A. Clearing: Clear within limits of earthwork operations as shown. Work includes removal of trees, shrubs, fences, foundations, incidental structures, paving, debris, trash, and other obstructions. Remove materials from Medical Center.
- B. Grubbing: Remove stumps and roots 75 mm (3 inch) and larger diameter. Undisturbed sound stumps, roots up to 75 mm (3 inch) diameter, and nonperishable solid objects a minimum of 900 mm (3 feet) below subgrade or finished embankment may be left.
- C. Trees and Shrubs: Trees and shrubs, not shown for removal, may be removed from areas within 4500 mm (15 feet) of new construction and 2250 mm (7.5 feet) of utility lines when removal is approved in advance by COR. Remove materials from Medical Center. Box, and otherwise protect from damage, existing trees and shrubs which are not shown to be removed in construction area. Immediately repair damage to existing trees and shrubs by trimming, cleaning and painting damaged areas, including roots, in accordance with standard industry horticultural practice for the geographic area and plant species. Do not store

07-01-16 building materials closer to trees and shrubs, that are to remain, than farthest extension of their limbs.

- D. Stripping Topsoil: Strip topsoil from within limits of earthwork operations as specified. Topsoil shall be a fertile, friable, natural topsoil of loamy character and characteristic of locality. Topsoil shall be capable of growing healthy horticultural crops of grasses. Stockpile topsoil and protect as directed by COR. Eliminate foreign materials, such as weeds, roots, stones, subsoil, frozen clods, and similar foreign materials larger than 0.014 m3 (1/2 cubic foot) in volume, from soil as it is stockpiled. Retain topsoil on station. Remove foreign materials larger than 50 mm (2 inches) in any dimension from topsoil used in final grading. Topsoil work, such as stripping, stockpiling, and similar topsoil work shall not, under any circumstances, be carried out when soil is wet so that the composition of the soil will be destroyed.
- E. Concrete Slabs and Paving: Score deeply or saw cut to insure a neat, straight cut, sections of existing concrete slabs and paving to be removed where excavation or trenching occurs. Extend pavement section to be removed a minimum of 300 mm (12 inches) on each side of widest part of trench excavation and insure final score lines are approximately parallel unless otherwise indicated. Remove material from Medical Center.
- F. Lines and Grades: Registered Professional Land Surveyor or Registered Civil Engineer, specified in Section 01 00 00, GENERAL REQUIREMENTS, shall establish lines and grades.
 - Grades shall conform to elevations indicated on plans within the tolerances herein specified. Generally grades shall be established to provide a smooth surface, free from irregular surface changes. Grading shall comply with compaction requirements and grade cross sections, lines, and elevations indicated. Where spot grades are indicated the grade shall be established based on interpolation of the elevations between the spot grades while maintaining appropriate transition at structures and paving and uninterrupted drainage flow into inlets.
 - 2. Locations of existing and proposed elevations indicated on plans, except spot elevations, from a site survey that measured spot

elevations and subsequently generated existing contours and spot elevations. Proposed spot elevations and contour lines have been developed utilizing the existing conditions survey and developed contour lines and may be approximate. Contractor is responsible to notify COR of any differences between existing elevations shown on plans and those encountered on site by Surveyor/Engineer described above. Notify COR of any differences between existing or constructed grades, as compared to those shown on the plans.

- 3. Subsequent to establishment of lines and grades, Contractor will be responsible for any additional cut and/or fill required to ensure that site is graded to conform to elevations indicated on plans.
- 4. Finish grading is specified in Section 32 90 00, PLANTING.
- G. Disposal: All materials removed from the property shall be disposed of at a legally approved site, for the specific materials, and all removals shall be in accordance with all applicable Federal, State and local regulations.

3.2 EXCAVATION:

- A. Shoring, Sheeting and Bracing: Shore, brace, or slope, its angle of repose or to an angle considered acceptable by the COR, banks of excavations to protect workmen, banks, adjacent paving, structures, and utilities.
 - Design of the temporary support of excavation system is the responsibility of the Contractor. The Contractor shall submit a Shoring and Sheeting plan for approval 15 days prior to starting work. Submit drawings and calculations, certified by a registered professional engineer, describing the methods for shoring and sheeting of excavations. Shoring, including sheet piling, shall be furnished and installed as necessary to protect workmen, banks, adjacent paving, structures, and utilities. Shoring, bracing, and sheeting shall be removed as excavations are backfilled, in a manner to prevent caving.
 - Construction of the support of excavation system shall not interfere with the permanent structure and may begin only after a review by the COR.

3. Extend shoring and bracing to a minimum of 1500 mm (5 feet) below the bottom of excavation. Shore excavations that are carried below elevations of adjacent existing foundations.

- 4. If bearing material of any foundation is disturbed by excavating, improper shoring or removal of existing or temporary shoring, placing of backfill, and similar operations, the Contractor shall underpin the existing foundation, per Section 3.3 under disturbed foundations, as directed by COR, at no additional cost to the Government. Do not remove shoring until permanent work in excavation has been inspected and approved by COR.
- 5. The Contractor is required to hire a Professional Geotechnical Engineer to provide inspection of excavations and soil/groundwater conditions throughout construction. The Geotechnical Engineer shall be responsible for performing pre-construction and periodic site visits throughout construction to assess site conditions. The Geotechnical Engineer shall update the excavation, sheeting and dewatering plans as construction progresses to reflect changing conditions and shall submit an updated plan if necessary. A written report shall be submitted, at least monthly, informing the Contractor and COR of the status of the plan and an accounting of the Contractor's adherence to the plan addressing any present or potential problems. The Geotechnical Engineer shall be available to meet with the COR at any time throughout the contract duration.
- B. Excavation Drainage: Operate pumping equipment , and/or provide other materials, means and equipment as required to keep excavation free of water and subgrade dry, firm, and undisturbed until approval of permanent work has been received from COR. Groundwater flowing toward or into excavations shall be controlled to prevent sloughing of excavation slopes and walls, boils, uplift and heave in the excavation and to eliminate interference with orderly progress of construction. French drains, sumps, ditches or trenches will not be permitted within 0.9 m (3 feet) of the foundation of any structure, except with specific written approval, and after specific contractual provisions for restoration of the foundation area have been made. Control measures shall be taken by the time the excavation reaches the water level in order to maintain the integrity of the in situ material. While the

excavation is open, the water level shall be maintained continuously, below the working level.

