LEBANON VAMC

NEW ENTRYWAY FOR BUILDING 17

LEBANON, PENNSYLVANIA

VOLUME 2 DIVISION 21-33 SPECIFICATIONS BID DOCUMENTS OCTOBER 24, 2022

> VA Project 595-668 AEW # VLEB-010

> > Prepared by

DEPARTMENT OF VETERANS AFFAIRS VHA MASTER SPECIFICATIONS

TABLE OF CONTENTSSection 00 01 10

SECTION NO.	DIVISION AND SECTION TITLES	DATE
	DIVISION 00 - SPECIAL SECTIONS	
00 01 15	List of Drawing Sheets	05-20
	DIVISION 01 - GENERAL REQUIREMENTS	
01 00 00	General Requirements	11-21
01 32 16.01	Architectural and Engineering CPM Schedules	03-20
01 32 16.13	Network Analysis Schedules - Major Construction Project Design-Bid-Build	03-20
01 33 23		06-21
01 35 26		11-21
01 42 19	Reference Standards	11-20
01 45 00		02-21
01 45 29	Testing Laboratory Services	11-18
01 45 35		06-21
01 45 35	Statement of Special Inspections	1
01 57 19	Temporary Environmental Controls	01-21
01 58 16	, Temporary Interior Signage	07-15
01 74 19		11-21
01 81 13	Sustainable Construction Requirements	10-17
01 81 13.02	Sustainability Certification Requirements - LEED NC V4	01-21
01 91 00	General Commissioning Requirements	10-15
	DIVISION 02 - EXISTING CONDITIONS	
02 41 00	Selective Demolition	08-17
	DIVISION 03 - CONCRETE	1 1 1
03 30 00	Cast-in-Place Concrete	01-21
	DIVISION 04 - MASONRY	I I
04 05 13		10-17
04 05 16		01-21
04 20 00	Unit Masonry	08-17
04 72 00	Cast Stone Masonry	01-21
	DIVISION 05 - METALS	i i
05 12 00	Structural Steel Framing	I I I 11_10
05 12 00	Structural Steel Framing	11-18

SECTION NO.	DIVISION AND SECTION TITLES	DATE
05 31 00	Steel Decking	01-21
05 40 00	Cold-Formed Metal Framing	01-21
05 50 00	Metal Fabrications	08-18
		1
	DIVISION 06 - WOOD, PLASTICS AND COMPOSITES	
06 06 60	Translucent Resin Panel	
06 10 00	Rough Carpentry	10-17
06 16 00	Sheathing	1
	DIVISION 07 - THERMAL AND MOISTURE PROTECTION	- - - -
07 14 16.11	Cold Fluid Applied Waterproofing	
07 21 13	Thermal Insulation	01-21
07 22 00	Roof and Deck Insulation	01-21
07 24 00	Exterior Insulation and Finish Systems	01-21
07 26 00	Under Slab Vapor Barrier	
07 27 27	Fluid-Applied Membrane Air Barrier, Vapor Retarding	01-21
07 41 00	Metal Roof Panels	
07 42 13.13	Metal Wall Panels	1
)7 53 23	Ethylene-Propylene-Diene-Monomer Roofing	01-21
07 60 00	Flashing and Sheet Metal	01-21
07 71 00	Roof Specialties	01-21
07 72 00	Roof Accessories	01-21
07 81 00	Applied Fireproofing	10-17
07 84 00	Firestopping	01-21
07 92 00	Joint Sealants	10-17
07 95 13	Expansion Joint Cover Assemblies	01-21
	DIVISION 08 - OPENINGS	
08 11 13	I Hellow Metal Deere and Examps	01 01
)8 11 13)8 14 00	Hollow Metal Doors and Frames	01-21
08 31 13	Access Doors and Frames	01-21
08 41 13	Aluminum-Framed Entrances and Storefronts	01-21
08 42 29.23	Sliding Automatic Entrances	1 01-21
)8 44 13	Glazed Aluminum Curtain Walls	04-20
08 45 23	· · · · · · · · · · · · · · · · · · ·	104-20
	Translucent Skylight Door Hardware	01-21
08 71 00 08 71 13		01-21
08 71 13 08 80 00	Automatic Door Operators	01-21
00 00	Glazing	1 01-21
	DIVISION 09 - FINISHES	1
09 05 16	Subsurface Preparation for Floor Finishes	01-21
09 06 00	Schedule for Finishes	01-21
09 22 16	Non-Structural Metal Framing	06-18
09 29 00	Gypsum Board	04-20

SECTION NO.	DIVISION AND SECTION TITLES	DATE
09 51 00	Acoustical Ceilings	12-18
09 56 24	Acoustic Wall Panels	1
09 65 13	Resilient Base and Accessories	01-21
09 65 16	Resilient Sheet Flooring	05-18
09 65 19	Resilient Tile Flooring	05-18
09 66 16	Terrazzo Floor Tile	01-21
09 91 00	Painting	01-21
		1
	DIVISION 10 - SPECIALTIES	I 1
10 14 00	Signage	01-21
10 26 00	Wall and Door Protection	01-21
10 20 00	Fire Extinguisher Cabinets	08-18
10 74 13	Exterior Clock	1 00-10
10 74 15	Laterior clock	I
	DIVISION 11 - EQUIPMENT	
	DIVISION 12 - FURNISHINGS	i T
	DIVISION 12 - FORNISHINGS	I
12 32 00	Manufactured Wood Casework	09-15
12 36 00	Countertops	12-18
12 48 40	Foot grille Entrance System	I
		1
	DIVISION 13 - SPECIAL CONSTRUCTION	
		I
	DIVISION 14- CONVEYING EQUIPEMENT	
14 24 00	Hydraulic Elevator	08-20
	DIVISION 21- FIRE SUPPRESSION	
		I I
21 08 00	Commissioning of Fire Suppression System	I
21 13 13	Wet-Pipe Sprinkler Systems	06-15
21 13 16	Dry-Pipe Sprinkler Systems	
	DIVISION 22 - PLUMBING	
22 05 11	Common Work Results for Plumbing	09-20
22 05 23	General-Duty Valves for Plumbing Piping	09-20
22 07 11	Plumbing Insulation	09-19
22 08 00	Commissioning of Plumbing Systems	
22 11 00	Facility Water Distribution	05-21
22 13 00	Facility Sanitary and Vent Piping	09-20
22 14 00	Facility Storm Drainage	09-15
22 14 29	Sump Pumps	09-15
22 33 00	Electric Domestic Water Heaters	09-20
22 40 00	Plumbing Fixtures	09-15
22 10 00		1 0 3 1 3

SECTION NO.	DIVISION AND SECTION TITLES	DATE
	DIVISION 23 - HEATING, VENTILATING, AND AIR CONDITIONING (HVAC)	
23 05 11	Common Work Results for HVAC	02-20
23 05 12	General Motor Requirements for HVAC and Steam Generation Equipment	02-20
23 05 41	Noise and Vibration Control for HVAC Piping and Equipment	02-20
23 05 93	, Testing, Adjusting, and Balancing for HVAC	02-20
23 07 11	HVAC and Boiler Plant Insulation	02-20
23 08 00	Commissioning of HVAC Systems	02-20
23 09 23	Direct-Digital Control System for HVAC	09-11
23 21 13	Hydronic Piping	02-20
23 22 13	Steam and Condensate Heating Piping	02-20
23 31 00	, HVAC Ducts and Casings	02-20
23 34 00	HVAC Fans	02-20
23 36 00	Air Terminal Units	02-20
23 37 00	Air Outlets and Inlets	02-20
23 81 00	Decentralized Unitary HVAC Equipment	03-20
23 82 00	Convection Heating Units	02-20
23 02 00		1 02-20
	DIVISION 25 - INTEGRATED AUTOMATION	
	DIVISION 25 - INTEGRATED AUTOMATION	
	<u> </u>	
		1
	DIVISION 26 - ELECTRICAL	1
26 01 00	Basic Electrical Requirements	1
26 02 00	Quality Requirements	1
26 05 00	Common Work Results for Electrical	1
26 05 11	Requirements for Electrical Installations	01-16
26 05 19	Low-Voltage Electrical Power Conductors and Cables	01-17
26 05 26	Grounding and Bonding for Electrical Systems	101-17
		(1 - 1)
26 05 22		01-17
	Raceway and Boxes for Electrical Systems	01-18
26 09 23	Raceway and Boxes for Electrical Systems Lighting Controls	01-18
26 09 23 26 22 00	Raceway and Boxes for Electrical Systems Lighting Controls Low-Voltage Transformers	01-18 01-18 01-18
26 09 23 26 22 00 26 24 16	Raceway and Boxes for Electrical Systems Lighting Controls Low-Voltage Transformers Panelboards	01-18 01-18 01-18 01-18
26 09 23 26 22 00 26 24 16 26 27 26	Raceway and Boxes for Electrical Systems Lighting Controls Low-Voltage Transformers Panelboards Wiring Devices	01-18 01-18 01-18 01-18 01-18
26 09 23 26 22 00 26 24 16 26 27 26 26 29 11	Raceway and Boxes for Electrical Systems Lighting Controls Low-Voltage Transformers Panelboards Wiring Devices Motor Controllers	01-18 01-18 01-18 01-18 01-18 01-18 01-18
26 09 23 26 22 00 26 24 16 26 27 26 26 29 11 26 29 21	Raceway and Boxes for Electrical Systems Lighting Controls Low-Voltage Transformers Panelboards Wiring Devices Motor Controllers Enclosed Switches and Circuit Breakers	01-18 01-18 01-18 01-18 01-18 01-18 01-18 01-17
26 09 23 26 22 00 26 24 16 26 27 26 26 29 11 26 29 21 26 51 00	Raceway and Boxes for Electrical SystemsLighting ControlsLow-Voltage TransformersPanelboardsWiring DevicesMotor ControllersEnclosed Switches and Circuit BreakersInterior Lighting	01-18 01-18 01-18 01-18 01-18 01-18 01-18 01-17 01-18
26 09 23 26 22 00 26 24 16 26 27 26 26 29 11 26 29 21 26 51 00	Raceway and Boxes for Electrical Systems Lighting Controls Low-Voltage Transformers Panelboards Wiring Devices Motor Controllers Enclosed Switches and Circuit Breakers	01-18 01-18 01-18 01-18 01-18 01-18 01-18 01-17 01-18
26 09 23 26 22 00 26 24 16 26 27 26 26 29 11 26 29 21 26 51 00	Raceway and Boxes for Electrical SystemsLighting ControlsLow-Voltage TransformersPanelboardsWiring DevicesMotor ControllersEnclosed Switches and Circuit BreakersInterior LightingExterior Lighting	01-18 01-18 01-18 01-18 01-18 01-18 01-18 01-17 01-18
26 05 33 26 09 23 26 22 00 26 24 16 26 27 26 26 29 11 26 29 21 26 51 00 26 56 00	Raceway and Boxes for Electrical SystemsLighting ControlsLow-Voltage TransformersPanelboardsWiring DevicesMotor ControllersEnclosed Switches and Circuit BreakersInterior Lighting	01-18 01-18 01-18 01-18 01-18 01-18 01-18 01-17 01-18
26 09 23 26 22 00 26 24 16 26 27 26 26 29 11 26 29 21 26 51 00 26 56 00	Raceway and Boxes for Electrical SystemsLighting ControlsLow-Voltage TransformersPanelboardsWiring DevicesMotor ControllersEnclosed Switches and Circuit BreakersInterior LightingExterior LightingDIVISION 27 - COMMUNICATIONS	01-17 01-18 01-18 01-18 01-18 01-18 01-18 01-17 01-18 01-18 01-18
26 09 23 26 22 00 26 24 16 26 27 26 26 29 11 26 29 21 26 51 00 26 56 00	Raceway and Boxes for Electrical Systems Lighting Controls Low-Voltage Transformers Panelboards Wiring Devices Motor Controllers Enclosed Switches and Circuit Breakers Interior Lighting Exterior Lighting Requirements for Communications Installations	01-18 01-18 01-18 01-18 01-18 01-18 01-17 01-18 01-18 01-18 01-18 01-18
26 09 23 26 22 00 26 24 16 26 27 26 26 29 11 26 29 21 26 51 00 26 56 00	Raceway and Boxes for Electrical SystemsLighting ControlsLow-Voltage TransformersPanelboardsWiring DevicesMotor ControllersEnclosed Switches and Circuit BreakersInterior LightingExterior LightingDIVISION 27 - COMMUNICATIONSRequirements for Communications InstallationsGrounding and Bonding for Communications Systems	01-18 01-18 01-18 01-18 01-18 01-18 01-17 01-18 01-17 01-18 01-18 01-18 01-19 00-19 06-15
26 09 23 26 22 00 26 24 16 26 27 26 26 29 11 26 29 21 26 51 00 26 56 00	Raceway and Boxes for Electrical Systems Lighting Controls Low-Voltage Transformers Panelboards Wiring Devices Motor Controllers Enclosed Switches and Circuit Breakers Interior Lighting Exterior Lighting Requirements for Communications Installations	01-18 01-18 01-18 01-18 01-18 01-18 01-17 01-18 01-18 01-18 01-18 01-18

SECTION NO.	DIVISION AND SECTION TITLES	DATE
	DIVISION 28 - ELECTRONIC SAFETY AND SECURITY	
28 13 00	Physical Access Control System	10-11
28 16 00	, Intrusion Detection System	10-11
28 23 00	Video Surveillance	09-11
28 26 00	Electronic Personal Protection System	09-11
28 31 00	Fire Detection and Alarm	10-11
	DIVISION 31 - EARTHWORK	
31 20 00	Earthwork	07-16
	DIVISION 32 - EXTERIOR IMPROVEMENTS	1 1 1
32 05 23	Cement and Concrete for Exterior Improvements	08-16
32 12 16	Asphalt Paving	09-15
32 17 23	Pavement Markings	08-16
32 31 00	Equipment Screen	I
32 90 00	Planting	08-16
	DIVISION 33 - UTILITIES	
33 40 00	Storm Drainage Utilities	12-17
	DIVISION 34 - TRANSPORTATION	1
		'
	DIVISION 48 - Electrical Power Generation	I

SECTION 21 08 00

COMMISSIONING OF FIRE SUPPRESSION SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 21.
- B. This project will have selected building systems commissioned. The complete list of equipment and systems to be commissioned is specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. The commissioning process, which the Contractor is responsible to execute, is defined in Section 01 91 00 GENERAL COMMISSIONING REQUIRMENTS.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS.
- B. Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- C. Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

1.3 SUMMARY

- A. This Section includes requirements for commissioning the Fire Suppression systems, subsystems and equipment. This Section supplements the general requirements specified in Section 01 91 00 General Commissioning Requirements.
- B. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for more details regarding processes and procedures as well as roles and responsibilities for all Commissioning Team members.

1.4 DEFINITIONS

A. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for definitions.

1.5 COMMISSIONED SYSTEMS

- A. Commissioning of a system or systems specified in Division 21 is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel in accordance with the requirements of Section 01 91 00 and of Division 21, is required in cooperation with the VA and the Commissioning Agent.
- B. The Fire Suppression systems commissioning will include the systems listed in Section 01 91 00 General Commissioning Requirements:

1.6 SUBMITTALS

- A. The commissioning process requires review of selected Submittals. The Commissioning Agent will provide a list of submittals that will be reviewed by the Commissioning Agent. This list will be reviewed and approved by the VA prior to forwarding to the Contractor. Refer to Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, and SAMPLES for further details.
- B. The commissioning process requires Submittal review simultaneously with engineering review. Specific submittal requirements related to the commissioning process are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 CONSTRUCTION INSPECTIONS

A. Commissioning of the building fire suppression systems will require inspection of individual elements of the fire suppression construction throughout the construction period. The Contractor shall coordinate with the Commissioning Agent in accordance with Section 01 91 00 and the Commissioning plan to schedule inspections as required to support the Commissioning Process.

3.2 PRE-FUNCTIONAL CHECKLISTS

A. The Contractor shall complete Pre-Functional Checklists to verify systems, subsystems, and equipment installation is complete and systems are ready for Systems Functional Performance Testing. The Commissioning Agent will prepare Pre-Functional Checklists to be used to document equipment installation. The Contractor shall complete the checklists. Completed checklists shall be submitted to the VA and to the Commissioning Agent for review. The Commissioning Agent may spot check a sample of completed checklists. If the Commissioning Agent determines that the information provided on the checklist is not accurate, the Commissioning Agent will return the marked-up checklist to the Contractor for correction and resubmission. If the Commissioning Agent determines that a significant number of completed checklists for similar equipment are not accurate, the Commissioning Agent will select a broader sample of checklists for review. If the Commissioning Agent determines that a significant number of the broader sample of checklists is also inaccurate, all the checklists for the

type of equipment will be returned to the Contractor for correction and resubmission. Refer to SECTION 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for submittal requirements for Pre-Functional Checklists, Equipment Startup Reports, and other commissioning documents.

3.3 CONTRACTORS TESTS

A. Contractor tests as required by other sections of Division 21 shall be scheduled and documented in accordance with Section 01 00 00 GENERAL REQUIREMENTS. All testing shall be incorporated into the project schedule. Contractor shall provide no less than 7 calendar days' notice of testing. The Commissioning Agent will witness selected Contractor tests at the sole discretion of the Commissioning Agent. Contractor tests shall be completed prior to scheduling Systems Functional Performance Testing.

3.4 SYSTEMS FUNCTIONAL PERFORMANCE TESTING

A. The Commissioning Process includes Systems Functional Performance Testing that is intended to test systems functional performance under steady state conditions, to test system reaction to changes in operating conditions, and system performance under emergency conditions. The Commissioning Agent will prepare detailed Systems Functional Performance Test procedures for review and approval by the COR. The Contractor shall review and comment on the tests prior to approval. The Contractor shall provide the required labor, materials, and test equipment identified in the test procedure to perform the tests. The Commissioning Agent will witness and document the testing. The Contractor shall sign the test reports to verify tests were performed. See Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS, for additional details.

3.5 TRAINING OF VA PERSONNEL

A. Training of the VA operation and maintenance personnel is required in cooperation with the COR and Commissioning Agent. Provide competent, factory authorized personnel to provide instruction to operation and maintenance personnel concerning the location, operation, and troubleshooting of the installed systems. Contractor shall submit training agendas and trainer resumes in accordance with the requirements of Section 01 91 00. The instruction shall be scheduled in coordination with the COR after submission and approval of formal training plans. Refer to Section 01 91 00 GENERAL COMMISSIONING

REQUIREMENTS and Division 21 Sections for additional Contractor training requirements.

----- END -----

SECTION 21 13 13 WET-PIPE SPRINKLER SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

A. Design, installation, and testing shall be in accordance with NFPA 13.

B. Modification of the existing sprinkler system as indicated on the drawings and as further required by these specifications. The new portions of the system shall be hydraulically designed and calculated.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Section 33 10 00, WATER UTILITIES.
- C. Section 07 84 00, FIRESTOPPING.
- D. Section 09 91 00, PAINTING.
- E. Section 22 05 23, GENERAL-DUTY VALVES FOR PLUMBING PIPING.
- F. Section 28 31 00, FIRE DETECTION AND ALARM.

1.3 DESIGN CRITERIA

- A. Design Basis Information: Provide design, materials, equipment, installation, inspection, and testing of the automatic sprinkler system in accordance with the requirements of NFPA 13.
 - Perform hydraulic calculations in accordance with NFPA 13 utilizing the Area/Density method. Do not restrict design area reductions permitted for using quick response sprinklers throughout by the required use of standard response sprinklers in the areas identified in this section.
 - 2. Sprinkler Protection: Sprinkler hazard classifications shall be in accordance with NFPA 13. The hazard classification examples of uses and conditions identified in the Annex of NFPA 13 shall be mandatory for areas not listed below. Request clarification from the Government for any hazard classification not identified. To determining spacing and sizing, apply the following coverage classifications:
 - a. Light Hazard Occupancies: Patient care, treatment, and customary access areas.

- b. Ordinary Hazard Group 1 Occupancies: Laboratories, Mechanical Equipment Rooms, Transformer Rooms, Electrical Switchgear Rooms, Electric Closets, and Repair Shops.
- c. Ordinary Hazard Group 2 Occupancies: Storage rooms, trash rooms, clean and soiled linen rooms, pharmacy and associated storage, laundry, kitchens, kitchen storage areas, retail stores, retail store storage rooms, storage areas, building management storage, boiler plants, energy centers, warehouse spaces, file storage areas for the entire area of the space up to 140 square meters (1500 square feet) and Supply Processing and Distribution (SPD).
- Hydraulic Calculations: Calculated demand including hose stream requirements shall fall no less than 10 percent below the available water supply curve.
- 4. Water Supply: the existing fire pump in the Building 17 basement is rated to provide 85 psi at a flow of 750 gpm. Current fire pump test results are not available. Contractor shall request new fire pump test results prior to developing shop drawings.
- 5. Zoning:
 - a. For each sprinkler zone provide a control valve, flow switch, and a test and drain assembly with pressure gauge. For buildings greater than two stories, provide a check valve at each control valve.
 - b. Sprinkler zones shall conform to the smoke barrier zones shown on the drawings.

1.4 SUBMITTALS

A. Submit as one package in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. Prepare detailed working drawings that are signed by a NICET Level III or Level IV Sprinkler Technician or stamped by a Registered Professional Engineer licensed in the field of Fire Protection Engineering. As the Government review is for technical adequacy only, the installer remains responsible for correcting any conflicts with other trades and building construction that arise during installation. Partial submittals will not be accepted. Material submittals shall be approved prior to the purchase or delivery to the job site. Suitably bind submittals in notebooks or binders and provide an index referencing the appropriate specification section. In addition to the hard copies, provide submittal items in Paragraphs 1.4(A)1 through 1.4(A)5 electronically in pdf format on a compact disc or as directed by the COR. All submittal documents (including drawings) shall be submitted in searchable PDF format; scanned or digitally "flattened" submittal documents will be returned without review. AutoCAD files may also be requested.

Submittals shall include, but not be limited to, the following:

- 1. Qualifications:
 - a. Provide a copy of the installing contractors state fire sprinkler and state contractor's license, as applicable.
 - b. Provide a copy of the NICET certification for the NICET Level III or Level IV Sprinkler Technician who prepared and signed the detailed working drawings unless the drawings are stamped by a Registered Professional Engineer licensed in the field of Fire Protection Engineering.
 - c. Provide documentation showing that the installer has been actively and successfully engaged in the installation of commercial automatic sprinkler systems for the past ten years.
- 2. Drawings: Submit detailed 1:100 (1/8 inch) scale (minimum) working drawings conforming to the Plans and Calculations chapter of NFPA 13. Drawings shall include graphical scales that allow the user to determine lengths when the drawings are reduced in size. Include a plan showing the piping to the water supply test location. NICET stamp shall be provided on all drawings.
- 3. Manufacturer's Data Sheets: Provide data sheets for all materials and equipment proposed for use on the system. Include listing information and installation instructions in data sheets. Where data sheets describe items in addition to those proposed to be used for the system, clearly identify the proposed items on the sheet.
- 4. Calculation Sheets:
 - a. Submit hydraulic calculation sheets in tabular form conforming to the requirements and recommendations of the Plans and Calculations chapter of NFPA 13.
- 5. Valve Charts: Provide a valve chart that identifies the location of each control valve. Coordinate nomenclature and identification of control valves with COR. Where existing nomenclature does not

exist, the chart shall include no less than the following: Tag ID No., Valve Size, Service (control valve, main drain, aux. drain, inspectors test valve, etc.), and Location.

- 6. Final Document Submittals: Provide as-built drawings, testing and maintenance instructions in accordance with the requirements in Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. In addition, submittals shall include, but not be limited to, the following:
 - a. A complete set of as-built drawings showing the installed system with the specific interconnections between the system switches and the fire alarm equipment. Provide a complete set in the formats as follows. Submit items 2 and 3 below on a compact disc or as directed by the COR.
 - 1) One full size (or size as directed by the COR) printed copy.
 - 2) One complete set in electronic pdf format.
 - One complete set in AutoCAD format and any other format as directed by the COR.
 - b. Material and Testing Certificate: Upon completion of the sprinkler system installation or any partial section of the system, including testing and flushing, provide a copy of a completed Material and Testing Certificate as indicated in NFPA 13. Certificates shall be provided to document all parts of the installation.
 - c. Operations and Maintenance Manuals that include step-by-step procedures required for system startup, operation, shutdown, and routine maintenance and testing. The manuals shall include the manufacturer's name, model number, parts list, and tools that should be kept in stock by the owner for routine maintenance, including the name of a local supplier, simplified wiring and controls diagrams, troubleshooting guide, and recommended service organization, including address and telephone number, for each item of equipment.
 - d. One paper copy of the Material and Testing Certificates and the Operations and Maintenance Manuals above shall be provided in a binder. In addition, these materials shall be provided in pdf format on a compact disc or as directed by the COR.

e. Provide one additional copy of the Operations and Maintenance Manual covering the system in a flexible protective cover and mount in an accessible location adjacent to the riser or as directed by the COR.

1.5 QUALITY ASSURANCE

- A. Installer Reliability: The installer shall possess a valid State fire sprinkler contractor and state contractor's license, as applicable. The installer shall have been actively and successfully engaged in the installation of commercial automatic sprinkler systems for the past ten years.
- B. Materials and Equipment: All equipment and devices shall be of a make and type listed by UL or approved by FM, or other nationally recognized testing laboratory for the specific purpose for which it is used. All materials, devices, and equipment shall be approved by the VA. All materials and equipment shall be free from defect. All materials and equipment shall be new unless specifically indicated otherwise on the contract drawings.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. National Fire Protection Association (NFPA):

13-19.....Installation of Sprinkler Systems
25-20....Inspection, Testing, and Maintenance of WaterBased Fire Protection Systems
101-21....Life Safety Code
170-21.....Fire Safety Symbols

C. Underwriters Laboratories, Inc. (UL):

Fire Protection Equipment Directory (Current Online)

D. Factory Mutual Engineering Corporation (FM):

Approval Guide (Current Online)

PART 2 - PRODUCTS

2.1 PIPING & FITTINGS

A. Piping and fittings for sprinkler systems shall be in accordance with NFPA 13.

- Plain-end pipe fittings with locking lugs or shear bolts are not permitted.
- Piping sizes 50 mm (2 inches) and smaller shall be black steel Schedule 40 with threaded end connections.
- Piping sizes 65 mm (2 ½ inches) and larger shall be black steel Schedule 10 with grooved connections. Grooves in Schedule 10 piping shall be rolled grooved only.
- 4. Plastic piping shall not be permitted except for drain piping.
- 5. Flexible sprinkler hose shall be FM Approved and limited to hose with threaded end fittings with a minimum inside diameter of 1-inch and a maximum length of 6-feet.

2.2 VALVES

- A. General:
 - 1. Valves shall be in accordance with NFPA 13.
 - 2. Do not use quarter turn ball valves for 50 mm (2 inch) or larger drain valves.
- B. Control Valve: The control valves shall be a listed indicating type. Control valves shall be UL Listed or FM Approved for fire protection installations. System control valve shall be rated for normal system pressure but in no case less than 175 PSI.
- C. Check Valve: Shall be of the swing type with a flanged cast iron body and flanged inspection plate.
- D. Automatic Ball Drips: Cast brass 20 mm (3/4 inch) in-line automatic ball drip with both ends threaded with iron pipe threads.

2.4 SPRINKLERS

A. All sprinklers shall be FM approved quick response in accordance with NFPA 13 and VAFPDM requirements (unless otherwise noted).

- B. Temperature Ratings: In accordance with NFPA 13 except that sprinklers in elevator shafts and elevator machine rooms shall be no less than intermediate temperature rated and sprinklers in generator rooms shall be no less than high temperature rated.
- C. Provide sprinkler guards in accordance with NFPA 13 and when the elevation of the sprinkler head is less than 7 feet 6 inches above finished floor. The sprinkler guard shall be UL listed or FM approved for use with the corresponding sprinkler.
- D. Sprinklers in areas with finished ceilings shall be recessed type, factory-painted white with white escutcheon. Sprinklers in areas without finished ceilings shall be brass.

2.5 SPRINKLER CABINET

- A. Provide the required number of sprinkler heads of all ratings and types installed, and a sprinkler wrench for each type of sprinkler in accordance with NFPA 13 in the existing sprinkler cabinet or at a location determined by the COR.
- B. Provide a list of sprinklers installed in the property in the cabinet. The list shall include the following:
 - 1. Manufacturer, model, orifice, deflector type, thermal sensitivity, and pressure for each type of sprinkler in the cabinet.
 - 2. General description of where each sprinkler is used.
 - 3. Quantity of each type present in the cabinet.
 - 4. Issue or revision date of list.

2.6 SPRINKLER SYSTEM SIGNAGE

Rigid plastic, steel or aluminum signs with white lettering on a red background with holes for easy attachment. Sprinkler system signage shall be attached to the valve or piping with chain.

2.7 SWITCHES:

- A. OS&Y Valve Supervisory Switches shall be in a weatherproof die cast/red baked enamel, oil resistant, aluminum housing with tamper resistant screws, 13 mm (1/2 inch) conduit entrance and necessary facilities for attachment to the valves. Provide two SPDT switches rated at 2.5 amps at 24 VDC.
- B. Water flow Alarm Switches: Mechanical, non-coded, non-accumulative retard and adjustable from 0 to 60 seconds minimum. Set flow switches at an initial setting between 20 and 30 seconds.

D. Valve Supervisory Switches for Ball and Butterfly Valves: May be integral with the valve.

2.8 GAUGES

Provide gauges as required by NFPA 13. Provide gauges where the normal pressure of the system is at the midrange of the gauge.

2.9 PIPE HANGERS, SUPPORTS AND RESTRAINT OF SYSTEM PIPING

Pipe hangers, supports, and restraint of system piping shall be in accordance with NFPA 13.

2.10 WALL, FLOOR AND CEILING PLATES

Provide chrome plated steel escutcheon plates.

2.12 VALVE TAGS

Engraved black filled numbers and letters not less than 15 mm (1/2 inch) high for number designation, and not less than 8 mm (1/4 inch) for service designation on 19 gage, 40 mm (1-1/2 inches) round brass disc, attached with brass "S" hook, brass chain, or nylon twist tie.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be accomplished by the licensed contractor. Provide a qualified technician, experienced in the installation and operation of the type of system being installed, to supervise the installation and testing of the system.
- B. Installation of Piping: Accurately cut pipe to measurements established by the installer and work into place without springing or forcing. In any situation where bending of the pipe is required, use a standard pipe-bending template. Conceal piping in spaces that have finished ceilings. Where ceiling mounted equipment exists, such as in operating and radiology rooms, install sprinklers so as not to obstruct the movement or operation of the equipment. Sidewall heads may need to be utilized. In stairways, locate piping as near to the ceiling as possible to prevent tampering by unauthorized personnel and to provide a minimum headroom clearance of 2250 mm (seven feet six inches). Piping shall not obstruct the minimum means of egress clearances required by NFPA 101. Pipe hangers, supports, and restraint of system piping shall be installed accordance with NFPA 13.
- C. Welding: Conform to the requirements and recommendations of NFPA 13.
- D. Drains: Provide drips and drains, including low point drains, in accordance with NFPA 13. Pipe drains to discharge at safe points

outside of the building or to sight cones attached to drains of adequate size to readily carry the full flow from each drain under maximum pressure. Do not provide a direct drain connection to sewer system or discharge into sinks. Install drips and drains where necessary and required by NFPA 13. The drain piping shall not be restricted or reduced and shall be of the same diameter as the drain collector.

- E. Supervisory Switches: Provide supervisory switches for sprinkler control valves.
- F. Waterflow Alarm Switches: Install waterflow alarm switches and valves in stairwells or other easily accessible locations.
- G. Inspector's Test Connection: Install and supply in accordance with NFPA 13, locate in a secured area, and discharge to the exterior of the building.
- H. Affix cutout disks, which are created by cutting holes in the walls of pipe for flow switches and non-threaded pipe connections to the respective waterflow switch or pipe connection near to the pipe from where they were cut.
- Provide escutcheon plates for exposed piping passing through walls, floors or ceilings.
- J. Clearances: For systems requiring seismic protection, piping that passes through floors or walls shall have penetrations sized 50 mm (2 inches) nominally larger than the penetrating pipe for pipe sizes 25 mm (1 inch) to 90 mm (3 ½ inches) and 100 mm (4 inches) nominally larger for penetrating pipe sizes 100 mm (4 inches) and larger.
- K. Sleeves: Provide for pipes passing through masonry or concrete. Provide space between the pipe and the sleeve in accordance with NFPA 13. Seal this space with a UL Listed through penetration fire stop material in accordance with Section 07 84 00, FIRESTOPPING. Where core drilling is used in lieu of sleeves, also seal space. Seal penetrations of walls, floors and ceilings of other types of construction, in accordance with Section 07 84 00, FIRESTOPPING.
- M. Provide pressure gauges at each water flow alarm switch location and at each main drain connection.
- O. Firestopping shall be provided for all penetrations of fire resistance rated construction. Firestopping shall comply with Section 07 84 00, FIRESTOPPING.

- Q. Painting of Pipe: In finished areas where walls and ceilings have been painted, paint primed surfaces with two coats of paint to match adjacent surfaces, except paint valves and operating accessories with two coats of gloss red enamel. Exercise care to avoid painting sprinklers. Painting of sprinkler systems above suspended ceilings and in crawl spaces is not required. Painting shall comply with Section 09 91 00, PAINTING. Any painted sprinkler shall be replaced with a new sprinkler.
- R. Sprinkler System Signage: Provide rigid sprinkler system signage in accordance with NFPA 13 and NFPA 25. Sprinkler system signage shall include, but not limited to, the following:
 - 1. Identification Signs:
 - a. Provide signage for each control valve, drain valve, sprinkler cabinet, and inspector's test.
 - b. Provide valve tags for each operable valve. Coordinate nomenclature and identification of operable valves with COR. Where existing nomenclature does not exist, the Tag Identification shall include no less than the following: (FP-B-F/SZ-#) Fire Protection, Building Number, Floor Number/Smoke Zone (if applicable), and Valve Number. (E.g., FP-500-1E-001) Fire Protection, Building 500, First Floor East, Number 001.)
 - 2. Instruction/Information Signs:
 - a. Provide signage for each control valve to indicate valve function and to indicate what system is being controlled.
 - b. Provide signage indicating the number and location of low point drains.
 - 3. Hydraulic Placards:
 - a. Provide signage indicating hydraulic design information. The placard shall include location of the design area, discharge densities, required flow and residual pressure at the base of riser, occupancy classification, hose stream allowance, flow test information, and installing contractor. Locate hydraulic placard information signs at each alarm check valve.
- S. Repairs: Repair damage to the building or equipment resulting from the installation of the sprinkler system by the installer at no additional expense to the Government.

T. Interruption of Service: There shall be no interruption of the existing sprinkler protection, water, electric, or fire alarm services without prior permission of the Contracting Officer. Contractor shall develop an interim fire protection program where interruptions involve occupied spaces. Request in writing at least one week prior to the planned interruption.

3.2 INSPECTION AND TEST

- A. Preliminary Testing: Flush newly installed systems prior to performing hydrostatic tests in order to remove any debris which may have been left as well as ensuring piping is unobstructed. Hydrostatically test system, as specified in NFPA 13, in the presence of the Contracting Officers Representative (COR) or his designated representative. Test and flush underground water line prior to performing these hydrostatic tests.
- B. Final Inspection and Testing: Subject system to tests in accordance with NFPA 13, and when all necessary corrections have been accomplished, advise COR to schedule a final inspection and test. Connection to the fire alarm system shall have been in service for at least ten days prior to the final inspection, with adjustments made to prevent false alarms. Furnish all instruments, labor and materials required for the tests and provide the services of the installation foreman or other competent representative of the installer to perform the tests. Correct deficiencies and retest system as necessary, prior to the final acceptance. Include the operation of all features of the systems under normal operations in test

3.3 INSTRUCTIONS

Furnish the services of a competent instructor for not less than two hours for instructing personnel in the operation and maintenance of the system, on the dates requested by the COR.

- - - E N D - - -

SECTION 21 13 16 DRY-PIPE SPRINKLER SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Design, installation and testing shall be in accordance with NFPA 13.
- B. The design and installation of a hydraulically calculated automatic dry-pipe sprinkler system complete and ready for operation, for those locations as shown on the contract drawings.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Section 33 10 00, WATER UTILITIES.
- C. Section 07 84 00, FIRESTOPPING.
- D. Section 09 91 00, PAINTING.
- E. Section 22 05 23, GENERAL-DUTY VALVES FOR PLUMBING PIPING.
- F. Section 28 31 00, FIRE DETECTION AND ALARM.

1.3 DESIGN CRITERIA

- A. Design Basis Information: Provide design, materials, equipment, installation, inspection, and testing of the automatic sprinkler system
 - in accordance with the requirements of NFPA 13.
 - Perform hydraulic calculations in accordance with NFPA 13 utilizing the Area/Density method, including all applicable design area increases.
 - 2. Sprinkler Protection: Sprinkler hazard classifications shall be in accordance with NFPA 13. The hazard classification examples of uses and conditions identified in the Annex of NFPA 13 shall be mandatory. Request clarification from the Government for any hazard classification not identified.
 - 3. Dry-pipe Sprinkler System Volume:
 - a. Contractor shall indicate the calculated volume of each system on the sprinkler system shop drawings.
 - b. For dry-pipe sprinkler systems with volumes greater than 1893 L (500 gal) up to 2839 L (750 gal), provide a quick opening device unless water delivery time calculations indicate the quick opening devices is not required.

- c. For dry-pipe sprinkler systems with volumes greater than 2839 L (750 gal), provide calculations for water delivery time. Calculations shall demonstrate compliance with NFPA 13.
- 5. Hydraulic Calculations: Calculated demand including hose stream requirements shall fall no less than 10 percent below the available water supply curve.
- 6. Water Supply: The existing fire pump in the Building 17 basement is rated to provide 85 psi at a flow of 750 gpm. Current fire pump test results are not available. Contractor shall request new fire pump test results prior to developing shop drawings.

1.4 SUBMITTALS

- A. Submit as one package in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. Prepare detailed working drawings that are signed by a NICET Level III or Level IV Sprinkler Technician or stamped by a Registered Professional Engineer licensed in the field of Fire Protection Engineering. As the Government review is for technical adequacy only, the installer remains responsible for correcting any conflicts with other trades and building construction that arise during installation. Partial submittals will not be accepted. Material submittals shall be approved prior to the purchase or delivery to the job site. Suitably bind submittals in notebooks or binders and provide an index referencing the appropriate specification section. In addition to the hard copies, provide submittal items in Paragraphs 1.4(A)1 through 1.4(A)5 electronically in pdf format on a compact disc or as directed by the COR. Submittals shall include, but not be limited to, the following:
 - 1. Qualifications:
 - a. Provide a copy of the installing contractors state fire sprinkler and state contractor's license, as applicable.
 - b. Provide a copy of the NICET certification for the NICET Level III or Level IV Sprinkler Technician who prepared and signed the detailed working drawings unless the drawings are stamped by a Registered Professional Engineer licensed in the field of Fire Protection Engineering.

- c. Provide documentation showing that the installer has been actively and successfully engaged in the installation of commercial automatic sprinkler systems for the past ten years.
- 2. Drawings: Submit detailed 1:100 (1/8 inch) scale (minimum) working drawings conforming to the Plans and Calculations chapter of NFPA 13. Drawings shall include graphical scales that allow the user to determine lengths when the drawings are reduced in size. Include a plan showing the piping to the water supply test location.
- 3. Manufacturer's Data Sheets: Provide data sheets for all materials and equipment proposed for use on the system. Include listing information and installation instructions in data sheets. Where data sheets describe items in addition to those proposed to be used for the system, clearly identify the proposed items on the sheet.
- 4. Calculation Sheets:
 - a. Submit hydraulic calculation sheets in tabular form conforming to the requirements and recommendations of the Plans and Calculations chapter of NFPA 13.
 - b. For dry-pipe sprinkler systems with volumes more than 2838 L (750 gal), submit calculations for dry-pipe system water delivery time in accordance with NFPA 13.
- 5. Valve Charts: Provide a valve chart that identifies the location of each control valve. Coordinate nomenclature and identification of control valves with COR. Where existing nomenclature does not exist, the chart shall include no less than the following: Tag ID No., Valve Size, Service (control valve, main drain, aux. drain, inspectors test valve, etc.), and Location.
- 6. Final Document Submittals: Provide as-built drawings, testing and maintenance instructions in accordance with the requirements in Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. In addition, submittals shall include, but not be limited to, the following:
 - a. A complete set of as-built drawings showing the installed system with the specific interconnections between the system switches and the fire alarm equipment. Provide a complete set in the formats as follows. Submit items 2 and 3 below on a compact disc or as directed by the COR.

- 1) One full size (or size as directed by the COR) printed copy.
- 2) One complete set in electronic pdf format.
- 3) One complete set in AutoCAD format or a format as directed by the COR.
- b. Material and Testing Certificate: Upon completion of the sprinkler system installation or any partial section of the system, including testing and flushing, provide a copy of a completed Material and Testing Certificate as indicated in NFPA 13. Certificates shall be provided to document all parts of the installation.
- c. Operations and Maintenance Manuals that include step-by-step procedures required for system startup, operation, shutdown, and routine maintenance and testing. The manuals shall include the manufacturer's name, model number, parts list, and tools that should be kept in stock by the owner for routine maintenance, including the name of a local supplier, simplified wiring and controls diagrams, troubleshooting guide, and recommended service organization, including address and telephone number, for each item of equipment.
- d. One paper copy of the Material and Testing Certificates and the Operations and Maintenance Manuals above shall be provided in a binder. In addition, these materials shall be provided in pdf format on a compact disc or as directed by the COR.
- e. Provide one additional copy of the Operations and Maintenance Manual covering the system in a flexible protective cover and mount in an accessible location adjacent to the riser or as directed by the COR.

1.5 QUALITY ASSURANCE

- A. Installer Reliability: The installer shall possess a valid State of PA fire sprinkler contractor's license. The installer shall have been actively and successfully engaged in the installation of commercial automatic sprinkler systems for the past ten years.
- B. Materials and Equipment: All equipment and devices shall be of a make and type listed by UL or approved by FM, or other nationally recognized testing laboratory for the specific purpose for which it is used. All materials, devices, and equipment shall be approved by the VA. All materials and equipment shall be free from defect. All materials and

equipment shall be new unless specifically indicated otherwise on the contract drawings.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. National Fire Protection Association (NFPA):

13-[2019].....Installation of Sprinkler Systems
25-[2020]Inspection, Testing, and Maintenance of WaterBased Fire Protection Systems
101-[2021]....Life Safety Code

170-[2021].....Fire Safety Symbols

- C. Underwriters Laboratories, Inc. (UL): Fire Protection Equipment Directory [Current Online]
- D. Factory Mutual Engineering Corporation (FM): Approval Guide [Current Online]

PART 2 PRODUCTS

2.1 GENERAL

Dry-pipe sprinkler systems shall comply with the requirements of NFPA 13.

2.2 PIPING & FITTINGS

- A. Piping and fittings for sprinkler systems shall be in accordance with NFPA 13.
 - Plain-end pipe fittings with locking lugs or shear bolts are not permitted.
 - 2. Piping sizes 50 mm (2 inches) and smaller shall be black steel Schedule 40 with threaded end connections.
 - Piping sizes 65 mm (2 ½ inches) and larger shall be black steel Schedule 10 with grooved connections. Grooves in Schedule 10 piping shall be rolled grooved only.

2.3 VALVES

A. General:

- 1. Valves shall be in accordance with NFPA 13.
- Do not use quarter turn ball valves for 50 mm (2 inch) or larger drain valves.

- An accelerator my be required to comply with the provisions of NFPA
 13. Contractor shall provide system volume and trip test times with shop drawing submittals.
- B. Control Valve:
 - 1. Shall be a manually operated outside stem and yoke (OS&Y) type.
- C. Dry-pipe Valve:
 - 1. Shall be a latching differential type.
 - Shall be complete with trim piping, valves, fittings, pressure gauges, priming water fill cup, velocity drip check, drip cup, and other ancillary components as required for proper operation.
 - For dry-pipe sprinkler systems with volumes more than 1893 L (500 gal), provide a quick opening device unless water delivery time calculations have proven no quick opening device is required.
 - 4. Shall be capable of external reset.
- D. Check Valve:
 - Shall be of the swing type with a flanged cast iron body and flanged inspection plate.

E. Provide an inspector's test and drain assembly, with drum drip, in a convenient location for inspection, testing, and maintenance.

2.5 SPRINKLERS

- A. All sprinklers shall be FM approved. All sprinklers shall be either upright type, dry pendent type, or dry sidewall type. Provide FM Approved quick response sprinklers in all areas, except that standard response sprinklers shall be provided in freezers, refrigerators, elevator hoistways, elevator machine rooms, and generator rooms.
- B. Temperature Ratings: In accordance with NFPA 13 except that sprinklers in elevator shafts and elevator machine rooms shall be no less than intermediate temperature rated and sprinklers in generator rooms shall be no less than high temperature rated.
- C. Provide sprinkler guards in accordance with NFPA 13 and when the elevation of the head is less than 7 feet 6 inches above finished floor. The sprinkler guard shall be listed or approved for use with the corresponding sprinkler.
- D. Sprinklers shall have a corrosion-resistant finish.

2.7 SUPERVISORY AIR SYSTEM

- A. Provide an air supply system in accordance with NFPA 13 and the manufacturers' requirements. The air supply system shall be sized to pressurize the sprinkler system to 275 kPa (40 psi) within 30 minutes.
- B. Air Compressor: Compressor shall be tank mounted, single stage oil-free type, air-cooled, electric-motor driven, equipped with a check valve, shutoff valve, automatic drain on drip leg, and pressure switch for automatic starting and stopping. Pressure switch settings to start and stop the compressor shall be as required by system conditions. A safety relief valve shall be provided.

2.8 AIR PRESSURE MAINTENANCE DEVICE

Air Pressure Maintenance Device: Air pressure maintenance device shall be UL listed or FM approved and shall automatically reduce supply air pressure to provide the pressure required to be maintained in the piping system. The device shall have a cast bronze body and valve housing complete with diaphragm assembly, spring, filter, ball check to prevent backflow, 1.6 mm (1/16 inch) restriction to prevent rapid pressurization of the system, and adjustment screw. The device shall be capable of reducing an inlet pressure of up to 680 kPa (175 psig) to a fixed outlet pressure adjustable to 70 kPa (10 psig).

2.10 SPRINKLER SYSTEM SIGNAGE

Rigid plastic, steel or aluminum signs with white lettering on a red background with holes for easy attachment. Sprinkler system signage shall be attached to the valve or piping with chain.

2.11 SWITCHES

- A. OS&Y Valve Supervisory Switches shall be in a weatherproof die cast/red baked enamel, oil resistant, aluminum housing with tamper resistant screws, 13 mm (1/2 inch) conduit entrance and necessary facilities for attachment to the valves. Provide two SPDT switches rated at 2.5 amps at 24 VDC.
- B. Alarm Pressure Switches: Activation by any flow of water equal to or in excess of the discharge from one sprinkler. The alarm pressure switch shall be UL Listed or Factory Mutual Approved for the application in which it is used. Activation of the alarm pressure switch shall cause an alarm on the fire alarm system control unit.
- C. High/Low Pressure Supervisory Switches: The pressure switch shall be UL Listed or FM Approved and contain two single pole double throw

contacts. Each switch shall be adjustable from 70 to 414 kPa (10 to 60 psi). The low pressure switch shall supervise pressure in the system and shall be set to activate at 70 kPa (10 psi) above the dry-pipe valve trip point pressure. The high pressure switch shall supervise pressure in the system and shall be set to activate at 70 kPa (10 psi) above the normal dry-pipe supervisory pressure. Activation of either high or low pressure switch shall cause a supervisory alarm on the fire alarm system control unit.

2.12 GAUGES

Provide gauges as required by NFPA 13. Provide gauges where the normal pressure of the system is at the midrange of the gauge.

2.13 PIPE HANGERS, SUPPORTS AND RESTRAINT OF SYSTEM PIPING

Pipe hangers, supports, and restraint of system piping shall be in accordance with NFPA 13.

2.14 WALL, FLOOR AND CEILING PLATES

Provide chrome plated steel escutcheon plates.

2.15 VALVE TAGS

Engraved black filled numbers and letters not less than 15 mm (1/2 inch) high for number designation, and not less than 8 mm (1/4 inch) for service designation on 19 gage, 40 mm (1-1/2 inches) round brass disc, attached with brass "S" hook, brass chain, or nylon twist tie.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be accomplished by the licensed contractor. Provide a qualified technician, experienced in the installation and operation of the type of system being installed, to supervise the installation and testing of the system.
- B. Installation of Piping: Accurately cut pipe to measurements established by the installer and work into place without springing or forcing. In any situation where bending of the pipe is required, use a standard pipe-bending template. Conceal piping in spaces that have finished ceilings. In stairways, locate piping as near to the ceiling as possible to prevent tampering by unauthorized personnel and to provide a minimum headroom clearance of 2250 mm (seven feet six inches). Piping shall not obstruct the minimum means of egress clearances required by NFPA 101. Pipe hangers, supports, and restraint of system piping, shall be installed accordance with NFPA 13.

- C. Welding: Conform to the requirements and recommendations of NFPA 13.
- D. Pitching of Pipe: Conform to the requirements of NFPA 13.
- E. Drains: Provide drips and drains, including low point drains, in accordance with NFPA 13. Pipe drains to discharge at safe points outside of the building. Do not provide a direct drain connection to sewer system or discharge into sinks.
- F. Supervisory Switches: Provide supervisory switches for sprinkler control valves to monitor closure of the valve and for high and low system supervisory air pressure to monitor abnormal system pressures.
- G. Pressure Alarm Switches: Install alarm pressure switches in easily accessible locations.
- H. Inspector's Test Connection: Install and supply in conformance with NFPA 13, and discharge to the exterior of the building. Locate test connection in an area not susceptible to mechanical damage. For drypipe sprinkler systems more than 2800 L (750 gal), provide the number of equivalent sprinkler outlets as calculated for water delivery time in accordance with NFPA 13.
- I. Affix cutout disks, which are created by cutting holes in the walls of pipe for non-threaded pipe connections, to the respective pipe connection near to the pipe from where they were cut.
- J. Provide escutcheon plates for exposed piping passing through walls, floors or ceilings.
- K. Clearances: For systems requiring seismic protection, piping that passes through floors or walls shall have penetrations sized 50 mm (2 inches) nominally larger than the penetrating pipe for pipe sizes 25 mm (1 inch) to 90 mm (3 ½ inches) and 100 mm (4 inches) nominally larger for penetrating pipe sizes 100 mm (4 inches) and larger.
- L. Sleeves: Provide for pipes passing through masonry or concrete. Provide space between the pipe and the sleeve in accordance with NFPA 13. Seal this space with a UL Listed through penetration fire stop material in accordance with Section 07 84 00, FIRESTOPPING. Where core drilling is used in lieu of sleeves, also seal space around penetrations. Seal penetrations of walls, floors and ceilings of other types of construction, in accordance with Section 07 84 00, FIRESTOPPING.
- N. Firestopping shall be provided for all penetrations of fire resistance rated construction. Firestopping shall comply with Section 07 84 00, FIRESTOPPING.

- O. Painting of Pipe: In finished areas where walls and ceilings have been painted, paint primed surfaces with two coats of paint to match adjacent surfaces, except paint valves and operating accessories with two coats of gloss red enamel. Exercise care to avoid painting sprinklers. Painting of sprinkler systems above suspended ceilings and in crawl spaces is not required. Painting shall comply with Section 09 90 00, PAINTING. Any painted sprinkler shall be replaced with a new sprinkler.
- Q. Sprinkler System Signage: Provide rigid sprinkler system signage in accordance with NFPA 13 and NFPA 25. Sprinkler system signage shall include, but not limited to, the following:
 - 1. Identification Signs:
 - a. Provide signage for each control valve, drain valve, sprinkler cabinet, and inspector's test.
 - b. Provide valve tags for each operable valve. Coordinate nomenclature and identification of operable valves with COR. Where existing nomenclature does not exist, the Tag Identification shall include no less than the following: (FP-B-F/SZ-#) Fire Protection, Building Number, Floor Number/Smoke Zone (if applicable), and Valve Number. (E.g., FP-500-1E-001) Fire Protection, Building 500, First Floor East, Number 001.)
 - 2. Instruction/Information Signs:
 - a. Provide signage for each control valve to indicate valve function and to indicate what system is being controlled.
 - b. Provide signage indicating the number and location of low point drains.
 - 3. Hydraulic Placards:
 - a. Provide signage indicating hydraulic design information. The placard shall include location of the design area, discharge densities, required flow and residual pressure at the base of riser, occupancy classification, hose stream allowance, flow test information, and installing contractor. Locate hydraulic placard information signs at each dry-pipe valve.
- R. Repairs: Repair damage to the building or equipment resulting from the installation of the sprinkler system by the installer at no additional expense to the Government.

S. Interruption of Service: There shall be no interruption of the existing sprinkler protection, water, electric, or fire alarm services without prior permission of the Contracting Officer Representative. Contractor shall develop an interim fire protection program where interruptions involve in occupied spaces. Request in writing at least one week prior to the planned interruption.

3.2 INSPECTION AND TEST

- A. Preliminary Testing: Flush newly installed systems prior to performing tests in order to remove any debris which may have been left as well as ensuring piping is unobstructed. Hydrostatically test system, pneumatically test system, test air compressor fill time to operating pressure within 30 minutes, and trip test system as specified in NFPA 13, in the presence of the Contracting Officers Representative (COR) or their designated representative. For dry-pipe sprinkler systems with a quick-opening device, the system shall be trip tested with the quick-opening device functioning and with the quick-opening device disabled. Record the time to water delivery for each test. Demonstrate pitch of pipe is in compliance with NFPA 13.
- B. Final Inspection and Testing: Subject system to tests in accordance with NFPA 13, and when all necessary corrections have been accomplished, advise COR to schedule a final inspection and test. Connection to the fire alarm system shall have been in service for at least ten days prior to the final inspection, with adjustments made to prevent false alarms. Furnish all instruments, labor and materials required for the tests and provide the services of the installation foreman or other competent representative of the installer to perform the tests. Correct deficiencies and retest system as necessary, prior to the final inspection and testing. Include the operation of all features of the systems under normal operations in test. At the conclusion of final inspection and testing, blow out dry-pipe system piping using compressed air. Verify piping is fully drained, including low point drains.

3.3 INSTRUCTIONS

Furnish the services of a competent instructor for not less than two hours for instructing personnel in the operation and maintenance of the system on the dates requested by the COR.

> DRY-PIPE SPRINKLER SYSTEMS 21 13 16 - 11

- - - E N D - - -

SECTION 22 05 11 COMMON WORK RESULTS FOR PLUMBING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section shall apply to all sections of Division 22.
- B. Definitions:
- 1. Exposed: Piping and equipment exposed to view in finished rooms.
- 2. Exterior: Piping and equipment exposed to weather be it temperature, humidity, precipitation, wind or solar radiation.
- C. Abbreviations/Acronyms:
- 1. A/E: Architect/Engineer
- 2. AFF: Above Finish Floor
- 3. AFG: Above Finish Grade
- 4. ASHRAE: American Society of Heating Refrigeration, Air Conditioning Engineers
- 5. ASJ: All Service Jacket
- 6. ASME: American Society of Mechanical Engineers
- 7. ASPE: American Society of Plumbing Engineers
- 8. CI: Cast Iron
- 9. CLR: Color
- 10. DCW: Domestic Cold Water
- 11. DFU: Drainage Fixture Units
- 12. DHW: Domestic Hot Water
- 13. DHWS: Domestic How Water Supply
- 14. DN: Diameter Nominal
- 15. DWG: Drawing
- 16. DWH: Domestic Water Heater
- 17. DWS: Domestic Water Supply
- 18. DWV: Drainage, Waste and Vent
- 19. EL: Elevation
- 20. F: Fahrenheit
- 21. FD: Floor Drain
- 22. FED: Federal
- 23. FG: Fiberglass
- 24. FNPT: Female National Pipe Thread

VA Project No. 595-668 Lebanon VAMC AE Works Project No. VLEB-010 New Entryway for Building 17 BID DOCUMENTS 09-01-20 25. FFSS: VA Construction & Facilities Management, Facility Standards Service 26. FU: Fixture Units 27. GAL: Gallon 28. GPD: Gallons per Day 29. GPH: Gallons per Hour 30. GPM: Gallons per Minute 31. ID: Inside Diameter 32. IE: Invert Elevation 33. INV: Invert 34. IPC: International Plumbing Code 35. IPS: Iron Pipe Size 36. MAWP: Maximum Allowable Working Pressure 37. MAX: Maximum 38. MBH: 1000 Btu per Hour 39. NPTF: National Pipe Thread Female 40. NPS: Nominal Pipe Size 41. NPT: Nominal Pipe Thread 42. NTS: Not to Scale 43. PDI: Plumbing and Drainage Institute 44. SPEC: Specification 45. SQFT/SF: Square Feet 46. STD: Standard 47. TYP: Typical 48. V: Vent 49. V: Volt 50. VA: Veterans Administration 51. VA CFM: VA Construction & Facilities Management 52. VA CFM CSS: VA Construction & Facilities Management, Consulting Support Service 53. VTR: Vent through Roof 54. W: Waste 1.2 RELATED WORK A. Section 01 00 00, GENERAL REQUIREMENTS. B. Section 01 33 23, SHOP DRAWINGS AND PRODUCT DATA. C. Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT.

D. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.

- E. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- F. Section 07 60 00, FLASHING AND SHEET METAL: Flashing for Wall and Roof Penetrations.
- G. Section 07 84 00, FIRESTOPPING.
- H. Section 07 92 00, JOINT SEALANTS.
- I. Section 09 91 00, PAINTING.
- J. Section 22 07 11, PLUMBING INSULATION.
- K. Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.
- L.

1.3 APPLICABLE PUBLICATIONS

A. The publications listed below shall form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. Where conflicts occur these specifications and the VHA standard will govern.

B. American Society of Mechanical Engineers (ASME):SME Boiler and Pressure Vessel Code

C. International Code Council, (ICC): IBC-2018.....International Building Code IPC-2018.....International Plumbing Code D. Manufacturers Standardization Society (MSS) of the Valve and Fittings Industry, Inc: SP-58-2018.....Pipe Hangers and Supports - Materials, Design, Manufacture, Selection, Application and Installation E. Military Specifications (MIL): P-21035B..... Galvanizing Repair (Metric) F. National Fire Protection Association (NFPA): G. NSF International (NSF): 5-2019.....Water Heaters 61-2019.....Drinking Water System Components - Health Effects 372-2016..... Drinking Water System Components - Lead Content H. Department of Veterans Affairs (VA): PG-18-102014(R18).....Plumbing Design Manual

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS AND PRODUCT DATA.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 05 11, COMMON WORK RESULTS FOR PLUMBING", with applicable paragraph identification.
- C. the project is phased, contractors shall submit complete phasing plan/schedule with manpower levels prior to commencing work. The phasing plan shall be detailed enough to provide milestones in the process that can be verified.
- D. Contractor shall make all necessary field measurements and investigations to assure that the equipment and assemblies will meet contract requirements, and all equipment that requires regular maintenance, calibration, etc are accessable from the floor or permanent work platform. It is the Contractor's responsibility to ensure all submittals meet the VA specifications and requirements and it is assumed by the VA that all submittals do meet the VA specifications unless the Contractor has requested a variance in writing and approved by COR prior to the submittal. If at any time during the project it is found that any item does not meet the VA specifications and there was no variance approval the Contractor shall correct at no additional cost or time to the Government even if a submittal was approved.
- E. If equipment is submitted which differs in arrangement from that shown, provide documentation proving equivalent performance, design standards and drawings that show the rearrangement of all associated systems. Additionally, any impacts on ancillary equipment or services such as foundations, piping, and electrical shall be the Contractor's responsibility to design, supply, and install at no additional cost or time to the Government. VA approval will be given only if all features of the equipment and associated systems, including accessibility, are equivalent to that required by the contract.

- F. Prior to submitting shop drawings for approval, Contractor shall certify in writing that manufacturers of all major items of equipment have each reviewed drawings and specifications, and have jointly coordinated and properly integrated their equipment and controls to provide a complete and efficient installation.
- G. Submittals and shop drawings for interdependent items, containing applicable descriptive information, shall be furnished together and complete in a group. Coordinate and properly integrate materials and equipment in each group to provide a completely compatible and efficient installation. Final review and approvals will be made only by groups.
- H. Manufacturer's Literature and Data including: Manufacturer's literature shall be submitted under the pertinent section rather than under this section.
- 1. Electric data will be submitted with the equipment.
- 2. Equipment and materials identification.
- 3. Firestopping materials.
- 4. Hangers, inserts, supports and bracing. Provide load calculations for variable spring and constant support hangers.
- 5. Wall, floor, and ceiling plates.
- I. Coordination/Shop Drawings:
- 1. Submit complete consolidated and coordinated shop drawings for all new systems, and for existing systems that are in the same areas.
- 2. The coordination/shop drawings shall include plan views, elevations and sections of all systems and shall be on a scale of not less than 1:32 (3/8-inch equal to 1 foot). Clearly identify and dimension the proposed locations of the principal items of equipment. The drawings shall clearly show locations and adequate clearance for all equipment, piping, valves, control panels and other items. Show the access means for all items requiring access for operations and maintenance. Provide detailed coordination/shop drawings of all piping and duct systems. The drawings should include all lockout/tagout points for all energy/hazard sources for each piece of equipment. Coordinate lockout/tagout procedures and practices with local VA requirements.
- 3. Do not install equipment and piping until coordination/shop drawings have been approved.

- 4. In addition, for plumbing systems, provide details of the following:
 - a. Interstitial space.
 - b. Hangers, inserts, supports, and bracing.
 - c. Pipe sleeves.
 - d. Duct or equipment penetrations of floors, walls, ceilings, or roofs.
- J. Plumbing Maintenance Data and Operating Instructions:
- Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Article, INSTRUCTIONS, for systems and equipment.
- Complete operating and maintenance manuals including wiring diagrams, technical data sheets, information for ordering replacement parts, and troubleshooting guide:
 - a. Include complete list indicating all components of the systems.
 - b. Include complete diagrams of the internal wiring for each item of equipment.
 - c. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.
- 3. Provide a listing of recommended replacement parts for keeping in stock supply, including sources of supply, for equipment. Include in the listing belts for equipment: Belt manufacturer, model number, size and style, and distinguished whether of multiple belt sets.
- K. Provide copies of approved plumbing equipment submittals to the TAB and Commissioning Subcontractor.
- L. Completed System Readiness Checklist provided by the CxA and completed by the Contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 22 08 00 COMMISSIONING OF PLUMBING SYSTEMS.
 - M. Submit training plans, trainer qualifications and instructor qualifications in accordance with the requirements of Section 22 08 00 COMMISSIONING OF PLUMBING SYSTEMS.

1.5 QUALITY ASSURANCE

A. Mechanical, electrical, and associated systems shall be safe, reliable, efficient, durable, easily and safely operable and maintainable, easily and safely accessible, and in compliance with applicable codes as specified. The systems shall be comprised of high quality institutional-class and industrial-class products of

manufacturers that are experienced specialists in the required product lines. All construction firms and personnel shall be experienced and qualified specialists in industrial and institutional plumbing.

- B. Products Criteria:
- Standard Products: Material and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture, supply and servicing of the specified products for at least 5 years. However, digital electronics devices, software and systems such as controls, instruments, computer work station, shall be the current generation of technology and basic design that has a proven satisfactory service record of at least 5 years.
- 2. Equipment Service: There shall be permanent service organizations, authorized and trained by manufacturers of the equipment supplied, located within 160 km (100 miles) of the project. These organizations shall come to the site and provide acceptable service to restore operations within 4 hours of receipt of notification by phone, e-mail or fax in event of an emergency, such as the shut-down of equipment; or within 24 hours in a non-emergency. Names, mail and e-mail addresses and phone numbers of service organizations providing service under these conditions for (as applicable to the project): pumps, compressors, water heaters, critical instrumentation, computer workstation and programming shall be submitted for project record and inserted into the operations and maintenance manual.
- 3. All items furnished shall be free from defects that would adversely affect the performance, maintainability and appearance of individual components and overall assembly.
- 4. The products and execution of work specified in Division 22 shall conform to the referenced codes and standards as required by the specifications. Local codes and amendments enforced by the local code official shall be enforced, if required by local authorities such as the natural gas supplier. If the local codes are more stringent, then the local code shall apply. Any conflicts shall be brought to the attention of the Contracting Officers Representative (COR).

- 5. Multiple Units: When two or more units of materials or equipment of the same type or class are required, these units shall be of the same manufacturer and model number, or if different models are required they shall be of the same manufacturer and identical to the greatest extent possible (i.e., same model series).
- Assembled Units: Performance and warranty of all components that make up an assembled unit shall be the responsibility of the manufacturer of the completed assembly.
- 7. Nameplates: Nameplate bearing manufacturer's name or identifiable trademark shall be securely affixed in a conspicuous place on equipment, or name or trademark cast integrally with equipment, stamped or otherwise permanently marked on each item of equipment.
- Asbestos products, equipment or materials containing asbestos is prohibited.
- C. Manufacturer's Recommendations: Where installation procedures or any part thereof are required to be in accordance with the recommendations of the manufacturer of the material being installed, printed copies of these recommendations shall be furnished to the COR prior to installation. Installation of the item will not be allowed to proceed until the recommendations are received. Failure to furnish these recommendations can be cause for rejection of the material.
- D. Execution (Installation, Construction) Quality:
- All items shall be applied and installed in accordance with manufacturer's written instructions. Conflicts between the manufacturer's instructions and the contract documents shall be referred to the COR for resolution. Printed copies or electronic files of manufacturer's installation instructions shall be provided to the COR at least 10 working days prior to commencing installation of any item.
- 2. All items that require access, such as for operating, cleaning, servicing, maintenance, and calibration, shall be easily and safely accessible by persons standing at floor level, or standing on permanent platforms, without the use of portable ladders. Examples of these items include but are not limited to: all types of valves, filters and strainers, transmitters, and control devices. Prior to

commencing installation work, refer conflicts between this requirement and contract documents to COR for resolution. Failure of the Contractor to resolve or call attention to any discrepancies or deficiencies to the COR will result in the Contractor correcting at no additional cost or time to the Government.

- 3. Complete layout drawings shall be required by Paragraph, SUBMITTALS. Construction work shall not start on any system until the layout drawings have been approved by VA.
- 4. Installer Qualifications: Installer shall be licensed and shall provide evidence of the successful completion of at least five projects of equal or greater size and complexity. Provide tradesmen skilled in the appropriate trade.
- 5. Workmanship/craftsmanship will be of the highest quality and standards. The VA reserves the right to reject any work based on poor quality of workmanship this work shall be removed and done again at no additional cost or time to the Government.
- E. Upon request by Government, provide lists of previous installations for selected items of equipment. Include contact persons who will serve as references, with current telephone numbers and e-mail addresses.
- F. Guaranty: Warranty of Construction, FAR clause 52.246-21.
- G. Plumbing Systems: IPC, International Plumbing Code. Unless otherwise required herein, perform plumbing work in accordance with the latest version of the IPC. For IPC codes referenced in the contract documents, advisory provisions shall be considered mandatory, the word "should" shall be interpreted as "shall". Reference to the "code official" or "owner" shall be interpreted to mean the COR.
- H. Cleanliness of Piping and Equipment Systems:
- Care shall be exercised in the storage and handling of equipment and piping material to be incorporated in the work. Debris arising from cutting, threading and welding of piping shall be removed.
- Piping systems shall be flushed, blown or pigged as necessary to deliver clean systems.
- 3. The interior of all tanks shall be cleaned prior to delivery and beneficial use by the Government unless same procedure is performed by manufacturer of same equipment. All piping shall be tested in accordance with the specifications and the International Plumbing

Code (IPC). All filters, strainers, fixture faucets shall be flushed of debris prior to final acceptance.

 Contractor shall be fully responsible for all costs, damage, and delay arising from failure to provide clean systems.

1.6 DELIVERY, STORAGE AND HANDLING

- A. Protection of Equipment:
- Equipment and material placed on the job site shall remain in the custody of the Contractor until phased acceptance, whether or not the Government has reimbursed the Contractor for the equipment and material. The Contractor is solely responsible for the protection of such equipment and material against any damage or theft.
- Damaged equipment shall be replaced with an identical unit as determined and directed by the COR. Such replacement shall be at no additional cost or additional time to the Government.
- 3. Interiors of new equipment and piping systems shall be protected against entry of foreign matter. Both inside and outside shall be cleaned before painting or placing equipment in operation.
- Existing equipment and piping being worked on by the Contractor shall be under the custody and responsibility of the Contractor and shall be protected as required for new work.
- 5.

1.7 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, VA approved substitutions and construction revisions shall be in electronic version on CD or DVD as discussed, coordinated and approved by the VA and inserted into a three-ring binder. All aspects of system operation and maintenance procedures, including applicable piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any

special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.

- C. The installing Contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. Should the installing Contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement. Provide record drawings as follows:
- 1. Red-lined, hand-marked drawings are to be provided, with one paper copy and a scanned PDF version of the hand-marked drawings provided on CD or DVD as discussed, coordinated and approved by the VA.Asbuilt drawings are to be provided, with a copy of them on AutoCAD version provided on CD or DVD as coordinated, discussed and approved by the VA. The CAD drawings shall use multiple line layers with a separate individual layer for each system.
- 2. As-built drawings are to be provided, with a copy of them in threedimensional Building Information Modeling (BIM) software appropriate version provided on CD or DVD as coordinated, discussed and approved by the VA.
- D. The as-built drawings shall indicate the location and type of all lockout/tagout points for all energy sources for all equipment and pumps to include breaker location and numbers, valve tag numbers, etc. Coordinate lockout/tagout procedures and practices with local VA requirements.
- E. Certification documentation shall be provided to COR 21 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and provide documentation/certification that all results of tests were within limits specified. Test results shall contain written sequence of test procedure with written test results annotated at each step along with the expected outcome or setpoint. The results shall include all readings, including but not limited to data on device (make, model and performance characteristics), normal pressures,

switch ranges, trip points, amp readings, and calibration data to include equipment serial numbers or individual identifications, etc.

1.8 JOB CONDITIONS - WORK IN EXISTING BUILDING

- A. Building Operation: Government employees will be continuously operating and managing all facilities, including temporary facilities that serve the VAMC.
- B. Maintenance of Service: Schedule all work to permit continuous service as required by the VAMC.
- C. Steam and Condensate Service Interruptions: Limited steam and condensate service interruptions, as required for interconnections of new and existing systems, will be permitted by the COR during periods when the demands are not critical to the operation of the VAMC. These non-critical periods are limited to between 8 pm and 5 am in the appropriate off-season (if applicable). Provide at least 10 working days advance notice to the COR. The request shall include a detailed plan on the proposed shutdown and the intended work to be done along with manpower levels. All equipment and materials must be onsite and verified with plan on appropriate calender day and working days as coordinated, discussed and approved by the VA. prior to the shutdown or it will need to be rescheduled.
- D. Phasing of Work: Comply with all requirements shown on contract documents. Contractor shall submit a complete detailed phasing plan/schedule with manpower levels prior to commencing work. The phasing plan shall be detailed enough to provide milestones in the process that can be verified.
- E. Building Working Environment: Maintain the architectural and structural integrity of the building and the working environment at all times. Maintain the interior of building at 18 degrees C (65 degrees F) minimum. Limit the opening of doors, windows or other access openings to brief periods as necessary for rigging purposes. Storm water or ground water leakage is prohibited. Provide daily clean-up of construction and demolition debris on all floor surfaces and on all equipment being operated by VA. Maintain all egress routes and safety systems/devices.
- F. Acceptance of Work for Government Operation: As new equipment, systems and facilities are made available for operation and these items are deemed of beneficial use to the Government, inspections

and tests will be performed. Based on the inspections, a list of contract deficiencies will be issued to the Contractor. After correction of deficiencies as necessary for beneficial use, the Contracting Officer will process necessary acceptance and the equipment will then be under the control and operation of Government personnel.

G. Temporary Facilities: Refer to Paragraph, TEMPORARY PIPING AND EQUIPMENT in this section. PRODUCTS

1.9 MATERIALS FOR VARIOUS SERVICES

- A. Material or equipment containing a weighted average of greater than 0.25 percent lead shall not be used in any potable water system intended for human consumption and shall be certified in accordance with NSF 61 or NSF 372.
- B. In-line devices such as building valves, check valves, stops, valves, fittings, water heaters will comply with NSF 61 and NSF 372.
- C. End point devices such as sink faucets used to dispense drinking water must meet requirements of NSF 61 and NSF 372.

1.10 FACTORY-ASSEMBLED PRODUCTS

- A. Standardization of components shall be maximized to reduce spare part requirements.
- B. Manufacturers of equipment assemblies that include components made by others shall assume complete responsibility for final assembled unit.
- All components of an assembled unit need not be products of same manufacturer.
- Constituent parts that are alike shall be products of a single manufacturer.
- 3. Components shall be compatible with each other and with the total assembly for intended service.
- 4. Contractor shall guarantee performance of assemblies of components and shall repair or replace elements of the assemblies as required to deliver specified performance of the complete assembly at no additional cost or time to the Government.
- C. Components of equipment shall bear manufacturer's name and trademark, model number, serial number and performance data on a name plate securely affixed in a conspicuous place, or cast integral

with, stamped or otherwise permanently marked upon the components of the equipment.

D. Major items of equipment, which serve the same function, shall be the same make and model.

1.11 COMPATIBILITY OF RELATED EQUIPMENT

A. Equipment and materials installed shall be compatible in all respects with other items being furnished and with existing items so that the result will be a complete and fully operational system that conforms to contract requirements.

1.12 ELECTRIC CONTROL WIRING

- A. All material and equipment furnished and installation methods used shall conform to the requirements of Section 22 05 12, GENERAL MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT; Section 26 29 11, MOTOR CONTROLLERS; and, Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES. All electrical wiring, conduit, and devices necessary for the proper connection, protection and operation of the systems shall be provided. Premium efficient motors shall be provided. Unless otherwise specified for a particular application, electric motors shall have the following requirements.
- B. Special Requirements:
- Where motor power requirements of equipment furnished deviate from power shown on plans, provide electrical service designed under the requirements of NFPA 70 at no additional cost or time to the Government.
- Assemblies of motors, starters, and controls and interlocks on factory assembled and wired devices shall be in accordance with the requirements of this specification.
- 3. Wire and cable materials specified in the electrical division of the specifications shall be modified as follows:
 - a. Wiring material located where temperatures can exceed 71° C (160°F) shall be stranded copper with Teflon FEP insulation with jacket. This includes wiring on the boilers and water heaters.
 - b. Other wiring at boilers and water heaters, and to control panels, shall be NFPA 70 designation THWN.
 - c. Shielded conductors or wiring in separate conduits for all instrumentation and control systems shall be provided where recommended by manufacturer of equipment.

- 4. Motor sizes shall be selected so that the motors do not operate into the service factor at maximum required loads on the driven equipment. Motors on pumps shall be sized for non-overloading at all points on the pump performance curves.
- Motors utilized with variable frequency drives shall be rated "inverter-ready" per NEMA Standard, MG1.
- C. Motor Efficiency and Power Factor: All motors, when specified as "high efficiency or Premium Efficiency" by the project specifications on driven equipment, shall conform to efficiency and power factor requirements in Section 22 05 12, GENERAL MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT, with no consideration of annual service hours. Motor manufacturers generally define these efficiency requirements as "NEMA premium efficient" and the requirements generally exceed those of the Energy Policy Act (EPACT), revised 2005. Motors not specified as "high efficiency or premium efficient" shall comply with EPACT.
- D. Single-phase Motors: Capacitor-start type for hard starting applications. Motors for centrifugal pumps may be split phase or permanent split capacitor (PSC).
- E. Poly-phase Motors: NEMA Design B, Squirrel cage, induction type. Each two-speed motor shall have two separate windings. A time delay (20 seconds minimum) relay shall be provided for switching from high to low speed.
- F. Rating: Rating shall be continuous duty at 100 percent capacity in an ambient temperature of 40° C (104° F); minimum horsepower as shown on drawings; maximum horsepower in normal operation shall not exceed nameplate rating without service factor.
- G. Insulation Resistance: Not less than one-half meg-ohm between stator conductors and frame shall be measured at the time of final inspection.

1.13 EQUIPMENT AND MATERIALS IDENTIFICATION

A. Use symbols, nomenclature and equipment numbers specified, shown in the drawings, or shown in the maintenance manuals. Coordinate equipment and valve identification with local VAMC shops. In addition, provide bar code identification nameplate for all equipment which will allow the equipment identification code to be scanned into the system for maintenance and inventory tracking. Identification for piping is specified in Section 09 91 00, PAINTING.

- B. Interior (Indoor) Equipment: Engraved nameplates, with letters not less than 7 mm (3/16 inch) high of brass with black-filled letters, or rigid black plastic with white letters specified in Section 09 91 00, PAINTING shall be permanently fastened to the equipment. Unit components such as water heaters, tanks, coils, filters, etc. shall be identified.
- C. Valve Tags and Lists:
- Plumbing: All valves shall be provided with valve tags and listed on a valve list (Fixture stops not included).
- 2. Valve tags: Engraved black filled numbers and letters not less than 15 mm (1/2 inch) high for number designation, and not less than 8 mm (1/4 inch) for service designation on 19 gauge, 40 mm (1-1/2 inches) round brass disc, attached with brass "S" hook or brass chain.
- 3. Valve lists: Valve lists shall be created using a word processing program and printed on plastic coated cards. The plastic-coated valve list card(s), sized 215 mm (8-1/2 inches) by 275 mm (11 inches) shall show valve tag number, valve function and area of control for each service or system. The valve list shall be in a punched 3-ring binder notebook. An additional copy of the valve list shall be mounted in picture frames for mounting to a wall. COR shall instruct Contractor where frames shall be mounted.
- 4. A detailed plan for each floor of the building indicating the location and valve number for each valve shall be provided in the 3-ring binder notebook. Each valve location shall be identified with a color-coded sticker or thumb tack in ceiling or access door.

1.14 FIRESTOPPING

A. Section 07 84 00, FIRESTOPPING specifies an effective barrier against the spread of fire, smoke and gases where penetrations occur for piping. Refer to Section 22 07 11, PLUMBING INSULATION, for pipe insulation.

1.15 PIPE AND EQUIPMENT SUPPORTS AND RESTRAINTS

A. In lieu of the paragraph which follows, suspended equipment support and restraints may be designed and installed in accordance with the International Building Code (IBC) and Section 13 05 41, SEISMIC

RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS. Submittals based on the International Building Code (IBC) and Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS requirements, or the following paragraphs of this Section shall be stamped and signed by a professional engineer registered in the state where the project is located. The Support system of suspended equipment over 227 kg (500 pounds) shall be submitted for approval of the COR in all cases. See the above specifications for lateral force design requirements.

- B. Type Numbers Specified: For materials, design, manufacture, selection, application, and installation refer to MSS SP-58. Refer to Section 05 50 00, METAL FABRICATIONS, for miscellaneous metal support materials and prime coat painting.
- C. For Attachment to Concrete Construction:
- 1. Concrete insert: Type 18, MSS SP-58.
- Self-drilling expansion shields and machine bolt expansion anchors: Permitted in concrete not less than 100 mm (4 inches) thick when approved by the COR for each job condition.
- Power-driven fasteners: Permitted in existing concrete or masonry not less than 100 mm (4 inches) thick when approved by the COR for each job condition.
- D. For Attachment to Steel Construction: MSS SP-58.
- 1. Welded attachment: Type 22.
- 2. Beam clamps: Types 20, 21, 28 or 29. Type 23 C-clamp may be used for individual copper tubing up to 23 mm (7/8 inch) outside diameter.
- E. Attachment to Metal Pan or Deck: As required for materials specified in Section 05 31 00, STEEL DECKING.
- F. For Attachment to Wood Construction: Wood screws or lag bolts.
- G. Hanger Rods: Hot-rolled steel, ASTM A36/A36M or ASTM A575 for allowable load listed in MSS SP-58. For piping, provide adjustment means for controlling level or slope. Types 13 or 15 turn-buckles shall provide 40 mm (1-1/2 inches) minimum of adjustment and incorporate locknuts. All-thread rods are acceptable.
- H. Multiple (Trapeze) Hangers: Galvanized, cold formed, lipped steel channel horizontal member, not less than 43 mm by 43 mm (1-5/8 inches by 1-5/8 inches), 2.7 mm (No. 12 gauge), designed to accept special spring held, hardened steel nuts.

- 1. Allowable hanger load: Manufacturers rating less 91kg (200 pounds).
- 2. Guide individual pipes on the horizontal member of every other trapeze hanger with 8 mm (1/4 inch) U-bolt fabricated from steel rod. Provide Type 40 insulation shield, secured by two 15 mm (1/2 inch) galvanized steel bands, or insulated calcium silicate shield for insulated piping at each hanger.
- I. Pipe Hangers and Supports: (MSS SP-58), use hangers sized to encircle insulation on insulated piping. Refer to Section 22 07 11, PLUMBING INSULATION for insulation thickness. To protect insulation, provide Type 39 saddles for roller type supports or insulated calcium silicate shields. Provide Type 40 insulation shield or insulated calcium silicate shield at all other types of supports and hangers including those for insulated piping.
- 1. General Types (MSS SP-58):
 - a. Standard clevis hanger: Type 1; provide locknut.
 - b. Riser clamps: Type 8.
 - c. Wall brackets: Types 31, 32 or 33.
 - d. Roller supports: Type 41, 43, 44 and 46.
 - e. Saddle support: Type 36, 37 or 38.
 - f. Turnbuckle: Types 13 or 15.
 - g. U-bolt clamp: Type 24.
 - h. Copper Tube:
 - Hangers, clamps and other support material in contact with tubing shall be painted with copper colored epoxy paint, copper-coated, plastic coated or taped with isolation tape to prevent electrolysis.
 - For vertical runs use epoxy painted, copper-coated or plastic coated riser clamps.
 - For supporting tube to strut: Provide epoxy painted pipe straps for copper tube or plastic inserted vibration isolation clamps.
 - Insulated Lines: Provide pre-insulated calcium silicate shields sized for copper tube.
 - i. Supports for plastic or glass piping: As recommended by the pipe manufacturer with black rubber tape extending 1 inch beyond steel support or clamp. Spring Supports (Expansion and contraction of vertical piping):

- Movement up to 20 mm (3/4 inch): Type 51 or 52 variable spring unit with integral turn buckle and load indicator.
- Movement more than 20 mm (3/4 inch): Type 54 or 55 constant support unit with integral adjusting nut, turn buckle and travel position indicator.
- j. Spring hangers are required on all plumbing system pumps one horsepower and greater.
- 2. Plumbing Piping (Other Than General Types):
 - a. Horizontal piping: Type 1, 5, 7, 9, and 10.
 - b. Chrome plated piping: Chrome plated supports.
 - c. Hangers and supports in pipe chase: Prefabricated system ABS self-extinguishing material, not subject to electrolytic action, to hold piping, prevent vibration and compensate for all static and operational conditions.
 - d. Blocking, stays and bracing: Angle iron or preformed metal channel shapes, 1.3 mm (18 gauge) minimum.

1.16 PIPE PENETRATIONS

- A. Pipe penetration sleeves shall be installed for all pipe other than rectangular blocked out floor openings for risers in mechanical bays.
- B. Pipe penetration sleeve materials shall comply with all firestopping requirements for each penetration.
- C. To prevent accidental liquid spills from passing to a lower level, provide the following:
- 1. For sleeves: Extend sleeve 25 mm (1 inch) above finished floor and provide sealant for watertight joint.
- For blocked out floor openings: Provide 40 mm (1-1/2 inch) angle set in silicone adhesive around opening.
- For drilled penetrations: Provide 40 mm (1-1/2 inch) angle ring or square set in silicone adhesive around penetration.
- D. Penetrations are prohibited through beams or ribs, but may be installed in concrete beam flanges, with structural engineer prior approval. Any deviation from these requirements must receive prior approval of COR.
- E. Sheet metal, plastic, or moisture resistant fiber sleeves shall be provided for pipe passing through floors, interior walls, and

partitions, unless brass or steel pipe sleeves are specifically called for below.

- F. Cast iron or zinc coated pipe sleeves shall be provided for pipe passing through exterior walls below grade. The space between the sleeve and pipe shall be made watertight with a modular or link rubber seal. The link seal shall be applied at both ends of the sleeve.
- G. Galvanized steel or an alternate black iron pipe with asphalt coating sleeves shall be for pipe passing through concrete beam flanges, except where brass pipe sleeves are called for. A galvanized steel sleeve shall be provided for pipe passing through floor of mechanical rooms, laundry work rooms, and animal rooms above basement. Except in mechanical rooms, sleeves shall be connected with a floor plate.
- H. Brass Pipe Sleeves shall be provided for pipe passing through quarry tile, terrazzo or ceramic tile floors. The sleeve shall be connected with a floor plate.
- I. Sleeve clearance through floors, walls, partitions, and beam flanges shall be 25 mm (1 inch) greater in diameter than external diameter of pipe. Sleeve for pipe with insulation shall be large enough to accommodate the insulation plus 25 mm (1 inch) in diameter. Interior openings shall be caulked tight with firestopping material and sealant to prevent the spread of fire, smoke, water and gases.
- J. Sealant and Adhesives: Shall be as specified in Section 07 92 00, JOINT SEALANTS. Bio-based materials shall be utilized when possible.
- K. Pipe passing through roof shall be installed through a 4.9 kg per square meter copper flashing with an integral skirt or flange. Skirt or flange shall extend not less than 200 mm (8 inches) from the pipe and set in a solid coating of bituminous cement. Extend flashing a minimum of 250 mm (10 inches) up the pipe. Pipe passing through a waterproofing membrane shall be provided with a clamping flange. The annular space between the sleeve and pipe shall be sealed watertight.

1.17 TOOLS AND LUBRICANTS

- A. Furnish, and turn over to the COR, special tools not readily available commercially, that are required for disassembly or adjustment of equipment and machinery furnished.
- B. Grease Guns with Attachments for Applicable Fittings: One for each type of grease required for each motor or other equipment.
- C. Tool Containers: metal, permanently identified for intended service and mounted, or located, where directed by the COR.
- D. Lubricants: A minimum of 0.95 L (1 quart) of oil, and 0.45 kg (1 pound) of grease, of equipment manufacturer's recommended grade and type, in unopened containers and properly identified as to use for each different application. Bio-based materials shall be utilized when possible.