07-01-16

- C. Subgrade Protection: Protect subgrades from softening, undermining, washout, or damage by rain or water accumulation. Reroute surface water runoff from excavated areas and not allow water to accumulate in excavations. Do not use excavated trenches as temporary drainage ditches. When subgrade for foundations has been disturbed by water, remove disturbed material to firm undisturbed material after water is brought under control. Replace disturbed subgrade in trenches with concrete or material approved by the COR.
- D. Proofrolling:
 - After rough grade has been established in cut areas and prior to placement of fill in fill areas under building and pavements, proofroll exposed subgrade with a fully loaded dump truck to check for pockets of soft material.
 - 2. Proof rolling shall be done on an exposed subgrade free of surface water (wet conditions resulting from rainfall) which would promote degradation of an otherwise acceptable subgrade. When proof rolling, one-half of the passes made with the roller shall be in a direction perpendicular to the other passes. Notify the COR a minimum of 3 days prior to proof rolling. Proof rolling shall be performed in the presence of the COR or designated representative. Rutting or pumping of material shall be undercut as directed by the VA to fill and backfill material. Maintain subgrade until succeeding operation has been accomplished.
- E. Building Earthwork:
 - Excavation shall be accomplished as required by drawings and specifications.
 - 2. Excavate foundation excavations to solid undisturbed subgrade.
 - 3. Remove loose or soft materials to a solid bottom.
 - Fill excess cut under footings or foundations with 25 MPa (3000 psi) concrete poured separately from the footings.
 - Do not tamp earth for backfilling in footing bottoms, except as specified.
 - Slope grades to direct water away from excavations and to prevent ponding.

31 20 00 - 14

- 7. Capillary water barrier (granular fill) under concrete floor and area-way slabs on grade shall be placed directly on the subgrade and shall be compacted with a minimum of two passes of a hand-operated plate-type vibratory compactor.
- 8. Ensure that footing subgrades have been inspected and approved by the COR prior to concrete placement. Excavate to bottom of pile cap prior to placing or driving piles, unless authorized otherwise by the COR. Backfill and compact over excavations and changes in grade due to pile driving operations to 95 percent of ASTM D698 maximum density.
- F. Trench Earthwork:
 - 1. Utility trenches (except sanitary and storm sewer):
 - a. Excavate to a width as necessary for sheeting and bracing and proper performance of the work.
 - b. Grade bottom of trenches with bell holes scooped out to provide a uniform bearing.
 - c. Support piping on suitable undisturbed earth unless a mechanical support is shown. Unstable material removed from the bottom of the trench or excavation shall be replaced with select granular material placed in layers not exceeding 150 mm (6 inches) loose thickness.
 - d. Length of open trench in advance of piping laying shall not be greater than is authorized by COR.
 - e. Provide buried utility lines with utility identification tape. Bury tape 300 mm (12 inches) below finished grade; under pavements and slabs, bury tape 150 mm (6 inches) below top of subgrade
 - f. Bury detection wire directly above non-metallic piping at a distance not to exceed 300 mm (12 inches) above the top of pipe. The wire shall extend continuously and unbroken, from manhole to manhole. The ends of the wire shall terminate inside the manholes at each end of the pipe, with a minimum of 0.9 m (3 feet) of wire, coiled, remaining accessible in each manhole. The wire shall remain insulated over it's entire length. The wire shall enter manholes between the top of the corbel and the frame, and extend up through the chimney seal between the frame and the

chimney seal. For force mains, the wire shall terminate in the valve pit at the pump station end of the pipe.

- g. Initial backfill material shall be placed and compacted with approved tampers to a height of at least one foot above the utility pipe or conduit. The backfill shall be brought up evenly on both sides of the pipe for the full length of the pipe. Care shall be taken to ensure thorough compaction of the fill under the haunches of the pipe. Except as specified otherwise in the individual piping section, provide bedding for buried piping in accordance with AWWA C600, Type 4, except as specified herein. Backfill to top of pipe shall be compacted to 95 percent of ASTM D 698 maximum density. Plastic piping shall have bedding to spring line of pipe. Provide materials as follows:
 - Class I: Angular, 6 to 40 mm (0.25 to 1.5 inches), graded stone, including a number of fill materials that have regional significance such as coral, slag, cinders, crushed stone, and crushed shells.
 - 2) Class II: Coarse sands and gravels with maximum particle size of 40 mm (1.5 inches), including various graded sands and gravels containing small percentages of fines, generally granular and noncohesive, either wet or dry. Soil Types GW, GP, SW, and SP are included in this class as specified in ASTM D2487.
- 2. Sanitary and storm sewer trenches:
 - a. Trench width below a point 150 mm (6 inches) above top of pipe shall be 600 mm (24 inches) maximum for pipe up to and including 300 mm (12 inches) diameter, and four-thirds diameter of pipe plus 200 mm (8 inches) for pipe larger than 300 mm (12 inches). Width of trench above that level shall be as necessary for sheeting and bracing and proper performance of the work.
 - Bed bottom quadrant of pipe on suitable undisturbed soil or granular fill. Unstable material removed from the bottom of the trench or excavation shall be replaced with select granular material placed in layers not exceeding 150 mm (6 inches) loose thickness.1) Undisturbed: Bell holes shall be no larger than necessary for jointing. Backfill up to a point 300

mm (12 inches) above top of pipe shall be clean earth placed and tamped by hand.