1.18 WALL, FLOOR AND CEILING PLATES

- A. Material and Type: Chrome plated brass or chrome plated steel, one piece or split type with concealed hinge, with set screw for fastening to pipe, or sleeve. Use plates that fit tight around pipes, cover openings around pipes and cover the entire pipe sleeve projection.
- B. Thickness: Not less than 2.4 mm (3/32 inch) for floor plates. For wall and ceiling plates, not less than 0.64 mm (0.025 inch) for up to 75 mm (3 inch) pipe, 0.89 mm (0.035 inch) for larger pipe.
- C. Locations: Use where pipe penetrates floors, walls and ceilings in exposed locations, in finished areas only. Wall plates shall be used where insulation ends on exposed water supply pipe drop from overhead. A watertight joint shall be provided in spaces where brass or steel pipe sleeves are specified.

1.19 ASBESTOS

A. Materials containing asbestos are prohibited.

PART 2 - EXECUTION

2.1 ARRANGEMENT AND INSTALLATION OF EQUIPMENT AND PIPING

A. Location of piping, sleeves, inserts, hangers, and equipment, access provisions shall be coordinated with the work of all trades. Piping, sleeves, inserts, hangers, and equipment shall be located clear of windows, doors, openings, light outlets, and other services and utilities. Equipment layout drawings shall be prepared to coordinate proper location and personnel access of all facilities. The drawings shall be submitted for review.

- B. Manufacturer's published recommendations shall be followed for installation methods not otherwise specified.
- C. Operating Personnel Access and Observation Provisions: All equipment and systems shall be arranged to provide clear view and easy access, without use of portable ladders, for maintenance, testing and operation of all devices including, but not limited to: all equipment items, valves, backflow preventers, filters, strainers, transmitters, sensors, meters and control devices. All gauges and indicators shall be clearly visible by personnel standing on the floor or on permanent platforms. Maintenance and operating space and access provisions that are shown in the drawings shall not be changed nor reduced.
- D. Structural systems necessary for pipe and equipment support shall be coordinated to permit proper installation.
- E. Location of pipe sleeves, trenches and chases shall be accurately coordinated with equipment and piping locations.
- F. Cutting Holes:
- Holes shall be located to avoid interference with structural members such as beams or grade beams. Holes shall be laid out in advance and drilling done only after approval by COR. If the Contractor considers it necessary to drill through structural members, this matter shall be referred to COR for approval.
- Waterproof membrane shall not be penetrated. Pipe floor penetration block outs shall be provided outside the extents of the waterproof membrane.
- 3. Holes through concrete and masonry shall be cut by rotary core drill. Pneumatic hammer, impact electric, and hand or manual hammer type drill will not be allowed, except as permitted by COR where working area space is limited.
- G. Minor Piping: Generally, small diameter pipe runs from drips and drains and other services are not shown but must be provided.
- H. Protection and Cleaning:
- Equipment and materials shall be carefully handled, properly stored, and adequately protected to prevent damage before and during installation, in accordance with the manufacturer's recommendations

and as approved by the COR. Damaged or defective items in the opinion of the COR, shall be replaced at no additional cost or time to the Government.

- 2. Protect all finished parts of equipment, such as shafts and bearings where accessible, from rust prior to operation by means of protective grease coating and wrapping. Close pipe openings with caps or plugs during installation. Pipe openings, equipment, and plumbing fixtures shall be tightly covered against dirt or mechanical injury. At completion of all work thoroughly clean fixtures, exposed materials and equipment.
- I. Concrete and Grout: Concrete and shrink compensating grout 25 MPa (3000 psig) minimum, specified in Section 03 30 00, CAST-IN-PLACE CONCRETE, shall be used for all pad or floor mounted equipment.
- J. Thermometers, valves and other devices shall be installed with due regard for ease in reading or operating and maintaining said devices. Thermometers and gauges shall be located and positioned to be easily read by operator or staff standing on floor or walkway provided. Servicing shall not require dismantling adjacent equipment or pipe work.
- K. Work in Existing Building:
- Perform as specified in Article, OPERATIONS AND STORAGE AREAS, Article, ALTERATIONS, and Article, RESTORATION of the Section 01 00 00, GENERAL REQUIREMENTS for relocation of existing equipment, alterations and restoration of existing building(s).
- 2. As specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, OPERATIONS AND STORAGE AREAS, make alterations to existing service piping at times that will cause the least interfere with normal operation of the facility.

2.2 TEMPORARY PIPING AND EQUIPMENT

- A. Continuity of operation of existing facilities may require temporary installation or relocation of equipment and piping. Temporary equipment or pipe installation or relocation shall be provided to maintain continuity of operation of existing facilities.
- B. The Contractor shall provide all required facilities in accordance with the requirements of phased construction and maintenance of service. All piping and equipment shall be properly supported, sloped to drain, operate without excessive stress, and shall be

insulated where injury can occur to personnel by contact with operating facilities. The requirements of paragraph 3.1 shall apply.

C. Temporary facilities and piping shall be completely removed back to the nearest active distribution branch or main pipe line and any openings in structures sealed. Dead legs are prohibited in potable water systems. Necessary blind flanges and caps shall be provided to seal open piping remaining in service.

2.3 PIPE AND EQUIPMENT SUPPORTS

- A. Where hanger spacing does not correspond with joist or rib spacing, use structural steel channels secured directly to joist and rib structure that will correspond to the required hanger spacing, and then suspend the equipment and piping from the channels. Holes shall be drilled or burned in structural steel ONLY with the prior written approval of the COR.
- B. The use of chain pipe supports, wire or strap hangers; wood for blocking, stays and bracing, or hangers suspended from piping above shall not be permitted. Rusty products shall be replaced.
- C. Hanger rods shall be used that are straight and vertical. Turnbuckles for vertical adjustments may be omitted where limited space prevents use. A minimum of 15 mm (1/2 inch) clearance between pipe or piping covering and adjacent work shall be provided.
- D. For horizontal and vertical plumbing pipe supports, refer to the International Plumbing Code (IPC) and these specifications.
- E. Overhead Supports:
- 1. The basic structural system of the building is designed to sustain the loads imposed by equipment and piping to be supported overhead.
- Provide steel structural members, in addition to those shown, of adequate capability to support the imposed loads, located in accordance with the final approved layout of equipment and piping.
- 3. Tubing and capillary systems shall be supported in channel troughs.
- F. Floor Supports:
- Provide concrete bases, concrete anchor blocks and pedestals, and structural steel systems for support of equipment and piping. Concrete bases and structural systems shall be anchored and doweled to resist forces under operating and seismic conditions (if applicable) without excessive displacement or structural failure.

- 2. Bases and supports shall not be located and installed until equipment mounted thereon has been approved. Bases shall be sized to match equipment mounted thereon plus 50 mm (2 inch) excess on all edges. Structural drawings shall be reviewed for additional requirements. Bases shall be neatly finished and smoothed, shall have chamfered edges at the top, and shall be suitable for painting.
- 3. All equipment shall be shimmed, leveled, firmly anchored, and grouted with epoxy grout. Anchor bolts shall be placed in sleeves, anchored to the bases. Fill the annular space between sleeves and bolts with a grout material to permit alignment and realignment.
- 4. For seismic anchoring, refer to Section 13 05 41, SEISMIC RESTRAINT REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS.

2.4 LUBRICATION

- A. All equipment and devices requiring lubrication shall be lubricated prior to initial operation. All devices and equipment shall be field checked for proper lubrication.
- B. All devices and equipment shall be equipped with required lubrication fittings. A minimum of 1 liter (1 quart) of oil and 0.45 kg (1 pound) of grease of manufacturer's recommended grade and type for each different application shall be provided. All materials shall be delivered to COR in unopened containers that are properly identified as to application.
- C. A separate grease gun with attachments for applicable fittings shall be provided for each type of grease applied.
- D. All lubrication points shall be accessible without disassembling equipment, except to remove access plates.
- E. All lubrication points shall be extended to one side of the equipment.

2.5 PLUMBING SYSTEMS DEMOLITION

A. Rigging access, other than indicated in the drawings, shall be provided after approval for structural integrity by the COR. Such access shall be provided at no additional cost or time to the Government. Where work is in an operating plant, approved protection from dust and debris shall be provided at all times for the safety of plant personnel and maintenance of plant operation and environment of the plant.

- B. In an operating plant, cleanliness and safety shall be maintained. The plant shall be kept in an operating condition. Government personnel will be carrying on their normal duties of operating, cleaning and maintaining equipment and plant operation. Work shall be confined to the immediate area concerned; maintain cleanliness and wet down demolished materials to eliminate dust. Dust and debris shall not be permitted to accumulate in the area to the detriment of plant operation. All flame cutting shall be performed to maintain the fire safety integrity of this plant. Adequate fire extinguishing facilities shall be available at all times. All work shall be performed in accordance with recognized fire protection standards including NFPA 51B. Inspections will be made by personnel of the VAMC, and the Contractor shall follow all directives of the COR with regard to rigging, safety, fire safety, and maintenance of operations.
- C. Unless specified otherwise, all piping, wiring, conduit, and other devices associated with the equipment not re-used in the new work shall be completely removed from Government property per Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT. This includes all concrete equipment pads, pipe, valves, fittings, insulation, and all hangers including the top connection and any fastenings to building structural systems. All openings shall be sealed after removal of equipment, pipes, ducts, and other penetrations in roof, walls, floors, in an approved manner and in accordance with plans and specifications where specifically covered. Structural integrity of the building system shall be maintained. Reference shall also be made to the drawings and specifications of the other disciplines in the project for additional facilities to be demolished or handled.
- D. All valves including gate, globe, ball, butterfly and check, all pressure gauges and thermometers with wells shall remain Government property and shall be removed and delivered to COR and stored as directed. The Contractor shall remove all other material and equipment, devices and demolition debris under these plans and specifications. Such material shall be removed from Government property expeditiously and shall not be allowed to accumulate. Coordinate with the COR and Infection Control.

2.6 CLEANING AND PAINTING

- A. Prior to final inspection and acceptance of the plant and facilities for beneficial use by the Government, the plant facilities, equipment and systems shall be thoroughly cleaned and painted. Refer to Section 09 91 00, PAINTING.
- B. In addition, the following special conditions apply:
- Cleaning shall be thorough. Solvents, cleaning materials and methods recommended by the manufacturers shall be used for the specific tasks. All rust shall be removed prior to painting and from surfaces to remain unpainted. Scratches, scuffs, and abrasions shall be repaired prior to applying prime and finish coats.
- 2. The following Material and Equipment shall NOT be painted:
 - a. Motors, controllers, control switches, and safety switches.
 - b. Control and interlock devices.
 - c. Regulators.
 - d. Pressure reducing valves.
 - e. Control valves and thermostatic elements.
 - f. Lubrication devices and grease fittings.
 - g. Copper, brass, aluminum, stainless steel and bronze surfaces.
 - h. Valve stems and rotating shafts.
 - i. Pressure gauges and thermometers.
 - j. Glass.
 - k. Name plates.
- 3. Control and instrument panels shall be cleaned and damaged surfaces repaired. Touch-up painting shall be made with matching paint type and color obtained from manufacturer or computer matched.
- 4. Pumps, motors, steel and cast-iron bases, and coupling guards shall be cleaned, and shall be touched-up with the same paint type and color as utilized by the pump manufacturer.
- 5. Temporary Facilities: Apply paint to surfaces that do not have existing finish coats per Section 09 91 00, Painting.
- 6. The final result shall be a smooth, even-colored, even-textured factory finish on all items. The entire piece of equipment shall be repainted, if necessary, to achieve this. Lead based paints shall not be used.

2.7 IDENTIFICATION SIGNS

- A. Laminated plastic signs, with engraved lettering not less than 7 mm (3/16 inch) high, shall be provided that designates equipment function, for all equipment, switches, motor controllers, relays, meters, control devices, including automatic control valves. Nomenclature and identification symbols shall correspond to that used in maintenance manual, and in diagrams specified elsewhere. Attach by chain, adhesive, or screws.
- B. Factory Built Equipment: Metal plate, securely attached, with name and address of manufacturer, serial number, model number, size, and performance data shall be placed on factory-built equipment.
- C. Pipe Identification: Refer to Section 09 91 00, PAINTING.

2.8 STARTUP AND TEMPORARY OPERATION

- A. Startup of equipment shall be performed as described in the equipment specifications. Vibration within specified tolerance shall be verified prior to extended operation. Temporary use of equipment is specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT.
- B. The CxA will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the Contracting Officer's Representative and CxA. Provide a minimum of 4 weeks prior notice.

2.9 OPERATING AND PERFORMANCE TESTS

- A. Prior to the final inspection, all required tests shall be performed as specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TESTS and submit the test reports and records to the COR.
- B. Should evidence of malfunction in any tested system, or piece of equipment or component part thereof, occur during or as a result of tests, make proper corrections, repairs or replacements, and repeat tests at no additional cost to the Government.
- C. When completion of certain work or systems occurs at a time when final control settings and adjustments cannot be properly made to make performance tests, then conduct such performance tests and finalize control settings during the first actual seasonal use of the respective systems following completion of work. Rescheduling of these tests shall be requested in writing to COR for approval.

D. Perform tests as required for commissioning provisions in accordance with Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS and Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.

2.10 OPERATION AND MAINTENANCE MANUALS

- A. All new and temporary equipment and all elements of each assembly shall be included.
- B. Data sheet on each device listing model, size, capacity, pressure, speed, horsepower, impeller size, and other information shall be included.
- C. Manufacturer's installation, maintenance, repair, and operation instructions for each device shall be included. Assembly drawings and parts lists shall also be included. A summary of operating precautions and reasons for precautions shall be included in the Operations and Maintenance Manual.
- D. Lubrication instructions, type and quantity of lubricant shall be included.
- E. Schematic diagrams and wiring diagrams of all control systems corrected to include all field modifications shall be included.
- F. Set points of all interlock devices shall be listed.
- G. Trouble-shooting guide for the control system troubleshooting shall be inserted into the Operations and Maintenance Manual.
- H. The control system sequence of operation corrected with submittal review comments shall be inserted into the Operations and Maintenance Manual.
- Emergency procedures for shutdown and startup of equipment and systems.

2.11 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.
- B. Components provided under this section of the specification will be tested as part of a larger system.

2.12 DEMONSTRATION AND TRAINING

A. Provide services of manufacturer's technical representative for 4 hours to instruct each VA personnel responsible in operation and maintenance of the system.

VA Project No. 595-668 AE Works Project No. VLEB-010 B. Submit training plans and instructor qualifications in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

- - - E N D - - -

SECTION 22 05 12

GENERAL MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section describes the general motor requirements for plumbing equipment and applies to all sections of Division 22.
- B. A complete listing of common acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- D. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- E. Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.
- F. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- G. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- H. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES.
- I. Section 26 24 19, MOTOR-CONTROL CENTERS: Motor Control Centers.
- J. Section 26 29 11, MOTOR CONTROLLERS: Starters, control and protection of motors.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. Where conflicts occur these specifications and VHA standard will govern.
- B. American Bearing Manufacturers Association (ABMA):

ABMA 9-2015.....Load Ratings and Fatigue Life for Ball Bearings

- C. Institute of Electrical and Electronics Engineers, Inc. (IEEE):
- 112-2017.....IEEE Standard Test Procedure for Polyphase Induction Motors and Generators
- 841-2018.....IEEE Standard for Petroleum and Chemical Industry-Premium-Efficiency, Severe-Duty, Totally Enclosed Fan-Cooled (TEFC) Squirrel Cage Induction Motors--Up to and Including 370 kW (500 HP)

D. International Code Council (ICC):

IPC-2018.....International Plumbing Code

E. National Electrical Manufacturers Association (NEMA):

MG 1-2016.....Motors and Generators

MG 2-2014.....Safety Standard for Construction and Guide for Selection, Installation and Use of Electric Motors and Generators

250-2018......Enclosures for Electrical Equipment (1000 Volts Maximum)

F. National Fire Protection Association (NFPA):

70-2020.....National Electrical Code (NEC)

- 1.4 SUBMITTALS
 - A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
 - B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 05 12, GENERAL MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT", with applicable paragraph identification.
 - C. Submit motor submittals with drive equipment.
 - D. Shop Drawings:
 - Provide documentation to demonstrate compliance with contract documents.
 - 2. Motor nameplate information shall be submitted including electrical ratings, efficiency, bearing data, power factor, frame size, dimensions, mounting details, materials, horsepower, voltage, phase, speed (RPM), enclosure, starting characteristics, torque characteristics, code letter, full load and locked rotor current, service factor, and lubrication method.
 - Motor parameters required for the determination of the Reed Critical Frequency of vertical hollow shaft motors shall be submitted.
 - E. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.

- F. Complete operating and maintenance manuals including wiring diagrams, technical data sheets, information for ordering replaceable parts and troubleshooting guide:
 - 1. Include complete list indicating all components of the systems.
 - Include complete diagrams of the internal wiring for each item of equipment.
 - 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.
- G. Certification: Two weeks prior to final inspection, unless otherwise noted, the following certification shall be submitted to the Contracting Officer's Representative (COR).
 - Certification shall be submitted stating that the motors have been properly applied, installed, adjusted, lubricated, and tested.
- H. Completed System Readiness Checklist provided by the CxA and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.
- I. Submit training plans and instructor qualifications in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

1.5 QUALITY ASSURANCE

- A. Bio-Based Materials: For products designated by the USDA's bio-based Bio-Preferred Program, provide products that meet or exceed USDA recommendations for bio-based content, so long as products meet all performance requirements in this specifications section. For more information regarding the product categories covered by the Bio-Preferred Program, visit http://www.biopreferred.gov.
- B. Refer to Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS for additional sustainable design requirements.

1.6 AS-BUILT DOCUMENTATION

A. Comply with requirements in Paragraph "AS-BUILT DOCUMENTATION" of Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

PART 2 - PRODUCTS

2.1 MOTORS

- A. All material and equipment furnished and installation methods shall conform to the requirements of Section 26 29 11, MOTOR CONTROLLERS; and Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES. Provide all electrical wiring, conduit, and devices necessary for the proper connection, protection and operation of the systems. Provide premium efficiency type motors. Unless otherwise specified for a particular application, use electric motors with the following requirements.
- B. For alternating current, fractional and integral horsepower motors, NEMA MG 1 and NEMA MG 2 shall apply.
- C. For severe duty totally enclosed motors, IEEE 841 shall apply. For severe duty totally enclosed motors, IEEE 841 shall apply.
- D. Single-phase Motors: Motors for centrifugal fans and pumps may be split phase or permanent split capacitor (PSC) type. Provide capacitor-start type for hard starting applications.
- E. Poly-phase Motors: NEMA Design B, Squirrel cage, induction type.
 - Two Speed Motors: Each two-speed motor shall have two separate windings. Provide a time- delay (20 seconds minimum) relay for switching from high to low speed.
- F. Voltage ratings shall be as follows:
 - 1. Single phase:
 - a. Motors connected to 120-volt systems: 115 volts.
 - b. Motors connected to 208-volt systems: 200 volts.
 - c. Motors connected to 240-volt or 480-volt systems: 230/460 volts, dual connection.
 - 2. Three phase:
 - a. Motors connected to 208-volt systems: 200 volts.
 - b. Motors, less than 74.6 kW (100 HP), connected to 240-volt or 480-volt systems: 230/460 volts, dual connection.
 - c. Motors, 74.6 kW (100 HP) or greater, connected to 240-volt
 systems: 230 volts.
 - d. Motors, 74.6 kW (100 HP) or greater, connected to 480-volt
 systems: 460 volts.
 - e. Motors connected to high voltage systems (Over 600V): Shall conform to NEMA MG 1 for connection to the nominal system voltage shown in the drawings.

- G. Number of phases shall be as follows:
 - 1. Motors, less than 373 W (1/2 HP): Single phase.
 - 2. Motors, 373 W (1/2 HP) and greater: 3 phase.
 - 3. Exceptions:
 - a. Hermetically sealed motors.
 - b. Motors for equipment assemblies, less than 746 W (1 HP), may be single phase provided the manufacturer of the proposed assemblies cannot supply the assemblies with three phase motors.
- H. Horsepower ratings shall be adequate for operating the connected loads continuously in the prevailing ambient temperatures in areas where the motors are installed, without exceeding the NEMA standard temperature rises for the motor insulation.
- I. Motor designs, as indicated by the NEMA code letters, shall be coordinated with the connected loads to assure adequate starting, acceleration and running torque without exceeding nameplate ratings or considering service factor.
- J. Motor Enclosures:
 - Shall be the NEMA types as specified and/or shown in the Contract Documents.
 - 2. Where the types of motor enclosures are not shown in the drawings, they shall be the NEMA types per NEMA 250, which are most suitable for the environmental conditions where the motors are being installed. Enclosure requirements for certain conditions are as follows:
 - a. Motors located outdoors, indoors in wet or high humidity locations, or in unfiltered airstreams shall be totally enclosed type.
 - b. Where motors are located in an NEC 511 classified area, provide TEFC explosion proof motor enclosures.
 - c. Where motors are located in a corrosive environment, provide TEFC enclosures with corrosion resistant finish.
 - Enclosures shall be primed and finish coated at the factory with manufacturer's prime coat and standard finish.
- K. Electrical Design Requirements:
 - 1. Motors shall be continuous duty.

- The insulation system shall be rated minimum of Class B, 130 degrees C (266 degrees F).
- 3. The maximum temperature rise by resistance at rated power shall not exceed Class B limits, 80 degrees C (144 degrees F).
- 4. The speed/torque and speed/current characteristics shall comply with NEMA Design A or B, as specified.
- Motors shall be suitable for full voltage starting, unless otherwise noted. Coordinate motor features with applicable motor controllers.
- 6. Motors for variable frequency drive applications shall adhere to NEMA MG 1, Part 30, Application Considerations for Constant Speed Motors Used on a Sinusoidal Bus with Harmonic Content and General Purpose Motors Used with Adjustable Voltage or Adjustable Frequency Controls, or both, or NEMA MG 1, Part 31, Definite Purpose Inverter Fed Polyphase Motors.
- L. Mechanical Design Requirements:
 - Bearings shall be rated for a minimum fatigue life of 26,280 hours for belt-driven loads and 100,000 hours for direct-drive loads based on L10 (Basic Rating Life) at full load direct coupled, except vertical high thrust motors which require a 40,000 hour rating. A minimum fatigue life of 40,000 hours is required for VFD drives.
 - 2. Vertical motors shall be capable of withstanding a momentary up thrust of at least 30 percent of normal down thrust.
 - 3. Grease lubricated bearings shall be designed for electric motor use. Grease shall be capable of the temperatures associated with electric motors and shall be compatible with Polyurea based greases.
 - 4. Grease fittings, if provided, shall be Alemite type or equivalent.
 - 5. Oil lubricated bearings, when specified, shall have an externally visible sight glass to view oil level.
 - Vibration shall not exceed 3.8 mm (0.15 inch) per second, unfiltered peak.
 - 7. Noise level shall meet the requirements of the application.
 - Motors on 180 frames and larger shall have provisions for lifting eyes or lugs capable of a safety factor of 5.

- 9. All external fasteners shall be corrosion resistant.
- Condensation heaters, when specified, shall keep motor windings at least 5 degrees C (9 degrees F) above ambient temperature.
- 11. Winding thermostats, when specified shall be normally closed, connected in series.
- 12. Grounding provisions shall be in the main terminal box.
- M. Special Requirements:
 - Where motor power requirements of equipment furnished deviate from power shown on plans, provide electrical service designed under the requirements of NFPA 70 without additional cost or time to the Government.
 - Assemblies of motors, starters, controls and interlocks on factory assembled and wired devices shall be in accordance with the requirements of this specification.
 - 3. Wire and cable materials specified in the electrical division of the specifications shall be modified as follows:
 - a. Wiring material located where temperatures can exceed 71 degrees C (160 degrees F) shall be stranded copper with Teflon FEP insulation with jacket. This includes wiring on the boilers.
 - b. Other wiring at boilers and to control panels shall be NFPA 70 designation THWN.
 - c. Provide shielded conductors or wiring in separate conduits for all instrumentation and control systems where recommended by manufacturer of equipment.
 - 4. Select motor sizes so that the motors do not operate into the service factor at maximum required loads on the driven equipment. Motors on pumps shall be sized for non-overloading at all points on the pump performance curves.
 - 5. Motors utilized with variable frequency drives shall be rated "inverter-duty" per NEMA MG 1, Part 31, Definite-Purpose Inverter-Fed Polyphase Motors. Provide motor shaft grounding apparatus that will protect bearings from damage from stray currents.
 - N. Additional requirements for specific motors, as indicated in other sections, shall also apply.

O. NEMA Premium Efficiency Electric Motors, Motor Efficiencies: All permanently wired polyphase motors of 746 W (1 HP) or greater shall meet the minimum full-load efficiencies as indicated in the following table, and as specified in this specification. Motors of 746 W (1 HP) or greater with open, drip-proof or totally enclosed fan-cooled enclosures shall be NEMA premium efficiency type, unless otherwise indicated. Motors provided as an integral part of motor driven equipment are excluded from this requirement if a minimum seasonal or overall efficiency requirement is indicated for that equipment by the provisions of another section.

Minimum Efficiencies				Minimum Efficiencies			
Open Drip-Proof				Totally Enclosed Fan-Cooled			
Rating kW (HP)	1200 RPM	1800 RPM	3600 RPM	Rating kW (HP)	1200 RPM	1800 RPM	3600 RPM
0.746 (1)	82.5%	85.5%	77.0%	0.746 (1)	82.5%	85.5%	77.0%
1.12 (1.5)	86.5%	86.5%	84.0%	1.12 (1.5)	87.5%	86.5%	84.0%
1.49 (2)	87.5%	86.5%	85.5%	1.49 (2)	88.5%	86.5%	85.5%
2.24 (3)	88.5%	89.5%	85.5%	2.24 (3)	89.5%	89.5%	86.5%
3.73 (5)	89.5%	89.5%	86.5%	3.73 (5)	89.5%	89.5%	88.5%
5.60 (7.5)	90.2%	91.0%	88.5%	5.60 (7.5)	91.0%	91.7%	89.5%
7.46 (10)	91.7%	91.7%	89.5%	7.46 (10)	91.0%	91.7%	90.2%
11.2 (15)	91.7%	93.0%	90.2%	11.2 (15)	91.7%	92.4%	91.0%
14.9 (20)	92.4%	93.0%	91.0%	14.9 (20)	91.7%	93.0%	91.0%
18.7 (25)	93.0%	93.6%	91.7%	18.7 (25)	93.0%	93.6%	91.7%
22.4 (30)	93.6%	94.1%	91.7%	22.4 (30)	93.0%	93.6%	91.7%
29.8 (40)	94.1%	94.1%	92.4%	29.8 (40)	94.1%	94.1%	92.4%
37.3 (50)	94.1%	94.5%	93.0%	37.3 (50)	94.1%	94.5%	93.0%
44.8 (60)	94.5%	95.0%	93.6%	44.8 (60)	94.5%	95.0%	93.6%
56.9 (75)	94.5%	95.0%	93.6%	56.9 (75)	94.5%	95.4%	93.6%
74.6 (100)	95.0%	95.4%	93.6%	74.6 (100)	95.0%	95.4%	94.1%
93.3 (125)	95.0%	95.4%	94.1%	93.3 (125)	95.0%	95.4%	95.0%
112 (150)	95.4%	95.8%	94.1%	112 (150)	95.8%	95.8%	95.0%
149.2 (200)	95.4%	95.8%	95.0%	149.2 (200)	95.8%	96.2%	95.4%

- P. Minimum Power Factor at Full Load and Rated Voltage: 90 percent at 1200 RPM, 1800 RPM and 3600 RPM. Power factor correction capacitors shall be provided unless the motor meets the 0.9 requirement without it or if the motor is controlled by a variable frequency drive. The power factor correction capacitors shall be able to withstand high voltage transients and power line variations without breakdown.
- Q. Energy Efficiency of Small Motors (Motor Efficiencies): All motors under 746 W (1 hp) shall meet the requirements of the DOE Small Motor Regulation.

Polyphase Open Motors Average full load efficiency			Capacitor-start capacitor-run and capacitor-start induction run open motors Average full load efficiency				
Rating kW (hp)	6 poles	4 poles	2 poles	Rating kW (hp)	6 poles	4 poles	2 poles
0.18 (0.25)	67.5	69.5	65.6	0.18 (0.25)	62.2	68.5	66.6
0.25 (0.33)	71.4	73.4	69.5	0.25 (0.33)	66.6	72.4	70.5
0.37 (0.5)	75.3	78.2	73.4	0.37 (0.5)	76.2	76.2	72.4
0.55 (0.75)	81.7	81.1	76.8	0.55 (0.75)	80.2	81.8	76.2

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install motors in accordance with manufacturer's recommendations, the NEC, NEMA, as shown in the drawings and/or as required by other sections of these specifications.
- B. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no additional cost or time to the Government.

3.2 FIELD TESTS

- A. All tests shall be witnessed by the CxA or by the COR.
- B. Perform an electric insulation resistance Test using a megohmmeter on all motors after installation, before startup. All shall test free from grounds.
- C. Perform Load test in accordance with IEEE 112, Test Method B, to determine freedom from electrical or mechanical defects and compliance with performance data.
- D. Insulation Resistance: Not less than 1/2 meg-ohm between stator conductors and frame, to be determined at the time of final inspection.
- E. All test data shall be complied into a report form for each motor and provided to the contracting officer or their representative.

3.3 STARTUP AND TESTING

A. Perform tests as recommended by product manufacturer and listed standards and under actual or simulated operating conditions and prove full compliance with design and specified requirements. Tests of the various items of equipment shall be performed simultaneously with the system of which each item is an integral part.

- B. When any defects are detected, correct defects and repeat test at no additional cost or time to the Government.
- C. The CxA will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with COR and CxA. Provide a minimum notice of 10 working days prior to startup and testing.
- 3.4 COMMISSIONING
 - A. Provide commissioning documentation in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.
 - B. Components provided under this section of the specification shall be tested as part of a larger system.

3.5 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for 4 hours to instruct each VA personnel responsible in operation and maintenance of the system.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

- - - E N D - - -

SECTION 22 05 19 METERS AND GAUGES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section describes the requirements for water meters and gauges primarily used for troubleshooting the system and to indicate system performance.
- B. A complete listing of common acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- C. Components intended to be connected to BAS shall be furnished under Section 23 09 23 DIRECT DIGITAL CONTROL SYSTEMS FOR HVAC for installation under this section.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.
- C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- D. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- E. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- F. Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS. Requirements for commissioning, systems readiness checklist, and training.
- G. Section 23 09 23, DIRECT DIGITAL CONTROL SYSTEMS FOR HAVC.
- H. Section 25 10 10, ADVANCED UTILITY METERING SYSTEM.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. Where conflicts occur these specifications and the VHA standard will govern.
- B. American Society of Mechanical Engineers (ASME): B40.100-2013.....Pressure Gauges and Gauge Attachments B40.200-2008.....Thermometers, Direct Reading and Remote Reading
- C. American Water Works Association (AWWA): C700-2015.....Cold Water Meters, Displacement Type, Bronze

Main Case

C701-2015.....Cold Water Meters-Turbine Type, for Customer Service

VA Project No. 595-668 Lebanon VAMC AE Works Project No. VLEB-010 New Entryway for Building 17 BID DOCUMENTS 09-01-20 C702-20115.....Cold Water Meters - Compound Type C707-2010 (R2016).....Encoder-Type Remote-Registration Systems for Cold-Water Meters D. Institute of Electrical and Electronics Engineers (IEEE): C2-2017.....National Electrical Safety Code (NESC) E. International Code Council (ICC): IPC-2018.....International Plumbing Code F. National Fire Protection Association (NFPA): 70-2020.....National Electrical Code (NEC) G. NSF International (NSF): 61-2019......Drinking Water System Components - Health Effects 372-2016..... Drinking Water System Components - Lead Content 1.4 SUBMITTALS A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES. B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 05 19, METERS AND GAUGES FOR PLUMBING PIPING", with applicable paragraph identification. C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity. 1. Water Meter. 2. Pressure Gauges. 3. Thermometers. 4. Product certificates for each type of meter and gauge. 5. BACnet communication protocol. D. Complete operating and maintenance manual shall including wiring diagrams, technical data sheets, information for ordering replaceable parts, and troubleshooting guide: 1. Include complete list indicating all components of the system. 2. Include complete diagrams of the internal wiring for each item of equipment. 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.

- E. Completed System Readiness Checklist provided by the CxA and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.
- F. Submit training plans and instructor qualifications in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

1.5 AS-BUILT DOCUMENTATION

A. Comply with requirements in Paragraph "AS-BUILT DOCUMENTATION" of Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

PART 2 - PRODUCTS

2.1 PRESSURE GAUGES FOR WATER AND SEWAGE USAGE

- A. ASME B40.100 all metal case 115 mm (4-1/2 inches) diameter, bottom connected throughout, graduated as required for service, and identity labeled. Range shall be 0 to 1380 kPa (0 to 200 psig) gauge.
- B. The pressure element assembly shall be bourdon tube. The mechanical movement shall be lined to pressure element and connected to pointer.
- C. The dial shall be non-reflective aluminum with permanently etched scale markings graduated in kPa and psig.
- D. The pointer shall be dark colored metal.
- E. The window shall be glass.
- F. The ring shall be brass or stainless steel.
- G. The accuracy shall be grade A, plus or minus 1 percent of middle half of scale range.
- H. The pressure gauge for water domestic use shall conform to NSF 61 and NSF 372.

2.2 THERMOMETERS

A. Thermometers shall be straight stem, metal case, red liquid-filled thermometer, approximately 175 mm (7 inches) high, 4 degrees C to 100 degrees C (40 degrees F to 212 degrees F). Thermometers shall comply with ASME B40.200.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Direct mounted pressure gauges shall be installed in piping tees with pressure gauge located on pipe at the most readable position.

- B. Valves and snubbers shall be installed in piping for each pressure gauge.
- C. Test plugs shall be installed on the inlet and outlet pipes of all heat exchangers or water heaters serving more than one plumbing fixture.
- D. Pressure gauges shall be installed where indicated in the drawings and at the following locations:
 - 1. Building water service entrance into building.
 - 2. Inlet and outlet of each pressure reducing valve.
 - Suction and discharge of each domestic water pump or re-circulating hot water return pump.
- E. Water meter installation shall conform to AWWA C700, AWWA C701, and AWWA C702. Electrical installations shall conform to IEEE C2, NFPA 70, and to the requirements specified herein. New materials shall be provided.
- F. Remote readout register shall be mounted at the location indicated in the drawings or as directed by the COR.
- G. Thermometers shall be installed on the water heater inlet and outlet piping, thermostatic mixing valve outlet piping, and the hot water circulation pump inlet piping.
- H. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no additional cost or time to the Government.
- I. Install portable water temperature, pressure and flow meters provided under Section 23 09 23 DIRECT DIGITAL CONTROL SYSTEMS FOR HVAC.

3.2 FIELD QUALITY CONTROL

A. The meter assembly shall be visually inspected and operationally tested. The correct multiplier placement on the face of the meter shall be verified.

3.3 STARTUP AND TESTING

- A. Perform tests as recommended by product manufacturer and listed standards and under actual or simulated operating conditions and prove full compliance with design and specified requirements. Tests of the various items of equipment shall be performed simultaneously with the system of which each item is an integral part.
- B. When any defects are detected, correct defects and repeat test at no additional cost or time to the Government.

C. The CxA will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the COR and CxA. Provide a minimum notice of 10 working days prior to startup and testing.

3.4 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.
- B. Components provided under this section of the specification will be tested as part of a larger system.

3.5 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for 4 hours to instruct each VA personnel responsible in operation and maintenance of the system.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

- - - E N D - - -

SECTION 22 05 23 GENERAL-DUTY VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section describes the requirements for general-duty valves for domestic water. systems.
- B. A complete listing of common acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS AND PRODUCT DATA.
- C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- D. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- E. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- F. Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. Where conflicts occur these specifications and the VHA standard will govern.
- B. American Society of Sanitary Engineering (ASSE): 1001-2017.....Performance Requirements for Atmospheric Type Vacuum Breakers 1003-2009.....Performance Requirements for for Domestic Water Distribution Systems 1011-2017.....Performance Requirements for Hose Connection Vacuum Breakers

1069-2005.....Performance Requirements for Automatic Temperature Control Mixing Valves 1070-2015....Performance Requirements for Water Temperature Limiting Devices VA Project No. 595-668 Lebanon VAMC AE Works Project No. VLEB-010 New Entryway for Building 17 BID DOCUMENTS 09-01-20 C. American Society for Testing and Materials (ASTM): International Code Council (ICC): IPC-2018.....International Plumbing Code D. Manufacturers Standardization Society of the Valve and Fittings Industry, Inc. (MSS): SP-25-2018.....Standard Marking Systems for Valves, Fittings, Flanges and Unions SP-80-2019.....Bronze Check Valves SP-110-2010.....Ball Valves Threaded NSF International (NSF): 61-2019......Drinking Water System Components - Health Effects 372-2016..... Drinking Water System Components - Lead Content

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS AND PRODUCT DATA.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 05 23, GENERAL-DUTY VALVES FOR PLUMBING PIPING", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 - 1. Ball Valves.
 - 2. Check Valves.
 - 3. Thermostatic Mixing Valves.
- D. Complete operating and maintenance manuals including technical data sheets, information for ordering replaceable parts and troubleshooting guide:
 - 1. Include complete list indicating all components of the systems.
 - Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.

- 3. Piping diagrams of thermostatic mixing valves to be installed.
- E. Completed System Readiness Checklist provided by the CxA and completed by the Contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.
- C. Submit training plans and instructor qualifications in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

1.5 DELIVERY, STORAGE, AND HANDLING

- A. Valves shall be prepared for shipping as follows:
 - 1. Protect internal parts against rust and corrosion.
 - 2. Protect ends of valves used for connection purposes.
 - 3. Set ball valves open to minimize exposure of functional surfaces.
- B. Valves shall be prepared for storage as follows:
 - 1. Maintain valve end protection.
 - 2. Store valves indoors and maintain at higher than ambient dew point temperature.

1.6 AS BUILT DOCUMENTATION

A. Comply with requirements in Paragraph "AS-BUILT DOCUMENTATION" of Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

PART 2 - PRODUCTS

2.1 VALVES, GENERAL

- A. Asbestos packing and gaskets are prohibited.
- B. Bronze valves shall be made with dezincification resistant materials. Bronze valves made with copper alloy (brass) containing greater than 15 percent zinc shall not be permitted.
- C. Valves in insulated piping shall have 50 mm or DN50 (2 inch) stem extensions and extended handles of non-thermal conductive material that allows operating the valve without breaking the vapor seal or disturbing the insulation.
- D. All valves used to supply potable water shall meet the requirements of NSF 61 and NSF 372.

2.2 SHUT-OFF VALVES

A. Cold and Hot Water:

1. 50 mm or DN50 (2 inches) and smaller: Ball, MSS SP-110, Ball valve shall be full port two piece with a union design, dielectric if required with adjustable stem package. Threaded stem designs are not allowed. The ball valve shall have a SWP rating of 1035 kPa (150 psig) and a CWP rating of 4138 kPa (600 psig). The body material shall be Bronze ASTM B584, Alloy C844. The ends shall be threaded.

2.3 ELEVATED VACUUM RELIEF VALVE ON COLD WATER INLET TO WATER HEATER

- A. Provide appropriate type with threaded ends.
- B. 50 mm or DN50 (2 inches) and smaller: Ball, MSS SP-110, Ball valve shall be full port two piece with a union design, dielectric if rtequired with adjustable stem package. Threaded stem designs are not allowed. The ball valve shall have a SWP rating of 1035 kPa (150 psig) and a CWP rating of 4138 kPa (600 psig). The body material shall be Bronze ASTM B584, Alloy C844.

2.4 SHUT-OFF VALVES

A. 1 inch and smaller shall be Class 125, bronze swing check valves with non-metallic disc suitable for type of service. The check valve shall meet MSS SP-80 Type 4 standard. The check valve shall have a CWP rating of 1380 kPa (200 psig). The check valve shall have a Y pattern horizontal body design with bronze body material conforming to ASTM B62, threaded joints, and PTFE or TFE disc.

2.4 THERMOSTATIC MIXING VALVE

B. ASSE 1069 and 1070 approved, lead free, 3/4" male national pipe thread/MNPT inlets and outlets, adjustable dial/spindle to adjust outlet temperature, internal checks, outlet temperature range from 95 to 115 degrees Fahrenheit, protects against scalding and chilling, one year minimum warranty, minimum .5 gpm flow rate, maximum flow rate: 12 gpm, maximum 5 psi pressure drop through valve at 6 gpm, cast brass body.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Valve interior shall be examined for cleanliness, freedom from foreign matter, and corrosion. Special packing materials shall be removed, such as blocks, used to prevent disc movement during shipping and handling.
- B. Valves shall be operated in positions from fully open to fully closed. Guides and seats shall be examined and made accessible by such operations.
- C. Threads on valve and mating pipe shall be examined for form and cleanliness.
- D. Mating flange faces shall be examined for conditions that might cause leakage. Bolting shall be checked for proper size, length, and material. Gaskets shall be verified for proper size and that its material composition is suitable for service and free from defects and damage.
- E. Do not attempt to repair defective valves; replace with new valves.

3.2 INSTALLATION

- A. Install valves with unions, dielectric if required at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.
- B. Valves shall be located for easy access. Valves shall be accessible with access panels when installed inside partitions or above hard ceilings.
- C. Valves shall be installed in horizontal piping with stem at or above center of pipe.
- D. Valves shall be installed in a position to allow full stem movement.
- E. Check valves shall be installed for proper direction of flow and as follows:
 - 1. Swing Check Valves: In horizontal position with hinge pin level and on top of valve.
- F. Install thermostatic water mixing valve with check stops as specified and shutoff valves on inlets and/or outlets, see drawings.
 - 1. Install thermometers as indicated on drawings/detail.
 - installation is unsatisfactory to the COR, the Contractor shall correct the installation at no additional cost or time to the Government.

3.3 LABELING AND IDENTIFYING

A. Equipment Nameplates and Signs: Install engraved plastic-laminate nameplate or sign on or near each of the following:1. Thermostatic water mixing valves.

3.4 ADJUSTING

- A. Valve packing shall be adjusted or replaced after piping systems have been tested and put into service but before final adjusting and balancing. Valves shall be replaced if persistent leaking occurs.
- B. Set field-adjustable temperature set points of thermostatic mixing valves.

3.5 STARTUP AND TESTING

- A. Perform tests as recommended by product manufacturer and listed standards and under actual or simulated operating conditions and prove full compliance with design and specified requirements. Tests of the various items of equipment shall be performed simultaneously with the system of which each item is an integral part.
- B. When any defects are detected, correct defects and repeat test at no additional cost or time to the Government.
- C. The CxA will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the COR and CxA. Provide a minimum notice of 10 working days prior to startup and testing.

3.6 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.
- B. Components provided under this section of the specification will be tested as part of a larger system.

3.7 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for 4 hours to instruct each VA personnel responsible in operation and maintenance of the system.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

s- - E N D - - -

SECTION 22 07 11 PLUMBING INSULATION

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Field applied insulation for thermal efficiency and condensation control for the following:
 - 1. Plumbing piping
- B. Definitions:
 - 1. ASJ: All Service Jacket, Kraft paper, white finish facing or jacket.
 - 2. Air-conditioned space: Space having air temperature and/or humidity controlled by mechanical equipment.
 - 3. All insulation systems installed within supply, return, exhaust, relief and ventilation air plenums shall be limited to uninhabited crawl spaces, areas above a ceiling or below the floor, attic spaces, interiors of air conditioned or heating ducts, and mechanical equipment rooms shall be noncombustible or shall be listed and labeled as having a flame spread indexes of not more than 25 and a smoke-developed index of not more than 50 when tested in accordance with ASTM E84 or UL 723. Note: ICC IMC, Section 602.2.1.
 - 5. Concealed: Piping above ceilings and in chases, interstitial space, and pipe spaces.
 - 6. Exposed: Piping and equipment exposed to view in finished areas including mechanical equipment rooms or exposed to outdoor weather. Shafts, chases, interstitial spaces, crawl spaces and pipe basements are not considered finished areas.
 - 7. FSK: Foil-scrim-Kraft facing.
 - 8. Hot: Plumbing piping handling media above 40 degrees C (104 degrees F).
 - Density: kg/m³ kilograms per cubic meter (Pcf pounds per cubic foot).
 - 10. Thermal conductance: Heat flow rate through materials.
 - a. Flat surface: Watts per square meter (BTU per hour per square foot).
 - b. Pipe or Cylinder: Watts per linear meter (BTU per hour per linear foot) for a given outside diameter.

Lebanon VAMC New Entryway for Building 17

BID DOCUMENTS

- 09-01-19
- 11. Thermal Conductivity (k): Watts per meter, per degree K (BTU inch thickness, per hour, per square foot, per degree F temperature difference).
- 12. Vapor Retarder (Vapor Barrier): A material which retards the transmission (migration) of water vapor. Performance of the vapor retarder is rated in terms of permeance (perms). For the purpose of this specification, vapor retarders/vapor barriers shall have a maximum published permeance of .02 perms.
- 13. CW: Cold water.
- 14. HW: Hot water.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS AND PRODUCT DATA.
- C. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- D. Section 07 84 00, FIRESTOPPING: Mineral fiber and bond breaker behind sealant.
- E. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING: General mechanical requirements and items, which are common to more than one section of Division 22.
- F. Section 22 05 23, GENERAL-DUTY VALVES FOR PLUMBING PIPING: Hot and cold water piping.
- G. Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only.
- B. American Society for Testing and Materials (ASTM): B209-2014.....Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate C411-2011....Standard Test Method for Hot-Surface Performance of High-Temperature Thermal Insulation

VA Project No. 595-668 Lebanon VAMC AE Works Project No. VLEB-010 New Entryway for Building 17 BID DOCUMENTS 09 - 01 - 19C449-2007 (R2013).....Standard Specification for Mineral Fiber Hydraulic-Setting Thermal Insulating and Finishing Cement C450-2008 (R2014).....Standard Practice for Fabrication of Thermal Insulating Fitting Covers for NPS Piping . C534/C534M-2014.....Standard Specification for Preformed Flexible Elastomeric Cellular Thermal Insulation in Sheet and Tubular Form C547-2015..... Standard Specification for Mineral Fiber Pipe Insulation C553-2013..... Standard Specification for Mineral Fiber Blanket Thermal Insulation for Commercial and Industrial Applications C680-2014.....Standard Practice for Estimate of the Heat Gain or Loss and the Surface Temperatures of Insulated Flat, Cylindrical, and Spherical Systems by Use of Computer Programs C1136-2012.....Standard Specification for Flexible, Low Permeance Vapor Retarders for Thermal Insulation C1710-2011.....of Flexible Closed Cell Preformed Insulation in Tube and Sheet Form D1668/D1668M-1997a (2014)e1 Standard Specification for Glass Fabrics (Woven and Treated) for Roofing and Waterproofing E84-2015a.....Standard Test Method for Surface Burning Characteristics of Building Materials

VA Project No. 595-668 Lebanon VAMC AE Works Project No. VLEB-010 New Entryway for Building 17 BID DOCUMENTS 09 - 01 - 19E2231-2015.....Standard Practice for Specimen Preparation and Mounting of PipeInsulation to Assess Surface Burning Characteristics D. International Code Council, (ICC): IMC-2012.....International Mechanical Code E. Military Specifications (Mil. Spec.): MIL-A-3316C (2)-1990....Adhesives, Fire-Resistant, Thermal Insulation MIL-PRF-19565C (1)-1988.Coating Compounds, Thermal Insulation, Fire-and Water-Resistant, Vapor-Barrier F. National Fire Protection Association (NFPA): 90A-2015.....Standard for the Installation of Air-Conditioning and Ventilating Systems G. Underwriters Laboratories, Inc (UL): 723-2008 (R2013) Standard for Test for Surface Burning

Characteristics of Building Materials

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS AND PRODUCT DATA.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 07 11, PLUMBING INSULATION", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
- D. Shop Drawings:
 - All information, clearly presented, shall be included to determine compliance with drawings and specifications and ASTM Designation, Federal and Military specifications.
 - a. Insulation materials: Specify each type used and state surface burning characteristics.

New Entryway for Building 17

BID DOCUMENTS

- b. Insulation facings and jackets: Each type used and state surface burning characteristics.
- c. Insulation accessory materials: Each type used.
- d. Manufacturer's installation and fitting fabrication instructions for flexible unicellular insulation shall follow the guidelines in accordance with ASTM C1710.
- e. Make reference to applicable specification paragraph numbers for coordination.
- f. All insulation fittings (exception flexible unicellular insulation) shall be fabricated in accordance with ASTM C450 and the referenced Adjunct to ASTM C450.

E. Samples:

- Each type of insulation: Minimum size 100 mm (4 inches) square for board/block/ blanket; 150 mm (6 inches) long, full diameter for round types.
- Each type of facing and jacket: Minimum size 100 mm (4 inches square).
- 3. Each accessory material: Minimum 120 ml (4 ounce) liquid container or 120 gram (4 ounce) dry weight for adhesives, cement and / mastic.
- F. Completed System Readiness Checklist provided by the CxA and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

1.5 QUALITY ASSURANCE

- A. Refer to article QUALITY ASSURANCE, in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- B. Criteria:
 - 1. Comply with NFPA 90A, particularly paragraphs 4.3.3.1 through
 - 4.3.3.6, 4.3.11.2.6, parts of which are quoted as follows:

4.3.3.1 Pipe insulation and coverings, vapor retarder facings, adhesives, fasteners, tapes, and supplementary materials, and will have, in the form in which they are used, a maximum flame spread index of 25 without evidence of continued progressive combustion and a maximum smoke developed index of 50 when tested in accordance with ASTM E84 and appropriate mounting practice, e.g. ASTM E2231.

4.3.3.3 Coverings and linings for pipes, plenums and panels including all pipe insulation materials shall not flame, glow,

Lebanon VAMC

New Entryway for Building 17

BID DOCUMENTS

smolder, or smoke when tested in accordance with a similar test for pipe covering, ASTM C411, Standard Test Method for Hot-Surface Performance of High-Temperature Thermal Insulation, at the temperature to which they are exposed in service. In no case shall the test temperature be below 121 degrees C (250 degrees F).

- 2. Test methods: ASTM E84, UL 723, and ASTM E2231.
- 3. Specified k factors are at 24 degrees C (75 degrees F) mean temperature unless stated otherwise. Where optional thermal insulation material is used, select thickness to provide thermal conductance no greater than that for the specified material. For pipe, use insulation manufacturer's published heat flow tables. For domestic hot water supply run out insulation and condensation control insulation, no thickness adjustment need be made.
- 4. All materials shall be compatible and suitable for service temperature and shall not contribute to corrosion or otherwise attack surface to which applied in either the wet or dry state.
- C. Every package or standard container of insulation or accessories delivered to the job site for use shall have a manufacturer's stamp or label giving the name of the manufacturer, description of the material, and the production date or code.

1.6 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments.
- B. Submit operation and maintenance data updated to include submittal review comments, substitutions and construction revisions shall be in electronic version on compact disc or DVD inserted into a three ring binder as discussed, coordinated and approved by VA. All aspects of system operation and maintenance procedures, including piping isometrics, List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.
- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and shall provide the complete set at the time of final systems certification testing. As-built drawings are to be provided, and a copy of them in appropriate Auto-CAD version as

VA Project No. 595-668 AE Works Project No. VLEB-010 Lebanon VAMC New Entryway for Building 17 BID DOCUMENTS

09-01-19

discussed, coordinated and approved by the VA provided on compact disk or DVD again as previously discussed, coordinated and approved by the VA. . Should the installing contractor engage the testing company to provide as built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement.

D. Certification documentation shall be provided prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and certification that all results of tests were within limits specified.

1.7 STORAGE AND HANDLING OF MATERIAL

A. Store materials in clean and dry environment, pipe insulation jackets shall be clean and unmarred. Place adhesives in original containers. Maintain ambient temperatures and conditions as required by printed instructions of manufacturers of adhesives, mastics and finishing cements.

PART 2 - PRODUCTS

2.1 MINERAL FIBER

- A. ASTM C612 (Board, Block), Class 1 or 2, density 48 kg/m³ (nominal 3 pcf), k = 0.037 (.26) at 24 degrees C (75 degrees F), external insulation for temperatures up to 204 degrees C (400 degrees F).
- B. ASTM C547 (Pipe Fitting Insulation and Preformed Pipe Insulation), Class 1, k = 0.037 (0.26) at 24 degrees C (75 degrees F), for use at temperatures up to 230 degrees C (446 degrees F) with an all-service vapor retarder jacket (ASJ) and with polyvinyl chloride (PVC) premolded fitting covering.

2.6 FLEXIBLE ELASTOMERIC CELLULAR THERMAL

A. ASTM C534/C534M, k = 0.039 (0.27) at 24 degrees C (75 degrees F), flame spread not over 25, smoke developed not over 50, for temperatures from minus 4 degrees C (40 degrees F) to 93 degrees C (199 degrees F). Under high humidity exposures for condensation control an external vapor retarder/barrier jacket is required. Consult ASTM C1710.

22 07 11 - 7

Lebanon VAMC New Entryway for Building 17 BID DOCUMENTS 09-01-19

2.8 INSULATION FACINGS AND JACKETS

- A. Vapor Retarder, higher strength with low water permeance = 0.02 or less perm rating, Beach puncture 50 units for insulation facing on pipe insulation jackets. Facings and jackets shall be ASJ or PVDC Vapor Retarder jacketing.
- B. ASJ shall be white finish (kraft paper) bonded to 0.025 mm (1 mil) thick aluminum foil, fiberglass reinforced, with pressure sensitive adhesive closure. Comply with ASTM C1136. Beach puncture is 50 units, suitable for painting without sizing. Jackets shall have minimum 40 mm (1-1/2 inch) lap on longitudinal joints and minimum 75 mm (3 inch) butt strip on end joints. Butt strip material shall be same as the jacket. Lap and butt strips shall be self-sealing type with factory-applied pressure sensitive adhesive.
- C. Vapor Retarder medium strength with low water vapor permeance of 0.02 or less perm rating. D. Except for flexible elastomeric cellular thermal insulation (not for high humidity exposures), field applied vapor barrier jackets shall be provided, in addition to the specified facings and jackets, on all interior piping. The vapor barrier jacket shall consist of a multi-layer laminated cladding with a maximum water vapor permeance of 0.001 perms. The minimum puncture resistance shall be 35 cm-kg (30 inch-pounds) for interior locations and 92 cm-kg (80 inch-pounds) for exterior or exposed locations or where the insulation is subject to damage.
- E. All longitudinal and circumferential joints are vapor sealed with a vapor barrier mastic or caulking, vapor barrier jackets may not be provided. For aesthetic and physical abuse applications, exterior jacketing is recommended. Otherwise field applied vapor barrier jackets shall be provided, in addition to the applicable specified facings and jackets, on all exterior piping as well as on interior piping in ventilated (not air conditioned) spaces, etc.) in high humidity locations conveying fluids below ambient temperature. The vapor barrier jacket shall consist of a multi-layer laminated cladding with a maximum water vapor permeance of 0.001 perms. The minimum puncture resistance shall be 35 cm-kg (30 inch-pounds) for interior locations and 92 cm-kg

Lebanon VAMC New Entryway for Building 17 BID DOCUMENTS 09-01-19 ed locations or where the

(80 inch-pounds) for exterior or exposed locations or where the insulation is subject to damage.

- F. Glass Cloth Jackets: Presized, minimum 0.18 kg per square meter (7.8 ounces per square yard), 2070 kPa (300 psig) bursting strength with integral vapor retarder where required or specified. Weatherproof if utilized for outside service.
- G. Pipe fitting insulation covering (jackets): Fitting covering shall be premolded to match shape of fitting and shall be PVC conforming to Fed Spec L-P-535E, composition A, Type II Grade GU, and Type III, minimum thickness 0.7 mm (0.03 inches). Provide color matching vapor retarder pressure sensitive tape. Staples, tacks, or any other attachment that penetrates the PVC covering is not allowed on any form of a vapor barrier system in below ambient process temperature applications.
- H. Aluminum Jacket-Piping systems and circular breeching and stacks: ASTM B209, 3003 alloy, H-14 temper, 0.6 mm (0.023 inch) minimum thickness with locking longitudinal joints. Jackets for elbows, tees and other fittings shall be factory-fabricated or with cut aluminum gores to match shape of fitting and of 0.6 mm (0.024 inch) minimum thickness aluminum. Aluminum fittings shall be of same construction with an internal moisture barrier as straight run jackets but need not be of the same alloy. Factory-fabricated stainless-steel bands with wing seals shall be installed on all circumferential joints. Bands shall be 15 mm (0.5 inch) wide on 450 mm (18 inch) centers. System shall be weatherproof if utilized for outside service.
- I. Aluminum jacket-rectangular breeching: ASTM B209, 3003 alloy, H-14 temper, 0.5 mm (0.020 inches) thick with 32 mm (1-1/4 inch) corrugations or 0.8 mm (0.032 inches) thick with no corrugations. System shall be weatherproof if used for outside service.

2.9 PIPE COVERING PROTECTION SADDLES

A. Cold pipe support: Premolded pipe insulation 180 degrees (half-shells) on bottom half of pipe at supports. Material shall be cellular glass insulation of the same thickness as adjacent insulation. AE Works Project No. VLEB-010

Lebanon VAMC New Entryway for Building 17

BID DOCUMENTS

09-01-19

Nominal Pipe Size and Accessories Material (Insert Blocks)					
Nominal Pipe Size mm (inches)	Insert Blocks mm (inches)				
Up through 125 (5)	150 (6) long				

- 2.10 WARM OR HOT PIPE SUPPORTS: PREMOLDED PIPE INSULATION (180 DEGREE HALF-SHELLS) ON BOTTOM HALF OF PIPE AT SUPPORTS. MATERIAL SHALL BE CELLULAR GLASS. INSULATION AT SUPPORTS SHALL HAVE SAME THICKNESS AS ADJACENT INSULATION. 2.10 ADHESIVE, MASTIC, CEMENT
 - A. Mil. Spec. MIL-A-3316, Class 1: Jacket and lap adhesive and protective finish coating for insulation.
 - B. Mil. Spec. MIL-A-3316, Class 2: Adhesive for laps and for adhering insulation to metal surfaces.
 - C. Mil. Spec. MIL-A-24179A, Type II Class 1: Adhesive for installing flexible unicellular insulation and for laps and general use.
 - E. Mil. Spec. MIL-PRFC-19565C, Type I or Type II: Vapor barrier compound for indoor use.
 - F. ASTM C449: Mineral fiber hydraulic-setting thermal insulating and finishing cement.
 - G. Other: Insulation manufacturers' published recommendations.

2.11 MECHANICAL FASTENERS

- A. Pins, anchors: Welded pins, or metal or nylon anchors with galvanized steel or fiber washer, or clips. Pin diameter shall be as recommended by the insulation manufacturer.
- B. Staples: Outward clinching galvanized steel. Staples are not allowed for below ambient vapor barrier applications.
- C. Wire: 1.3 mm thick (18 gage) soft annealed galvanized or 1.9 mm (14 gage) copper clad steel or nickel copper alloy or stainless steel.
- D. Bands: 13 mm (1/2 inch) nominal width, brass, galvanized steel, aluminum or stainless steel.

VA Project No. 595-668

AE Works Project No. VLEB-010

Lebanon VAMC New Entryway for Building 17 BID DOCUMENTS 09-01-19

E. Tacks, rivets, screws or any other attachment device capable of penetrating the vapor retarder shall NOT be used to attach/close the any type of vapor retarder jacketing. Thumb tacks sometimes used on PVC jacketing and preformed fitting covers closures are not allowed for below ambient vapor barrier applications.

2.12 REINFORCEMENT AND FINISHES

- A. Glass fabric, open weave: ASTM D1668/D1668M, Type III (resin treated) and Type I (asphalt or white resin treated).
- B. Glass fiber fitting tape: Mil. Spec MIL-C-20079H, Type II, Class 1.
- C. Tape for Flexible Elastomeric Cellular Insulation: As recommended by the insulation manufacturer.
- D. Hexagonal wire netting: 25 mm (one inch) mesh, 0.85 mm thick (22 gage) galvanized steel.
- E. Corner beads: 50 mm (2 inch) by 50 mm (2 inch), 0.55 mm thick (26 gage) galvanized steel; or, 25 mm (1 inch) by 25 mm (1 inch), 0.47 mm thick (28 gage) aluminum angle adhered to 50 mm (2 inch) by 50 mm (2 inch) Kraft paper.
- F. PVC fitting cover: Fed. Spec L-P-535E, Composition A, 11-86 Type II, Grade GU, with Form B Mineral Fiber insert, for media temperature 10 to 121 degrees C (50 to 250 degrees F). Below 10 degrees C (50 degrees F) and above 121 degrees C (250 degrees F) provide mitered pipe insulation of the same type as insulating straight pipe. Provide double layer insert. Provide vapor barrier pressure sensitive tape matching the color of the PVC jacket.

2.13 FIRESTOPPING MATERIAL

A. Other than pipe insulation, refer to appropriate section for FIRESTOPPING.

2.14 FLAME AND SMOKE

A. Unless shown otherwise all assembled systems shall meet flame spread 25 and smoke developed 50 rating as developed under ASTM and UL standards and specifications. See paragraph "Quality Assurance".

PART 3 - EXECUTION

3.1 GENERAL REQUIREMENTS

A. Required pressure tests of piping joints and connections shall be completed and the work approved by the Contracting Officer's Representative (COR) for application of insulation. Surface shall be

Lebanon VAMC

New Entryway for Building 17

BID DOCUMENTS

09-01-19

clean and dry with all foreign materials, such as dirt, oil, loose scale and rust removed.

- B. Except for specific exceptions or as noted, insulate all specified piping (pipe, fittings, valves, accessories). Insulate each pipe individually. Do not use scrap pieces of insulation where a full length section will fit.
- C. Where removal of insulation of piping is required to comply with , TRADITIONAL ASBESTOS ABATEMENT and GLOVEBAG ASBESTOS ABATEMENT, such areas shall be reinsulated to comply with this specification.
 - D. Insulation materials shall be installed with smooth and even surfaces, with jackets and facings drawn tight and smoothly cemented down and sealed at all laps. Insulation shall be continuous through all sleeves and openings, except at fire dampers and duct heaters (NFPA 90A).
 - E. Vapor retarders shall be continuous and uninterrupted throughout systems with operating temperature 15 degrees C (60 degrees F) and below. Lap and seal vapor barrier over ends and exposed edges of insulation. Anchors, supports and other metal projections through insulation on cold surfaces shall be insulated and vapor sealed for a minimum length of 150 mm (6 inches).
 - F. Install vapor stops with operating temperature 15 degrees C (60 degrees F) and below at all insulation terminations on either side of valves, fittings, and particularly in straight lengths every 4.6 to 6.1 meters (approx. 15 to 20 feet) of pipe insulation. The annular space between the pipe and pipe insulation of approx. 25 mm (1 inch) in length at every vapor stop shall be sealed with appropriate vapor barrier sealant. Bio-based materials shall be utilized when possible.
 - G. Insulation on hot piping shall be terminated square at items not to be insulated, access openings and nameplates. Cover all exposed raw insulation with white sealer coating (caution about coating's maximum temperature limit) or jacket material.
 - Plumbing work not to be insulated unless otherwise noted:
 Chromium plated piping.

- J. Apply insulation materials subject to the manufacturer's recommended temperature limits. Apply adhesives, mastic and coatings at the manufacturer's recommended minimum wet or dry film thickness. Biobased materials shall be utilized when possible.
- K. Elbows, flanges and other fittings shall be insulated with the same material as is used on the pipe straights. Use of polyurethane or polyisocyanurate spray-foam to fill a PVC elbow jacket is prohibited on cold applications.
- L. Firestop Pipe insulation:
 - Provide firestopping insulation at fire and smoke barriers through penetrations. Firestopping insulation shall be UL listed as defined in Section for FIRESTOPPING.
 - Pipe penetrations requiring fire stop insulation including, but not limited to the following:
 - a. Pipe risers through floors
 - b. Pipe chase walls and floors
 - c. Smoke partitions
 - d. Fire partitions
 - e. Hourly rated walls
- O. Provide vapor barrier systems as follows:
 - 1. All piping exposed to outdoor weather.
 - All interior piping conveying fluids exposed to outdoor air (i.e. in ventilated (not air conditioned) spaces, etc.) below ambient air temperature and in high humidity locations.
- P. Provide metal jackets over insulation as follows:
 - 1. A 50 mm (2 inch) jacket overlap is required at longitudinal and circumferential joints with the overlap at the bottom.

3.2 INSULATION INSTALLATION

- A. Mineral Fiber Board:
 - 1. Vapor retarder faced board: Apply board on pins spaced not more than 300 mm (12 inches) on center each way, and not less than 75 mm (3 inches) from each edge of board. In addition to pins, apply insulation bonding adhesive to entire underside of horizontal metal surfaces. (Bio-based materials shall be utilized when possible.) Butt insulation edges tightly and seal all joints with laps and butt

VA Project No. 595-668 AE Works Project No. VLEB-010

strips. After applying speed clips cut pins off flush and apply vapor seal patches over clips.

- B. Molded Mineral Fiber Pipe and Tubing Covering:
 - Fit insulation to pipe, aligning all longitudinal joints. Seal longitudinal joint laps and circumferential butt strips by rubbing hard with a nylon sealing tool to assure a positive seal. Staples may be used to assist in securing insulation except for cold piping. Seal all vapor retarder penetrations on cold piping with a generous application of vapor barrier mastic. Provide cellar glass inserts and install with metal insulation shields at outside pipe supports. Install freeze protection insulation over heating cable.
 - 2. Contractor's options for fitting, flange and valve insulation:
 - a. Insulating and finishing cement for sizes less than 100 mm (4 inches) operating at surface temperature of 15 degrees C (60 degrees F) or more.
 - b. Factory premolded, one piece PVC covers with mineral fiber, (Form B), inserts surface temperature of above 4 degrees C (40 degrees F) to 121 degrees C (250 degrees F). Provide mitered preformed insulation of the same type as the installed straight pipe insulation for pipe temperatures below 4 degrees C (40 degrees F). Secure first layer of mineral fiber insulation with twine. Seal seam edges with vapor barrier mastic and secure with fitting tape.
 - c. Factory preformed, ASTM C547 or fabricated mitered sections, joined with adhesive or (hot only) wired in place. (Bio-based materials shall be utilized when possible.) For hot piping finish with a smoothing coat of finishing cement. For cold fittings, 15 degrees C (60 degrees F) or less, vapor seal with a layer of glass fitting tape imbedded between two 2 mm (1/16 inch) coats of vapor barrier mastic.
 - d. Fitting tape shall extend over the adjacent pipe insulation and overlap on itself at least 50 mm (2 inches).
 - 3. Nominal thickness in millimeters and inches specified in the schedule at the end of this section.

Lebanon VAMC New Entryway for Building 17 BID DOCUMENTS 09-01-19

- 4. Condensation control insulation: Minimum 25 mm (1 inch) thick for all pipe sizes.
 - a. Body of roof and overflow drains, horizontal runs and offsets (including elbows) of all interior storm and overflow drain piping above grade.
 - b. Underground domestic water piping including trap primer/cold water piping: Apply insulation with joints tightly butted. Seal longitudinal self-sealing lap. Use field fabricated or factory made fittings. Seal butt joints and fitting with jacketing as recommended by the insulation manufacturer. Use 100 mm (4 inch) wide strips to seal butt joints.
 - c. Provide expansion chambers for pipe loops, anchors and wall penetrations as recommended by the insulation manufacturer.
 - d. Underground insulation shall be inspected and approved by the COR as follows:
 - 1) Insulation in place before coating.
 - 2) After coating.
 - e. Sand bed and backfill: Minimum 75 mm (3 inches) all around insulated pipe or tank, applied after coating has dried.
 - f. All piping up to 482 degrees C (900 degrees F) requiring protection from physical heavy contact/abuse including in mechanical rooms and crawl spaces.
- C. Flexible Elastomeric Cellular Thermal Insulation:
 - Apply insulation and fabricate fittings in accordance with the manufacturer's installation instructions and finish with two coats of weather resistant finish as recommended by the insulation manufacturer. External vapor barrier jacketing may be required for expected or anticipated high humidity exposures. See ASTM C1710.
 - 2. Pipe and tubing insulation:
 - a. Use proper size material. Do not stretch or strain insulation.
 - b. To avoid undue compression of insulation, use supports as recommended by the elastomeric insulation manufacturer. Insulation shields are specified under Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
 - c. Where possible, slip insulation over the pipe or tubing prior to connection, and seal the butt joints with adhesive. Where the

Lebanon VAMC

New Entryway for Building 17

BID DOCUMENTS

09-01-19

slip-on technique is not possible, slit the insulation and apply it to the pipe sealing the seam and joints with contact adhesive. Optional tape sealing, as recommended by the manufacturer, may be employed. Bio-based materials shall be utilized when possible.

- Apply sheet insulation to flat or large curved surfaces with 100 percent adhesive coverage. For fittings and large pipe, apply adhesive to seams only.
- Pipe insulation: nominal thickness in millimeters (inches as specified in the schedule at the end of this section.

3.3 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.
- B. Components provided under this section of the specification will be tested as part of a larger system.

3.4 PIPE INSULATION SCHEDULE

A. Provide insulation for piping systems as scheduled below:

Insulation Thickness Millimeters (Inches)						
Nominal Pipe Size Millimeters (Inches						
Operating Temperature Range/Service	Insulation Material	Less than 25 (1)	25 - 32 (1 - 1¼)	38 - 75 (1½ - 3)	100 (4) and Greater	
(40-140 degrees F) (Domestic Hot and Cold Water including trap primer, Storm and Overflow Drainage Piping including drain bodies)	Mineral Fiber (Above ground piping only)	25 (1.0)	38 (1.5)	25 (1.0)	25(1.0)	
38-60 degrees C (40100-85 140 degrees F) (Domestic Cold Water Supply including trap primer piping)Hot Water Supply and Return)	Flexible Elastomeric Cellular Thermal (Below Ground Piping Only)Above ground piping only)	2538 (1.05)	38 (1.5)	50 (2.0)	50 (2.0)	
38-60 degrees C (100-140 degrees F)	Cellular Glass Thermal	38 (1.5)	38 (1.5)	50 (2.0)	50 (2.0)	

VA Project No. 595-668

Lebanon VAMC

AE Works Project No. VLEB-010

New Entryway for Building 17

BID DOCUMENTS

09-01-19

(Domestic Hot Water Supply and Return)					
4-15 degrees C (40-60 degrees F)	Rigid Cellular Phenolic Foam (Above ground piping only) (exterior locations only)	25 (1.0)	25(1.0)	25 (1.0)	25 (1.0)
4-15 degrees C (40-60 degrees F)	Polyiso- cyanurate Closed-Cell Rigid(Exterior Locations only)	25 (1.0)	25(1.0)	25 (1.0)	25 (1.0)
(4-15 degrees C (40-60 degrees F)	Flexible Elastomeric Cellular Thermal (Above ground piping only)	25 (1.0)	25(1.0)	25 (1.0)	25 (1.0)
4-15 degrees C (40-60 degrees F)	Cellular Glass Thermal	38 (1.5)	38 (1.5)	38 (1.5)	38 (1.5)

- - - E N D - - -

AE Works Project No. VLEB-010

Lebanon VAMC New Entryway for Building 17 BID DOCUMENTS 11-1-16

SECTION 22 08 00

COMMISSIONING OF PLUMBING SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 22.
- B. This project will have selected building systems commissioned. The complete list of equipment and systems to be commissioned are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. The commissioning process, which the Contractor is responsible to execute, is defined in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. A Commissioning Agent (CxA) appointed by the Department of Veterans Affairs will manage the commissioning process.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS.
- B. Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- C. Section 01 33 23 SHOP DRAWINGS AND PRODUCT DATA.

1.3 SUMMARY

- A. This Section includes requirements for commissioning plumbing systems, subsystems and equipment. This Section supplements the general requirements specified in Section 01 91 00 General Commissioning Requirements.
- B. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for more specifics regarding processes and procedures as well as roles and responsibilities for all Commissioning Team members.

1.4 DEFINITIONS

A. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for definitions.

1.5 COMMISSIONED SYSTEMS

A. Commissioning of a system or systems specified in Division 22 is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel in accordance with the requirements of Section 01 91 00 and of Division 22, is required in cooperation with the VA and the Commissioning Agent.

New Entryway for Building 17

BID DOCUMENTS

B. The Plumbing systems commissioning will include the systems listed in Section 01 91 00 General Commissioning Requirements:

1.6 SUBMITTALS

- A. The commissioning process requires review of selected Submittals. The Commissioning Agent will provide a list of submittals that will be reviewed by the Commissioning Agent. This list will be reviewed and approved by the VA prior to forwarding to the Contractor. Refer to Section 01 33 23 SHOP DRAWINGS AND PRODUCT DATA for further details.
- B. The commissioning process requires Submittal review simultaneously with engineering review. Specific submittal requirements related to the commissioning process are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 CONSTRUCTION INSPECTIONS

A. Commissioning of the Building Plumbing Systems will require inspection of individual elements of the Plumbing construction throughout the construction period. The Contractor shall coordinate with the Commissioning Agent in accordance with Section 01 91 00 and the Commissioning Plan to schedule inspections as required to support the commissioning process.

3.2 PRE-FUNCTIONAL CHECKLISTS

A. The Contractor shall complete Pre-Functional Checklists to verify systems, subsystems, and equipment installation is complete and systems are ready for Systems Functional Performance Testing. The Commissioning Agent will prepare Pre-Functional Checklists to be used to document equipment installation. The Contractor shall complete the checklists. Completed checklists shall be submitted to the VA and to the Commissioning Agent for review. The Commissioning Agent may spot check a sample of completed checklists. If the Commissioning Agent determines that the information provided on the checklist is not accurate, the Commissioning Agent will return the marked-up checklist to the Contractor for correction and resubmission. If the Commissioning Agent determines that a significant number of completed checklists for similar equipment are not accurate, the Commissioning Agent will select a broader sample of checklists for review. If the VA Project No. 595-668 AE Works Project No. VLEB-010

Lebanon VAMC

New Entryway for Building 17

BID DOCUMENTS

Commissioning Agent determines that a significant number of the broader sample of checklists is also inaccurate, all the checklists for the type of equipment will be returned to the Contractor for correction and resubmission. Refer to SECTION 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for submittal requirements for Pre-Functional Checklists, Equipment Startup Reports, and other commissioning documents.

3.3 CONTRACTORS TESTS

A. Contractor tests as required by other sections of Division 22 shall be scheduled and documented in accordance with Section 01 00 00 GENERAL REQUIREMENTS. All testing shall be incorporated into the project schedule. Contractor shall provide no less than 7 calendar days' notice of testing. The Commissioning Agent will witness selected Contractor tests at the sole discretion of the Commissioning Agent. Contractor tests shall be completed prior to scheduling Systems Functional Performance Testing.

3.4 SYSTEMS FUNCTIONAL PERFORMANCE TESTING:

A. The Commissioning Process includes Systems Functional Performance Testing that is intended to test systems functional performance under steady state conditions, to test system reaction to changes in operating conditions, and system performance under emergency conditions. The Commissioning Agent will prepare detailed Systems Functional Performance Test procedures for review and approval by the Resident Engineer. The Contractor shall review and comment on the tests prior to approval. The Contractor shall provide the required labor, materials, and test equipment identified in the test procedure to perform the tests. The Commissioning Agent will witness and document the testing. The Contractor shall sign the test reports to verify tests were performed. See Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS, for additional details.

3.5 TRAINING OF VA PERSONNEL

A. Training of the VA operation and maintenance personnel is required in cooperation with the Resident Engineer and Commissioning Agent. Provide competent, factory authorized personnel to provide instruction to operation and maintenance personnel concerning the location, operation, and troubleshooting of the installed systems. Contractor shall submit training agendas and trainer resumes in accordance with VA Project No. 595-668 AE Works Project No. VLEB-010

Lebanon VAMC New Entryway for Building 17 BID DOCUMENTS 11-1-16 the requirements of Section 01 91 00. The instruction shall be scheduled in coordination with the Resident Engineer after submission

and approval of formal training plans. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS and Division 22 Sections for additional Contractor training requirements.

----- END -----

AE Works Project No. VLEB-010

05-01-21

Lebanon VAMC

BID DOCUMENTS

SECTION 22 11 00 FACILITY WATER DISTRIBUTION

PART 1 - GENERAL.

1.1 DESCRIPTION

- A. Domestic water systems, including piping, equipment and all necessary accessories as designated in this section.
- B. A complete listing of all acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS AND PRODUCT DATA.
- C. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- D. Applicable Section for FIRESTOPPING.
- E. Applicable Section for JOINT SEALANTS.
- F. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- G. Section 22 07 11, PLUMBING INSULATION.
- H. SECTION 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Mechanical Engineers (ASME): A13.1-2007 (R2013).....Scheme for Identification of Piping Systems

VA Project No. 595-668 Lebanon VAMC AE Works Project No. VLEB-010 New Entryway for Building 17 BID DOCUMENTS 05-01-21 D. American Society for Testing and Materials (ASTM): B32-2008 (R2014).....Standard Specification for Solder Metal B75/B75M-2011.....Standard Specification for Seamless Copper Tube B88-2014..... Standard Specification for Seamless Copper Water Tube B687-1999 (R2011).....Standard Specification for Brass, Copper, and Chromium-Plated Pipe Nipples E1120-2008.....Standard Specification for Liquid Chlorine E1229-2008..... Standard Specification for Calcium Hypochlorite E. American Water Works Association (AWWA): C651-2014.....Disinfecting Water Mains F. American Welding Society (AWS): A5.8M/A5.8-2011-AMD1....Specification for Filler Metals for Brazing . International Code Council (ICC): IPC-2012.....International Plumbing Code H. Manufacturers Specification Society (MSS): SP-58-2009......Pipe Hangers and Supports - Materials, Design, Manufacture, Selection, Application, and Installation SP-110-2010......Ball Valves Threaded I. NSF International (NSF): 61-2014a.....Drinking Water System Components - Health Effects 372-2011..... Drinking Water System Components - Lead Content J. Plumbing and Drainage Institute (PDI): PDI-WH 201-2010.....Water Hammer Arrestors K. Department of Veterans Affairs:

H-18-10.....Plumbing Design Manual

Lebanon VAMC New Entryway for Building 17 BID DOCUMENTS 05-01-21

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be in accordance with Section 01 33 23, SHOP DRAWINGS AND PRODUCT DATA..B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 11 00, FACILITY WATER DISTRIBUTIONS", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.

1. All items listed in Part 2 - Products.

- D. Complete operating and maintenance manuals including wiring diagrams, technical data sheets and information for ordering replacement parts:
 - 1. Include complete list indicating all components of the systems.
 - 2. Include complete diagrams of the internal wiring for each item of equipment.
 - 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.
- E. Completed System Readiness Checklist provided by the CxA and completed by the Contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.
- F. Submit training plans and instructor qualifications in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

1.5 QUALITY ASSURANCE

A. All pipe, couplings, fittings, and specialties shall bear the identification of the manufacturer and any markings required by the applicable referenced standards.

1.7 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, substitutions and construction revisions will be in

VA Project No. 595-668 AE Works Project No. VLEB-010

New Entryway for Building 17

BID DOCUMENTS 05-01-21

electronic version on compact disc or DVD inserted into a three-ring binder as discussed, coordinated and approved with VA. All aspects of system operation and maintenance procedures, including piping isometrics, a written description of system designic, and sequence of operation shall be included in t operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices shall be included. A list of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.

- C. The installing contractor will maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. As-built drawings are to be provided, and a copy of them in Auto-CAD version provided on compact disk or DVD as coordinated, discussed and approved by the VA. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement.
- D. Certification documentation shall be provided to COR 10 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and certificate if applicable that all results of tests were within limits specified. If a certificate is not available, all documentation shall be on the Certifier's letterhead.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Material or equipment containing a weighted average of greater than 0.25 percent lead are prohibited in any potable water system intended for human consumption and shall be certified in accordance with NSF 61 or NSF372. Endpoint devices used to dispense water for drinking shall meet the requirements of NSF 61, Section 9.

Lebanon VAMC New Entryway for Building 17 BID DOCUMENTS 05-01-21

2.3 ABOVE GROUND (INTERIOR) WATER PIPING INCLUDING TRAP PRIMER PIPING

- A. Pipe: Copper tube, ASTM B88, Type L, drawn.
- B. Fittings for Copper Tube:
 - Wrought copper or bronze castings conforming to ASME B16.18 and B16.22. Unions shall be bronze, dielectric if required, MSS SP-72, MSS SP-110, solder or braze joints. Use 95/5 tin and antimony for all soldered joints.
 - Mechanical press-connect fittings for copper pipe and tube <u>are</u> prohibited. See Plumbing Design Manual for additional information.
 - 3. Mechanically formed tee connection: Form mechanically extracted collars in a continuous operation by drilling pilot hole and drawing out tube surface to form collar, having a height of not less than three times the thickness of tube wall. Adjustable collaring device shall ensure proper tolerance and complete uniformity of the joint. Notch and dimple joining branch tube in a single process to provide free flow where the branch tube penetrates the fitting. Braze joints.
 - 4. Bronze, class 150, solder-joint ends conforming to ASME B16.24.
- D. Adapters: Provide adapters for joining pipe or tubing with dissimilar end connections.
- E. Solder: ASTM B32 alloy type Sb5, HA or HB. Provide non-corrosive flux.
- F. Brazing alloy: AWS A5.8M/A5.8, brazing filler metals shall be BCuP series for copper to copper joints and BAg series for copper to steel joints.

2.4 BELOW GROUND (INTERIOR) WATER PIPING INCLUDING TRAP PRIMER PIPING

- A. Pipe: Copper tube, ASTM B88, Type K, drawn.
- B. Fittings for Copper Tube:
 - Wrought copper or bronze castings conforming to ASME B16.18 and B16.22. Unions shall be bronze, dielectric if required, MSS SP-72, MSS SP-110, solder or braze joints. Use 95/5 tin and antimony for all soldered joints.
 - Mechanical press-connect fittings for copper pipe and tube <u>are</u> prohibited. See Plumbing Design Manual for additional information.
 - Mechanically formed tee connection: Form mechanically extracted collars in a continuous operation by drilling pilot hole and drawing

Lebanon VAMC New Entryway for Building 17 BID DOCUMENTS 05-01-21

out tube surface to form collar, having a height of not less than three times the thickness of tube wall. Adjustable collaring device shall ensure proper tolerance and complete uniformity of the joint. Notch and dimple joining branch tube in a single process to provide free flow where the branch tube penetrates the fitting. Braze joints.

- 4. Bronze, class 150, solder-joint ends conforming to ASME B16.24.
- C. Adapters: Provide adapters for joining pipe or tubing with dissimilar end connections.
- D. Solder: ASTM B32 alloy type Sb5, HA or HB. Provide non-corrosive flux.
- E. Brazing Alloy: AWS A5.8M/A5.8, brazing filler metals shall be BCuP series for copper to copper joints and BAg series for copper to steel joints

2.5 EXPOSED WATER PIPING

A. Finished and Unfinished Rooms: Same material as above grade water piping in this specification section.

2.6 TRAP PRIMER WATER PIPING

A. Pipe: Same as above and below grade piping as applicable in this specification section.

2.7 DIELECTRIC FITTINGS

A. Provide dielectric couplings or unions between pipe of dissimilar metals.

2.8 STERILIZATION CHEMICALS

- A. Hypochlorite: ASTM E1229.
- B. Liquid Chlorine: ASTM E1120.

2.9 NON-FREEZE WALL HYDRANTS (NFWH)

- A. Bronze nickel-plated quarter turn.
- B. Self draining.
- C. 3/4 inch hose threaded outlet connection.
- D. Integral vacuum breaker.
- E. "T" handle key.

VA Project No. 595-668

AE Works Project No. VLEB-010

New Entryway for Building 17

BID DOCUMENTS

- 05-01-21
- F. 16 gauge stainless steel box, frame and cover with continuous stainless steel face hinge and hinged locking cover.
- G. 3/4 inch threaded inlet pipe connection.
- H. Wall clamp.
- I. 20 gauge interior recessed stainless steel box.
- J. Approximate overall size: 7 inches square x 2 1/2 inches deep.

2.10 ELECTRONIC TRAP PRIMER

- A. Pre-set at factory to open once for 12 seconds every 24 hours.
- B. 1/2 inch threaded inlet and outlet.
- C. Box/Enclosure: NEMA Type 1, United Laboratories 50, 12 inch x 12 inch x 4 inch deep , 16 gauge steel with screw on cover, ANSI 61, gray polyester paint.
- D. 115 volts, single phase.
- E. Stainless steel screen.
- F. 6 feet solenoid cord.
- G. Recycle timer box: 7 5/8 inch long x 4 5/8 inch wide x 2 3/8 inch deep.
- H. Integral air gap fitting.
- Electrical components all UL listed: 2 amp circuit breaker, test switch, timer and solenoid valve.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. General: Comply with the International Plumbing Code and the following:
 - Install branch piping for water from the piping system and connect to all fixtures and valves, including those specified in other sections.
 - Pipe shall be round and straight. Cutting shall be done with proper tools. Pipe, except for plastic and glass, shall be reamed to remove burrs and a clean smooth finish restored to full pipe inside diameter.
 - 3. All pipe runs shall be laid out to avoid interference with other work/trades.
 - Install union, di-electric if required and shut-off valves on fixtures, equipment and piping accessories.
 - 5. Pipe Hangers, Supports and Accessories:
 - a. All piping shall be supported per the IPC, H-18-8 Seismic Design Handbook, MSS SP-58, and SMACNA as required.