- 2) Granular Fill: Depth of fill shall be a minimum of 75 mm (3 inches) plus one sixth of pipe diameter below pipe to 300 mm (12 inches) above top of pipe. Place and tamp fill material by hand.
- b. Place and compact as specified remainder of backfill using acceptable excavated materials. Do not use unsuitable materials.
- c. Use granular fill for bedding where rock or rocky materials are excavated.
- d. Provide buried utility lines with utility identification tape. Bury tape 300 mm (12 inches) below finished grade; under pavements and slabs, bury tape 150 mm (6 inches) below top of subgrade
- e. Bury detection wire directly above non-metallic piping at a distance not to exceed 300 mm (12 inches) above the top of pipe. The wire shall extend continuously and unbroken, from manhole to manhole. The ends of the wire shall terminate inside the manholes at each end of the pipe, with a minimum of 0.9 m (3 feet) of wire, coiled, remaining accessible in each manhole. The wire shall remain insulated over it's entire length. The wire shall enter manholes between the top of the corbel and the frame, and extend up through the chimney seal between the frame and the chimney seal. For force mains, the wire shall terminate in the valve pit at the pump station end of the pipe.
- f. Initial backfill material shall be placed and compacted with approved tampers to a height of at least one foot above the utility pipe or conduit. The backfill shall be brought up evenly on both sides of the pipe for the full length of the pipe. Care shall be taken to ensure thorough compaction of the fill under the haunches of the pipe. Except as specified otherwise in the individual piping section, provide bedding for buried piping in accordance with AWWA C600, Type 4, except as specified herein. Backfill to top of pipe shall be compacted to 95 percent of ASTM D698 maximum density. Plastic piping shall have bedding to spring line of pipe. Provide materials as follows:

 Class I: Angular, 6 to 40 mm (0.25 to 1.5 inches), graded stone, including a number of fill materials that have regional significance such as coral, slag, cinders, crushed stone, and crushed shells.

- 2) Class II: Coarse sands and gravels with maximum particle size of 40 mm (1.5 inches), including various graded sands and gravels containing small percentages of fines, generally granular and noncohesive, either wet or dry. Soil Types GW, GP, SW, and SP are included in this class as specified in ASTM D2487.
- G. Site Earthwork: Earth excavation includes excavating pavements and obstructions visible on surface; underground structures, utilities, and other items indicated to be removed; together with soil, boulders, and other materials not classified as rock or unauthorized excavation. Excavation shall be accomplished as required by drawings and specifications. Excavate to indicated elevations and dimensions within a tolerance of plus or minus 25 mm (1 inch). Extend excavations a sufficient distance from structures for placing and removing concrete formwork, for installing services and other construction, complying with OSHA requirements, and for inspections. Remove subgrade materials that are determined by COR as unsuitable, and replace with acceptable material. When unsuitable material is encountered and removed, contract price and time will be adjusted in accordance with Articles, DIFFERING SITE CONDITIONS, CHANGES and CHANGES-SUPPLEMENT of the GENERAL CONDITIONS as applicable. Adjustments to be based on volume in cut section only.
 - 1. Site Grading:
 - a. Provide a smooth transition between adjacent existing grades and new grades.
 - b. Cut out soft spots, fill low spots, and trim high spots to comply with required surface tolerances.
 - c. Slope grades to direct water away from buildings and to prevent ponds from forming where not designed. Finish subgrades to required elevations within the following tolerances:
 1) Lawn or Unpaved Areas: Plus or minus 25 mm (1 inch).
 2) Walks: Plus or minus 6 mm (1/4 inch).

- 3) Pavements: Plus or minus 13 mm (1 inch).
- d. Grading Inside Building Lines: Finish subgrade to a tolerance of 13 mm (1/2 inch) when tested with a 3000 mm (10 foot) straight edge.

3.3 UNDERPINNING:

- A. Design of the underpinning system is the responsibility of the Contractor and should be designed by a registered professional engineer and is subject to review and approval by the COR. Underpinning of existing building foundations, as indicated on structural drawings, or where excavation undermines existing foundations, shall be accomplished in the following manner:
 - Make general excavation for new construction, where new foundations are to be below existing foundations, to elevation of new foundations (or sized stone subbase), maintaining a 45-degree sloped berm.
 - For underpinning pits, underpin existing wall foundations by excavating 1200 mm (4 feet) wide pits to depth shown on drawings skipping 3 sections at any one time so as to maintain support for wall at all times.
 - 3. Underpin intervening sections one at a time; no adjacent sections shall be underpinned until concrete in adjacent sections shall have reached 20 MPa (2500 psi) strength and have been dry packed with non-shrink grout to obtain positive bearing. Sheet and brace underpinning pits if soil will not stand on a vertical cut during this operation, or as required for safety of workmen. Repack any voids behind sheeting to prevent sloughing which could cause settlement of existing foundations. Contractor performing this portion of work shall have been prequalified by COR as having previously performed successfully this type of work or will demonstrate his capability for successfully performing this work. It shall be sole responsibility of the Contractor to guard against objectionable movement or settlement and to preserve integrity of existing structures.
 - The tip elevation of the underpinning pits shall be a minimum of 900 mm (3 feet) below the adjacent excavation elevation.

- 5. Subgrades at the tip of the underpinning pit shall be clean, dry, and free of debris and shall be observed by the COR prior to concrete placement.
- 6. Concrete shall not be free fall greater than 3000 mm (10 feet) into the pit.

3.4 FILLING AND BACKFILLING:

- A. General: Do not fill or backfill until all debris, water, unsatisfactory soil materials, obstructions, and deleterious materials have been removed from excavation. For fill and backfill, use excavated materials and borrow meeting the criteria specified herein, as applicable. Borrow will be supplied at no additional cost to the Government. Do not use unsuitable excavated materials. Do not backfill until foundation walls have been completed above grade and adequately braced, waterproofing or dampproofing applied, foundation drainage, and pipes coming in contact with backfill have been installed and work inspected and approved by COR.
- B. Placing: Place materials in horizontal layers not exceeding 200 mm (8 inches) in loose depth for material compacted by heavy compaction equipment, and not more than 100 mm (4 inches) in loose depth for material compacted by hand-operated tampers and then compacted. Place backfill and fill materials evenly on all sides of structures to required elevations, and uniformly along the full length of each structure. Place no material on surfaces that are muddy, frozen, or contain frost.
- C. Compaction: Compact with approved tamping rollers, sheepsfoot rollers, pneumatic tired rollers, steel wheeled rollers, vibrator compactors, or other approved equipment (hand or mechanized) well suited to soil being compacted. Do not operate mechanized vibratory compaction equipment within 3000 mm (10 feet) of new or existing building walls without prior approval of COR. Moisten or aerate material as necessary to provide moisture content that will readily facilitate obtaining specified compaction with equipment used. Backfill adjacent to any and all types of structures shall be placed and compacted to at least 90 percent laboratory maximum density for cohesive materials or 95 percent laboratory maximum density for cohesive materials to prevent wedging action or eccentric loading upon or against the structure.