New Entryway for Building 17

BID DOCUMENTS

- b. Shop Painting and Plating: Hangers, supports, rods, inserts and accessories used for pipe supports shall be shop coated with zinc chromate primer paint. Electroplated copper hanger rods, hangers and accessories may be used with copper tubing.
- c. Floor, Wall and Ceiling Plates, Supports, Hangers:
 - 1) Solid or split un-plated cast iron.
 - 2) All plates shall be provided with set screws.
 - 3) Pipe Hangers: Height adjustable clevis type.
 - 4) Adjustable Floor Rests and Base Flanges: Steel.
 - 5) Hanger Rods: Mild, low carbon steel, fully threaded or Threaded at each end with two removable nuts at each end for positioning rod and hanger and locking each in place.
 - 6) Pipe Hangers and Riser Clamps: Malleable iron or carbon steel. Pipe Hangers and riser clamps shall have a copper finish when supporting bare copper pipe or tubing.
 - Self-drilling type expansion shields shall be "Phillips" type, with case hardened steel expander plugs.
 - 8) Hangers and supports utilized with insulated pipe and tubing shall have 180-degree (minimum) metal protection shield centered on and welded to the hanger and support. The shield thickness and length shall be engineered and sized for distribution of loads to preclude crushing of insulation without breaking the vapor barrier. The shield shall be sized for the insulation and have flared edges to protect vapor-retardant jacket facing. To prevent the shield from sliding out of the clevis hanger during pipe movement, centerribbed shields shall be used.
 - 9) Miscellaneous Materials: As specified, required, directed or as noted on the drawings for proper installation of hangers, supports and accessories. If the vertical distance exceeds 6.1 m (20 feet) for cast iron pipe additional support shall be provided in the center of that span. Provide all necessary auxiliary steel to provide that support.
 - With the installation of each flexible expansion joint, provide piping restraints for the upstream and downstream

Lebanon VAMC

New Entryway for Building 17

BID DOCUMENTS

05-01-21

section of the piping at the flexible expansion joint. Provide calculations supporting the restraint length design and type of selected restraints. Restraint calculations shall be based on the criteria from the manufacturer regarding their restraint design.

- Install chrome plated cast brass escutcheon with set screw at each wall, floor and ceiling penetration in exposed finished locations.
- 7. Penetrations:
 - a. Firestopping: Where pipes pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke, and gases as specified in Section 07 84 00, FIRESTOPPING.
 Completely fill and seal clearances between raceways and openings with the firestopping materials.
 - b. Waterproofing: At floor penetrations, completely seal clearances around the pipe and make watertight with sealant as specified in appropriate section for JOINT SEALANTS.
- B. Domestic Water piping shall conform to the following:
 - Grade all lines to facilitate drainage. Provide drain valves at bottom of risers and all low points in system.
 - Connect branch lines to top of main serving fixtures on same level or level above.

3.2 TESTS

- A. General: Test system either in its entirety or in sections. Submit testing plan to COR 10 working days prior to test date.
- B. Potable Water System: Test after installation of piping and domestic water heaters, but before piping is concealed, before covering is applied, and before plumbing fixtures are connected. Fill systems with water and maintain hydrostatic pressure of 1035 kPa (150 psig) gage for two hours. No decrease in pressure is allowed. Provide a pressure gage with a shutoff and bleeder valve at the highest point of the piping being tested. Pressure gauge shall have 1 psig increments.
- C. Re-agent Grade Water Systems: Fill system with water and maintain hydrostatic pressure of 1380 kPa (200 psig) gage during inspection and prove tight.

New Entryway for Building 17

BID DOCUMENTS

- D. All Other Piping Tests: Test new installed piping under 1-1/2 times actual operating conditions and prove tight.
- E. The test pressure shall hold for the minimum time duration required by the applicable plumbing code or authority having jurisdiction.

3.3 STERILIZATION

- A. After tests have been successfully completed, thoroughly flush and sterilize the interior domestic water distribution system in accordance with AWWA C651.
- B. Use liquid chlorine or hypochlorite for sterilization.

3.4 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.
- B. Components provided under this section of the specification will be tested as part of a larger system.

3.5 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for four hours to instruct VA Personnel in operation and maintenance of the system.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

- - - E N D - - -

SECTION 22 13 00 FACILITY SANITARY AND VENT PIPING

PART 1 - ENERAL

1.1 DESCRIPTION

- A. This section pertains to sanitary sewer and vent systems, including piping, fixtures and all necessary accessories as designated in this section.
- B. A complete listing of common acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS AND PRODUCT DATA.
- C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- D. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- E. FIRESTOPPING: Penetrations in rated enclosures.
- F. JOINT SEALANTS: Sealant products.
- G. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING: Pipe Hangers and Supports, Materials Identification.
- H. Section 22 07 11, PLUMBING INSULATION.
- I. Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS

1.3 APPLICABLE PUBLICATIONS

A.	The publications listed below form a part of this specification to the
	extent referenced. The publications are referenced in the text by the
	basic designation only. Where conflicts occur these specifications and
	the VHA standard will govern.
в.	American Society of Mechanical Engineers (ASME):
	A13.1-2007Identification of Piping Systems
	A112.36.2M-1991Cleanouts
	A112.6.3-2019Floor Drains
	B1.20.1-2013Pipe Threads, General Purpose (Inch)
	1018-2001
	Valves - Potable Water Supplied
	1044-2015Performance Requirements for Trap Seal Primer
	Devices - Drainage Types and Electronic Design Types
	1079-2012Performance Requirements for Dielectric Pipe
	Unions
С.	American Society for Testing and Materials (ASTM):
	A74-2017Standard Specification for Cast Iron Soil Pipe
	and Fittings
	A888-2018aStandard Specification for Hub less Cast Iron
	Soil Pipe and Fittings for Sanitary and Storm
	Drain, Waste, and Vent Piping Applications
	C564-2014Standard Specification for Rubber Gaskets for
	Cast Iron Soil Pipe and Fittings
	Cast Iron Soil Pipe Institute (CISPI):
	2006 Cast Iron Soil Pipe and Fittings Handbook
	301-2012Standard Specification for Hub less Cast Iron
	Soil Pipe and Fittings for Sanitary and Storm
	Drain, Waste, and Vent Piping Applications
	310-2012Specification for Coupling for Use in
	Connection with Hub less Cast Iron Soil Pipe
	and Fittings for Sanitary and Storm Drain,
	Waste, and Vent Piping Applications

D. International Code Council (ICC):
 IPC-2018.....International Plumbing Code

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS AND PRODUCT DATA.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 13 00, FACILITY SANITARY AND VENT PIPING", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 - 1. Piping.
 - 2. Floor Drains.
 - 3. Cleanouts.
 - 4. Trap Seal Protection.
 - 5. Penetration Sleeves.
 - 6. Pipe Fittings.
 - 7. Traps.
 - 8. Exposed Piping and Fittings.
- D. Detailed shop drawing of clamping device and extensions when required in connection with the waterproofing membrane or the floor drain.
- E. Complete operating and maintenance manuals including technical data sheets, information for ordering replaceable parts, and troubleshooting guide:
 - 1. Include complete list indicating all components of the systems.
 - 2. Include complete diagrams for each item.
 - 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.
- F. Completed System Readiness Checklist provided by the CXA and completed by the Contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

G. Submit training plans and instructor qualifications in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

1.5 AS-BUILT DOCUMENTATION

A. Comply with requirements in Paragraph "AS-BUILT DOCUMENTATION" of Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

PART 2 - PRODUCTS

2.1 SANITARY WASTE, DRAIN, AND VENT PIPING

- A. Cast iron waste, drain, and vent pipe and fittings.
 - Hub-less Cast iron waste, drain, and vent pipe and fittings with trademark of Cast Iron Soil Pipe Institute/CISPI, have National Sanitation Foundation/NSF approval will be used for the following applications:

a. Interior waste and vent piping above grade. above grade.

- 2. Cast iron Pipe shall be bell and spigot with compression gaskets with trademark of Cast Iron Soil Pipe Institute/CISPI and have National Sanitation Foundation/NSF approval will be used for the following applications:
 - a. Below grade.
- 3. The material for all pipe and fittings shall be cast iron soil pipe and fittings and will conform to the requirements of CISPI 301; in addition to ASTM A888, or ASTM A74 and approval of National Sanitation Foundation/NSF.
- 4. Cast iron pipe and fittings shall be made from a minimum of 95 percent post-consumer recycled material.
- 5. Joints for hub less pipe and fittings shall conform to the manufacturer's installation instructions. Couplings for hub less joints shall conform to CISPI 310. Joints for hub and spigot pipe shall be installed with compression gaskets conforming to the requirements of ASTM C564.

Lebanon VAMC New Entryway for Building 17 BID DOCUMENTS 09-01-20

6. Note: Sanitary drain piping riser for standpipe drain riser receiving indirect waste for elevator pit sump pump piping discharge will have 1/2" tapping for trap primer piping above but close as possible to p-trap, see "sanitary riser diagram".Harge

2.2 SPECIALTY PIPE FITTINGS

- A. Transition pipe couplings shall join piping with small differences in outside diameters or different materials. End connections shall be of the same size and compatible with the pipes being joined. The transition coupling shall be elastomeric, sleeve type reducing or transition pattern and include shear and corrosion resistant metal, tension band and tightening mechanism on each end. The transition coupling sleeve coupling shall be of the following material:
 - 1. For cast iron soil pipes, the sleeve material shall be rubber conforming to ASTM C564.

2.

The di-electric nipples shall be electroplated steel nipple complying with ASTM F1545 with a pressure rating of 2070 kPa (300 psig) at 107 degrees C (225 degrees F). The end connection shall be male threaded. The lining shall be inert and noncorrosive propylene.

2.3 CLEANOUTS

- A. Cleanouts shall be the same size as the pipe, up to 100 mm (4 inches); and not less than 100 mm (4 inches) for larger pipe. Cleanouts shall be easily accessible and shall be gastight and watertight. Minimum clearance of 600 mm (24 inches) shall be provided for clearing a clogged sanitary line.
- B. Floor cleanouts will be duco cast iron cleanout, round adjustable scoriated round secured nickel bronze top, flashing clamp, flashing flange, vertical caulked outlet for below grade piping connection, nickel bronze top,, "C.O." lettering cast in same scoriated cover, ASME A112.36.2M approved and medium duty classification.
- C. See drawings for locations of all cleanouts.

2.4 FLOOR DRAINS

A. General Data: floor drain shall comply with ASME A112.6.3. A inside caulking connection will be provided for connection to cast iron pipe below grade The drain connection will be vertical bottom outlet. A membrane clamp and extensions will 1 be provided, if required, where installed in connection with waterproof membrane. Puncturing membrane other than for drain opening shall not be permitted.

2.5 TYPE C (FD-C)

- A. Traps shall be provided on all sanitary branch waste connections from fixtures not provided with traps. Concealed traps will be same material as the piping they are connected to. Slip joints are prohibited on sewer side of trap. Traps shall correspond to fittings on cast iron soil pipe and size shall be as required by connected fixture.
- B. medium duty (non-traffic) floor drain shall comply with ASME A112.6.3. The type D floor drain will have a duco cast iron body with flange for membrane type flooring, integral reversible clamping device, flashing collar with seepage openings, 9 1/4 inch diameter nickel bronze adjustable slotted or perforated strainer top, 1/2 inch trap primer connection.

2.6 ELECTRONIC TRAP PRIMER

A. See specification 221100 "Facility Water Distribution Piping".

2.7 PENETRATION SLEEVES

A. A sleeve flashing device shall be provided at points where pipes pass through membrane waterproofed floors or walls. The sleeve flashing device shall be manufactured, cast iron fitting with clamping device that forms a sleeve for the pipe floor penetration of the floor membrane. A galvanized steel pipe extension shall be included in the top of the fitting that shall extend 50 mm (2 inches) above finished floor and galvanized steel pipe extension in the bottom of the fitting that shall extend through the floor slab. A waterproof caulked joint shall be provided at the top hub.

2.8 PUMPED DISCAHRGE PIPING ABOVE GRADE

A. Piping will be copper type K with 95/5 soldered joints.

PART 3 - EXECUTION

3.1 PIPE INSTALLATION

A. The pipe installation shall comply with the requirements of the International Plumbing Code (IPC) and these specifications.

- B. Branch piping will be installed for waste from the respective piping systems and connect to all fixtures including those furnished by the Government or specified in other sections.
- C. Pipe shall be round and straight. Cutting shall be done with proper tools. Pipe shall be reamed to full size after cutting.
- D. All pipe runs shall be laid out to avoid interference with other work.
- E. The piping shall be installed above accessible ceilings where possible.
- F. The piping shall be installed to permit valve servicing or operation.
- G. The piping shall be installed free of sags and bends.
- H. Changes in direction for soil and waste drainage and vent piping shall be made using appropriate branches, bends and long sweep bends. Straight tees, elbows, and crosses may be used on vent lines. Do not change direction of flow greater than 90 degrees. Proper size of standard increaser and reducers shall be used if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.
- I. Buried soil and waste drainage and vent piping shall be laid beginning at the low point of each system. Piping shall be installed true to grades and alignment indicated with unbroken continuity of invert. Hub ends shall be placed upstream. Required gaskets shall be installed according to manufacturer's written instruction for use of lubricants, cements, and other installation requirements.
- J. Cast iron piping shall be installed according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings"
- K. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no additional cost or time to the Government.

3.2 JOINT CONSTRUCTION

- A. Hub and spigot, cast iron piping with gasket joints shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for compression joints.
- B. Hub and spigot, cast iron piping with calked joints shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for lead and oakum calked joints.

- C. Hub less or No-hub, cast iron piping shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hub less piping coupling joints.
- D. For threaded joints, thread pipe with tapered pipe threads according to ASME B1.20.1. The threads shall be cut full and clean using sharp disc cutters. Threaded pipe ends shall be reamed to remove burrs and restored to full pipe inside diameter. Pipe fittings and valves shall be joined as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is required by the pipe service.
 - 2. Pipe sections with damaged threads shall be replaced with new sections of pipe.

3.3 SPECIALTY PIPE FITTINGS

- A. Transition coupling shall be installed at pipe joints with small differences in pipe outside diameters.
- B. Dielectric fittings shall be installed at connections of dissimilar metal piping and tubing.

3.4 PIPE HANGERS, SUPPORTS AND ACCESSORIES

- A. All piping shall be supported according to the International Plumbing Code (IPC), Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, and these specifications. Where conflicts arise between these the code and Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING the most restrictive or the requirement that specifies supports with highest loading or shortest spacing shall apply.
- B. Hangers, supports, rods, inserts and accessories used for pipe supports shall be painted according to Section 09 91 00, PAINTING. Electroplated copper hanger rods, hangers and accessories may be used with copper tubing.
- C. Horizontal piping and tubing shall be supported within 300 mm (12 inches) of each fitting or coupling.
- D. Horizontal cast iron piping shall be supported with the following maximum horizontal spacing and minimum hanger rod diameters:
 - 1. 40 mm or DN40 to 50 mm or DN50 (NPS 1-1/2 inch to NPS 2 inch): 1500
 mm (60 inches) with 10 mm (3/8 inch) rod.
 - 2. 75 mm or DN75 (NPS 3 inch): 1500 mm (60 inches) with 15 mm (1/2 inch) rod.

- 3. 100 mm or DN100 (NPS 4): 1500 mm (60 inches) with 18 mm (5/8 inch) rod.
- E. In addition to the requirements in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, Floor, Wall and Ceiling Plates, Supports, Hangers shall have the following characteristics:
 - 1. Solid or split unplated cast iron.
 - 2. All plates shall be provided with set screws.
 - 3. Height adjustable clevis type pipe hangers.
 - 4. Adjustable floor rests and base flanges shall be steel.
 - 5. Hanger rods shall be low carbon steel, fully threaded or threaded at each end with two removable nuts at each end for positioning rod and hanger and locking each in place.
 - 6. Riser clamps shall be malleable iron or steel.
 - 7. Rollers shall be cast iron.
 - See Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, for requirements on insulated pipe protective shields at hanger supports.
- F. Miscellaneous materials shall be provided as specified, required, directed or as noted in the contract documents for proper installation of hangers, supports and accessories. If the vertical distance exceeds 6.1 m (20 feet) for cast iron pipe additional support shall be provided in the center of that span. All necessary auxiliary steel shall be provided to provide that support.
- G. Cast escutcheon with set screw shall be provided at each wall, floor and ceiling penetration in exposed finished locations and within cabinets and millwork.
- H. Penetrations:
 - Fire Stopping: Where pipes pass through fire partitions, fire walls, smoke partitions, or floors, a fire stop shall be installed that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING. Clearances between raceways and openings shall be completely filled and sealed with the fire stopping materials.
 - Water proofing: At floor penetrations, clearances shall be completely sealed around the pipe and make watertight with sealant as specified in Section for JOINT SEALANTS.

I. Sanitary vents shall not connect to exhaust vents.

3.5 TESTS

- A. Sanitary waste and drain systems shall be tested either in its entirety or in sections.
- B. Waste System tests shall be conducted before trenches are backfilled or fixtures are connected. A water test or air test shall be conducted, as directed.
 - 1. If entire system is tested for a water test, tightly close all openings in pipes except highest opening, and fill system with water to point of overflow. If the waste system is tested in sections, tightly plug each opening except highest opening of section under test, fill each section with water and test with at least a 3 m (10 foot) head of water. In testing successive sections, test at least upper 3 m (10 feet) of next preceding section so that each joint or pipe except upper most 3 m (10 feet) of system has been submitted to a test of at least a 3 m (10 foot) head of water. Water shall be kept in the system, or in portion under test, for at least 15 minutes before inspection starts. System shall then be tight at all joints.
 - 2. For an air test, an air pressure of 34 kPa (5 psig) gauge shall be maintained for at least 15 minutes without leakage. A force pump and mercury column gauge shall be used for the air test.
 - 3. After installing all fixtures and equipment, open water supply so that all p-traps can be observed. For 15 minutes of operation, all p-traps shall be inspected for leaks and any leaks found shall be corrected.
 - 4. Final Tests: Either one of the following tests may be used.
 - a. Smoke Test: After fixtures are permanently connected and traps are filled with water, fill entire drainage and vent systems with smoke under pressure of .25 kPa (1 inch of water) with a smoke machine. Chemical smoke is prohibited.
 - b. Peppermint Test: Introduce 60 ml (2 ounces) of peppermint into each line or stack.

3.6 COMMISSIONING

A. Provide commissioning documentation in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

B. Components provided under this section of the specification shall be tested as part of a larger system.

3.7 DEMONSTRATION AND TRAINING

- A. Provide of manufacturer's technical representative for 4 hours to instruct each VA personnel responsible in operation and maintenance of the system.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

- - - E N D - - -

SECTION 22 14 00 FACILITY STORM DRAINAGE

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section describes the requirements for storm drainage systems, including piping and all necessary accessories as designated in this section.
- B. A complete listing of all acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS AND PRODUCT DATA.
- C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- D. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
 - E. Section 07 84 00, FIRESTOPPING: Penetrations in rated enclosures.
 - F. Section 07 92 00, JOINT SEALANTS.
 - G. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING: Pipe Hangers and Supports, Materials Identification.
 - H. Section 22 07 11, PLUMBING INSULATION.
- I. SECTION 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

1.3 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.

B. American Society of Mechanical Engineers (ASME): A112.6.4-2003 (R2012) ..Roof and Overflow Drains A13.1-2007 (R2013).....Scheme for Identification of Piping Systems B1.20.1-2013......Pipe Threads, General Purpose, Inch B16.3-2011.....Malleable Iron Threaded Fittings: Classes 150 and 300

B16.12-2009 (R2014)....Cast Iron Threaded Drainage Fittings

VA Project No. 595-668 Lebanon VAMC AE Works Project No. VLEB-010 New Entryway for Building 17 BID DOCUMENTS 09-01-15 C. American Society of Sanitary Engineering (ASSE) 1079-2012.....Performance Requirements for Dielectric Pipe Unions D. American Society for Testing and Materials (ASTM): A47/A47M-1999 (R2014)...Standard Specification for Ferritic Malleable Iron Castings A74-2013a.....Standard Specification for Cast Iron Soil Pipe and Fittings A888-2013a.....Standard Specification for Hub less Cast Iron Soil Pipe and Fittings for Sanitary and Storm Drain, Waste, and Vent Piping Applications C564-2014.....Standard Specification for Rubber Gaskets for Cast Iron Soil Pipe and Fittings C1173-2010 (R2014).....Standard Specification for Flexible Transition Couplings for Underground Piping Systems D2321-2014e1.....Standard Practice for Underground Installation AMD1-2011 Specification for Filler Metals for Brazing and Braze Welding F. Copper Development Association (CDA): A4015-2011.....Copper Tube Handbook G. Cast Iron Soil Pipe Institute (CISPI): 301-2012.....for Standard Specification for Hub less Cast Iron Soil Pipe and Fittings for Sanitary and Storm Drain, Waste, and Vent Piping Applications 310-2012......Standard Specification for Coupling for Use in Connection with Hub less Cast Iron Soil Pipe and Fittings for Sanitary and Storm Drain, Waste, and Vent Piping Applications H. International Code Council (ICC): IPC-2012.....International Plumbing Code I. Manufacturers Standardization Society of the Valve and Fittings

Industry, Inc. (MSS):

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS AND , PRODUCT DATA.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 14 00, FACILITY STORM DRAINAGE", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 - 1. Pipe and Fittings.
 - 2. Specialty Pipe Fittings.
 - 3. Cleanouts.
 - 4. Roof and Overflow Drains.
 - 5. Downspout Nozzles.
 - 6. Sleeve Flashing Devices.
- D. Detailed shop drawing of clamping device and extensions when required in connection with the waterproofing membrane.
- E. Completed System Readiness Checklist provided by the CxA and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.
- F. Submit training plans and instructor qualifications in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

1.6 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, substitutions and construction revisions shall be in electronic version on compact disc or DVD inserted into a three ring

binder as discussed, coordinated and approved by the VA. All aspects of system operation and maintenance procedures.

- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. As-built drawings are to be provided, and a copy of them in Auto-CAD version provided on compact disk or DVD as discussed, coordinated and approved by the VA. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement.
- D. Certification documentation shall be provided to COR 10 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and certification that all results of tests were within limits specified.

PART 2 - PRODUCTS

2.1 STORM WATER DRAIN PIPING

- A. Cast Iron Storm Pipe and Fittings:
 - Cast iron storm pipe and fittings shall be used for the following applications:
 - a. Pipe buried in or in contact with earth.
 - b. Extension of pipe to a distance of approximately 1500 mm (5 feet) outside of building walls.
 - c. Interior storm piping above grade.
 - The cast iron storm pipe above grade will be hub less type. Cast iron storm drain pipe below grade will be hub and spigot type with compression gaskets.
 - 3. The material for all pipe and fittings will be cast iron soil pipe and fittings and shall conform to the requirements of Cast Iron Soil Pipe Institute/CISPI and will have approval of National Sanitation Foundation/NSF 301.
 - 4. Joints for hub less pipe and fittings shall conform to the manufacturer's installation instructions. Couplings for hub less joints shall conform to CISPI 310. Joints for hub and spigot pipe shall be installed with compression gaskets conforming to the requirements of ASTM C564.

22 14 00 - 4

D. Roof drain piping and body of drain in locations where the outdoor conditions are subject to freezing will be insulated.

2.3 SPECIALTY PIPE FITTINGS

- A. Transition pipe couplings shall join piping with small differences in outside diameters or be of different materials. End connections shall be of the same size and compatible with the pipes being joined. The transition coupling shall be unshielded, elastomeric, sleeve type reducing or transition pattern conforming with ASTM C1173 and include shear ring and corrosion resistant metal tension band and tightening mechanism on each end. The transition coupling sleeve coupling shall be of the following material:
 - 1. For cast iron soil pipes, the sleeve material shall be rubber conforming to ASTM C564.
- B. Dielectric fittings shall conform to ASSE 1079 with a pressure rating of 1035 kPa (150 psig)1725 kPa (250 psig) at a minimum temperature of 82 degrees C (180 degrees F). The end connection shall be solder joint copper alloy and threaded ferrous.
- C. Dielectric flanges shall conform to ASSE 1079 with a pressure rating of 1035 kPa (150 psig)1200 kPa (175 psig)2070 kPa (300 psig). The flange shall be a factory fabricated, bolted, companion flange assembly. The end connection shall be threaded or solder-joint copper alloy and threaded ferrous.
- D. Dielectric flange insulating kits shall be of non-conducting materials for field assembly of companion flanges with a pressure rating of 1035 kPa (150 psig). The gasket shall be neoprene or phenolic. The bolt sleeves shall be phenolic or polyethylene. The washers shall be phenolic with steel backing washers.
- E. Dielectric nipples shall be electroplated steel and shall conform with ASTM F1545 with a pressure ratings of 2070 kPa (300 psig) at 107 degrees C (225 degrees F). The end connection shall be male threaded. The lining shall be inert and noncorrosive propylene. Bio-based materials shall be utilized when possible.

2.4 CLEANOUTS

A. Cleanouts shall be the same size as the pipe, up to 100 mm (4 inches); not less than 100 mm (4 inches) for larger pipe. Cleanouts shall be easily accessible and shall be gastight and watertight. A minimum clearance of 600 mm (24 inches) shall be provided for clearing a clogged storm sewer line.

- B. Floor cleanouts/FCO will be duco cast iron body, round adjustable frame and top approved for floors bearing foot and medium wheeled traffic, scoriated secured nickel bronze top, flashing flange, flashing clamp, caulked vertical outlet for piping connection below floor/grade and lettering "C.O." cast in secured cover. Cleanouts shall be provided at or near the base of the vertical riser with the cleanout plug located approximately 600 mm (24 inches) above the floor. The cleanouts shall be extended to the wall access panel, see drawings/riser diagram for locations. See architectural for access panel specification. Cleanout shall consist of sanitary tees with minimum opening of 150 mm by 150 mm (6 inch by 6 inch) shall be provided at each wall cleanout.
- D. In horizontal runs above grade, cleanouts shall consist of cast brass tapered screw plug in fitting or caulked/no hub cast iron ferrule. Plain end (no-hub) piping in interstitial space or above ceiling may use plain end (no-hub) blind plug and clamp.

2.5 ROOF AND OVERFLOW DRAIN ON SAME DECK PLATE

A. Duco cast iron body, double deck plate with securing holes, combined flashing clamp and gravel stop for roof drain portion, 2 inches high external water dam for overflow drain portion only, both drains with 12 inch diameter by 4 1/2 inches high dome, cast iron dome, secondary flashing clamp, vertical outlet on both with no-hub outlet, approximate overall length of 40 inches, approximate length between centerlines of both domes: 20 inches. removable angle

2.6 WATERPROOFING

A. A sleeve flashing device shall be provided at points where pipes pass through membrane waterproofed floors or walls. The sleeve flashing device shall be manufactured, cast iron fitting with clamping device that forms a sleeve for the pipe floor penetration of the floor membrane. A galvanized steel pipe extension shall be included in the top of the fitting that will extend 50 mm (2 inches) above finished floor and galvanized steel pipe extension in the bottom of the fitting that will extend through the floor slab. A waterproofed caulked joint shall be provided at the top hub.

2.7 DOWNSPOUT NOZZLE FOR OVERFLOW DRAINS

A. Cast brass nozzle and flange, NPT threaded inlet, no-hub outlet, wall flange, quantity of three mounting holes at 120 degrees, diverter for spilling overflow drainage and bird screen.

PART 3 - EXECUTION

3.1 PIPE INSTALLATION

- A. The pipe installation shall comply with the requirements of the IPC and these specifications.
- B. Branch piping will be installed from the piping system and connect to all drains and outlets.
- C. Pipe shall be round and straight. Cutting shall be done with proper tools. Pipe, except for glass, shall be reamed to remove burrs and a clean smooth finish restored to full pipe inside diameter.
- D. All pipe runs shall be laid out to avoid interference with other work/trades.
- E. The piping will be installed above accessible ceilings where shown on drawings to allow for ceiling panel removal.
- F. Unless otherwise stated on the documents, minimum horizontal slope shall be one inch for every 2.44 m (8 feet) (1 percent slope) of pipe length.
- G. The piping shall be installed free of sags and bends.
- I. Changes in direction for storm drainage piping shall be made using appropriate branches, bends and long sweep bends. Sanitary tees and short sweep ¼ bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical. Long turn double wye branch and 1/8 bend fittings shall be used if two drains are installed back-to-back or side by side with common drain pipe. Do not change direction of flow more than 90 degrees. Proper size of standard increaser and reducers shall be used if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.
- J. Buried storm drainage piping shall be laid beginning at the low point of each system. Piping shall be installed true to grades and alignment

indicated with unbroken continuity of invert. Hub ends shall be placed upstream. Required gaskets shall be installed according to manufacturer's written instruction for use of lubricants, cements, and other installation requirements. Bio-based materials shall be utilized when possible.

K. Cast iron piping shall be installed according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings"

3.2 JOINT CONSTRUCTION

- A. Hub and spigot, cast iron piping with gasket joints shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for compression joints.
- C. Hub less, cast iron piping shall be joined in accordance with CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hub less piping coupling joints.
- D. For threaded joints, thread pipe with tapered pipe threads according to ASME B1.20.1. The threads shall be cut full and clean using sharp disc cutters. Threaded pipe ends shall be reamed to remove burrs and restored to full pipe inside diameter. Pipe fittings and valves shall be joined as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is required by the pipe service
 - Pipe sections with damaged threads shall be replaced with new undamaged sections of pipe at no additional time or cost to Government.

3.3 SPECIALTY PIPE FITTINGS

- A. Transition coupling shall be installed at pipe joints with small differences in pipe outside diameters.
- B. Dielectric fittings shall be installed at connections of dissimilar metal piping and tubing.

3.4 PIPE HANGERS, SUPPORTS AND ACCESSORIES

A. All piping shall be supported according to the IPC, Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, and these specifications.

- B. Hangers, supports, rods, inserts and accessories used for Pipe supports shall be shop coated with zinc Chromate primer paint. Electroplated copper hanger rods, hangers and accessories may be used with copper tubing.
- C. Horizontal piping and tubing shall be supported within 300 mm (12 inches) of each fitting or coupling.
- D. Horizontal cast iron piping shall be supported with the following maximum horizontal spacing and minimum hanger rod diameters:
 - 1. NPS 1-1/2 to NPS 2 (DN 40 to DN 50): 1500 mm (60 inches) with 10 mm (3/8 inch) rod.
 - 2. NPS 3 (DN 80): 1500 mm (60 inches) with 15 mm (1/2 inch) rod.
 - 3. NPS 4 (DN 100) : 1500 mm (60 inches) with 18 mm (5/8 inch) rod.
 - 4. NPS 6 : 1500 mm (60 inches) with 20 mm (3/4 inch) rod.
 - F. Vertical piping and tubing shall be supported at the base, at each floor, and at intervals no greater than 4.6 m (15 feet).
- G. In addition to the requirements in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING, floor, wall and ceiling plates shall have the following characteristics:
 - 1. Solid or split unplated cast iron.
 - 2. All plates shall be provided with set screws.
 - 3. Height adjustable clevis type pipe hangers.
 - 4. Adjustable Floor Rests and Base Flanges shall be steel.
 - 5. Hanger Rods shall be low carbon steel, fully threaded or threaded at each end with two removable nuts at each end for positioning rod and hanger and locking each in place.
 - 6. Riser Clamps shall be malleable iron or steel.
 - 7. Roller shall be cast iron.
 - 8. Hangers and supports utilized with insulated pipe and tubing shall have 180 degree (minimum) metal protection shield centered on and welded to the hanger and support. The shield shall be 100 mm (4 inches) in length and be 1.6 mm (16 gage) steel. The shield shall be sized for the insulation.
- H. Miscellaneous materials shall be provided as specified, required, directed or as noted on the drawings for proper installation of hangers, supports and accessories. If the vertical distance exceeds 6.1 m (20 feet) for cast iron pipe additional support shall be provided in

the center of that span. All necessary auxiliary steel shall be provided to provide that support.

- I. Cast escutcheon with set screw shall be installed at each wall, floor and ceiling penetration in exposed finished locations and within cabinets and millwork.
- J. Penetrations:
 - Fire Stopping: Where pipes pass through fire partitions, fire walls, smoke partitions, or floors, a fire stop shall be installed that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING. Clearances between raceways and openings shall be completely filled and sealed with the fire stopping materials.
 - Water proofing: At floor penetrations, Clearances around the pipe shall be completely sealed and made watertight with sealant as specified in Section 07 92 00, JOINT SEALANTS. Bio-based materials shall be utilized when possible.

3.5 INSULATION

A. Insulate horizontal sections and 600 mm (2 feet) past changes of direction to vertical sections for interior section of roof drains, bodies, vertical and horizontal piping at outlet of roof and overflow drains. Install insulation in accordance with the requirements of Section 22 07 11, PLUMBING INSULATION.

3.6 TESTS

- A. Storm sewer system shall be tested either in its entirety or in sections.
- B. Storm Water Drain tests shall be conducted before trenches are backfilled or fixtures are connected. A water test or air test shall be conducted, as directed.
 - 1. If entire system is tested with water, tightly close all openings in pipes except the highest opening and fill system with water to point of overflow. If system is tested in sections, tightly plug each opening except highest opening of section under test, fill each section with water and test with at least a 3 m (10 foot) head of water. In testing successive sections, test at least upper 3 m (10 feet) of next preceding section so that each joint or pipe except upper most 3 m (10 feet) of system has been submitted to a test of at least a 3 m (10 foot) head of water. Water shall be kept in the

system, or in portion under test, for at least 15 minutes before inspection starts. System shall then be tight at all joints.

- For an air test, an air pressure of 34 kPa (5 psig) gage shall be maintained for at least 15 minutes without leakage. A force pump and mercury column gage shall be used for the test.
- 3. Final Tests: While either one of the following tests may be used, Contractor shall check with VA as to which test will be performed.
 - a. Smoke Test: After fixtures are permanently connected and traps are filled with water, fill entire drainage and vent systems with smoke under pressure of 0.25 kPa (1 inch of water) with a smoke machine. Chemical smoke is prohibited.
 - b. Peppermint Test: Introduce .06 liters (2 ounces) of peppermint into each line or stack.
- C. COR shall witness all tests. Contractor shall coordinate schedules with the COR and CxA. Contractor shall provide a minimum of 10 working days prior to flushing, disinfection/sterilization, startup, and testing.

3.7 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.
- B. Components provided under this section of the specification will be tested as part of a larger system.

3.8 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for four hours to instruct VA Personnel in operation and maintenance of the system.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

- - - E N D - - -

SECTION 22 14 29 SUMP PUMPS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Sump pumps. See schedule on Drawings for pump capacity and head.
- B. A complete listing of all acronyms and abbreviations are included in
 - Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS AND PRODUCT DATA. SAM
- C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- D. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
 - F. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
 - H. Section 22 05 23, GENERAL-DUTY VALVES FOR PLUMBING PIPING
- I. SECTION 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS. Requirements for commissioning, systems readiness checklist, and training.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. National Electrical Manufacturers Association (NEMA): ICS 6-1993 (R2001, R2006) Industrial Control and Systems: Enclosures 250-2014.....Enclosures for Electrical Equipment (1000 Volts Maximum)
- C. Underwriters' Laboratories, Inc. (UL): 508-1999 (R2013).....Standards for Industrial Control Equipment

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS AND PRODUCT DATA.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 14 29, SUMP PUMPS", with applicable paragraph identification.

VA Project No. 595-668 AE Works Project No. VLEB-010

Lebanon VAMC New Entryway for Building 17 BID DOCUMENTS 09-01-15

- C. Manufacturer's Literature and Data including Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 - 1. Pump:
 - a. Manufacturer and model.
 - b. Operating speed (rpm).
 - c. Capacity.
 - d. Characteristic performance curves.
 - 2. Electric Motor:
 - a. Manufacturer and type.
 - b. Speed.
 - c. Current Characteristics: Horsepower/HP.
 - d. Efficiency.
 - 3. Control panel.
 - 4. Sensors.
- D. Certified copies of all the factory and construction site test data sheets and reports.
- E. Complete operating and maintenance manuals including wiring diagrams, technical data sheets and information for ordering replacement parts:
 - 1. Include complete list which indicates all components of the system.
 - Include complete diagrams of the internal wiring for each item of equipment.
 - 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance, and troubleshooting.
- F. Completed System Readiness Checklist provided by the CxA and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.
- G. Submit training plans and instructor qualifications in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

1.6 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, substitutions and construction revisions shall be in

22 14 29 - 2

Lebanon VAMC New Entryway for Building 17 BID DOCUMENTS 09-01-15

electronic version on compact disc or DVD inserted into a three-ring binder as coordinated, discussed and approved by the VA. All aspects of system operation and maintenance procedures, including piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices such as damper and door closure interlocks shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.

- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and shall provide the complete set at the time of final systems certification testing. As-built drawings are to be provided, and a copy of them in Auto-CADD version provided on compact disk or DVD as discussed, coordinated and approved by the VA. . Should the installing contractor engage the testing company to provide as built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement.
- D. Certification documentation shall be provided to COR 10 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and a certification that all results of tests were within limits specified.

PART 2 - PRODUCTS

2.1 SUMP PUMP

- A. Type: Simplex/one pump, centrifugal submersible type, all accessories specified and/or required shall be from same sump pump manufacturer.
- B. Motor: Air filled type.
- C. Separate guide rail system from same pump manufacturer with all required accessories.
- D. Solid state NEMA 4X control panel.
- E. Separate LED indicator lights on NEMA 4x control panel for oil alert, high water, high motor amps, power to system and pump activation.

22 14 29 - 3

- F. Self cleaning, hermetically sealed stainless steel oil detection probe.
- G. High liquid alarm float switches for pump activation and high water alert with clamp device for mounting to pump discharge piping. .
- H. Monitoring relays for alert conditions for alert conditions.
- I. High decibel, water tight horn and silence switch/button for audible alarm built into panel for alert conditions.
- J. Direct plug-in activation of entire pump and control system from the main control panel (6' cord and molded plug included).
- K. Factory hard wiring of pump, oil probe and floats directly into main NEMA 4x junction box.
- L. Junction box with female 8-pin multi-pin cable receptacle and disconnect.
- M. 25' 8-pin multi-pin quick connect cable, expandable to 250' with interconnecting extension cables at 25' increments.
- N. Female 8-pin cable receptacle installed in NEMA 4x control panel.
- O. Pump cable, probe cable, high liquid alarm cable and pump "on" float cable, 16' lengths.
- P. UL 508 and 778 approved.
- Q.ENTELLA tested and approved as a system.
- I. Sump Pump Basin: A dedicated concrete basin for the sump pump will be furnished by structural with dedicated clear space to allow for pump removal, operation including float and maintenance as required in accordance with approved pump manufacturer's instructions prior to starting work. Cover shall be removeable metal grate with slots type to allow pump discharge routing through same grate (cut and/or trim as required) to prevent accidental stepping into dedicated concrete basin by maintenance or other personnel.
- J. Provide a check and ball valve in the discharge of each pump. Refer to Section 22 05 23, GENERAL-DUTY VALVES FOR PLUMBING PIPING.
- K. Removal/Disconnect System: A, System shall consist of a discharge fitting mounted to the sump or quick connect pipe fitting connection to piping. The pump shall be fitted with an adapter fitting that easily connects to/disconnects from the discharge fitting as the pump is raised from or lowered into the sump. The discharge piping shall connect to the discharge fitting so that it is disconnected without workers entering the pit.

PART 3 - EXECUTION

3.1 STARTUP AND TESTING

- A. Pump installation to comply with ANSI/HI 1.4 for sump pumps.
- B. Leak Test: Charge piping system and test for leaks. Test until there are no leaks. Make tests as recommended by product manufacturer and listed standards and under actual or simulated operating conditions and prove full compliance with design and specified requirements. Tests of the various items of equipment shall be performed simultaneously with the system of which each item is an integral part.
- C. The tests shall include system capacity and all control and alarm functions.
- D. When any defects are detected, correct defects and repeat test.
- E. The CxA will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the COR and CxA. Contractor shall provide a minimum of 10 working days prior to startup and testing.

3.2 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.
- B. Components provided under this section of the specification will be tested as part of a larger system.

3.3 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for four hours to instruct VA Personnel in operation and maintenance of units.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

- - - E N D - - -

SECTION 22 33 00 ELECTRIC DOMESTIC WATER HEATERS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section describes the requirements for installing a complete electric domestic water heater system ready for operation including the water heaters, thermometers, and all necessary accessories, connections, and equipment.
- B. A complete listing of common acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS AND PRODUCT DATA.
- C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- D. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- E. Section 03 30 00, CAST-IN-PLACE CONCRETE: Concrete and Grout.
- F. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- G. Section 22 05 23, GENERAL-DUTY VALVES FOR PLUMBING PIPING.
- H. SECTION 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. Where conflicts occur these specifications and the VHA standards will govern.
- B. American National Standard Institute (ANSI): Z21.22-2015.....Relief Valves for Hot Water Supply Systems
- C. American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE): 90.1-2019.....Energy Standard for Buildings Except Low-Rise

Residential Buildings

D. American Society of Mechanical Engineers (ASME): ASME Boiler and Pressure Vessel Code BPVC Section VIII-1-2019 Rules for Construction of Pressure Vessels, Division 1 Form U-1.....Manufacturer's Data Report for Pressure Vessels B1.20.1-2013.....Pipe Threads, General Purpose (Inch) VA Project No. 595-668 AE Works Project No. VLEB-010 B1.20.7-1991......Hose Coupling Screw Threads (Inch) E. National Fire Protection Association (NFPA) 70-2020.....National Electrical Code (NEC) F. NSF International (NSF): 5-2019.....Water Heaters 61-2018.....Drinking Water System Components - Health Effects 372-2016.....Drinking Water System Components - Lead Content G. Underwriters Laboratories, Inc. (UL):

1453-2016(R2018).....Standard for Commercial Storage Tank Water Heaters

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS AND PRODUCT DATA.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 33 00, ELECTRIC DOMESTIC WATER HEATERS", with applicable paragraph identification.
- C. Manufacturer's Literature and Data Including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 - 1. Water Heaters.
 - 2. Integral With Water Heater Pressure and Temperature Relief Valves.
 - 3. Thermometers.
 - 4. Elevated Vacuum Relief Valve on cold water inlet supply pipe to water heater.
 - 5. Expansion Tanks.
- D. For each electric domestic hot water heater type and size, the following characteristics shall be submitted:
 - 1. Rated Capacities.
 - 2. Operating characteristics.
 - 3. Electrical characteristics.
 - 4. Furnished specialties and accessories.
 - 5. Documentation stating compliance with the ASME Boiler and Pressure Vessel Code.

- E. Shop drawings shall include wiring diagrams for power, signal and control functions.
- F. Submit documentation indicating compliance with applicable requirements with ASHRAE 90.1 for Domestic Water Heating.
- G. Complete operating and maintenance manuals including wiring diagrams, technical data sheets, information for ordering replaceable parts, and troubleshooting guide:
 - 1. Include complete list indicating all components of the systems.
 - 2. Include complete diagrams of the internal wiring for water heater.
 - 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.
- H. Completed System Readiness Checklist provided by the CxA and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS. Submit training plans and instructor qualifications in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

1.5 QUALITY ASSURANCE

- A. For commercial applications, comply with ASHRAE 90.1 for efficiency performance.
- B. Electrical components, devices and accessories shall be listed and labeled as defined in NFPA 70 by a qualified testing agency and marked for intended location and application.
- C. ASME code construction shall be a vessel fabricated in compliance with the appropriate ASME Code Section(s).
- D. Fabricate and label equipment components that will be in contact with potable water to comply with NSF 61 and NSF 372.
- E. The domestic water heater shall be certified and labeled by an independent testing agency.

1.6 AS-BUILT DOCUMENTATION

A. Comply with requirements in Paragraph AS-BUILT DOCUMENTATION of Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

PART 2 - PRODUCTS

2.1 ELECTRIC DOMESTIC WATER HEATERS

- A. The tank construction shall be steel all internal surfaces of heater exposed to water glass lined with an alkaline borosilicate composition fused to steel by firing at temperature range of 1400 degrees Fahrenheit to 1600 degrees Fahrenheit.
- B. Integral CSA Certified and ASME rated temperature and pressure relief valve for 150 psi working pressure.
- C. Heater will have 150 psi working pressure and be equipped with extruded high density anode rods for maximum corrosion protection.
- D. Heater will meet standby loss of the U.S. Department of Energy and current edition of ASHRAE/IES 90.1.
- E. Electric heating elements will be medium watt density with zinc plated copper sheath.
- F. Each element will be controlled by an individually mounted thermostat and high temperature cut-off switch.
- G. Outer jacket will be baked enamel finish and will enclose the tank with foam insulation.
- H. Heater tank will have a three-year warranty.
- I. Manufacturer will include fully illustrated instruction manual.
- J. Cabinet with bonderized undercoat with baked enamel finish.
- K. Top inlet and outlet connections.
- L. Adjustable temperature control through a range of 130 degrees to 170 degrees Fahrenheit on a single element.
- M. Single heating element.
- N. Access door on front.
- O. Small height elevated legs at bottom of heater.
- P. Approximate overall size including small height elevated legs at bottom of heater: 22 1/4 inches high 21 1/4 inches diameter.
- Q. See schedule on drawings for capacities and electrical characteristics.

2.2 DOMESTIC HOT WATER EXPANSION TANKS

- A. ASME tank meets Section VIII, Division 1 Standards.
- B. Patented fresh water turbulator.
- C. High grade stainless connector.
- D. Deep drawn steel domes.
- E. Patented anti-legionella liner, compound molded into liner, protection lasts the life of the tank.

- F. Butyl diaphragm for long life.
- G. Diaphragm meets NSF/ANSI NAF compliant.
- H. End mounted air charging valve installed at factory.
- I. Pre-charged with air at factory, remaining air charge in field by contractor to match system pressure.
- J. 3/4" top threaded connection.
- K. Approximate overall size: 8" diameter x 14" high.

2.3 HEAT TRAPS

A. See detail on drawing, will be piping type installed by contractor.

2.4 COMBINATION TEMPERATURE AND PRESSURE RELIEF VALVES

A. Integral with water heater, manufactured by same water heater manufacturer.

2.5 THERMOMETERS

A. Thermometers shall be swivel type stem, scale type with an aluminum case. The thermometer shall be back connected, red liquid bi-metalwith 228 mm (9 inches) high scale graduated from 4 to 100 degrees C (40 to 212 degrees F), with two-degree graduations guaranteed accurate within one scale division. The socket shall be separable with extension neck not less than 63 mm (2-1/2 inches) to clear tank or pipe covering. The thermometer shall be suitable for 19 mm (3/4 inch) pipe threads.

2.6 SUPPORTS

A. Water heater will be mounted on 4 inch thick concrete pad, see detail on drawings.

PART 3 - .EXECUTION

3.1 INSTALLATION

- A. If an installation is unsatisfactory to the COR, the contractor shall correct the installation at no additional cost or time to the Government.
- B. Water heater will be installed on 4" thick concrete pad, see detail on drawings. The water heaters shall be installed level and plumb and securely anchored.
- C. The water heaters shall be installed and connected in accordance with manufacturer's written instructions with manufacturer's recommended clearances and all required accessories.
- D. All pressure and temperature relief valves discharge will be routed above floor and spilled into nearby mop basin through an air gap.

- E. Thermometer will be installed on the water heater outlet piping, on outlet of thermostatic mixing valve and will be positioned such that they can be read by maintenance personnel standing on floor.
- F. The thermostatic control shall be set for a minimum setting of 60 degrees C (140 degrees F) for storage heaters.
- G. Dielectric unions shall be provided if there are dissimilar metals between the water heater connections and the attached piping.
- H. Provide and install elevated vacuum relief valve on cold water inlet to water heater, see detail on drawing.
- Shutoff valves shall be installed on the domestic water supply piping to the water heater and on the domestic hot water outlet piping.
- J. All manufacturer's required clearances shall be maintained.
- K. A combination temperature and pressure relief valve will be integral with the water heater and from same water heater manufacturer. The relief valve full size outlet drain piping shall discharge by air gap into the mop basin nearby, see detail.
- L. Piping type heat traps shall be installed by the contractor on the outlet piping of the electric domestic water heater, see detail on drawings.
- M. Water heater drain piping shall be installed as indirect waste to spill by air gap into mop basin nearby, see detail on drawings.

3.2 LEAKAGE TEST

A. Before piping connections are made, water heaters shall be tested with hydrostatic pressure of 1380 kPa (200 psig) and 1654 kPa (240 psig) for a unit with a MAWP of 1104 kPa (160 psig). Any domestic water heater leaking water shall be replaced with a new unit at no additional cost or time to the Government.

3.3 PERFORMANCE TEST

A. Ensure that all the remote water outlets are always tested to a minimum of 43 degrees C (110 degrees F) and a maximum of 49 degrees C (120 degrees F) water flow.

3.4 STARTUP AND TESTING

A. Perform tests as recommended by product manufacturer and listed standards and under actual or simulated operating conditions and prove full compliance with design and specified requirements. Tests of the various items of equipment shall be performed simultaneously with the system of which each item is an integral part.

- B. The tests shall include system capacity, control function, and alarm functions.
- C. When any defects are detected, correct defects and repeat test at no additional cost or time to the Government.
- D. The CxA will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the COR and CxA. Provide a minimum notice of 10 working days prior to startup and testing.

3.5 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.
- B. Components provided under this section of the specification will be tested as part of a larger system.

3.6 DEMONSTRATION AND TRAINING

A. Provide services of manufacturer's technical representative for 4 hours to instruct each VA personnel responsible in operation and maintenance of the system. Submit training plans and instructor qualifications in accordance with thev requirements of section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

- - - E N D - - -

SECTION 22 40 00 PLUMBING FIXTURES

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Plumbing fixtures, associated trim and fittings necessary to make a complete installation from wall or floor connections to rough piping, and certain accessories.
- B. A complete listing of all acronyms and abbreviations are included in Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS AND PRODUCT DATA.
- C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- D. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
 - E. Section 07 92 00, JOINT SEALANTS: Sealing between fixtures and other finish surfaces.
 - F. Section 08 31 13, ACCESS DOORS AND FRAMES: Flush panel access doors.
 - G. Section 10 21 13, TOILET COMPARTMENTS: Through bolts.
 - H. Section 22 05 11, COMMON WORK RESULTS FOR PLUMBING.
- I. Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS: Requirements for commissioning, systems readiness checklist, and training.
 - J. 22 13 00, FACILITY SANITARY AND VENT PIPING.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. The American Society of Mechanical Engineers (ASME): Plumbing Fixtures

G.....NSF International (NSF):

-2013.....Drinking Water System Components - Health Effects

372-2011.....Drinking Water System Components - Lead Content

- H. American with Disabilities Act (A.D.A)
- I. International Code Council (ICC):
 IPC-2015.....International Plumbing Code

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS AND PRODUCT DATA. B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 22 40 00, PLUMBING FIXTURES", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, connections, and capacity.
- D. Operating Instructions: Comply with requirements in Section 01 00 00, GENERAL REQUIREMENTS.
- E. Completed System Readiness Checklist provided by the CxA and completed by the Contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.
- F. Submit training plans and instructor qualifications in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

1.5 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, substitutions and construction revisions shall be in electronic version on compact disc or DVD as discussed and coordinated with VA inserted into a three-ring binder. All aspects of system operation and maintenance procedures will be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices such as damper and door closure interlocks shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.
- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and shall provide the complete set at

VA Project No. 595-668 AE Works Project No. VLEB-010

Lebanon VAMC

New Entryway for Building 17

BID DOCUMENTS

the time of final systems certification testing. As-built drawings are to be provided, and a copy of them in appropriate AutoCAD version as discussed, coordinated and approved by the VA provided on compact disk or DVD. Should the installing contractor engage the testing company to provide as built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement.

D. Certification documentation shall be provided to COR 10 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and certification that all results of tests were within limits specified.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Material or equipment containing a weighted average of greater than 0.25 percent lead is prohibited in any potable water system intended for human consumption and shall be certified in accordance with NSF 61 or NSF 372. Endpoint devices used to dispense water for drinking shall meet the requirements of NSF 61.
- B. Piping and fittings will meet NSF 14 and shall be NSF listed for the service intended.

2.2 ESCUTCHEONS

A. Heavy type, chrome plated, with set screws. Provide for piping serving plumbing fixtures at wall..

plumbing fixture specification.1. See plumbing fixture specification.

2.3 SINKS

- A. Dimensions for sinks are specified, overall length by widtho) and depth.
- B. (P-501) Mop Basin Sink (Square, ,24 inches square x 10 inches deep; stainless steel drain body with slotted grate in center, 3" diameter outlet caulked connection, ; white color molded stone material, adjustable wall brace, hose and hose bracket, mop hanger, and stainless-steel bumper guard,

Lebanon VAMC New Entryway for Building 17 BID DOCUMENTS 09-01-15

 Faucet: Chrome plated, with vacuum breaker, integral stops, adjustable wall brace, pail hook, 3/4 inch hose threaded vacuum breaker on outlet, adjustable 8" centers and cross or lever handles.

2.4 FREEZE PROOF WALL HYDRANT (FPWH)

A. (P-801) : 16 gauge stainless steel frame and cover, 20 gauge stainless steel box with full 180 degrees cover opening, integral vacuum breaker, bronze nickel plated quarter turn self-draining with threaded 3/4" hose connection, hinged locking cover, continuous stainless steel face hinge, "T" handle key adjustable wall clamp, 3/4" male NPT inlet, "Water" on cover and approximate overall size: 7 inches square x 2 5/16" deep box.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Fixture Setting: Opening between fixture and floor and wall finish shall be sealed as specified under Section 07 92 00, JOINT SEALANTS. Bio-based materials shall be utilized when possible.
- B. Supports and Fastening: Secure all fixtures, equipment and trimmings to partitions, walls and related finish surfaces.

3.2 CLEANING

A. At completion of all work, fixtures, exposed materials, and equipment shall be thoroughly cleaned.

3.4 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.
- B. Components provided under this section of the specification will be tested as part of a larger system.

3.5 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for one hour to instruct VA Personnel in operation and maintenance of the system.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 22 08 00, COMMISSIONING OF PLUMBING SYSTEMS.

- - - E N D - - -

SECTION 23 05 11 COMMON WORK RESULTS FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

A. The requirements of this Section apply to all sections of Division 23.

- B. Definitions:
 - Exposed: Piping, ductwork, and equipment exposed to view in finished rooms.
 - 2. Exterior: Piping, ductwork, and equipment exposed to weather be it temperature, humidity, precipitation, wind, or solar radiation.
- C. Abbreviations/Acronyms:
 - 1. ac: Alternating Current
 - 2. AC: Air Conditioning
 - 3. ACU: Air Conditioning Unit
 - 4. ACR: Air Conditioning and Refrigeration
 - 5. AI: Analog Input
 - 6. AISI: American Iron and Steel Institute
 - 7. AO: Analog Output
 - 8. ASJ: All Service Jacket
 - 9. AWG: American Wire Gauge
 - 10. BACnet: Building Automation and Control Networking Protocol
 - 11. BAg: Silver-Copper-Zinc Brazing Alloy
 - 12. BAS: Building Automation System
 - 13. BCuP: Silver-Copper-Phosphorus Brazing Alloy
 - 14. bhp: Brake Horsepower
 - 15. Btu: British Thermal Unit
 - 16. Btu/h: British Thermal Unit Per Hour
 - 17. CDA: Copper Development Association
 - 18. C: Celsius
 - 19. CD: Compact Disk
 - 20. CFM: Cubic Foot Per Minute
 - 21. CH: Chilled Water Supply
 - 22. CHR: Chilled Water Return
 - 23. CLR: Color
 - 24. CO: Carbon Monoxide
 - 25. COR: Contracting Officer's Representative
 - 26. CPD: Condensate Pump Discharge
 - 27. CPM: Cycles Per Minute

- 28. CPVC: Chlorinated Polyvinyl Chloride
- 29. CRS: Corrosion Resistant Steel
- 30. CTPD: Condensate Transfer Pump Discharge
- 31. CTPS: Condensate Transfer Pump Suction
- 32. CW: Cold Water
- 33. CWP: Cold Working Pressure
- 34. CxA: Commissioning Agent
- 35. dB: Decibels
- 36. dB(A): Decibels (A weighted)
- 37. DDC: Direct Digital Control
- 38. DI: Digital Input
- 39. DO: Digital Output
- 40. DVD: Digital Video Disc
- 41. DN: Diameter Nominal
- 42. DWV: Drainage, Waste and Vent
- 43. EPDM: Ethylene Propylene Diene Monomer
- 44. EPT: Ethylene Propylene Terpolymer
- 45. ETO: Ethylene Oxide
- 46. F: Fahrenheit
- 47. FAR: Federal Acquisition Regulations
- 48. FD: Floor Drain
- 49. FED: Federal
- 50. FG: Fiberglass
- 51. FGR: Flue Gas Recirculation
- 52. FOS: Fuel Oil Supply
- 53. FOR: Fuel Oil Return
- 54. FSK: Foil-Scrim-Kraft facing
- 55. FWPD: Feedwater Pump Discharge
- 56. FWPS: Feedwater Pump Suction
- 57. GC: Chilled Glycol Water Supply
- 58. GCR: Chilled Glycol Water Return
- 59. GH: Hot Glycol Water Heating Supply
- 60. GHR: Hot Glycol Water Heating Return
- 61. gpm: Gallons Per Minute
- 62. HDPE: High Density Polyethylene
- 63. Hg: Mercury
- 64. HOA: Hands-Off-Automatic

VA Project No. 595-668 Lebanon VAMC AE Works Project No. VLEB-010 New Entryway for Building 17 BID DOCUMENTS 02-01-20 65. hp: Horsepower 66. HPS: High Pressure Steam (414 kPa (60 psig) and above) 67. HPR: High Pressure Steam Condensate Return 68. HW: Hot Water 69. HWH: Hot Water Heating Supply 70. HWHR: Hot Water Heating Return 71. Hz: Hertz 72. ID: Inside Diameter 73. IPS: Iron Pipe Size 74. kg: Kilogram 75. klb: 1000 lb 76. kPa: Kilopascal 77. lb: Pound 78. lb/hr: Pounds Per Hour 79. L/s: Liters Per Second 80. L/min: Liters Per Minute 81. LPS: Low Pressure Steam (103 kPa (15 psig) and below) 82. LPR: Low Pressure Steam Condensate Gravity Return 83. MAWP: Maximum Allowable Working Pressure 84. MAX: Maximum 85. MBtu/h: 1000 Btu/h 86. MBtu: 1000 Btu 87. MED: Medical 88. m: Meter 89. MFG: Manufacturer 90. mg: Milligram 91. mg/L: Milligrams Per Liter 92. MIN: Minimum 93. MJ: Megajoules 94. ml: Milliliter 95. mm: Millimeter 96. MPS: Medium Pressure Steam (110 kPa (16 psig) through 414 kPa (60 psig)) 97. MPR: Medium Pressure Steam Condensate Return 98. MW: Megawatt 99. NC: Normally Closed 100. NF: Oil Free Dry (Nitrogen)

101. Nm: Newton Meter 102. NO: Normally Open 103. NOx: Nitrous Oxide 104. NPT: National Pipe Thread 105. NPS: Nominal Pipe Size 106. OD: Outside Diameter 107. OSD: Open Sight Drain 108. OS&Y: Outside Stem and Yoke 109. PC: Pumped Condensate 110. PID: Proportional-Integral-Differential 111. PLC: Programmable Logic Controllers 112. PP: Polypropylene 113. PPE: Personal Protection Equipment 114. ppb: Parts Per Billion 115. ppm: Parts Per Million 116. PRV: Pressure Reducing Valve 117. PSIA: Pounds Per Square Inch Absolute 118. psig: Pounds Per Square Inch Gauge 119. PTFE: Polytetrafluoroethylene 120. PVC: Polyvinyl Chloride 121. PVDC: Polyvinylidene Chloride Vapor Retarder Jacketing, White 122. PVDF: Polyvinylidene Fluoride 123. rad: Radians 124. RH: Relative Humidity 125. RO: Reverse Osmosis 126. rms: Root Mean Square 127. RPM: Revolutions Per Minute 128. RS: Refrigerant Suction 129. RTD: Resistance Temperature Detectors 130. RTRF: Reinforced Thermosetting Resin Fittings 131. RTRP: Reinforced Thermosetting Resin Pipe 132. SCFM: Standard Cubic Feet Per Minute 133. SPEC: Specification 134. SPS: Sterile Processing Services 135. STD: Standard 136. SDR: Standard Dimension Ratio 137. SUS: Saybolt Universal Second

138. SW: Soft water 139. SWP: Steam Working Pressure 140. TAB: Testing, Adjusting, and Balancing 141. TDH: Total Dynamic Head 142. TEFC: Totally Enclosed Fan-Cooled 143. TFE: Tetrafluoroethylene 144. THERM: 100,000 Btu 145. THHN: Thermoplastic High-Heat Resistant Nylon Coated Wire 146. THWN: Thermoplastic Heat & Water-Resistant Nylon Coated Wire 147. T/P: Temperature and Pressure 148. USDA: U.S. Department of Agriculture 149.V: Volt 150. VAC: Vacuum 151. VA: Veterans Administration 152. VAC: Voltage in Alternating Current 153. VA CFM: VA Construction & Facilities Management 154. VA CFM CSS: VA Construction & Facilities Management, Consulting Support Service 155. VAMC: Veterans Administration Medical Center 156. VHA OCAMES: Veterans Health Administration - Office of Capital Asset Management Engineering and Support 157. VR: Vacuum condensate return 158. WCB: Wrought Carbon Steel, Grade B 159. WG: Water Gauge or Water Column 160. WOG: Water, Oil, Gas 1.2 RELATED WORK A. Section 01 00 00, GENERAL REQUIREMENTS. B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.

- C. Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT.
- D. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- E. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- F. Section 03 30 00, CAST-IN-PLACE CONCRETE.
- G. Section 05 31 00, STEEL DECKING.
- H. Section 05 50 00, METAL FABRICATIONS.
- I. Section 07 84 00, FIRESTOPPING.
- J. Section 07 92 00, JOINT SEALANTS.
- K. Section 09 91 00, PAINTING.

VA Project No. 595-668 Lebanon VAMC AE Works Project No. VLEB-010 New Entryway for Building 17 BID DOCUMENTS 02-01-20 L. Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC. M. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT. N. Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC. O. Section 23 07 11, HVAC INSULATION. P. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS. Q. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC. R. Section 23 36 00, AIR TERMINAL UNITS. S. Section 23 82 00, CONVECTION HEATING UNITS. T. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS. U. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES. V. Section 26 29 11, MOTOR CONTROLLERS. **1.3 APPLICABLE PUBLICATIONS** A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. Where conflicts occur these specifications and the VHA standard will govern. B. Air Movement and Control Association (AMCA): 410-1996.....Recommended Safety Practices for Users and Installers of Industrial and Commercial Fans

- C. American Society of Mechanical Engineers (ASME): B31.1-2018.....Power Piping B31.9-2014....Building Services Piping ASME Boiler and Pressure Vessel Code: BPVC Section IX-2019 Welding, Brazing, and Fusing Qualifications
- D. American Society for Testing and Materials (ASTM): A36/A36M-2014.....Standard Specification for Carbon Structural Steel

A575-1996(R2018).....Standard Specification for Steel Bars, Carbon, Merchant Quality, M-Grades

E. Association for Rubber Products Manufacturers (ARPM):

IP-20-2015.....Specifications for Drives Using Classical V-Belts and Sheaves

- IP-21-2016.....Specifications for Drives Using Double-V (Hexagonal) Belts
- IP-24-2016.....Specifications for Drives Using Synchronous Belts

VA Project No. 595-668 Lebanon VAMC AE Works Project No. VLEB-010 New Entryway for Building 17 BID DOCUMENTS 02-01-20 IP-27-2015.....Specifications for Drives Using Curvilinear Toothed Synchronous Belts F. Manufacturers Standardization Society (MSS) of the Valve and Fittings Industry, Inc.: SP-58-2018......Pipe Hangers and Supports-Materials, Design, Manufacture, Selection, Application, and Installation SP-127-2014a.....Bracing for Piping Systems: Seismic-Wind-Dynamic Design, Selection, and Application G. Military Specifications (MIL): MIL-P-21035B-2013.....Paint High Zinc Dust Content, Galvanizing Repair (Metric) H. National Fire Protection Association (NFPA): 70-2017.....National Electrical Code (NEC) 101-2018.....Life Safety Code I. Department of Veterans Affairs (VA):

I. Department of Veterans Affairs (VA): PG-18-10-2016.....Physical Security and Resiliency Design Manual

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 23 05 11, COMMON WORK RESULTS FOR HVAC", with applicable paragraph identification.
- C. Contractor shall make all necessary field measurements and investigations to assure that the equipment and assemblies will meet contract requirements, and all equipment that requires regular maintenance, calibration, etc are accessable from the floor or permanent work platform. It is the Contractor's responsibility to ensure all submittals meet the VA specifications and requirements and it is assumed by the VA that all submittals do meet the VA specifications unless the Contractor has requested a variance in writing and approved by COR prior to the submittal. If at any time during the project it is found that any item does not meet the VA specifications and there was no variance approval the Contractor shall correct at no additional cost or time to the Government even if a submittal was approved.

- D. If equipment is submitted which differs in arrangement from that shown, provide documentation proving equivalent performance, design standards and drawings that show the rearrangement of all associated systems. Additionally, any impacts on ancillary equipment or services such as foundations, piping, and electrical shall be the Contractor's responsibility to design, supply, and install at no additional cost or time to the Government. VA approval will be given only if all features of the equipment and associated systems, including accessibility, are equivalent to that required by the contract.
- E. Prior to submitting shop drawings for approval, Contractor shall certify in writing that manufacturers of all major items of equipment have each reviewed contract documents, and have jointly coordinated and properly integrated their equipment and controls to provide a complete and efficient installation.
- F. Submittals and shop drawings for interdependent items, containing applicable descriptive information, shall be furnished together. Coordinate and properly integrate materials and equipment to provide a completely compatible and efficient installation.
- G. Coordination/Shop Drawings:
 - Submit complete consolidated and coordinated shop drawings for all new systems, and for existing systems that are in the same areas.
 - 2. The coordination/shop drawings shall include plan views, elevations and sections of all systems and shall be on a scale of not less than 1:32 (3/8-inch equal to one foot). Clearly identify and dimension the proposed locations of the principal items of equipment. The drawings shall clearly show locations and adequate clearance for all equipment, piping, valves, control panels and other items. Show the access means for all items requiring access for operations and maintenance. Provide detailed coordination/shop drawings of all piping and duct systems. The drawings should include all lockout/tagout points for all energy/hazard sources for each piece of equipment. Coordinate lockout/tagout procedures and practices with local VA requirements.
 - 3. Do not install equipment foundations, equipment or piping until coordination/shop drawings have been approved.
 - 4. In addition, for HVAC systems, provide details of the following:a. Mechanical equipment rooms.

- b. Interstitial space.
- c. Hangers, inserts, supports, and bracing.
- d. Pipe sleeves.
- e. Duct or equipment penetrations of floors, walls, ceilings, or roofs.
- H. Manufacturer's Literature and Data: Include full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity. Submit under the pertinent section rather than under this section.
 - 1. Submit belt drive with the driven equipment. Submit selection data for specific drives when requested by the COR.
 - 2. Submit electric motor data and variable speed drive data with the driven equipment.
 - 3. Equipment and materials identification.
 - 4. Fire-stopping materials.
 - 5. Hangers, inserts, supports and bracing. Provide complete stress analysis for variable spring and constant support hangers.
 - 6. Wall, floor, and ceiling plates.
- I. Rigging Plan: Provide documentation of the capacity and weight of the rigging and equipment intended to be used. The plan shall include the path of travel of the load, the staging area and intended access, and qualifications of the operator and signal person.
- J. HVAC Maintenance Data and Operating Instructions:
 - Maintenance and operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Article, INSTRUCTIONS, for systems and equipment.
 - Complete operating and maintenance manuals including wiring diagrams, technical data sheets, information for ordering replacement parts, and troubleshooting guide:
 - a. Include complete list indicating all components of the systems.
 - b. Include complete diagrams of the internal wiring for each item of equipment.
 - c. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.
 - 3. Provide a listing of recommended replacement parts for keeping in stock supply, including sources of supply, for equipment. Include

in the listing belts for equipment: Belt manufacturer, model number, size and style, and distinguished whether of multiple belt sets.

- K. Provide copies of approved HVAC equipment submittals to the TAB and Commissioning Subcontractor.
- L. Completed System Readiness Checklist provided by the Commissioning Agent and completed by the Contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- M. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

1.5 QUALITY ASSURANCE

- A. Mechanical, electrical and associated systems shall be safe, reliable, efficient, durable, easily and safely operable and maintainable, easily and safely accessible, and in compliance with applicable codes as specified. The systems shall be comprised of high quality institutional-class and industrial-class products of manufacturers that are experienced specialists in the required product lines. All construction firms and personnel shall be experienced and qualified specialists in industrial and institutional HVAC.
- B. Flow Rate Tolerance for HVAC Equipment: Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.
- C. Equipment Vibration Tolerance:
 - Refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT. Equipment shall be factory-balanced to this tolerance and re-balanced on site, as necessary.
 - 2. After HVAC air balance work is completed and permanent drive sheaves are in place, perform field mechanical balancing and adjustments required to meet the specified vibration tolerance.
- D. Products Criteria:
 - 1. Standard Products: Material and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture of the products for at least 3 years (or longer as specified elsewhere). The design, model and size of each item shall have been in satisfactory and efficient operation on at least three installations for approximately three years. However, digital electronics devices, software and systems such as controls,

instruments, computer work station, shall be the current generation of technology and basic design that has a proven satisfactory service record of at least three years. See other specification sections for any exceptions and/or additional requirements.

- Refer to all other sections for quality assurance requirements for systems and equipment specified therein.
- 3. All items furnished shall be free from defects that would adversely affect the performance, maintainability and appearance of individual components and overall assembly.
- 4. The products and execution of work specified in Division 33 shall conform to the referenced codes and standards as required by the specifications. Local codes and amendments shall be enforced, along with requirements of local utility companies. The most stringent requirements of these specifications, local codes, or utility company requirements shall always apply. Any conflicts shall be brought to the attention of the COR.
- 5. Multiple Units: When two or more units of materials or equipment of the same type or class are required, these units shall be of the same manufacturer and model number, or if different models are required they shall be of the same manufacturer and identical to the greatest extent possible (i.e., same model series).
- 6. Assembled Units: Performance and warranty of all components that make up an assembled unit shall be the responsibility of the manufacturer of the completed assembly.
- 7. Nameplates: Nameplate bearing manufacturer's name or identifiable trademark shall be securely affixed in a conspicuous place on equipment, or name or trademark cast integrally with equipment, stamped or otherwise permanently marked on each item of equipment.
- Use of asbestos products or equipment or materials containing asbestos is prohibited.
- E. HVAC Equipment Service Providers: Service providers shall be authorized and trained by the manufacturers of the equipment supplied. These providers shall be capable of responding onsite and provide acceptable service to restore equipment operations within 4 hours of receipt of notification by phone, e-mail or fax in event of an emergency, such as the shutdown of equipment; or within 24 hours in a non-emergency.

Submit names, mail and e-mail addresses and phone numbers of service personnel and companies providing service under these conditions for (as applicable to the project): fans, air handling units, chillers, cooling towers, control systems, pumps, critical instrumentation, computer workstation and programming.

- F. HVAC Mechanical Systems Welding: Before any welding is performed, Contractor shall submit a certificate certifying that welders comply with the following requirements:
 - 1. Qualify welding processes and operators for piping according to ASME BPVC Section IX. Provide proof of current certification.
 - 2. Comply with provisions of ASME B31 series "Code for Pressure Piping".
 - 3. Certify that each welder and welding operator has passed American Welding Society (AWS) qualification tests for the welding processes involved, and that certification is current.
 - 4. All welds shall be stamped according to the provisions of the AWS or ASME as required herein and by the associated code.
- G. Manufacturer's Recommendations: Where installation procedures or any part thereof are required to be in accordance with the recommendations of the manufacturer of the material being installed, printed copies of these recommendations shall be furnished to the COR with submittals. Installation of the item will not be allowed to proceed until the recommendations are received. Failure to furnish these recommendations can be cause for rejection of the material and removal by the Contractor and no additional cost or time to the Government.
- H. Execution (Installation, Construction) Quality:
 - Apply and install all items in accordance with manufacturer's written instructions. Refer conflicts between the manufacturer's instructions and the contract documents to the COR for resolution. Provide written hard copies and computer files on CD or DVD of manufacturer's installation instructions to the COR with submittals prior to commencing installation of any item. Installation of the item will not be allowed to proceed until the recommendations are received and approved by the VA. Failure to furnish these recommendations is a cause for rejection of the material.

- 2. All items that require access, such as for operating, cleaning, servicing, maintenance, and calibration, shall be easily and safely accessible by persons standing at floor level, or standing on permanent platforms, without the use of portable ladders. Examples of these items include, but are not limited to, all types of valves, filters and strainers, transmitters, control devices. Prior to commencing installation work, refer conflicts between this requirement and contract documents to the COR for resolution. Failure of the Contractor to resolve, or point out any issues will result in the Contractor correcting at no additional cost or time to the Government.
- 3. Complete coordination/shop drawings shall be required in accordance with Article, SUBMITTALS. Construction work shall not start on any system until the coordination/shop drawings have been approved by VA.
- 4. Workmanship/craftsmanship will be of the highest quality and standards. The VA reserves the right to reject any work based on poor quality of workmanship this work shall be removed and done again at no additional cost or time to the Government.
- I. Upon request by Government, provide lists of previous installations for selected items of equipment. Include contact persons who will serve as references, with current telephone numbers and e-mail addresses.
- J. Guaranty: Warranty of Construction, FAR Clause 52.246-21.

1.6 DELIVERY, STORAGE AND HANDLING

- A. Protection of Equipment:
 - Equipment and material placed on the job site shall remain in the custody of the Contractor until phased acceptance, whether or not the Government has reimbursed the Contractor for the equipment and material. The Contractor is solely responsible for the protection of such equipment and material against any damage or theft.
 - 2. Large equipment such as boilers, chillers, cooling towers, fans, and air handling units if shipped on open trailer trucks shall be covered with shrink on plastics or water proof tarpaulins that provide protection from exposure to rain, road salts and other transit hazards. Protection shall be kept in place until equipment is moved into a building or installed as designed.

- 3. Repair damaged equipment in first class, new operating condition and appearance; or, replace same as determined and directed by the COR. Such repair or replacement shall be at no additional cost or time to the Government.
- Protect interiors of new equipment and piping systems against entry of foreign matter. Clean both inside and outside before painting or placing equipment in operation.
- 5. Existing equipment and piping being worked on by the Contractor shall be under the custody and responsibility of the Contractor and shall be protected as required for new work.
- Protect plastic piping and tanks from ultraviolet light (sunlight).
- B. Cleanliness of Piping and Equipment Systems:
 - Exercise care in storage and handling of equipment and piping material to be incorporated in the work. Remove debris arising from cutting, threading and welding of piping.
 - Piping systems shall be flushed, blown or pigged as necessary to deliver clean systems.
 - Clean interior of all tanks prior to delivery for beneficial use by the Government.
 - Contractor shall be fully responsible for all costs, damage, and delay arising from failure to provide clean systems.

1.7 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, VA approved substitutions and construction revisions shall be in electronic version on CD or DVD inserted into a three-ring binder. All aspects of system operation and maintenance procedures, including applicable piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or

tools the owner will be required to employ shall be inserted into the As-Built documentation.

- C. The installing Contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. Should the installing Contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement. Provide record drawings as follows:
 - Red-lined, hand-marked drawings are to be provided, with one paper copy and a scanned PDF version of the hand-marked drawings provided on CD or DVD.
- D. The as-built drawings shall indicate the location and type of all lockout/tagout points for all energy sources for all equipment and pumps to include breaker location and numbers, valve tag numbers, etc. Coordinate lockout/tagout procedures and practices with local VA requirements.
- E. Certification documentation shall be provided to COR 21 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and provide documentation/certification that all results of tests were within limits specified. Test results shall contain written sequence of test procedure with written test results annotated at each step along with the expected outcome or setpoint. The results shall include all readings, including but not limited to data on device (make, model and performance characteristics_), normal pressures, switch ranges, trip points, amp readings, and calibration data to include equipment serial numbers or individual identifications, etc.

1.8 JOB CONDITIONS - WORK IN EXISTING BUILDING

- A. Building Operation: Government employees will be continuously operating and managing all facilities, including temporary facilities that serve the VAMC.
- B. Maintenance of Service: Schedule all work to permit continuous service as required by the VAMC.

- C. Steam and Condensate Service Interruptions: Limited steam and condensate service interruptions, as required for interconnections of new and existing systems, will be permitted by the COR during periods when the demands are not critical to the operation of the VAMC. These non-critical periods are limited to between 8 pm and 5 am in the appropriate off-season (if applicable). Provide at least 10 working days advance notice to the COR. The request shall include a detailed plan on the proposed shutdown and the intended work to be done along with manpower levels. All equipment and materials must be onsite and verified with plan 5 days prior to the shutdown or it will need to be rescheduled.
- D. Building Working Environment: Maintain the architectural and structural integrity of the building and the working environment at all times. Maintain the interior of building at 18 degrees C (65 degrees F) minimum. Limit the opening of doors, windows or other access openings to brief periods as necessary for rigging purposes. Storm water or ground water leakage is prohibited. Provide daily clean-up of construction and demolition debris on all floor surfaces and on all equipment being operated by VA. Maintain all egress routes and safety systems/devices.
- E. Acceptance of Work for Government Operation: As new equipment, systems and facilities are made available for operation and these items are deemed of beneficial use to the Government, inspections will be made and tests will be performed. Based on the inspections, a list of contract deficiencies will be issued to the Contractor. After correction of deficiencies as necessary for beneficial use, the Contracting Officer will process necessary acceptance and the equipment will then be under the control and operation of Government personnel.
- F. Temporary Facilities: Refer to Article, TEMPORARY PIPING AND EQUIPMENT in this section.

PART 2 - PRODUCTS

2.1 FACTORY-ASSEMBLED PRODUCTS

- A. Provide maximum standardization of components to reduce spare part requirements.
- B. Performance and warranty of all components that make up an assembled unit shall be the responsibility of the manufacturer of the completed assembly.

- All components of an assembled unit need not be products of same manufacturer.
- Constituent parts that are alike shall be products of a single manufacturer.
- 3. Components shall be compatible with each other and with the total assembly for intended service.
- Contractor shall guarantee performance of assemblies of components, and shall repair or replace elements of the assemblies as required to deliver specified performance of the complete assembly.
- C. Equipment and components of equipment shall bear manufacturer's name and trademark, model number, serial number and performance data on a nameplate securely affixed in a conspicuous place, or cast integral with, stamped or otherwise permanently marked upon the components of the equipment.
- D. Major items of equipment, which serve the same function, must be the same make and model. Exceptions must be approved by the VA, but may be permitted if performance requirements cannot be met.

2.2 COMPATIBILITY OF RELATED EQUIPMENT

A. Equipment and materials installed shall be compatible in all respects with other items being furnished and with existing items so that the result will be a complete and fully operational plant that conforms to contract requirements.

2.3 V-BELT DRIVES

- A. Type: ARPM standard V-belts with proper motor pulley and driven sheave. Belts shall be constructed of reinforced cord and rubber.
- B. Dimensions, rating and selection standards: ARPM IP-20 and ARPM IP-21.
- C. Minimum Horsepower Rating: Motor horsepower plus recommended ARPM service factor (not less than 20 percent) in addition to the ARPM allowances for pitch diameter, center distance, and arc of contact.
- D. Maximum Speed: 25 m/s (5000 feet per minute).
- E. Adjustment Provisions: For alignment and ARPM standard allowances for installation and take-up.
- F. Drives may utilize a single V-Belt (any cross section) when it is the manufacturer's standard.
- G. Multiple Belts: Matched to ARPM specified limits by measurement on a belt measuring fixture. Seal matched sets together to prevent mixing or

partial loss of sets. Replacement, when necessary, shall be an entire set of new matched belts.

- H. Sheaves and Pulleys:
 - 1. Material: Pressed steel, or close-grained cast iron.
 - 2. Bore: Fixed or bushing type for securing to shaft with keys.
 - 3. Balanced: Statically and dynamically.
- 4. Groove spacing for driving and driven pulleys shall be the same.I. Drive Types, Based on ARI 435:
 - 1. Provide adjustable-pitch or fixed-pitch drive as follows:
 - a. Fan speeds up to 1800 RPM: 7.5 kW (10 horsepower) and smaller.
 - b. Fan speeds over 1800 RPM: 2.2 kW (3 horsepower) and smaller.
 - Provide fixed-pitch drives for drives larger than those listed above.
 - 3. The final fan speeds required to just meet the system CFM and pressure requirements, without throttling the design air flow branch, shall be determined by adjustment of a temporary adjustable-pitch motor sheave or by fan law calculation if a fixed-pitch drive is used initially.
- J. Final Drive Set: If adjustment is required beyond the capabilities of the factory drive set, the final drive set shall be provided as part of this contract at no additional cost or time to the Government.

2.4 SYNCHRONOUS BELT DRIVES

- A. Type: ARPM synchronous belts with proper motor pulley and driven sheave. Belts shall be constructed of reinforced cord and rubber.
- B. Dimensions, rating and selection standards: ARPM IP-24 and ARPM IP-27.
- C. Minimum Horsepower Rating: Motor horsepower plus recommended ARPM service factor (not less than 20 percent) in addition to the ARPM allowances for pitch diameter, center distance, and arc of contact.
- D. Maximum Speed: 25 m/s (5000 feet per minute).
- E. Adjustment Provisions: For alignment and ARPM standard allowances for installation and take-up.
- F. Drives may utilize a single belt of manufacturer's standard width for the application.
- G. Multiple Belts: Matched to ARPM specified limits by measurement on a belt measuring fixture. Seal matched sets together to prevent mixing or partial loss of sets. Replacement, when necessary, shall be an entire set of new matched belts.

- H. Sheaves and Pulleys:
 - 1. Material: Pressed steel, or close-grained cast iron.
 - 2. Bore: Fixed or bushing type for securing to shaft with keys.
 - 3. Balanced: Statically and dynamically.
- I. Final Drive Set: The final fan speeds required to just meet the system CFM and pressure requirements, without throttling the design air flow branch, shall be determined by fan law calculation. If adjustment is required beyond the capabilities of the factory drive set, the final drive set shall be provided as part of this contract at no additional cost or time to the Government.

2.5 DRIVE GUARDS

- A. For machinery and equipment, provide guards as shown in AMCA 410 for belts, chains, couplings, pulleys, sheaves, shafts, gears and other moving parts regardless of height above the floor to prevent damage to equipment and injury to personnel. Drive guards may be excluded where motors and drives are inside factory-fabricated air handling unit casings.
- B. V-belt and sheave assemblies shall be totally enclosed, firmly mounted, non-resonant. Guard shall be an assembly of minimum 22-gauge sheet steel and expanded or perforated metal to permit observation of belts. 25 mm (1 inch) diameter hole shall be provided at each shaft centerline to permit speed measurement.
- C. Materials: Sheet steel, expanded metal or wire mesh rigidly secured so as to be removable without disassembling pipe, duct, or electrical connections to equipment.
- D. Access for Speed Measurement: 25 mm (1 inch) diameter hole at each shaft center.

2.6 LIFTING ATTACHMENTS

A. Provide equipment with suitable lifting attachments to enable equipment to be lifted in its normal position. Lifting attachments shall withstand any handling conditions that might be encountered, without bending or distortion of shape, such as rapid lowering and braking of load.

2.7 ELECTRIC MOTORS

A. All material and equipment furnished and installation methods shall conform to the requirements of Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC EQUIPMENT; Section 26 29 11, MOTOR CONTROLLERS; and, Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES. Provide all electrical wiring, conduit, and devices necessary for the proper connection, protection and operation of the systems. Provide special energy efficient premium efficiency type motors as scheduled.

2.8 VARIABLE SPEED MOTOR CONTROLLERS

- A. Refer to Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS and Section 26 29 11, MOTOR CONTROLLERS for specifications.
- B. Coordinate variable speed motor controller communication protocol with Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- C. Provide variable speed motor controllers with a bypass contactor.
- D. The combination of controller and motor shall be provided by the manufacturer of the driven equipment, such as fans, and shall be rated for 100 percent output performance. Multiple units of the same class of equipment, i.e. air handlers, fans, shall be product of a single manufacturer.
- E. Motors shall be premium efficiency type and be approved by the motor controller manufacturer. The controller-motor combination shall be guaranteed to provide full motor nameplate horsepower in variable frequency operation. Both driving and driven motor/fan sheaves shall be fixed pitch.
- F. Controller shall not add any current or voltage transients to the input ac power distribution system, DDC controls, sensitive medical equipment, etc., nor shall be affected from other devices on the ac power system.

2.9 EQUIPMENT AND MATERIALS IDENTIFICATION

- A. Use symbols, nomenclature and equipment numbers specified, shown on the contract documents and shown in the maintenance manuals. Identification for piping is specified in Section 09 91 00, PAINTING.
- B. Exterior (Outdoor) Equipment: Brass nameplates, with engraved black filled letters, not less than 5 mm (3/16 inch) high riveted or bolted to the equipment.
- C. Control Items: Label all instrumentation, temperature and humidity sensors, controllers and control dampers. Identify and label each item as they appear on the control diagrams.

- D. Valve Tags and Lists:
 - 1. HVAC and Mechanical Rooms: Provide for all valves other than for equipment in Section 23 36 00, AIR TERMNAL UNITS.
 - 2. Valve tags: Engraved black filled numbers and letters not less than 15 mm (1/2 inch) high for number designation, and not less than 6 mm (1/4 inch) for service designation on 19-gauge 40 mm (1-1/2 inches) round brass disc, attached with brass "S" hook or brass chain.
 - 3. Valve lists: Typed or printed plastic coated card(s), sized 215 mm (8-1/2 inches) by 275 mm (11 inches) showing tag number, valve function and area of control, for each service or system. Punch sheets for a 3-ring notebook.
 - Provide detailed plan for each floor of the building indicating the location and valve number for each valve. Identify location of each valve with a color-coded thumb tack in ceiling.
- E. Ceiling Grid Labels:
 - 1. 50 mm (2 inch) long by 15 mm (1/2 inch) wide by 0.025 mm (1 mil) thick UV resistant metalized polyester label with red border color and black custom lettering on white background interior. Peel and stick adhesive backing. Label and adhesive manufactured specifically for use in equipment inventory tagging.
 - 2. Custom print labels with above ceiling HVAC equipment numbers.

2.10 FIRESTOPPING

A. Section 07 84 00, FIRESTOPPING specifies an effective barrier against the spread of fire, smoke and gases where penetrations occur for piping and ductwork. Refer to Section 23 07 11, HVAC INSULATION, for firestop pipe and duct insulation.

2.11 GALVANIZED REPAIR COMPOUND

A. Mil-P-21035B, paint form.

2.12 HVAC PIPE AND EQUIPMENT SUPPORTS AND RESTRAINTS

- A. Vibration Isolators: Refer to Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- B. Supports for Roof Mounted Items:
 - Equipment: Equipment rails shall be galvanized steel, minimum 1.3 mm (18 gauge), with integral baseplate, continuous welded corner seams, factory installed 50 by 100 mm (2 by 4 inches) treated wood nailer, 1.3 mm (18 gauge) galvanized steel counter flashing cap

with screws, built-in cant strip, (except for gypsum or tectum deck), minimum height 275 mm (11 inches). For surface insulated roof deck, provide raised cant strip to start at the upper surface of the insulation.