Compact soil to not less than the following percentages of maximum dry density, according to ASTM D698 or ASTM D1557 as specified below: 1. Fills, Embankments, and Backfill

- a. Under proposed structures, building slabs, steps, and paved areas, scarify and recompact top 300 mm (12 inches) of existing subgrade and each layer of backfill or fill material in accordance with ASTM D69895 percent.
- b. Curbs, curbs and gutters, ASTM D69895 percent.
- c. Under Sidewalks, scarify and recompact top 150 mm (6 inches) below subgrade and compact each layer of backfill or fill material in accordance with ASTM D698 95 percent.
- d. Landscaped areas, top 400 mm (16 inches), ASTM D698 85 percent.
- e. Landscaped areas, below 400 mm (16 inches) of finished grade, ASTM D698 90 percent.
- 2. Natural Ground (Cut or Existing)
 - a. Under building slabs, steps and paved areas, top 150 mm (6 inches), ASTM D698 95 percent.
 - b. Curbs, curbs and gutters, top 150 mm (6 inches), ASTM D69895 percent.
 - c. Under sidewalks, top 150 mm (6 inches), ASTM D69895 percent.
- D. Borrow Material: Borrow material shall be selected to meet the requirements and conditions of the particular fill or embankment for which it is to be used. Borrow material shall be obtained from the borrow areas from approved private sources. Unless otherwise provided in the contract, the Contractor shall obtain from the owners the right to procure material, pay royalties and other charges involved, and bear the expense of developing the sources, including rights-of-way for hauling. Borrow material from approved sources on Government-controlled land may be obtained without payment of royalties. Unless specifically provided, no borrow shall be obtained within the limits of the project site without prior written approval. Necessary clearing, grubbing, and satisfactory drainage of borrow pits and the disposal of debris thereon shall be considered related operations to the borrow excavation.
- E. Opening and Drainage of Excavation and Borrow Pits: The Contractor shall notify the COR sufficiently in advance of the opening of any

excavation or borrow pit to permit elevations and measurements of the undisturbed ground surface to be taken. Except as otherwise permitted, borrow pits and other excavation areas shall be excavated providing adequate drainage. Overburden and other spoil material shall be transported to designated spoil areas or otherwise disposed of as directed. Borrow pits shall be neatly trimmed and drained after the excavation is completed. The Contractor shall ensure that excavation of any area, operation of borrow pits, or dumping of spoil material results in minimum detrimental effects on natural environmental conditions.

07-01-16

3.5 GRADING:

- A. General: Uniformly grade the areas within the limits of this section, including adjacent transition areas. Smooth the finished surface within specified tolerance. Provide uniform levels or slopes between points where elevations are indicated, or between such points and existing finished grades. Provide a smooth transition between abrupt changes in slope.
- B. Cut rough or sloping rock to level beds for foundations. In pipe spaces or other unfinished areas, fill low spots and level off with coarse sand or fine gravel.
- C. Slope backfill outside building away from building walls for a minimum distance of 1800 mm (6 feet).
- D. Finish grade earth floors in pipe basements as shown to a level, uniform slope and leave clean.
- E. Finished grade shall be at least 150 mm (6 inches) below bottom line of window or other building wall openings unless greater depth is shown.
- F. Place crushed stone or gravel fill under concrete slabs on grade, tamped, and leveled. Thickness of fill shall be 150 mm (6 inches) unless otherwise shown.
- G. Finish subgrade in a condition acceptable to COR at least one day in advance of paving operations. Maintain finished subgrade in a smooth and compacted condition until succeeding operation has been accomplished. Scarify, compact, and grade subgrade prior to further construction when approved compacted subgrade is disturbed by Contractor's subsequent operations or adverse weather.

H. Grading for Paved Areas: Provide final grades for both subgrade and base course to +/- 6 mm (0.25 inches) of indicated grades.

07-01-16

3.6 DISPOSAL OF UNSUITABLE AND EXCESS EXCAVATED MATERIAL:

- A. Disposal: Remove surplus satisfactory soil and waste material, including unsatisfactory soil, trash, and debris, and legally dispose of it off Medical Center property.
- B. Stockpile, spread or dispose of satisfactory soil as directed by COR.
 - 1. Remove waste material, including unsatisfactory soil, trash, and debris, and legally dispose of it off Medical Center property.
- C. Place excess excavated materials suitable for fill and/or backfill on site where directed.
- D. Remove from site and dispose of any excess excavated materials after all fill and backfill operations have been completed.
- E. Segregate all excavated contaminated soil designated by the COR from all other excavated soils, and stockpile on site on two 0.15 mm (6 mil) polyethylene sheets with a polyethylene cover. A designated area shall be selected for this purpose. Dispose of excavated contaminated material in accordance with State and Local requirements.

3.7 CLEAN UP:

Upon completion of earthwork operations, clean areas within contract limits, remove tools, and equipment. Provide site clear, clean, free of debris, and suitable for subsequent construction operations. Remove all debris, rubbish, and excess material from Medical Center.

----- E N D -----

08-01-16 Rev 03-29-19

SECTION 32 05 23 CEMENT AND CONCRETE FOR EXTERIOR IMPROVEMENTS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Subbase for concrete pavements.
 - 2. Curbs, gutters, and combination curbs and gutters.
 - Pedestrian Pavement: Walks, grade slabs, lawn mower strips, pedestrian crossings, wheelchair curb ramps, steps, patios and healing gardens.

1.2 RELATED REQUIREMENTS

A. Subgrade Preparation and Subbase Compaction: Section 31 20 11, EARTHWORK (Short Form).

1.3 APPLICABLE PUBLICATIONS

- A. Comply with references to extent specified in this section.
- B. American Association of State Highway and Transportation Officials (AASHTO):
 - M147-65-UL-04 Materials for Aggregate and Soil-Aggregate Subbase, Base and Surface Courses.
 - M233-86 Boiled Linseed Oil Mixture for Treatment of Portland Cement Concrete.
- C. American Concrete Institute (ACI):
 - 1. 305R-10 Guide to Hot Weather Concreting.
 - 2. 306R-10 Guide to Cold Weather Concreting.
- D. American National Standards Institute (ANSI):
 - B101.3 Wet DOCF of Common Hard Surface Floor Materials (Including Action and Limit Thresholds for the Suitable Assessment of the Measured Values).
- E. ASTM International (ASTM):
 - A615/A615M-16 Deformed and Plain Carbon Steel Bars for Concrete Reinforcement.
 - A996/A996M-15 Rail-Steel and Axle-Steel Deformed Bars for Concrete Reinforcement.