- 2. Pipe pedestals: Provide a galvanized Unistrut channel welded to Ushaped mounting brackets which are secured to side of rail with galvanized lag bolts.
- C. Pipe Supports: Comply with MSS SP-58. Type Numbers specified refer to this standard. For selection and application comply with MSS SP-58. Refer to Section 05 50 00, METAL FABRICATIONS, for miscellaneous metal support materials and prime coat painting requirements.
- D. Attachment to Concrete Building Construction:
 - 1. Concrete insert: MSS SP-58, Type 18.
 - Self-drilling expansion shields and machine bolt expansion anchors: Permitted in concrete not less than 100 mm (4 inches) thick when approved by the COR for each job condition.
 - Power-driven fasteners: Permitted in existing concrete or masonry not less than 100 mm (4 inches) thick when approved by the COR for each job condition.
- E. Attachment to Steel Building Construction:
 - 1. Welded attachment: MSS SP-58, Type 22.
 - 2. Beam clamps: MSS SP-58, Types 20, 21, 28 or 29. Type 23 C-clamp may be used for individual copper tubing up to 23 mm (7/8 inch) outside diameter.
- F. Attachment to Metal Pan or Deck: As required for materials specified in Section 05 31 00, STEEL DECKING.
- G. Attachment to existing structure: Support from existing floor/roof frame.
- H. Hanger Rods: Hot-rolled steel, ASTM A36/A36M or ASTM A575 for allowable load listed in MSS SP-58. For piping, provide adjustment means for controlling level or slope. Types 13 or 15 turn-buckles shall provide 40 mm (1-1/2 inches) minimum of adjustment and incorporate locknuts. All-thread rods are acceptable.
- I. Hangers Supporting Multiple Pipes (Trapeze Hangers): Galvanized, cold formed, lipped steel channel horizontal member, not less than 41 mm by 41 mm (1-5/8 inches by 1-5/8 inches), 2.7 mm (12 gauge), designed to

accept special spring held, hardened steel nuts. Trapeze hangers are prohibited for use for steam supply and condensate piping.

- Allowable hanger load: Manufacturers rating less 91 kg (200 pounds).
- 2. Guide individual pipes on the horizontal member of every other trapeze hanger with 6 mm (1/4 inch) U-bolt fabricated from steel rod. Provide Type 40 insulation shield, secured by two 15 mm (1/2 inch) galvanized steel bands, or pre-insulated calcium silicate shield for insulated piping at each hanger.
- J. Supports for Piping Systems:
 - Select hangers sized to encircle insulation on insulated piping. Refer to Section 23 07 11, HVAC INSULATION for insulation thickness. To protect insulation, provide Type 39 saddles for roller type supports or pre-insulated calcium silicate shields. Provide Type 40 insulation shield or pre-insulated calcium silicate shield at all other types of supports and hangers including those for pre-insulated piping.
 - 2. Piping Systems except High and Medium Pressure Steam (MSS SP-58):
 - a. Standard clevis hanger: Type 1; provide locknut.
 - b. Riser clamps: Type 8.
 - c. Wall brackets: Types 31, 32 or 33.
 - d. Roller supports: Type 41, 43, 44 and 46.
 - e. Saddle support: Type 36, 37 or 38.
 - f. Turnbuckle: Types 13 or 15. Preinsulate.
 - g. U-bolt clamp: Type 24.
 - h. Copper Tube:
 - Hangers, clamps and other support material in contact with tubing shall be painted with copper colored epoxy paint, plastic coated or taped with non-adhesive isolation tape to prevent electrolysis.
 - For vertical runs use epoxy painted or plastic-coated riser clamps.
 - For supporting tube to strut: Provide epoxy painted pipe straps for copper tube or plastic inserted vibration isolation clamps.
 - Insulated Lines: Provide pre-insulated calcium silicate shields sized for copper tube.

- Supports for plastic piping: As recommended by the pipe manufacturer with black rubber tape extending one inch beyond steel support or clamp.
- K. Pre-insulated Calcium Silicate Shields:
 - Provide 360-degree water resistant high density 965 kPa (140 psig) compressive strength calcium silicate shields encased in galvanized metal.
 - Pre-insulated calcium silicate shields to be installed at the point of support during erection.
 - 3. Shield thickness shall match the pipe insulation.
 - 4. The type of shield is selected by the temperature of the pipe, the load it must carry, and the type of support it will be used with.
 - a. Shields for supporting chilled or cold water shall have insulation that extends a minimum of 25 mm (1 inch) past the sheet metal. Provide for an adequate vapor barrier in chilled lines.
 - b. The pre-insulated calcium silicate shield shall support the maximum allowable water filled span as indicated in MSS SP-58. To support the load, the shields may have one or more of the following features: structural inserts 4138 kPa (600 psig) compressive strength, an extra bottom metal shield, or formed structural steel (ASTM A36/A36M) wear plates welded to the bottom sheet metal jacket.
 - Shields may be used on steel clevis hanger type supports, roller supports or flat surfaces.

2.13 PIPE PENETRATIONS

- A. Install sleeves during construction for other than blocked out floor openings for risers in mechanical bays.
- B. To prevent accidental liquid spills from passing to a lower level, provide the following:
 - 1. For sleeves: Extend sleeve 25 mm (1 inch) above finished floor and provide sealant for watertight joint.
 - For blocked out floor openings: Provide 40 mm (1-1/2 inch) angle set in silicone adhesive around opening.
 - 3. For drilled penetrations: Provide 40 mm (1-1/2 inch) angle ring or square set in silicone adhesive around penetration.

- C. Penetrations through beams or ribs are prohibited, but may be installed in concrete beam flanges. Any deviation from these requirements must receive prior approval of COR.
- D. Sheet Metal, Plastic, or Moisture-resistant Fiber Sleeves: Provide for pipe passing through floors, interior walls, and partitions, unless brass or steel pipe sleeves are specifically called for below.
- E. Cast Iron or Zinc Coated Pipe Sleeves: Provide for pipe passing through exterior walls below grade. Make space between sleeve and pipe watertight with a modular or link rubber seal. Seal shall be applied at both ends of sleeve.
- F. Galvanized Steel or an alternate Black Iron Pipe with asphalt coating Sleeves: Provide for pipe passing through concrete beam flanges, except where brass pipe sleeves are called for. Provide sleeve for pipe passing through floor of mechanical rooms, laundry work rooms, and animal rooms above basement. Except in mechanical rooms, connect sleeve with floor plate.
- G. Brass Pipe Sleeves: Provide for pipe passing through quarry tile, terrazzo or ceramic tile floors. Connect sleeve with floor plate.
- H. Sleeves are not required for wall hydrants for fire department connections or in drywall construction.
- I. Sleeve Clearance: Sleeve through floors, walls, partitions, and beam flanges shall be one inch greater in diameter than external diameter of pipe. Sleeve for pipe with insulation shall be large enough to accommodate the insulation. Interior openings shall be caulked tight with fire stopping material and sealant to prevent the spread of fire, smoke, and gases.
- J. Sealant and Adhesives: Shall be as specified in Section 07 92 00, JOINT SEALANTS.

2.14 DUCT PENETRATIONS

- A. Provide curbs for roof mounted equipment. Curbs shall be 450 mm (18 inches) high with continuously welded seams, built-in cant strip, interior baffle with acoustic insulation, curb bottom, hinged curb adapter.
- B. Provide firestopping for openings through fire and smoke barriers, maintaining minimum required rating of floor, ceiling or wall assembly. See section 07 84 00, FIRESTOPPING.

2.15 SPECIAL TOOLS AND LUBRICANTS

- A. Furnish, and turn over to the COR, tools not readily available commercially, that are required for disassembly or adjustment of equipment and machinery furnished.
- B. Grease Guns with Attachments for Applicable Fittings: One for each type of grease required for each motor or other equipment.
- C. Refrigerant Tools: Provide system charging/Evacuation equipment, gauges, fittings, and tools required for maintenance of furnished equipment.
- D. Tool Containers: Hardwood or metal, permanently identified for intended service and mounted, or located, where directed by the COR.
- E. Lubricants: A minimum of 0.95 L (1 quart) of oil, and 0.45 kg (1 pound) of grease, of equipment manufacturer's recommended grade and type, in unopened containers and properly identified as to use for each different application.

2.16 WALL, FLOOR AND CEILING PLATES

- A. Material and Type: Chrome plated brass or chrome plated steel, one piece or split type with concealed hinge, with set screw for fastening to pipe, or sleeve. Use plates that fit tight around pipes, cover openings around pipes and cover the entire pipe sleeve projection.
- B. Thickness: Not less than 2.4 mm (3/32 inch) for floor plates. For wall and ceiling plates, not less than 0.64 mm (0.025 inch) for up to 80 mm (3-inch pipe), 0.89 mm (0.035 inch) for larger pipe.
- C. Locations: Use where pipe penetrates floors, walls and ceilings in exposed locations, in finished areas only. Provide a watertight joint in spaces where brass or steel pipe sleeves are specified.

2.17 ASBESTOS

A. Materials containing asbestos are prohibited.

PART 3 - EXECUTION

3.1 GENERAL

A. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no additional cost or time to the Government.

3.2 ARRANGEMENT AND INSTALLATION OF EQUIPMENT AND PIPING

A. Location of piping, sleeves, inserts, hangers, and equipment, access provisions shall be coordinated with the work of all trades. The coordination/shop drawings shall be submitted for review. Locate

Lebanon VAMC New Entryway for Building 17 BID DOCUMENTS 02-01-20

piping, sleeves, inserts, hangers, ductwork and equipment clear of windows, doors, openings, light outlets, and other services and utilities. Equipment coordination/shop drawings shall be prepared to coordinate proper location and personnel access of all facilities. The drawings shall be submitted for review. Follow manufacturer's published recommendations for installation methods not otherwise specified.

- B. Operating Personnel Access and Observation Provisions: Select and arrange all equipment and systems to provide clear view and easy access, without use of portable ladders, for maintenance and operation of all devices including, but not limited to: all equipment items, valves, filters, strainers, transmitters, sensors, control devices. All gauges and indicators shall be clearly visible by personnel standing on the floor or on permanent platforms. Do not reduce or change maintenance and operating space and access provisions that are shown on the contract documents.
- C. Equipment and Piping Support: Coordinate structural systems necessary for pipe and equipment support with pipe and equipment locations to permit proper installation.
- D. Location of pipe sleeves, trenches and chases shall be accurately coordinated with equipment and piping locations.
- E. Cutting Holes:
 - Cut holes through concrete and masonry by rotary core drill. Pneumatic hammer, impact electric, and hand or manual hammer type drill is prohibited, except as permitted by COR where working area space is limited.
 - 2. Locate holes to avoid interference with structural members such as slabs, columns, ribs, beams or reinforcing. Holes shall be laid out in advance and drilling done only after approval by COR. If the Contractor considers it necessary to drill through structural members, this matter shall be referred to COR for approval.
 - 3. Do not penetrate membrane waterproofing.
- F. Minor Piping: Generally, small diameter pipe runs from drips and drains, water cooling, and other service are not shown but must be provided.
- G. Electrical Interconnection of Instrumentation or Controls: This generally not shown but must be provided. This includes interconnections of sensors, transmitters, transducers, control

devices, control and instrumentation panels, instruments and computer workstations. Devices shall be located so they are easily accessible for testing, maintenance, calibration, etc. The COR has the final determination on what is accessible and what is not. Comply with NFPA 70.

- H. Protection and Cleaning:
 - Equipment and materials shall be carefully handled, properly stored, and adequately protected to prevent damage before and during installation, in accordance with the manufacturer's recommendations and as approved by the COR. Damaged or defective items in the opinion of the COR, shall be replaced.
 - 2. Protect all finished parts of equipment, such as shafts and bearings where accessible, from rust prior to operation by means of protective grease coating and wrapping. Close pipe openings with caps or plugs during installation. Tightly cover and protect fixtures and equipment against dirt, water chemical, or mechanical injury. At completion of all work thoroughly clean fixtures, exposed materials and equipment.
- I. Install gauges, thermometers, valves and other devices with due regard for ease in reading or operating and maintaining said devices. Locate and position thermometers and gauges to be easily read by operator or staff standing on floor or walkway provided. Servicing shall not require dismantling adjacent equipment or pipe work.
- J. Install steam piping expansion joints as per manufacturer's recommendations.
- K. Work in Existing Building:
 - Perform as specified in Article, OPERATIONS AND STORAGE AREAS, Article, ALTERATIONS, and Article, RESTORATION of the Section 01 00 00, GENERAL REQUIREMENTS for relocation of existing equipment, alterations and restoration of existing building(s).
 - 2. As specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, OPERATIONS AND STORAGE AREAS, make alterations to existing service piping at times that will least interfere with normal operation of the facility.
- L. Switchgear/Electrical Equipment Drip Protection: Every effort shall be made to eliminate the installation of pipe above electrical and data/telephone switchgear. If this is not possible, encase pipe in a

Lebanon VAMC New Entryway for Building 17 BID DOCUMENTS 02-01-20

second pipe with a minimum of joints. Installation of piping, ductwork, leak protection apparatus or other installations foreign to the electrical installation shall not be located in the space equal to the width and depth of the equipment and extending from to a height of 1.8 m (6 feet) above the equipment or to ceiling structure, whichever is lower (NFPA 70).

- M. Inaccessible Equipment:
 - Where the Government determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance or inspections, equipment shall be removed and reinstalled or remedial action performed as directed at no additional cost or time to the Government.
 - 2. The term "conveniently accessible" is defined as capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as, but not limited to motors, fans, pumps, belt guards, transformers, high voltage lines, conduit and raceways, piping, hot surfaces, and ductwork. The COR has final determination on whether an installation meets this requirement or not.

3.3 TEMPORARY PIPING AND EQUIPMENT

- A. Continuity of operation of existing facilities will generally require temporary installation or relocation of equipment and piping.
- B. The Contractor shall provide all required facilities in accordance with the requirements of phased construction and maintenance of service. All piping and equipment shall be properly supported, sloped to drain, operate without excessive stress, and shall be insulated where injury can occur to personnel by contact with operating facilities. The requirements of Article, ARRANGEMENT AND INSTALLATION OF EQUIPMENT AND PIPING apply.
- C. Temporary facilities and piping shall be completely removed and any openings in structures sealed. Provide necessary blind flanges and caps to seal open piping remaining in service.

3.4 RIGGING

- A. Design is based on application of available equipment. Openings in building structures are planned to accommodate design scheme.
- B. Alternative methods of equipment delivery may be offered by Contractor and will be considered by Government under specified restrictions of

phasing and maintenance of service requirements as well as structural integrity of the building.

- C. Close all openings in the building when not required for rigging operations to maintain proper environment in the facility for Government operation and maintenance of service.
- D. Contractor shall provide all facilities required to deliver specified equipment and place on foundations. Attachments to structures for rigging purposes and support of equipment on structures shall be Contractor's full responsibility. Upon request, the Government will check structure adequacy and advise Contractor of recommended restrictions.
- E. Contractor shall check all clearances, weight limitations and shall offer a rigging plan designed by a Registered Professional Engineer. All modifications to structures, including reinforcement thereof, shall be at Contractor's cost, time and responsibility.
- F. Follow approved rigging plan.
- G. Restore building to original condition upon completion of rigging work.

3.5 PIPE AND EQUIPMENT SUPPORTS

- A. Where hanger spacing does not correspond with joist or rib spacing, use structural steel channels designed by a structural engineer, secured directly to joist and rib structure that will correspond to the required hanger spacing, and then suspend the equipment and piping from the channels. Drill or burn holes in structural steel only with the prior approval of the COR.
- B. Use of chain pipe supports; wire or strap hangers; wood for blocking, stays and bracing; or, hangers suspended from piping above are prohibited. Replace or thoroughly clean rusty products and paint with zinc primer.
- C. Hanger rods shall be used that are straight and vertical. Turnbuckles for vertical adjustments may be omitted where limited space prevents use. Provide a minimum of 15 mm (1/2 inch) clearance between pipe or piping covering and adjacent work.
- D. HVAC Horizontal Pipe Support Spacing: Refer to MSS SP-58. Provide additional supports at valves, strainers, in-line pumps and other heavy components. Provide a support within one foot of each elbow.

- E. HVAC Vertical Pipe Supports:
 - Up to 150 mm (6-inch pipe), 9 m (30 feet) long, bolt riser clamps to the pipe below couplings, or welded to the pipe and rests supports securely on the building structure.
 - Vertical pipe larger than the foregoing, support on base elbows or tees, or substantial pipe legs extending to the building structure.
- F. Overhead Supports:
 - The basic structural system of the building is designed to sustain the loads imposed by equipment and piping to be supported overhead.
 - Provide steel structural members, in addition to those shown, of adequate capability to support the imposed loads, located in accordance with the final approved layout of equipment and piping.
 - 3. Tubing and capillary systems shall be supported in channel troughs.

3.6 MECHANICAL DEMOLITION

- A. Rigging access, other than indicated on the contract documents, shall be provided by the Contractor after approval for structural integrity by the COR. Such access shall be provided without additional cost or time to the Government.
- B. In an operating facility, maintain the operation, cleanliness and safety. Government personnel will be carrying on their normal duties of operating, cleaning, and maintaining equipment. Confine the work to the immediate area concerned; maintain cleanliness and wet down demolished materials to eliminate dust. Debris accumulated in the area to the detriment of plant operation is prohibited. Perform all flame cutting to maintain the fire safety integrity of this plant. Adequate fire extinguishing facilities shall be available at all times. Perform all work in accordance with recognized fire protection standards. Inspection will be made by personnel of the VAMC, and Contractor shall follow all directives of the COR with regard to rigging, safety, fire safety, and maintenance of operations.
- C. Unless specified otherwise, all piping, wiring, conduit, and other devices associated with the equipment not re-used in the new work shall be completely removed from Government property per Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT. This includes all concrete pads, pipe,

Lebanon VAMC New Entryway for Building 17 BID DOCUMENTS 02-01-20

valves, fittings, insulation, and all hangers including the top connection and any fastenings to building structural systems. All openings shall be sealed after removal of equipment, pipes, ducts, and other penetrations in roof, walls, floors, in an approved manner and in accordance with contract documents where specifically covered. Structural integrity of the building system shall be maintained. Reference shall also be made to the contract documents of the other disciplines in the project for additional facilities to be demolished or handled.

D. All indicated valves including gate, globe, ball, butterfly and check, all pressure gauges and thermometers with wells shall remain Government property and shall be removed and delivered to COR and stored as directed. The Contractor shall remove all other material and equipment, devices and demolition debris under these contract documents. Such material shall be removed from Government property expeditiously and shall not be allowed to accumulate.

3.7 CLEANING AND PAINTING

- A. Prior to final inspection and acceptance of the plant and facilities for beneficial use by the Government, the plant facilities, equipment and systems shall be thoroughly cleaned and painted. Refer to Section 09 91 00, PAINTING.
- B. In addition, the following special conditions apply:
 - Cleaning shall be thorough. Solvents, cleaning materials and methods recommended by the manufacturers shall be used for the specific tasks. All rust shall be removed prior to painting and from surfaces to remain unpainted. Repair scratches, scuffs, and abrasions prior to applying prime and finish coats.
 - 2. The following material and equipment shall not be painted:
 - a. Motors, controllers, control switches, and safety switches.
 - b. Control and interlock devices.
 - c. Control valves and thermostatic elements.
 - d. Lubrication devices and grease fittings.
 - e. Copper, brass, aluminum, stainless steel and bronze surfaces.
 - f. Valve stems and rotating shafts.
 - g. Pressure gauges and thermometers.
 - h. Glass.
 - i. Nameplates.

- 3. Control and instrument panels shall be cleaned, damaged surfaces repaired, and shall be touched-up with matching paint obtained from panel manufacturer.
- Motors, steel and cast-iron bases, and coupling guards shall be cleaned, and shall be touched-up with the same paint type and color as utilized by the pump manufacturer.
- 5. Temporary Facilities: Apply paint to surfaces that do not have existing finish coats. This may include painting exposed metals where hangers were removed or where equipment was moved or removed.
- 6. Paint shall withstand the following temperatures without peeling or discoloration:
- a. Condensate: 38 degrees C (100 degrees F) on insulation jacket
 surface and 121 degrees C (250 degrees F) on metal pipe surface.
- b. Steam: 52 degrees C (125 degrees F) on insulation jacket surface and 190 degrees C (374 degrees F) on metal pipe surface.
- 7. Final result shall be smooth, even-colored, even-textured factory finish on all items. Completely repaint the entire piece of equipment if necessary to achieve this.
- 8. Lead based paints are prohibited.

3.8 IDENTIFICATION SIGNS

- A. Provide laminated plastic signs, with engraved lettering not less than 5 mm (3/16 inch) high, designating functions, for all equipment, switches, motor controllers, relays, meters, control devices, including automatic control valves. Nomenclature and identification symbols shall correspond to that used in maintenance manual, and in diagrams specified elsewhere. Attach by chain, adhesive, or screws.
- B. Factory Built Equipment: Metal plate, securely attached, with name and address of manufacturer, serial number, model number, size, performance.
- C. Pipe Identification: Refer to Section 09 91 00, PAINTING.
- D. Attach ceiling grid label on ceiling grid location directly underneath above-ceiling air terminal, control system component, valve, filter unit, fan etc.

3.9 MOTOR AND DRIVES

- A. Use synchronous belt drives only on equipment controlled by soft starters or variable frequency drive motor controllers without a bypass contactor. Use V-belt drives on all other applications.
- B. Alignment of V-Belt Drives: Set driving and driven shafts parallel and align so that the corresponding grooves are in the same plane.
- C. Alignment of Synchronous Belt Drives: Set driving and driven shafts parallel and align so that the corresponding pulley flanges are in the same plane.
- D. Alignment of Direct-Connect Drives: Securely mount motor in accurate alignment so that shafts are per coupling manufacturer's tolerances when both motor and driven machine are operating at normal temperatures.

3.10 LUBRICATION

- A. All equipment and devices requiring lubrication shall be lubricated prior to initial operation. Field-check all devices for proper lubrication.
- B. All devices and equipment shall be equipped with required lubrication fittings or devices. A minimum of 0.95 liter (1 quart) of oil and 0.45 kg (1 pound) of grease of manufacturer's recommended grade and type for each different application shall be provided; also provide 12 grease sticks for lubricated plug valves. Deliver all materials to COR in unopened containers that are properly identified as to application.
- C. All lubrication points shall be accessible without disassembling equipment, except to remove access plates.
- D. All lubrication points shall be extended to one side of the equipment.

3.11 STARTUP, TEMPORARY OPERATION AND TESTING

- A. Perform tests as recommended by product manufacturer and listed standards and under actual or simulated operating conditions and prove full compliance with design and specified requirements. Tests of the various items of equipment shall be performed simultaneously with the system of which each item is an integral part.
- B. When any defects are detected, correct defects and repeat test at no additional cost or time to the Government.
- C. The Commissioning Agent will observe startup and Contractor testing of selected equipment. Coordinate the startup and Contractor testing

schedules with COR and Commissioning Agent. Provide a minimum notice of 10 working days prior to startup and testing.

D. Startup of equipment shall be performed as described in equipment specifications. Vibration within specified tolerance shall be verified prior to extended operation. Temporary use of equipment is specified in Section 01 00 00, GENERAL REQUIREMENTS, Article, TEMPORARY USE OF MECHANICAL AND ELECTRICAL EQUIPMENT.

3.12 OPERATING AND PERFORMANCE TESTS

- A. Prior to the final inspection, perform required tests as specified in Section 01 00 00, GENERAL REQUIREMENTS Article, TESTS, and in individual Division 23 specification sections and submit the test reports and records to the COR.
- B. Should evidence of malfunction in any tested system, or piece of equipment or component part thereof, occur during or as a result of tests, make proper corrections, repairs or replacements, and repeat tests at no additional cost or time to the Government.
- C. When completion of certain work or system occurs at a time when final control settings and adjustments cannot be properly made to make performance tests, then conduct such performance tests and finalize control settings for heating systems and for cooling systems respectively during first actual seasonal use of respective systems following completion of work. Rescheduling of these tests shall be requested in writing to COR for approval.
- D. No adjustments may be made during the acceptance inspection. All adjustments shall have been made by this point.
- E. Perform tests as required for commissioning provisions in accordance with Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS and Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.

3.13 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- B. Components provided under this section of the specification will be tested as part of a larger system.

3.14 DEMONSTRATION AND TRAINING

A. Provide services of manufacturer's technical representative for 4 hours to instruct each VA personnel responsible in operation and maintenance of the system. VA Project No. 595-668 AE Works Project No. VLEB-010 B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

- - - E N D - - -

SECTION 23 05 12 GENERAL MOTOR REQUIREMENTS FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation and connection of motors for HVAC equipment.
- B. A complete listing of common acronyms and abbreviations are included in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- D. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- E. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- F. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- G. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- H. Section 26 24 19, MOTOR CONTROL CENTERS.
- I. Section 26 29 11, MOTOR CONTROLLERS.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. Where conflicts occur these specifications and the VHA standard will govern.
- B. American Bearing Manufacturers Association (ABMA):

9-2015.....Load Ratings and Fatigue Life for Ball Bearings 11-2014....Load Ratings and Fatigue Life for Roller

Bearings

- C. American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE):
 - 90.1-2013.....Energy Efficient Design of New Buildings Except Low-Rise Residential Buildings
- D. Institute of Electrical and Electronics Engineers (IEEE): 112-2017.....Standard Test Procedure for Polyphase Induction Motors and Generators 841-2009.....IEEE Standard for Petroleum and Chemical Industry-Premium-Efficiency, Severe-Duty,

Totally Enclosed Fan-Cooled (TEFC) Squirrel

VA Project No. 595-668 AE Works Project No. VLEB-010 Cage Induction Motors--Up to and Including 370 kW (500 hp) E. National Electrical Manufacturers Association (NEMA): MG 1-2019.....Motors and Generators MG 2-2014....Safety Standard for Construction and Guide for Selection, Installation and Use of Electric Motors and Generators 250-2014....Enclosures for Electrical Equipment (1000 Volts Maximum)

F. National Fire Protection Association (NFPA): 70-2014.....National Electrical Code (NEC)

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC EQUIPMENT", with applicable paragraph identification.
- C. Submit motor submittals with driven equipment.
- D. Shop Drawings:
 - 1. Provide documentation to demonstrate compliance with contract documents.
 - 2. Motor nameplate information shall be submitted including electrical ratings, efficiency, bearing data, power factor, frame size, dimensions, mounting details, materials, horsepower, voltage, phase, speed (RPM), enclosure, starting characteristics, torque characteristics, code letter, full load and locked rotor current, service factor, and lubrication method.
- E. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
- F. Complete operating and maintenance manuals including wiring diagrams, technical data sheets, information for ordering replacement parts, and troubleshooting guide:

1. Include complete list indicating all components of the systems.

- 2. Include complete diagrams of the internal wiring for each item of equipment.
- 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.
- G. Certification: Two weeks prior to final inspection, unless otherwise noted, certification shall be submitted to the COR stating that the motors have been properly applied, installed, adjusted, lubricated, and tested.
- H. Completed System Readiness Checklist provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- I. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

1.5 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, VA approved substitutions and construction revisions shall be in electronic version on CD or DVD inserted into a three-ring binder. All aspects of system operation and maintenance procedures, including applicable piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.
- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or

breach of the 'third party testing company' requirement. Provide record drawings as follows:

- Red-lined, hand-marked drawings are to be provided, with one paper copy and a scanned PDF version of the hand-marked drawings provided on CD or DVD.
- D. The as-built drawings shall indicate the location and type of all lockout/tagout points for all energy sources for all equipment and pumps to include breaker location and numbers, valve tag numbers, etc. Coordinate lockout/tagout procedures and practices with local VA requirements.
- E. Certification documentation shall be provided to COR 21 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and provide documentation/certification that all results of tests were within limits specified. Test results shall contain written sequence of test procedure with written test results annotated at each step along with the expected outcome or setpoint. The results shall include all readings, including but not limited to data on device (make, model and performance characteristics), normal pressures, switch ranges, trip points, amp readings, and calibration data to include equipment serial numbers or individual identifications, etc.

PART 2 - PRODUCTS

2.1 MOTORS

- A. For alternating current, fractional and integral horsepower motors, NEMA MG 1 and NEMA MG 2 shall apply.
- B. For severe duty TEFC motors, IEEE 841 shall apply.
- C. All material and equipment furnished and installation methods shall conform to the requirements of Section 26 29 11, MOTOR CONTROLLERS; and Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES. Provide all electrical wiring, conduit, and devices necessary for the proper connection, protection and operation of the systems. Provide premium efficiency type motors. Unless otherwise specified for a particular application, use electric motors with the following requirements.

- D. Single-phase Motors: Motors for centrifugal fans and pumps may be split phase or permanent split capacitor (PSC) type. Provide capacitor-start type for hard starting applications.
- E. Poly-phase Motors: NEMA Design B, Squirrel cage, induction type.
 - 1. Two Speed Motors: Each two-speed motor shall have two separate windings. Provide a time- delay (20 seconds minimum) relay for switching from high to low speed.
- F. Voltage ratings shall be as follows:
 - 1. Single phase:
 - a. Motors connected to 120-volt systems: 115 volts.
 - b. Motors connected to 208-volt systems: 200 volts.
 - c. Motors connected to 240-volt or 480-volt systems: 230/460 volts, dual connection.
 - 2. Three phase:
 - a. Motors connected to 208-volt systems: 200 volts.
 - b. Motors, less than 74.6 kW (100 hp), connected to 240-volt or 480volt systems: 208-230/460 volts, dual connection.
 - c. Motors, 74.6 kW (100 hp) or larger, connected to 240-volt
 systems: 230 volts.
 - d. Motors, 74.6 kW (100 hp) or larger, connected to 480-volt systems: 460 volts.
 - e. Motors connected to high voltage systems (Over 600V): Shall conform to NEMA MG 1 for connection to the nominal system voltage shown on the drawings.
- G. Number of phases shall be as follows:
 - 1. Motors, less than 373 W (1/2 hp): Single phase.
 - 2. Motors, 373 W (1/2 hp) and larger: 3 phase.
 - 3. Exceptions:
 - a. Hermetically sealed motors.
 - b. Motors for equipment assemblies, less than 746 W (1 hp), may be single phase provided the manufacturer of the proposed assemblies cannot supply the assemblies with three phase motors.
- H. Horsepower ratings shall be adequate for operating the connected loads continuously in the prevailing ambient temperatures in areas where the motors are installed, without exceeding the NEMA standard temperature rises for the motor insulation.

- I. Motor designs, as indicated by the NEMA code letters, shall be coordinated with the connected loads to assure adequate starting, acceleration, and running torque without exceeding nameplate ratings or considering service factor.
- J. Motor Enclosures:
 - NEMA types shall be per NEMA 250, which are most suitable for the environmental conditions where the motors are being installed. Enclosure requirements for certain conditions are as follows:
 - a. Motors located outdoors, indoors in wet or high humidity locations, or in unfiltered airstreams shall be totally enclosed type.
 - b. Where motors are located in an NEC 511 classified area, provide TEFC explosion proof motor enclosures.
 - c. Where motors are located in a corrosive environment, provide TEFC enclosures with corrosion resistant finish.
 - 2. Enclosures shall be primed and finish coated at the factory with manufacturer's prime coat and standard finish.
- K. Electrical Design Requirements:
 - 1. Motors shall be continuous duty.
 - 2.The insulation system shall be rated minimum of Class B, 130 degrees
 C (266 degrees F).
 - 3. The maximum temperature rise by resistance at rated power shall not exceed Class B limits, 80 degrees C (176 degrees F).
 - 4. The speed/torque and speed/current characteristics shall comply with NEMA Design A or B, as specified.
 - 5. Motors shall be suitable for full voltage starting, unless otherwise noted. Coordinate motor features with applicable motor controllers.
 - 6. Motors for variable frequency drive applications shall adhere to NEMA MG 1, Part 30, Application Considerations for Constant Speed Motors Used on a Sinusoidal Bus with Harmonic Content and General-Purpose Motors Used with Adjustable-Voltage or Adjustable-Frequency Controls or Both, or NEMA MG 1, Part 31, Definite-Purpose Inverter-Fed Polyphase Motors.
- L. Mechanical Design Requirements:
 - 1. Bearings shall be rated in accordance with ABMA 9 or ABMA 11 for a minimum fatigue life of 26,280 hours for belt-driven loads and 100,000 hours for direct-drive loads based on L10 (Basic Rating

Life) at full load direct coupled, except vertical high thrust motors which require a 40,000 hours rating. A minimum fatigue life of 40,000 hours is required for VFD drives.

- 2.Vertical motors shall be capable of withstanding a momentary up thrust of at least 30 percent of normal down thrust.
- 3. Grease lubricated bearings shall be designed for electric motor use. Grease shall be capable of the temperatures associated with electric motors and shall be compatible with Polyurea based greases.
- 4. Grease fittings, if provided, shall be Alemite type or equivalent.
- 5.0il lubricated bearings, when specified, shall have an externally visible sight glass to view oil level.
- 6.Vibration shall not exceed 3.8 mm (0.15 inch) per second, unfiltered
 peak.
- 7. Noise level shall meet the requirements of the application.
- 8. Motors on 180 frames and larger shall have provisions for lifting eyes or lugs capable of a safety factor of 5.
- 9. All external fasteners shall be corrosion resistant.
- 10. Grounding provisions shall be in the main terminal box.
- M. Special Requirements:
 - Where motor power requirements of equipment furnished deviate from power shown on plans, provide electrical service designed under the requirements of NFPA 70 without additional cost or time to the Government.
 - 2. Assemblies of motors, starters, controls and interlocks on factory assembled and wired devices shall be in accordance with the requirements of this specification.
 - 3. Wire and cable materials specified in the electrical division of the specifications shall be modified as follows:
 - a. Wiring material located where temperatures can exceed 71 degrees
 C (160 degrees F) shall be stranded copper with Teflon FEP
 insulation with jacket. This includes wiring on the boilers.
 - b. Provide shielded conductors or wiring in separate conduits for all instrumentation and control systems where recommended by manufacturer of equipment.
 - 4. Select motor sizes so that the motors do not operate into the service factor at maximum required loads on the driven equipment.

Motors on pumps shall be sized for non-overloading at all points on the pump performance curves.

- 5. Motors utilized with variable frequency drives shall be rated "inverter-duty" per NEMA MG 1, Part 31, Definite-Purpose Inverter-Fed Polyphase Motors. Provide motor shaft grounding apparatus that will protect bearings from damage from stray currents.
- N. Additional requirements for specific motors, as indicated in the other sections listed in Article, RELATED SECTIONS shall also apply.
- O. NEMA Premium Efficiency Electric Motors (Motor Efficiencies): All permanently wired polyphase motors of 746 W (1 hp) or more shall meet the minimum full-load efficiencies as indicated in the following table. Motors of 746 W (1 hp) or more with open, drip-proof, or TEFC enclosures shall be NEMA premium efficiency type, unless otherwise indicated. Motors provided as an integral part of motor driven equipment are excluded from this requirement if a minimum seasonal or overall efficiency requirement is indicated for that equipment by the provisions of another section.

_	Premium 1 pen Drip-		ies	Minimum Premium Efficiencies Totally Enclosed Fan-Cooled (TEFC)					
Rating kW (hp)	5				1200 RPM	1800 RPM	3600 RPM		
0.746 (1)	82.5%	85.5%	77.0%	0.746 (1)	82.5%	85.5%	77.0%		
1.12 (1.5)	86.5%	86.5%	84.0%	1.12 (1.5)	87.5%	86.5%	84.0%		
1.49 (2)	87.5%	86.5%	85.5%	1.49 (2)	88.5%	86.5%	85.5%		
2.24 (3)	88.5%	89.5%	85.5%	2.24 (3)	89.5%	89.5%	86.5%		
3.73 (5)	89.5%	89.5%	86.5%	3.73 (5)	89.5%	89.5%	88.5%		

- P. Minimum Power Factor at Full Load and Rated Voltage: 90 percent at 1200 RPM, 1800 RPM, and 3600 RPM. Power factor correction capacitors shall be provided unless the motor meets the 0.90 requirement without it or if the motor is controlled by a variable frequency drive. The power factor correction capacitors shall be able to withstand high voltage transients and power line variations without breakdown.
- Q. Energy Efficiency of Small Motors (Motor Efficiencies): All motors under 746 W (1 hp) shall meet the requirements of the DOE Small Motor Regulation.

Polyph Average f	nase Oper ull load		ncy	Capacitor-start capacitor-run and capacitor-start induction run open motors Average full load efficiency					
Rating kW (hp)	6 poles	4 poles	2 poles	Rating kW (hp)	6 poles	4 poles	2 poles		
0.18 (0.25)	67.5	69.5	65.6	0.18 (0.25)	62.2	68.5	66.6		
0.25 (0.33)	71.4	73.4	69.5	0.25 (0.33)	66.6	72.4	70.5		
0.37 (0.5)	75.3	78.2	73.4	0.37 (0.5)	76.2	76.2	72.4		
0.55 (0.75)	81.7	81.1	76.8	0.55 (0.75)	80.2	81.8	76.2		

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install motors in accordance with manufacturer's recommendations, the NEC, NEMA, as shown on the drawings and/or as required by other sections of these specifications.
- B. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no additional cost or time to the Government.

3.2 FIELD TESTS

- A. All tests shall be witnessed by the Commissioning Agent or by the COR.
- B. Perform an electric insulation resistance Test using a megohmmeter on all motors after installation, before startup. All shall test free from grounds.
- C. Perform Load test in accordance with IEEE 112, Test Method B, to determine freedom from electrical or mechanical defects and compliance with performance data.
- D. Insulation Resistance: Not less than one-half meg-ohm between stator conductors and frame, to be determined at the time of final inspection.
- E. All test data shall be complied into a report form for each motor and provided to the contracting officer or their representative.

3.3 STARTUP AND TESTING

A. Perform tests as recommended by product manufacturer and listed standards and under actual or simulated operating conditions and prove full compliance with design and specified requirements. Tests of the various items of equipment shall be performed simultaneously with the system of which each item is an integral part.

- B. When any defects are detected, correct defects and repeat test at no additional cost or time to the Government.
- C. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with COR and Commissioning Agent. Provide a minimum notice of 10 working days prior to startup and testing.

3.4 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- B. Components provided under this section of the specification will be tested as part of a larger system.

3.5 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for one hours to instruct each VA personnel responsible in operation and maintenance of the system.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

- - - E N D - - -

SECTION 23 05 41

NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the application of noise control measures and vibration control techniques to rotating equipment and parts including fans, compressors, motors and rooftop units.
- B. A complete listing of all common acronyms and abbreviations are included in Section 23 05 11, COMMON WORK RESULTS FOR HVAC. Noise criteria, vibration tolerance and vibration isolation for HVAC and plumbing work.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA and SAMPLES.
- B. Section 23 05 10, COMMON WORK RESULTS FOR HVAC.
- C. Section 23 31 00, HVAC DUCTS and CASINGS.
- D. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

1.3 QUALITY ASSURANCE

- A. Refer to article, QUALITY ASSURANCE in specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- B. Noise Criteria:
 - Noise levels in all 8 octave bands due to equipment and duct systems shall not exceed following NC levels:

TYPE OF ROOM	NC LEVEL
Corridors (Public)	40
Lobbies, Waiting Areas	40

- 2. For equipment which has no sound power ratings scheduled on the plans, the contractor shall select equipment such that the foregoing noise criteria, local ordinance noise levels, and OSHA requirements are not exceeded. Selection procedure shall be in accordance with ASHRAE Fundamentals Handbook, Chapter 8, Sound and Vibration.
- 3. An allowance, not to exceed 5db, may be added to the measured value to compensate for the variation of the room attenuating effect between room test condition prior to occupancy and design condition after occupancy which may include the addition of sound absorbing material, such as, furniture. This allowance may not be taken after

occupancy. The room attenuating effect is defined as the difference between sound power level emitted to room and sound pressure level in room.

- 4. In absence of specified measurement requirements, measure equipment noise levels three feet from equipment and at an elevation of maximum noise generation.
- C. Allowable Vibration Tolerances for Rotating, Non-reciprocating Equipment: Not to exceed a self-excited vibration maximum velocity of 5 mm per second (0.20 inch per second) RMS, filter in, when measured with a vibration meter on bearing caps of machine in vertical, horizontal and axial directions or measured at equipment mounting feet if bearings are concealed. Measurements for internally isolated fans and motors may be made at the mounting feet.

1.4 SUBMITTALS

- A. Submit in accordance with specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Vibration isolators:
 - a. Roof mountings
 - b. Hangers
 - c. Snubbers
 - 2. Bases.
- C. Isolator manufacturer shall furnish with submittal load calculations for selection of isolators, including supplemental bases, based on lowest operating speed of equipment supported.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE): Handbook 2017.....Fundamentals Handbook, Chapter 8, Sound and Vibration
- C. American Society for Testing and Materials (ASTM): A123/A123M-201.....Standard Specification for Zinc (Hot-Dip Galvanized) Coatings on Iron and Steel Products A307-2016.....Standard Specification for Carbon Steel Bolts and Studs, 60,000 PSI Tensile Strength

23 05 41 - 2

D2240-05(2010).....Standard Test Method for Rubber Property -Durometer Hardness

D. Manufacturers Standardization (MSS): SP-58-2018......Pipe Hangers and Supports-Materials, Design and

Manufacture

- E. Occupational Safety and Health Administration (OSHA): 29 CFR 1960.95....Occupational Noise Exposure
- F. American Society of Civil Engineers (ASCE): ASCE 7-2017.....Minimum Design Loads for Buildings and Other Structures.
- G. American National Standards Institute / Sheet Metal and Air Conditioning Contractor's National Association (ANSI/SMACNA): 001-2008......Seismic Restraint Manual: Guidelines for

Mechanical Systems, 3rd Edition.

- H. International Code Council (ICC):
 IBC 2018.....International Building Code.
- I. Department of Veterans Affairs (VA):
 H-18-8 2016.....Seismic Design Requirements.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

- A. Type of isolator, base, and minimum static deflection shall be as required for each specific equipment application as recommended by isolator or equipment manufacturer but subject to minimum requirements indicated herein and in the schedule on the drawings.
- B. Elastometric Isolators shall comply with ASTM D2240 and be oil resistant neoprene with a maximum stiffness of 60 durometer and have a straight-line deflection curve.
- C. Exposure to weather: Isolator housings to be either hot dipped galvanized or powder coated to ASTM B117 salt spray testing standards. Springs to be powder coated or electro galvanized. All hardware to be electro galvanized. In addition provide limit stops to resist wind velocity. Velocity pressure established by wind shall be calculated in accordance with section 1609 of the International Building Code. A minimum wind velocity of 75 mph shall be employed.
- D. Uniform Loading: Select and locate isolators to produce uniform loading and deflection even when equipment weight is not evenly distributed.
- E. Color code isolators by type and size for easy identification of capacity.