- A1064/A1064M-16 Carbon-Steel Wire and Welded Wire Reinforcement, Plain and Deformed, for Concrete.
- 4. C33/C33M-16 Concrete Aggregates.
- 5. C94/C94M-16 Ready Mixed Concrete.
- 6. C143/C143M-15a Slump of Hydraulic Cement Concrete.
- 7. C150/C150M-16 Portland Cement.
- 8. C171-16 Sheet Materials for Curing Concrete.
- 9. C260/C260M-10a Air Entraining Admixtures for Concrete.
- 10. C309-11 Liquid Membrane Forming Compounds for Curing Concrete.
- 11. C494/C494M-15a Chemical Admixtures for Concrete.
- 12. C618-15 Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete.
- 13. C979/C979M-16 Pigments for Integrally Colored Concrete.
- 14. C989/C989M-14 Slag Cement for Use in Concrete and Mortars.
- 15. C1240-15 Silica Fume Used in Cementitious Mixtures.
- 16. D1751-04 Preformed Expansion Joint Filler for Concrete Paving and Structural Construction (Nonextruding and Resilient Bituminous Types).
- 17. D5893/D5893M-10 Cold Applied, Single Component, Chemically Curing Silicone Joint Sealant for Portland Cement Concrete Pavements.
- 18. D6690-15 Joint and Crack Sealants, Hot Applied, for Concrete and Asphalt Pavements.

1.4 PREINSTALLATION MEETINGS

- A. Conduct preinstallation meeting at project site a minimum of 30 days before beginning Work of this section, at discretion of COR.
 - 1. Required Participants may include, but are not limited to:
 - a. Contracting Officer's Representative.
 - b. Engineer.
 - c. Testing Agency.
 - d. Contractor.
 - e. Installer.
 - f. Others, as requested by the VA.
 - Meeting Agenda: Distribute agenda to participants a minimum of 3 days before meeting. Specific topics may include, but are not limited to:

- a. Installation schedule.
- b. Installation sequence.
- c. Preparatory work.
- d. Protection before, during, and after installation.
- e. Installation.
- f. Terminations.
- g. Transitions and connections to other work.
- h. Inspecting and testing.
- i. Other items affecting successful completion.
- Document and distribute meeting minutes to participants to record decisions affecting installation.

1.5 SUBMITTALS

- A. Submittal Procedures: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Submittal Drawings:
 - 1. Show size, configuration, and fabrication and installation details.
 - 2. Show reinforcing.
 - 3. Include jointing plan for concrete pavements, curbs and gutters.
- C. Manufacturer's Literature and Data:
 - 1. Description of each product.
 - 2. Installation instructions.
- D. Samples, as requested by the VA.
- E. Test reports: Certify products comply with specifications.
 - 1. Concrete materials.
 - 2. Select subbase materials.
 - 3. Field test reports.
- F. Certificates: Certify products comply with specifications.
 - 1. Expansion joint filler.
 - 2. Reinforcement.
 - 3. Curing materials.
 - 4. Concrete protective coating.
- G. Qualifications: Substantiate qualifications comply with specifications.
 - 1. Installer.
 - 2. Land surveyor.
- H. Concrete mix design.

- I. Select subbase job-mix design.
- J. Proposed hot and cold weather concreting methods.
- K. Land surveyor's construction staking notes, before placing concrete.
 - 1. Identify discrepancies between field conditions and Drawings.

1.6 QUALITY ASSURANCE

- A. Installer Qualifications:
 - 1. Regularly installs specified products.
 - Installed specified products with satisfactory service on five similar installations.
 - Project Experience List: Provide contact names and addresses for completed projects.
- B. Land Surveyor: Professional land surveyor or engineer registered to provide land surveys in jurisdiction where project is located.
- C. Preconstruction Testing:
 - 1. Engage independent testing laboratory to perform tests and submit reports.
 - a. Deliver samples to laboratory in number and quantity required for testing.
 - 2. Concrete mix design.
 - 3. Select subbase job-mix design. Report the following:
 - a. Material sources.
 - b. Gradation.
 - c. Plasticity index.
 - d. Liquid limit.
 - e. Laboratory compaction curves indicating maximum density at optimum moisture content.

1.7 DELIVERY

- A. Deliver steel reinforcement to prevent damage.
- B. Before installation, return or dispose of distorted or damaged steel reinforcement.
- C. Bulk Products: Deliver bulk products away from buildings, utilities, pavement, and existing turf and planted areas. Maintain dry bulk product storage away from contaminants.

1.8 STORAGE AND HANDLING

- A. Store products indoors in dry, weathertight facility.
- B. Protect products from damage during handling and construction operations.

1.9 FIELD CONDITIONS

- A. Hot Weather Concreting Procedures: ACI 305R.
- B. Cold Weather Concreting Procedures: ACI 306R.
 - 1. Use non-corrosive, non-chloride accelerator admixture.
 - Do not use calcium chloride, thiocyanates or admixtures containing more than 0.05 percent chloride ions.

1.10 WARRANTY

A. Construction Warranty: FAR clause 52.246-21, "Warranty of Construction."

PART 2 - PRODUCTS

2.1 CONCRETE MATERIALS

- A. Portland Cement: ASTM C150/C150M, Type I or II.
- B. Pozzolans:
 - 1. Fly Ash: ASTM C618, Class C or F including supplementary optional physical requirements.
 - 2. Slag: ASTM C989/C989M; as proposed and approved by mix design.
 - 3. Silica Fume: ASTM C1240.
- C. Coarse Aggregate: ASTM C33/C33M; size ¾" minus or Grade C AASHTO.
- D. Fine Aggregate: ASTM C33/C33M.
- E. Mixing Water: Fresh, clean, and potable.
- F. Air-Entraining Admixture: ASTM C260/C260M.
- G. Chemical Admixtures: ASTM C494/C494M.
- H. Reinforcing Steel: ASTM A615/A615M or ASTM A996/A996M, Grade 280 (40).
- I. Welded Wire Fabric: ASTM A1064/A1064M, plain; Grade 385 (56), sized as indicated.
- J. Expansion Joint Filler: ASTM D1751.
- K. Sheet Materials for Curing Concrete: ASTM C171.

2.2 SELECT SUBBASE

A. Subbase: AASHTO M147; Grade C.

 Select granular material composed of sand, sand-gravel, crushed stone, crushed or granulated slag, with or without soil binder, or combinations of these materials.

SUBBASE GRADING REQUIREMENTS							
Sieve Size		Percentage Passing by Mass					
		Grades					
(mm)	(in)	A	В	С	D	Е	F
50	2	100	100				
25	1		75-95	100	100	100	100
9.5	3/8	30-65	40-75	50-85	60-100		
4.47	No. 4	25-55	30-60	35-65	50-85	55-100	70-100
2.00	No. 10	15-40	20-45	25-50	40-70	40-100	55-100
0.425	No. 40	8-20	15-30	15-30	25-45	20-50	30-70
0.075	No. 200	2-8	5-20	5-15	5-20	6-20	8-25

SUBBASE	GRADING	REOUIREMENTS

B. Other Acceptable Gradations: Materials within three to five percent, plus or minus, of specified gradation, or as recommended by the geotechnical engineer and approved by the Contracting Officer's Representative.

2.3 FORMS

- A. Forms: Wood, plywood, metal, or other materials, approved by Contracting Officer's Representative, of grade or type suitable to obtain type of finish specified.
 - Plywood: Exterior grade, free of defects and patches on contact surface.
 - Lumber: Sound, grade-marked, S4S stress graded softwood, minimum
 50 mm (2 inches) thick, free from warp, twist, loose knots, splits, or other defects.
 - 3. Form Coating: As recommended by Architect/Engineer and approved by the VA.
- B. Provide forms suitable in cross-section, depth, and strength to resist springing during depositing and consolidating concrete.
 - Do not use forms varying from straight line more than 3 mm in 3000 mm (1/8 inch in 10 feet), horizontally and vertically.

C. Provide flexible or curved forms for forming radii.

2.4 CONCRETE CURING MATERIALS

- A. Concrete curing materials, conform to one of the following:
 - 1. Burlap: Minimum 233 g/sq. m (7 ounces/sq. yd.) dry.
 - 2. Sheet Materials for Curing Concrete: ASTM C171.
 - 3. Curing Compound: ASTM C309, Type 1-D liquid membrane forming type, without paraffin or petroleum.

2.5 CONCRETE MIXES

- A. Design concrete mixes according to ASTM C94/C94M, Option C.
- B. Concrete Type: Air-entrained. See Table I.

TABLE I - CONCRETE TYPES					
Concrete	Minimum 28 Day	Non-Air-Entrained		Air-Entrained	
Туре	Compressive	Min. Cement	Max.	Min. Cement	Max.
	Strength f'c	kg/cu. m	Water	kg/cu. m	Water
	MPa (psi)	(lbs./cu. yd.)	Cement	(lbs./cu. yd.)	Cement
			Ratio		Ratio
А	35 (5000)1,3	375 (630)	0.45	385 (650)	0.40
В	30 (4000)1,3	325 (550)	0.55	340 (570)	0.50
С	25 (3000)1,3	280 (470)	0.65	290 (490)	0.55
D	25 (3000)1,2	300 (500)	*	310 (520)	*
Footpotog	•	•	•		

Footnotes:

 If trial mixes are used, achieve compressive strength 8.3 MPa (1,200 psi) in excess of f'c. For concrete strengths greater than 35 MPa (5,000 psi), achieve compressive strength 9.7 MPa (1,400 psi) in excess of f'c.
 For Concrete Exposed to High Sulfate Content Soils: Maximum water cement ratio is 0.44.

3. Laboratory Determined according to ACI 211.1 for normal weight concrete.

C. Maximum Slump: ASTM C143/C143M. See Table II.

TABLE II - MAXIMUM SLUMP	
APPLICATION	MAXIMUM SLUMP
Curb & Gutter	75 mm (3 inches)

TABLE II - MAXIMUM SLUMP	
APPLICATION	MAXIMUM SLUMP
Pedestrian Pavement	75 mm (3 inches)
Vehicular Pavement	50 mm (2 inches) Machine Finished
	100 mm (4 inches) Hand Finished
Equipment Pad	75 to 100 mm (3 to 4 inches)

2.6 ACCESSORIES

- A. Equipment and Tools: Obtain Contracting Officer's Representative's, approval of equipment and tools needed for handling materials and performing work before work begins.
- B. Maintain equipment and tools in satisfactory working condition.
- C. Sealants:
 - Concrete Paving Expansion Joints: ASTM D5893/D5893M, Type SL, single component, self-leveling, silicone joint sealant.
 - Concrete Paving Joints: ASTM D6690, Type IV, hot-applied, single component joint sealant.
- D. Concrete Protective Coating: AASHTO M233 linseed oil mixture.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Examine and verify substrate suitability for product installation.
- B. Protect existing construction and completed work from damage.
- C. Prepare, construct, and finish subgrade. See Section 31 20 00, EARTHWORK.
- D. Maintain subgrade in smooth, compacted condition, in conformance with the required section and established grade until the succeeding operation has been accomplished.

3.2 SELECT SUBBASE

- A. Placing:
 - Place subbase material on prepared subgrade in uniform layer to required contour and grades, and to maximum 150 mm (6 inches) loose depth.
 - When required compacted thickness exceeds 150 mm (6 inches), place subbase material in equal thickness layers.

- 3. When subbase elevation is 13 mm (1/2 inch) or more below required grade, excavate subbase minimum 75 mm (3 inches) deep. Place and compact subbase to required grade.
- B. Compaction:
 - 1. Perform compaction with approved hand or mechanical equipment well suited to the material being compacted.
 - 2. Maintain subbase at optimum moisture content for compaction.
 - Compact each subbase layer to minimum 95 percent or 100 percent of maximum density as specified in Section 31 20 11, EARTHWORK (Short Form).
- C. Subbase Tolerances:
 - 1. Variation from Indicated Grade: Maximum 9 mm (3/8 inch).
 - 2. Variation from Indicated Thickness: Maximum 13 mm (1/2 inch).
- D. Protection:
 - 1. Protect subbase from damage until concrete is placed.
 - 2. Reconstruct damaged subbase before placing concrete.

3.3 SETTING FORMS

- A. Form Substrate:
 - Compact form substrate to uniformly support forms along entire length.
 - Correct substrate imperfections and variations by cutting, filling, and compacting.
- B. Form Setting:
 - Set forms to indicated line and grade with tight joints. Rigidly brace forms preventing movement.
 - 2. Remove forms when removal will not damage concrete and when required for finishing.
 - 3. Clean and oil forms before each use.
 - 4. Correct forms, when required, immediately before placing concrete.
- C. Land Surveyor: Establish control, alignment and grade for forms.
 - Notify Contracting Officer's Representative immediately when discrepancies exist between field conditions and drawings.
 - 2. Correct discrepancies greater than 25 mm (1 inch) before placing concrete.
- D. Form Tolerances:

- 1. Variation from Indicated Line: Maximum 6 mm (1/4 inch).
- Variation from Indicated Grade: Maximum 3 mm in 3000 mm (1/8 inch in 10 feet).

3.4 PLACING REINFORCEMENT

- A. Keep reinforcement clean from contamination preventing concrete bond.
- B. Install reinforcement shown on drawings.
- C. Support and securely tie reinforcing steel to prevent displacement during concrete placement.
- D. Obtain Contracting Officer's Representative's reinforcement placement approval before placing concrete.

3.5 JOINTS - GENERAL

- A. Place joints, where shown on approved submittal Drawings.
 - 1. Conform to details shown.
 - 2. Install joints perpendicular to finished concrete surface.
- B. Make joints straight and continuous from edge to edge of pavement.

3.6 CONSTRUCTION JOINTS

- A. Locate longitudinal and transverse construction joints between slabs of vehicular pavement as shown on approved submittal Drawings.
- B. Place transverse construction joints of type shown, where indicated, and whenever concrete placement is suspended for more than 30 minutes.
- C. Provide butt-type joint with dowels in curb and gutter at planned joint locations.
- D. Provide keyed joints with tie bars when joint occurs in middle third of planned curb and gutter joint interval.

3.7 CONTRACTION JOINTS

- A. Tool or cut joints to width, depth, and radius edge shown on drawings using grooving tool, jointer, or saw.
- B. Construct joints in curbs and gutters by inserting 3 mm (1/8 inch) steel plates conforming to curb and gutter cross sections.
 - 1. Keep plates in place until concrete can hold its shape.
- C. Finish joint edges with edging tool.
- D. Score pedestrian pavement with grooving tool or jointer.

3.8 EXPANSION JOINTS

- A. Form expansion joints with expansion joint filler of thickness shown on drawings.
 - Locate joints around perimeter of structures and features abutting site work concrete.
 - 2. Create complete, uniform separation between structure and site work concrete.
- B. Extend expansion joint material full depth of concrete with top edge of joint filler below finished concrete surface where sealant is indicated on Drawings.
- C. Cut and shape material matching cross section.
- D. Anchor with approved devices to prevent displacing during placing and finishing operations.
- E. Round joint edges with edging tool.

3.9 PLACING CONCRETE - GENERAL

- A. Preparation before Placing Concrete:
 - 1. Obtain Contracting Officer's Representative approval.
 - 2. Remove debris and other foreign material.
 - 3. Uniformly moisten substrate, without standing water.
- B. Convey concrete from mixer to final location without segregation or loss of ingredients. Deposit concrete to minimize handling.
- C. During placement, consolidate concrete by spading or vibrating to minimize voids, honeycomb, and rock pockets.
 - 1. Vibrate concrete against forms and along joints.
 - 2. Avoid excess vibration and handling causing segregation.
- D. Place concrete continuously between joints without bulkheads.
- E. Install construction joint in concrete placement suspended for more than 30 minutes.
- F. Replace concrete with cracks, chips, bird baths, and other defects to nearest joints, approved by Contracting Officer's Representative.
- 3.10 PLACING CONCRETE FOR CURB AND GUTTER, PEDESTRIAN PAVEMENT, AND EQUIPMENT PADS
 - A. Place concrete in one layer conforming to cross section shown on Drawings after consolidating and finishing.

- B. Deposit concrete near joints without disturbing joints. Do not place concrete directly onto joint assemblies.
- C. Strike concrete surface to proper section ready for consolidation.
- D. Consolidate concrete by tamping and spading.
- E. Finish concrete surface with wood or metal float.
- F. Construct concrete pads and pavements with sufficient slope to drain, preventing standing water.

3.11 PLACING CONCRETE FOR VEHICULAR PAVEMENT - NOT USED

3.12 FORM REMOVAL

- A. Keep forms in place minimum 12 hours after concrete placement. Remove forms without damaging concrete.
- B. Do not use bars or heavy tools against concrete to remove forms. Repair damage concrete found after form removal.

3.13 CONCRETE FINISHING - GENERAL

- A. Follow operation sequence below, unless otherwise indicated on Drawings:
 - Consolidating, floating, striking, troweling, texturing, and joint edging.
- B. Use edging tool with 6 mm (1/4 inch) radius, unless otherwise shown on Drawings.

3.14 CONCRETE FINISHING - PEDESTRIAN PAVEMENT

- A. Walks, Grade Slabs, Lawn Mower Strips, Wheelchair Curb Ramps and Healing Gardens:
 - Finish concrete surfaces with metal float, troweled smooth, and finished with a broom moistened with clear water.
 - 2. Finish slab edges and formed transverse joints with edger.
 - 3. Broom surfaces transverse to traffic direction.
 - a. Use brooming to eliminate flat surface produced by edger.
 - b. Produce uniform corrugations, maximum 1.5 mm (1/16 inch) deep profile.
 - Provide surface uniform in color and free of surface blemishes, form marks, and tool marks.
 - 5. Paving Tolerances:

- a. Variation from Indicated Plane: Maximum 5 mm in 3000 mm (3/16 inch in 10 feet).
- b. Variation from Indicated Thickness: Maximum 6 mm (1/4 inch).
- 6. Replace paving within joint boundary when paving exceeds specified tolerances.
- B. Site Step Treads, Risers and Sidewalls: Finish as specified for pedestrian pavement, except as follows:
 - 1. Remove riser forms sequentially, starting with top riser.
 - Rub riser face with wood or concrete rubbing block and water. Remove blemishes, form marks, and tool marks. Use outside edger to round nosing; use inside edger to finish bottom of riser.
 - 3. Apply uniform brush finish to treads, risers, and sidewall.
 - a. Apply stiff brush finish to treads to provide slip resistant surface complying with ANSI B101.3.
 - 4. Step Tolerance:
 - a. Variation from Indicated Plane: Maximum 5 mm in 3000 mm (3/16 inch in 10 feet).

3.15 CONCRETE FINISHING - VEHICULAR PAVEMENT - NOT USED

3.16 CONCRETE FINISHING - CURBS AND GUTTERS

- A. Round edges of gutter and top of curb with edging tool.
- B. Gutter and Curb Top:
 - 1. Float surfaces and finish with smooth wood or metal float until true to grade and section and uniform color.
 - Finish surfaces, while still plastic, longitudinally with bristle brush.
- C. Curb Face:
 - Remove curb form and immediately rub curb face with wood or concrete rubbing block removing blemishes, form marks, and tool marks and providing uniform color.
 - 2. Brush curb face, while still plastic, matching gutter and curb top.
- D. Curb and Gutter Tolerances:
 - 1. Variation from Indicated Plane and Grade:
 - a. Gutter: Maximum 3 mm in 3000 mm (1/8 inch in 10 feet).

- b. Curb Top and Face: Maximum 6 mm in 3000 mm (1/4 inch in 10 feet).
- E. Replace curbs and gutters within joint boundary when curbs and gutters exceed specified tolerances.
- F. Correct depressions causing standing water.

3.17 CONCRETE FINISHING - EQUIPMENT PADS

- A. Strike pad surface to elevation shown on Drawings.
- B. Provide smooth, dense float finish, free from depressions or irregularities.
- C. Finish pad edges with edger.
- D. After removing forms, rub pad edge faces with wood or concrete rubbing block, removing blemishes, form marks, and tool marks and providing uniform color.
- E. Pad Tolerances:
 - Variation from Indicated Plane: Maximum 3 mm in 3000 mm (1/8 inch in 10 feet).
 - 2. Variation from Indicated Elevation: Maximum 6 mm (1/4 inch).
 - 3. Variation from Indicated Thickness: Maximum 6 mm (1/4 inch).
- F. Replace pads when pads exceed specified tolerances.

3.18 SPECIAL FINISHES - NOT USED

3.19 CONCRETE CURING

- A. Concrete Protection:
 - 1. Protect unhardened concrete from rain and flowing water.
 - 2. Provide sufficient curing and protection materials available and ready for use before concrete placement begins.
 - 3. Protect concrete to prevent pavement cracking from ambient temperature changes during curing period.
 - a. Replace pavement damaged by curing method allowing concrete cracking.
 - Employ another curing method as directed by Contracting Officer's Representative.
- B. Cure concrete for minimum 7 days by one of the following methods appropriate to weather conditions preventing moisture loss and rapid temperature change:

- Burlap Mat: Provide minimum two layers kept saturated with water during curing period. Overlap Mats at least 150 mm (6 inches).
- 2. Sheet Materials:
 - a. Wet exposed concrete surface with fine water spray and cover with sheet materials.
 - b. Overlap sheets minimum 300 mm (12 inches).
 - c. Securely anchor sheet materials preventing displacement.
- 3. Curing Compound:
 - a. Protect joints indicated to receive sealants preventing contamination from curing compound.
 - Insert moistened paper or fiber rope into joint or cover joint with waterproof paper.
 - c. Apply curing compound before concrete dries.
 - d. Apply curing compound in two coats at right angles to each other.
 - e. Application Rate: Maximum 5 sq. m/L (200 sq. ft./gallon), both coats.
 - Immediately reapply curing compound to surfaces damaged during curing period.

3.20 CONCRETE PROTECTIVE COATING

- A. Apply protective coating of linseed oil mixture to exposed-to-view concrete surfaces, drainage structures, and features that project through, into, or against concrete exterior improvements to protect the concrete against deicing materials.
- B. Complete backfilling and curing operation before applying protective coating.
- C. Dry and thoroughly clean concrete before each application.
- D. Apply two coats, with maximum coverage of 11 sq. m/L (50 sq. yds./gal.); first coat, and maximum 16 sq. m/L (70 sq. yds./gal.); second coat, except apply commercially prepared mixture according to manufacturer's instructions.
- E. Protect coated surfaces from vehicular and pedestrian traffic until dry.
- F. Do not heat protective coating, and do not expose protective coating to open flame, sparks, or fire adjacent to open containers or applicators.

Do not apply material at temperatures lower than 10 degrees C (50 degrees F).

3.21 FIELD QUALITY CONTROL

- A. Field Tests: Performed by testing laboratory specified in Section
 - 01 45 29, TESTING LABORATORY SERVICES.
 - 1. Compaction.
 - a. Pavement subgrade.
 - b. Curb, gutter, and sidewalk.
 - 2. Concrete:
 - a. Delivery samples.
 - b. Field samples.

3.22 CLEANING

- A. After completing curing:
 - 1. Remove burlap and sheet curing materials.
 - 2. Sweep concrete clean, removing foreign matter from the joints.
 - 3. Seal joints as specified.

3.23 PROTECTION

- A. Protect exterior improvements from traffic and construction operations.
 - Prohibit traffic on paving for minimum seven days after placement, or longer as directed by Contracting Officer's Representative.
- B. Remove protective materials immediately before acceptance.
- C. Repair damage.
 - Replace concrete containing excessive cracking, fractures, spalling, and other defects within joint boundary, when directed by Contracting Officer's Representative, and at no additional cost to the Government.

- - - E N D - - -