2.2 VIBRATION ISOLATORS

- A. Roof Mountings:
 - Spring Isolators (Type S): Shall be free-standing, laterally stable and include acoustical friction pads and leveling bolts. Isolators shall have a minimum ratio of spring diameter-to-operating spring height of 1.0 and an additional travel to solid equal to 50 percent of rated deflection.
- B. Hangers: Shall be combination neoprene and springs unless otherwise noted and shall allow for expansion of pipe.
 - 1. Combination Neoprene and Spring (Type H): Vibration hanger shall contain a spring and double deflection neoprene element in series. Spring shall have a diameter not less than 0.8 of compressed operating spring height. Spring shall have a minimum additional travel of 50 percent between design height and solid height. Spring shall permit a 15 degree angular misalignment without rubbing on hanger box.
 - 2. Spring Position Hanger (Type HP): Similar to combination neoprene and spring hanger except hanger shall hold piping at a fixed elevation during installation and include a secondary adjustment feature to transfer load to spring while maintaining same position.
 - 3. Neoprene (Type HN): Vibration hanger shall contain a double deflection type neoprene isolation element. Hanger rod shall be separated from contact with hanger bracket by a neoprene grommet.
 - 4. Spring (Type HS): Vibration hanger shall contain a coiled steel spring in series with a neoprene grommet. Spring shall have a diameter not less than 0.8 of compressed operating spring height. Spring shall have a minimum additional travel of 50 percent between design height and solid height. Spring shall permit a 15 degree angular misalignment without rubbing on hanger box.
 - 5. Hanger supports for piping 50 mm (2 inches) and larger shall have a pointer and scale deflection indicator.
- C. Snubbers: Each spring mounted base shall have a minimum of four alldirectional or eight two directional (two per side) seismic snubbers that are double acting. Elastomeric materials shall be shock absorbent neoprene bridge quality bearing pads, maximum 60 durometer, replaceable and have a minimum thickness of 6 mm (1/4 inch). Air gap between hard and resilient material shall be not less than 3 mm (1/8 inch) nor more

than 6 mm (1/4 inch). Restraints shall be capable of withstanding design load without permanent deformation.

2.3 BASES

A. Curb Mounted Isolation Base (Type CB): Fabricate from aluminum to fit on top of standard curb with overlap to allow water run-off and have wind and water seals which shall not interfere with spring action. Provide resilient snubbers with 6 mm (1/4 inch) clearance for wind resistance. Top and bottom bearing surfaces shall have sponge type weather seals. Integral spring isolators shall comply with Spring Isolator (Type S) requirements.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Vibration Isolation:

- No metal-to-metal contact will be permitted between fixed and floating parts.
- 2. Connections to Equipment: Allow for deflections equal to or greater than equipment deflections. Electrical, drain, piping connections, and other items made to rotating or reciprocating equipment (pumps, compressors, etc.) which rests on vibration isolators, shall be isolated from building structure for first three hangers or supports with a deflection equal to that used on the corresponding equipment.
- 3. Common Foundation: Mount each electric motor on same foundation as driven machine. Hold driving motor and driven machine in positive rigid alignment with provision for adjusting motor alignment and belt tension. Bases shall be level throughout length and width. Provide shims to facilitate pipe connections, leveling, and bolting.
- Provide heat shields where elastomers are subject to temperatures over 38 degrees C (100 degrees F).
- 5. Extend bases for pipe elbow supports at discharge and suction connections at pumps. Pipe elbow supports shall not short circuit pump vibration to structure.
- B. Inspection and Adjustments: Check for vibration and noise transmission through connections, piping, ductwork, foundations, and walls. Adjust, repair, or replace isolators as required to reduce vibration and noise transmissions to specified levels.

3.2 ADJUSTING

- A. Adjust vibration isolators after piping systems are filled and equipment is at operating weight.
- B. Adjust active height of spring isolators.
- C. Adjust snubbers according to manufacturer's recommendations.

3.3 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to section 23 08 00 -COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

- - - E N D - - -

VA Project No. 595-668 AE Works Project No. VLEB-010

Lebanon VAMC New Entryway for Building 17 BID DOCUMENTS

02-01-20

SELECTION GUIDE FOR VIBRATION ISOLATORS

EQUIPMENT	ON GRADE		20FT FLOOR SPAN		30FT FLOOR SPAN			40FT FLOOR SPAN			50FT FLOOR SPAN				
	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL	BASE TYPE	ISOL TYPE	MIN DEFL
ROOFTOP UNITS															
ABOVE OCCUPIED AREAS:															
5 HP & OVER				СВ	S	1.0	СВ	S	1.0	СВ	S	1.0	СВ	S	1.0

SECTION 23 05 93 TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Testing, adjusting, and balancing (TAB) of heating, ventilating and air conditioning (HVAC) systems. TAB includes the following:
 - 1. Planning systematic TAB procedures.
 - 2. Design Review Report.
 - 3. Systems Inspection report.
 - 4. Systems Readiness Report.
 - Balancing air systems; adjustment of total system to provide design performance; and testing performance of equipment and automatic controls.
 - 6. Vibration and sound measurements.
 - 7. Recording and reporting results.
 - 8.Document critical paths of flow on reports.
- B. Definitions:
 - Basic TAB used in this Section: Chapter 39, "Testing, Adjusting and Balancing" of 2019 ASHRAE Handbook, "HVAC Applications".
 - 2. TAB: Testing, Adjusting and Balancing; the process of checking and adjusting HVAC systems to meet design objectives.
 - 3. AABC: Associated Air Balance Council.
 - 4. NEBB: National Environmental Balancing Bureau.
 - 5. TABB: Testing Adjusting and Balancing Bureau
 - 6. SMACNA: Sheet Metal Contractors National Association
 - Air Systems: Includes all outside air, supply air, return air, exhaust air and relief air systems.
 - Flow rate tolerance: The allowable percentage variation, minus to plus, of actual flow rate from values (design) in the contract documents.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- C. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT.
- D. Section 23 07 11, HVAC INSULATION.
- E. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

- F. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- G. Section 23 31 00, HVAC DUCTS AND CASINGS.
- H. Section 23 36 00, AIR TERMINAL UNITS.

1.3 QUALITY ASSURANCE

- A. Refer to Articles, Quality Assurance and Submittals, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC and Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- B. Qualifications:
 - TAB Agency: The TAB agency shall be a subcontractor of the General Contractor and shall report to and be paid by the General Contractor.
 - 2. The TAB agency shall be either a certified member of AABC, NEEB, TABB or NEBB to perform TAB service for HVAC, water balancing and vibrations and sound testing of equipment. The certification shall be maintained for the entire duration of duties specified herein. If, for any reason, the agency loses subject certification during this period, the General Contractor shall immediately notify the COR and submit another qualified TAB firm for approval. Any agency that has been the subject of disciplinary action by either the AABC, TABB or NEBB within the five years preceding Contract Award shall not be eligible to perform any work related to the TAB. All work performed in this Section and in other related Sections by the TAB agency shall be considered invalid if the TAB agency loses its certification prior to Contract completion, and the successor agency's review shows unsatisfactory work performed by the predecessor agency.
 - 3. TAB Specialist: The TAB specialist shall be either a member of AABC or TABB or an experienced technician of the Agency certified by NEBB. The certification shall be maintained for the entire duration of duties specified herein. If, for any reason, the Specialist loses subject certification during this period, the General Contractor shall immediately notify the Resident Engineer and submit another TAB Specialist for approval. Any individual that has been the subject of disciplinary action by either the AABC or the NEBB within the five years preceding Contract Award shall not be eligible to perform any duties related to the HVAC systems, including TAB. All work specified in this Section and in other related Sections

performed by the TAB specialist shall be considered invalid if the TAB Specialist loses its certification prior to Contract completion and must be performed by an approved successor.

- 4. TAB Specialist shall be identified by the General Contractor within 60 days after the notice to proceed. The TAB specialist will be coordinating, scheduling and reporting all TAB work and related activities and will provide necessary information as required by the Resident Engineer. The responsibilities would specifically include: a. Shall directly supervise all TAB work.
 - b. Shall sign the TAB reports that bear the seal of the TAB standard. The reports shall be accompanied by report forms and schematic drawings required by the TAB standard, AABC, TABB or NEBB.
 - c. Would follow all TAB work through its satisfactory completion.
 - d. Shall provide final markings of settings of all HVAC adjustment devices.
 - e. Permanently mark location of duct test ports.
 - f. Shall document critical paths from the fan. These critical paths are ones in which are 100% open from the fan to the terminal device. This will show the least amount of restriction is being imposed on the system by the TAB firm.
- 5. All TAB technicians performing actual TAB work shall be experienced and must have done satisfactory work on a minimum of 3 projects comparable in size and complexity to this project. Qualifications must be certified by the TAB agency in writing. The lead technician shall be certified by AABC, TABB or NEBB
- C. Test Equipment Criteria: The instrumentation shall meet the accuracy/calibration requirements established by AABC National Standards, TABB/SMACNA International Standards, or by NEBB Procedural Standards for Testing, Adjusting and Balancing of Environmental Systems and instrument manufacturer. Provide calibration history of the instruments to be used for test and balance purpose.
- D. TAB Criteria:
 - One or more of the applicable AABC, NEBB, TABB or SMACNA publications, supplemented by ASHRAE Handbook "2019 HVAC Applications" Chapter 39, and requirements stated herein shall be the basis for planning, procedures, and reports.

- 2. Flow rate tolerance: Following tolerances are allowed. For tolerances not mentioned herein follow 2011 ASHRAE Handbook "2019 HVAC Applications", Chapter 39, as a guideline. Air Filter resistance during tests, artificially imposed if necessary, shall be at least 100 percent of manufacturer recommended change over pressure drop values for pre-filters and after-filters.
 - a. Rooftop unit and all other fans, cubic meters/min (cubic feet per minute): Minus 0 percent to plus 10 percent.
 - b. Air terminal units (maximum values): Minus 2 percent to plus 10
 percent.
 - c. Minimum outside air: 0 percent to plus 10 percent.
 - d. Individual room air outlets and inlets, and air flow rates not mentioned above: Minus 5 percent to plus 10 percent except if the air to a space is 100 CFM or less the tolerance would be minus 5 to plus 5 percent.
- Systems shall be adjusted for energy efficient operation as described in PART 3.
- 4. Typical TAB procedures and critical path results shall be demonstrated to the Resident Engineer for one air distribution system (including all fans, three terminal units, three rooms randomly selected by the COR one of which shall be a critical path) as follows:
 - a. When field TAB work begins.
 - b. During each partial final inspection and the final inspection for the project if requested by VA.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Submit names and qualifications of TAB agency and TAB specialists within 60 days after the notice to proceed. Submit information on three recently completed projects and a list of proposed test equipment.
- C. For use by the Resident Engineer staff, submit one complete set of applicable AABC, NEBB or TABB publications that will be the basis of TAB work.
- D. Submit Following for Review and Approval:
 - Design Review Report within 90 days for conventional design projects after the system layout on air side is completed by the Contractor.

- Systems inspection report on equipment and installation for conformance with design.
- 3. Systems Readiness Report.
- Intermediate and Final TAB reports covering flow balance and adjustments, performance tests, vibration tests and sound tests.
- 5. Include in final reports uncorrected installation deficiencies noted during TAB and applicable explanatory comments on test results that differ from design requirements.
- Include in each report the critical path for each balanced branch. Every branch shall have at least one terminal device damper 100% open.
- E. Prior to request for Final or Partial Final inspection, submit completed Test and Balance report for the area with noted critical paths.

1.5 APPLICABLE PUBLICATIONS

- A. The following publications form a part of this specification to the extent indicated by the reference thereto. In text the publications are referenced to by the acronym of the organization.
- B. American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc. (ASHRAE): Handbook 2019......HVAC Applications ASHRAE Handbook, Chapter 39,

Testing, Adjusting, and Balancing and Chapter

49, Sound and Vibration Control

- C. Associated Air Balance Council (AABC): 7th Edition 2016AABC National Standards for Total System Balance
- D. National Environmental Balancing Bureau (NEBB): 9th Edition 2019Procedural Standards for Testing, Adjusting, Balancing of Environmental Systems 3rd Edition 2015Procedural Standards for the Measurement of Sound and Vibration 2rd Edition 2019 ... Standard for Whole Building Technical Commissioning of New Construction E. Sheet Metal and Air Conditioning Contractors National Association (SMACNA): 3rd Edition 2005HVAC SYSTEMS Testing, Adjusting and Balancing

TABB- TAB Procedural Guide

PART 2 - PRODUCTS

2.1 PLUGS

Provide plastic plugs to seal holes drilled in ductwork for test purposes.

2.2 INSULATION REPAIR MATERIAL

See Section 23 07 11, HVAC INSULATION Provide for repair of insulation removed or damaged for TAB work.

PART 3 - EXECUTION

3.1 GENERAL

- A. Refer to TAB Criteria in Article, Quality Assurance.
- B. Obtain applicable contract documents and copies of approved submittals for HVAC equipment and automatic control systems.

3.2 DESIGN REVIEW REPORT

The TAB Specialist shall review the Contract Plans and specifications and advise the Resident Engineer of any design deficiencies that would prevent the HVAC systems from effectively operating in accordance with the sequence of operation specified or prevent the effective and accurate TAB of the system. The TAB Specialist shall provide a report individually listing each deficiency and the corresponding proposed corrective action necessary for proper system operation.

3.3 SYSTEMS INSPECTION REPORT

- A. Inspect equipment and installation for conformance with design.
- B. The inspection and report is to be done after air distribution equipment is on site and duct installation has begun, but well in advance of performance testing and balancing work. The purpose of the inspection is to identify and report deviations from design and ensure that systems will be ready for TAB at the appropriate time.
- C. Reports: Follow check list format developed by AABC, NEBB or SMACNA (TABB), supplemented by narrative comments, with emphasis on air handling units and fans. Check for conformance with submittals. Verify that diffuser and register sizes are correct. Check air terminal unit installation including their duct sizes and routing.

3.4 SYSTEM READINESS REPORT

A. Inspect each System to ensure that it is complete including installation and operation of controls. Submit report to RE in standard format and forms prepared and or approved by the Commissioning Agent. B. Verify that all items such as ductwork piping, dampers, valves, ports, terminals, connectors, etc., that is required for TAB are installed. Provide a report to the Resident Engineer.

3.5 TAB REPORTS

- A. Submit an intermediate report for 50 percent of systems and equipment tested and balanced to establish satisfactory test results.
- B. The TAB contractor shall provide raw data immediately in writing to the Resident Engineer if there is a problem in achieving intended results before submitting a formal report.
- C. If over 20 percent of readings in the intermediate report fall outside the acceptable range, the TAB report shall be considered invalid and all contract TAB work shall be repeated after engineering and construction have been evaluated and re-submitted for approval at no additional cost to the owner.
- D. Do not proceed with the remaining systems until intermediate report is approved by the Resident Engineer.

3.6 TAB PROCEDURES

- A. TAB shall be performed in accordance with the requirement of the Standard under which TAB agency is certified by either AABC, TABB or NEBB. Balancing shall be done proportionally to all applicable systems.
 1. At least one trunk damper shall be 100% open.
 - 2. At least one branch damper shall be 100% open per trunk.
 - 3. At least one terminal device duct be 100% open per branch.
- B. General: During TAB all related system components shall be in full operation. Fan rotation, motor loads, and equipment vibration shall be checked and corrected as necessary before proceeding with TAB. Set controls and/or block off parts of distribution systems to simulate design operation of variable volume air or water systems for test and balance work.
- C. Allow 7 days time in construction schedule for TAB and submission of all reports for an organized and timely correction of deficiencies.
- E. Air Balance and Equipment Test: Include rooftop units, fans, terminal units, and room diffusers/outlets/inlets.
 - 1. Artificially load air filters by partial blanking to produce static air pressure drop of manufacturer's recommended pressure drop.

- Adjust fan speeds to provide design air flow. V-belt drives, including fixed pitch pulley requirements, are specified in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- 3. Test and balance systems in all specified modes of operation, including variable volume, economizer, and fire emergency modes. Verify that dampers and other HVAC controls function properly.
- 4. Variable air volume (VAV) systems:
 - a. Coordinate TAB, including system volumetric controls, with Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
 - b. Section 23 36 00, AIR TERMINAL UNITS, specifies that maximum and minimum flow rates for air terminal units (ATU) be factory set. Check and readjust ATU flow rates if necessary to meet design criteria. Balance air distribution from ATU on full cooling maximum scheduled cubic meters per minute (cubic feet per minute). Reset room thermostats and check ATU operation from maximum to minimum cooling, to the heating mode, and back to cooling. Record and report the heating coil leaving air temperature when the ATU is in the maximum heating mode. Record and report outdoor air flow rates under all operating conditions (The test shall demonstrate that the minimum outdoor air ventilation rate shall remain constant under al operating conditions).
 - c. Adjust operating pressure control setpoint to maintain the design flow to each space with the lowest setpoint.
- Record final measurements for rooftop unit equipment performance data sheets.

3.7 VIBRATION TESTING

- A. Furnish instruments and perform vibration measurements as specified in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT. Field vibration balancing is specified in Section 23 05 11, COMMON WORK RESULTS FOR HVAC. Provide measurements for all rotating HVAC equipment of 373 watts (1/2 horsepower) and larger, including fans and motors.
- B. Record initial measurements for each unit of equipment on test forms and submit a report to the Resident Engineer. Where vibration readings exceed the allowable tolerance Contractor shall be directed to correct

the problem. The TAB agency shall verify that the corrections are done and submit a final report to the Resident Engineer.

3.8 SOUND TESTING

A. Perform and record required sound measurements in accordance with Paragraph, QUALITY ASSURANCE in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.

1. Take readings in rooms, approximately 100 percent of all rooms.

- B. Take measurements with a calibrated sound level meter and octave band analyzer of the accuracy required by AABC, TABB or NEBB.
- C. Sound reference levels, formulas and coefficients shall be according to 2019 ASHRAE Handbook, "HVAC Applications", Chapter 49, SOUND AND VIBRATION CONTROL.
- D. Determine compliance with specifications as follows:
 - When sound pressure levels are specified, including the NC Criteria in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT:
 - a. Reduce the background noise as much as possible by shutting off unrelated audible equipment.
 - b. Measure octave band sound pressure levels with specified equipment "off."
 - c. Measure octave band sound pressure levels with specified equipment "on."
 - d. Use the DIFFERENCE in corresponding readings to determine the sound pressure due to equipment.

DIFFERENCE:	0	1	2	3	4	5 to 9	10 or More
FACTOR:	10	7	4	3	2	1	0

Sound pressure level due to equipment equals sound pressure level with equipment "on" minus FACTOR.

- e. Plot octave bands of sound pressure level due to equipment for typical rooms on a graph which also shows noise criteria (NC) curves.
- 2. When sound power levels are specified:
 - a. Perform steps 1.a. thru 1.d., as above.
 - b. For indoor equipment: Determine room attenuating effect, i.e., difference between sound power level and sound pressure level.

Determined sound power level will be the sum of sound pressure level due to equipment plus the room attenuating effect.

- c. For outdoor equipment: Use directivity factor and distance from noise source to determine distance factor, i.e., difference between sound power level and sound pressure level. Measured sound power level will be the sum of sound pressure level due to equipment plus the distance factor. Use 10 meters (30 feet)for sound level location.
- 3. Where sound pressure levels are specified in terms of dB(A), single value readings will be used instead of octave band analysis.
- E. Where measured sound levels exceed specified level, the installing contractor or equipment manufacturer shall take remedial action approved by the Resident Engineer and the necessary sound tests shall be repeated.
- F. Test readings for sound testing could go higher than 15 percent if determination is made by the Resident Engineer based on the recorded sound data.

3.9 MARKING OF SETTINGS

Following approval of Tab final Report, the setting of all HVAC adjustment devices including valves, splitters and dampers shall be permanently marked by the TAB Specialist so that adjustment can be restored if disturbed at any time. Style and colors used for markings shall be coordinated with the Resident Engineer.

3.10 IDENTIFICATION OF TEST PORTS

The TAB Specialist shall permanently and legibly identify the location points of duct test ports. If the ductwork has exterior insulation, the identification shall be made on the exterior side of the insulation. All penetrations through ductwork and ductwork insulation shall be sealed to prevent air leaks and maintain integrity of vapor barrier.

3.11 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 23 08 00 -

COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.12 CRITICAL FLOW PATH

A. Provide a documented critical path for all flows. There shall be at least one terminal device that can be traced back to the fan where there is no damper or valves that are less than 100% open.

- - E N D - - -

SECTION 23 07 11 HVAC INSULATION

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Field applied insulation for thermal efficiency and condensation control for
 - 1. HVAC piping, ductwork, and equipment.
- B. Definitions
 - 1. ASJ: All service jacket, white finish facing or jacket.
 - 2. Air conditioned space: Space having air temperature and/or humidity controlled by mechanical equipment.
 - Cold: Equipment, ductwork or piping handling media at design temperature of 16 degrees C (60 degrees F) or below.
 - Concealed: Ductwork and piping above ceilings and in chases, interstitial space, and pipe spaces.
 - 5. Exposed: Piping, ductwork, and equipment exposed to view in finished areas including mechanical and electrical equipment rooms or exposed to outdoor weather. Attics and crawl spaces where air handling units are located are considered to be mechanical rooms. Shafts, chases, interstitial spaces, unfinished attics, crawl spaces and pipe basements are not considered finished areas.
 - 6. FSK: Foil-scrim-kraft facing.
 - Hot: HVAC Ductwork handling air at design temperature above 16 degrees C (60 degrees F); HVAC equipment or piping handling media above 41 degrees C (105 degrees F).
 - Density: kg/m³ kilograms per cubic meter (Pcf pounds per cubic foot).
 - 9. Runouts: Branch pipe connections up to 25-mm (one-inch) nominal size to fan coil units or reheat coils for terminal units.
 - 10. Thermal conductance: Heat flow rate through materials.
 - a. Flat surface: Watt per square meter (BTU per hour per square foot).
 - b. Pipe or Cylinder: Watt per square meter (BTU per hour per linear foot).
 - 11. Thermal Conductivity (k): Watt per meter, per degree C (BTU per inch thickness, per hour, per square foot, per degree F temperature difference).

- 12. Vapor Retarder (Vapor Barrier): A material which retards the transmission (migration) of water vapor. Performance of the vapor retarder is rated in terms of permeance (perms). For the purpose of this specification, vapor retarders shall have a maximum published permeance of 0.1 perms and vapor barriers shall have a maximum published permeance of 0.001 perms.
- 13. HPS: High pressure steam (415 kPa [60 psig] and above).
- 14. HPR: High pressure steam condensate return.
- 15. MPS: Medium pressure steam (110 kPa [16 psig] thru 414 kPa [59 psig].
- 16. MPR: Medium pressure steam condensate return.
- 17. LPS: Low pressure steam (103 kPa [15 psig] and below).
- 18. LPR: Low pressure steam condensate gravity return.
- 19. PC: Pumped condensate.
- 20. HWH: Hot water heating supply.
- 21. HWHR: Hot water heating return.
- 22. GH: Hot glycol-water heating supply.
- 23. GHR: Hot glycol-water heating return.
- 24. FWPD: Feedwater pump discharge.
- 25. FWPS: Feedwater pump suction.
- 26. CTPD: Condensate transfer pump discharge.
- 27. CTPS: Condensate transfer pump suction.
- 28. VR: Vacuum condensate return.
- 29. CPD: Condensate pump discharge.
- 30. R: Pump recirculation.
- 31. FOS: Fuel oil supply.
- 32. FOR: Fuel oil return.
- 33. CW: Cold water.
- 34. SW: Soft water.
- 35. HW: Hot water.
- 36. CH: Chilled water supply.
- 37. CHR: Chilled water return.
- 38. GC: Chilled glycol-water supply.
- 39. GCR: Chilled glycol-water return.
- 40. RS: Refrigerant suction.
- 41. PVDC: Polyvinylidene chloride vapor retarder jacketing, white.

VA Project No. 595-668 AE Works Project No. VLEB-010

1.2 RELATED WORK

- A Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Section 07 84 00, FIRESTOPPING.
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- D. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- E. Section 23 21 13, HYDRONIC PIPING.
- F. Section 23 22 13, STEAM and CONDENSATE HEATING PIPING

1.3 QUALITY ASSURANCE

- A. Refer to article QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Criteria:
 - 1. Comply with NFPA 90A, particularly paragraphs 4.3.3.1 through

4.3.3.6, 4.3.10.2.6, and 5.4.6.4, parts of which are quoted as follows:

4.3.3.1 Pipe insulation and coverings, duct coverings, duct linings, vapor retarder facings, adhesives, fasteners, tapes, and supplementary materials added to air ducts, plenums, panels, and duct silencers used in duct systems, unless otherwise provided for in <u>4.3.3.1.1</u> or <u>4.3.3.1.2.</u>, shall have, in the form in which they are used, a maximum flame spread index of 25 without evidence of continued progressive combustion and a maximum smoke developed index of 50 when tested in accordance with <u>NFPA 255</u>, *Standard Method of Test of Surface Burning Characteristics of Building Materials*.

4.3.3.1.1 Where these products are to be applied with adhesives, they shall be tested with such adhesives applied, or the adhesives used shall have a maximum flame spread index of 25 and a maximum smoke developed index of 50 when in the final dry state. (See 4.2.4.2.)

4.3.3.1.2 The flame spread and smoke developed index requirements of 4.3.3.1.1 shall not apply to air duct weatherproof coverings where they are located entirely outside of a building, do not penetrate a wall or roof, and do not create an exposure hazard.

4.3.3.2 Closure systems for use with rigid and flexible air ducts tested in accordance with UL 181, Standard for Safety Factory-Made Air Ducts and Air Connectors, shall have been tested, listed, and used in accordance with the conditions of their listings, in accordance with one of the following:

(1) UL 181A, Standard for Safety Closure Systems for Use with Rigid Air Ducts and Air Connectors

(2) UL 181B, Standard for Safety Closure Systems for Use with Flexible Air Ducts and Air Connectors

4.3.3.3 Air duct, panel, and plenum coverings and linings, and pipe insulation and coverings shall not flame, glow, smolder, or smoke when tested in accordance with a similar test for pipe covering, ASTM C 411, Standard Test Method for Hot-Surface

Performance of High-Temperature Thermal Insulation, at the temperature to which they are exposed in service.

4.3.3.3.1 In no case shall the test temperature be below 121°C (250°F).

4.3.3.4 Air duct coverings shall not extend through walls or floors that are required to be fire stopped or required to have a fire resistance rating, unless such coverings meet the requirements of 5.4.6.4.

4.3.3.5* Air duct linings shall be interrupted at fire dampers to prevent interference with the operation of devices.

4.3.3.6 Air duct coverings shall not be installed so as to conceal or prevent the use of any service opening.

4.3.10.2.6 Materials exposed to the airflow shall be noncombustible or limited combustible and have a maximum smoke developed index of 50 or comply with the following.

4.3.10.2.6.1 Electrical wires and cables and optical fiber cables shall be listed as noncombustible or limited combustible and have a maximum smoke developed index of 50 or shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.5 m (5 ft) or less when tested in accordance with NFPA 262, Standard Method of Test for Flame Travel and Smoke of Wires and Cables for Use in Air-Handling Spaces.

4.3.10.2.6.4 Optical-fiber and communication raceways shall be listed as having a maximum peak optical density of 0.5 or less, an average optical density of 0.15 or less, and a maximum flame spread distance of 1.5 m (5 ft) or less when tested in accordance with UL 2024, Standard for Safety Optical-Fiber Cable Raceway.

4.3.10.2.6.6 Supplementary materials for air distribution systems shall be permitted when complying with the provisions of 4.3.3.

5.4.6.4 Where air ducts pass through walls, floors, or partitions that are required to have a fire resistance rating and where fire dampers are not required, the opening in the construction around the air duct shall be as follows:

(1) Not exceeding a 25.4 mm (1 in.) average clearance on all sides

(2) Filled solid with an approved material capable of preventing the passage of flame and hot gases sufficient to ignite cotton waste when subjected to the time-temperature fire conditions required for fire barrier penetration as specified in <u>NFPA 251</u>, Standard Methods of Tests of Fire Endurance of Building Construction and Materials

- 2. Test methods: ASTM E84, UL 723, or NFPA 255.
- 3. Specified k factors are at 24 degrees C (75 degrees F) mean temperature unless stated otherwise. Where optional thermal insulation material is used, select thickness to provide thermal conductance no greater than that for the specified material. For

pipe, use insulation manufacturer's published heat flow tables. For run out insulation and condensation control insulation, no thickness adjustment need be made.

- 4. All materials shall be compatible and suitable for service temperature, and shall not contribute to corrosion or otherwise attack surface to which applied in either the wet or dry state.
- C. Every package or standard container of insulation or accessories delivered to the job site for use must have a manufacturer's stamp or label giving the name of the manufacturer and description of the material.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Shop Drawings:
 - All information, clearly presented, shall be included to determine compliance with drawings and specifications and ASTM, federal and military specifications.
 - a. Insulation materials: Specify each type used and state surface burning characteristics.
 - b. Insulation facings and jackets: Each type used. Make it clear that white finish will be furnished for exposed ductwork, casings and equipment.
 - c. Insulation accessory materials: Each type used.
 - d. Manufacturer's installation and fitting fabrication instructions for flexible unicellular insulation.
 - e. Make reference to applicable specification paragraph numbers for coordination.

1.5 STORAGE AND HANDLING OF MATERIAL

A. Store materials in clean and dry environment, pipe covering jackets shall be clean and unmarred. Place adhesives in original containers. Maintain ambient temperatures and conditions as required by printed instructions of manufacturers of adhesives, mastics and finishing cements.

1.6 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only. VA Project No. 595-668 Lebanon VAMC AE Works Project No. VLEB-010 New Entryway for Building 17 BID DOCUMENTS 02-01-20 B. Federal Specifications (Fed. Spec.): L-P-535E (2)- 1999.....Plastic Sheet (Sheeting): Plastic Strip; Poly (Vinyl Chloride) and Poly (Vinyl Chloride -Vinyl Acetate), Rigid. C. Military Specifications (Mil. Spec.): MIL-A-3316C -1987 Adhesives, Fire-Resistant, Thermal Insulation MIL-A-24179A (1)-2016 Adhesive, Flexible Unicellular-Plastic Thermal Insulation MIL-C-19565C (1)- 2016 Coating Compounds, Thermal Insulation, Fire-and Water-Resistant, Vapor-Barrier MIL-C-20079H-1987Cloth, Glass; Tape, Textile Glass; and Thread, Glass and Wire-Reinforced Glass D. American Society for Testing and Materials (ASTM): A167-99 2014.....Standard Specification for Stainless and Heat-Resisting Chromium-Nickel Steel Plate, Sheet, and Strip B209-2014..... Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate C411-2019.....Standard test method for Hot-Surface Performance of High-Temperature Thermal Insulation C449-2019..... Standard Specification for Mineral Fiber Hydraulic-Setting Thermal Insulating and Finishing Cement C533-2017..... Standard Specification for Calcium Silicate Block and Pipe Thermal Insulation C534-2017.....Standard Specification for Preformed Flexible Elastomeric Cellular Thermal Insulation in Sheet and Tubular Form C547-2017.....Standard Specification for Mineral Fiber pipe Insulation C552-07Standard Specification for Cellular Glass Thermal Insulation C553-2015.....Standard Specification for Mineral Fiber Blanket Thermal Insulation for Commercial and Industrial Applications

VA Project No. 595-668 AE Works Project No. VLEB-010	Lebanon VAMC New Entryway for Building 17 BID DOCUMENTS 02-01-20
	Standard Practice for Inner and Outer Diameters
	of Rigid Thermal Insulation for Nominal Sizes
	of Pipe and Tubing (NPS System) R (1998)
C612-2014	Standard Specification for Mineral Fiber Block
	and Board Thermal Insulation
C1126- 2019	Standard Specification for Faced or Unfaced
	Rigid Cellular Phenolic Thermal Insulation
C1136- 2017	Standard Specification for Flexible, Low
	Permeance Vapor Retarders for Thermal
	Insulation
D1668-97a 2017	Standard Specification for Glass Fabrics (Woven
	and Treated) for Roofing and Waterproofing
E84-2014	Standard Test Method for Surface Burning
	Characteristics of Building
	Materials
E119-2007	Standard Test Method for Fire Tests of Building
	Construction and Materials
E136-2019	Standard Test Methods for Behavior of Materials
	in a Vertical Tube Furnace at 750 degrees C
	(1380 F)
E. National Fire Protection	Association (NFPA):
90A-2018	Standard for the Installation of Air
	Conditioning and Ventilating Systems
96-2018	Standard s for Ventilation Control and Fire
	Protection of Commercial Cooking Operations
101-2018	Life Safety Code
251-2014	Standard methods of Tests of Fire Endurance of
	Building Construction Materials
255-2006	Standard Method of tests of Surface Burning
	Characteristics of Building Materials
F. Underwriters Laboratorie	s, Inc (UL):
723-2018	UL Standard for Safety Test for Surface Burning
	Characteristics of Building Materials with
	Revision of 09/08
G. Manufacturer's Standardi	zation Society of the Valve and Fitting
Industry (MSS):	

Lebanon VAMC New Entryway for Building 17 BID DOCUMENTS 02-01-20 SP58-2018......Pipe Hangers and Supports Materials, Design,

and Manufacture

PART 2 - PRODUCTS

2.1 MINERAL FIBER OR FIBER GLASS

- A. ASTM C612 (Board, Block), Class 1 or 2, density 48 kg/m³ (3 pcf), k =0.037 (0.26) at 24 degrees C (75 degrees F), external insulation for temperatures up to 204 degrees C (400 degrees F) with foil scrim (FSK) facing.
- B. ASTM C553 (Blanket, Flexible) Type I, Class B-3, Density 16 kg/m³ (1 pcf), k = 0.045 (0.31) at 24 degrees C (75 degrees F), for use at temperatures up to 204 degrees C (400 degrees F) with foil scrim (FSK) facing.
- C. ASTM C547 (Pipe Fitting Insulation and Preformed Pipe Insulation), Class 1, k = 0.037 (0.26) at 24 degrees C (75 degrees F), for use at temperatures up to 230 degrees C (450 degrees F) with an all service vapor retarder jacket with polyvinyl chloride premolded fitting covering.

2.2 RIGID CELLULAR PHENOLIC FOAM

- A. Preformed (molded) pipe insulation, ASTM C1126, type III, grade 1, k =0.021(0.15) at 10 degrees C (50 degrees F), for use at temperatures up to 121 degrees C (250 degrees F) with all service vapor retarder jacket with polyvinyl chloride premolded fitting covering.
- B. Equipment and Duct Insulation, ASTM C 1126, type II, grade 1, k = 0.021(0.15) at 10 degrees C (50 degrees F), for use at temperatures up to 121 degrees C (250 degrees F) with rigid cellular phenolic insulation and covering, and all service vapor retarder jacket.

2.3 CELLULAR GLASS CLOSED-CELL

- A. Comply with Standard ASTM C177, C518, density 120 kg/m³ (7.5 pcf) nominal, k = 0.033 (0.29) at 240 degrees C (75 degrees F).
- B. Pipe insulation for use at temperatures up to 200 degrees C (400 degrees F) with all service vapor retarder jacket.

2.4 FLEXIBLE ELASTOMERIC CELLULAR THERMAL

A. ASTM C177, C518, k = 0.039 (0.27) at 24 degrees C (75 degrees F), flame spread not over 25, smoke developed not over 50, for temperatures from minus 4 degrees C (40 degrees F) to 93 degrees C (200 degrees F). No jacket required.

2.5 CALCIUM SILICATE

- A. Preformed pipe Insulation: ASTM C533, Type I and Type II with indicator denoting asbestos-free material.
- B. Premolded Pipe Fitting Insulation: ASTM C533, Type I and Type II with indicator denoting asbestos-free material.
- C. Equipment Insulation: ASTM C533, Type I and Type II
- D. Characteristics:

Insulation Characteristics				
ITEMS	TYPE I	TYPE II		
Temperature, maximum degrees C	649 (1200)	927 (1700)		
(degrees F)				
Density (dry), Kg/m ³ (lb/ ft3)	232 (14.5)	288 (18)		
Thermal conductivity:				
Min W/ m K (Btu in/h ft ² degrees F)@	0.059	0.078		
mean temperature of 93 degrees C	(0.41)	(0.540)		
(200 degrees F)				
Surface burning characteristics:				
Flame spread Index, Maximum	0	0		
Smoke Density index, Maximum	0	0		

2.6 INSULATION FACINGS AND JACKETS

- A. Vapor Retarder, higher strength with low water permeance = 0.02 or less perm rating, Beach puncture 50 units for insulation facing on exposed ductwork, casings and equipment, and for pipe insulation jackets. Facings and jackets shall be all service type (ASJ) or PVDC Vapor Retarder jacketing.
- B. ASJ jacket shall be white kraft bonded to 0.025 mm (1 mil) thick aluminum foil, fiberglass reinforced, with pressure sensitive adhesive closure. Comply with ASTM C1136. Beach puncture 50 units, Suitable for painting without sizing. Jackets shall have minimum 40 mm (1-1/2 inch) lap on longitudinal joints and minimum 75 mm (3 inch) butt strip on end joints. Butt strip material shall be same as the jacket. Lap and butt strips shall be self-sealing type with factory-applied pressure sensitive adhesive.
- C. Vapor Retarder medium strength with low water vapor permeance of 0.02 or less perm rating), Beach puncture 25 units: Foil-Scrim-Kraft (FSK)

or PVDC vapor retarder jacketing type for concealed ductwork and equipment.

- D. Factory composite materials may be used provided that they have been tested and certified by the manufacturer.
- E. Pipe fitting insulation covering (jackets): Fitting covering shall be premolded to match shape of fitting and shall be polyvinyl chloride (PVC) conforming to Fed Spec L-P-335, composition A, Type II Grade GU, and Type III, minimum thickness 0.7 mm (0.03 inches). Provide color matching vapor retarder pressure sensitive tape.
- 2.7 PIPE COVERING PROTECTION SADDLES

Nominal Pipe Size and Accessories Material (Insert Blocks)			
Nominal Pipe Size mm (inches)	Insert Blocks mm (inches)		
Up through 125 (5)	150 (6) long		
150 (6)	150 (6) long		
200 (8), 250 (10), 300 (12)	225 (9) long		
350 (14), 400 (16)	300 (12) long		
450 through 600 (18 through 24)	350 (14) long		

- A. Warm or hot pipe supports: Premolded pipe insulation (180 degree halfshells) on bottom half of pipe at supports. Material shall be cellular glass or calcium silicate. Insulation at supports shall have same thickness as adjacent insulation. Density of Polyisocyanurate insulation shall be a minimum of 48 kg/m³ (3.0 pcf).
- 2.8 ADHESIVE, MASTIC, CEMENT
 - A. Mil. Spec. MIL-A-3316, Class 1: Jacket and lap adhesive and protective finish coating for insulation.
 - B. Mil. Spec. MIL-A-3316, Class 2: Adhesive for laps and for adhering insulation to metal surfaces.
 - C. Mil. Spec. MIL-A-24179, Type II Class 1: Adhesive for installing flexible unicellular insulation and for laps and general use.
 - D. Mil. Spec. MIL-C-19565, Type I or Type II: Vapor barrier compound for indoor use.
 - E. ASTM C449: Mineral fiber hydraulic-setting thermal insulating and finishing cement.
 - F. Other: Insulation manufacturers' published recommendations.

2.9 MECHANICAL FASTENERS

- A. Pins, anchors: Welded pins, or metal or nylon anchors with galvanized steel-coated or fiber washer, or clips. Pin diameter shall be as recommended by the insulation manufacturer.
- B. Staples: Outward clinching galvanized steel.
- C. Wire: 1.3 mm thick (18 gage) soft annealed galvanized or 1.9 mm (14 gage) copper clad steel or nickel copper alloy.
- D. Bands: 13 mm (0.5 inch) nominal width, brass, galvanized steel, aluminum or stainless steel.

2.10 REINFORCEMENT AND FINISHES

- A. Glass fabric, open weave: ASTM D1668, Type III (resin treated) and Type I (asphalt treated).
- B. Glass fiber fitting tape: Mil. Spec MIL-C-20079, Type II, Class 1.
- C. Tape for Flexible Elastomeric Cellular Insulation: As recommended by the insulation manufacturer.
- D. Hexagonal wire netting: 25 mm (one inch) mesh, 0.85 mm thick (22 gage) galvanized steel.
- E. Corner beads: 50 mm (2 inch) by 50 mm (2 inch), 0.55 mm thick (26 gage) galvanized steel; or, 25 mm (1 inch) by 25 mm (1 inch), 0.47 mm thick (28 gage) aluminum angle adhered to 50 mm (2 inch) by 50 mm (2 inch) Kraft paper.
- F. PVC fitting cover: Fed. Spec L-P-535, Composition A, 11-86 Type II, Grade GU, with Form B Mineral Fiber insert, for media temperature 4 degrees C (40 degrees F) to 121 degrees C (250 degrees F). Below 4 degrees C (40 degrees F) and above 121 degrees C (250 degrees F). Provide double layer insert. Provide color matching vapor barrier pressure sensitive tape.

2.11 FIRESTOPPING MATERIAL

A. Other than pipe and duct insulation, refer to Section 07 84 00 FIRESTOPPING.

2.12 FLAME AND SMOKE

A. Unless shown otherwise all assembled systems shall meet flame spread 25 and smoke developed 50 rating as developed under ASTM, NFPA and UL standards and specifications. See paragraph 1.3 "Quality Assurance".

PART 3 - EXECUTION

3.1 GENERAL REQUIREMENTS

- A. Required pressure tests of duct and piping joints and connections shall be completed and the work approved by the Resident Engineer for application of insulation. Surface shall be clean and dry with all foreign materials, such as dirt, oil, loose scale and rust removed.
- B. Except for specific exceptions, insulate entire specified equipment piping (pipe, fittings, valves, accessories), and duct systems. Insulate each pipe and duct individually. Do not use scrap pieces of insulation where a full length section will fit.
- C. Insulation materials shall be installed in a first class manner with smooth and even surfaces, with jackets and facings drawn tight and smoothly cemented down at all laps. Insulation shall be continuous through all sleeves and openings, except at fire dampers (NFPA 90A). Vapor retarders shall be continuous and uninterrupted throughout systems with operating temperature 16 degrees C (60 degrees F) and below. Lap and seal vapor retarder over ends and exposed edges of insulation. Anchors, supports and other metal projections through insulation on cold surfaces shall be insulated and vapor sealed for a minimum length of 150 mm (6 inches).
- D. Install vapor stops at all insulation terminations on either side of valves, equipment and particularly in straight lengths of pipe insulation.
- E. Insulation on hot piping and equipment shall be terminated square at items not to be insulated, access openings and nameplates. Cover all exposed raw insulation with white sealer or jacket material.
- F. Insulate steam traps.
- G. HVAC work not to be insulated:
 - 1. Internally insulated ductwork and rooftop units.
 - 2. Exhaust air ducts and plenums.
 - 3. Rooftop unit drain piping.
 - 4. In hot piping: Unions, flexible connectors, control valves, safety valves and discharge vent piping, vacuum breakers, thermostatic vent valves, steam traps 20 mm (3/4 inch) and smaller. Insulate piping to within approximately 75 mm (3 inches) of uninsulated items.

- I. Apply insulation materials subject to the manufacturer's recommended temperature limits. Apply adhesives, mastic and coatings at the manufacturer's recommended minimum coverage.
- J. Elbows, flanges and other fittings shall be insulated with the same material as is used on the pipe straights. The elbow/ fitting insulation shall be field-fabricated, mitered or factory prefabricated to the necessary size and shape to fit on the elbow/ fitting. Use of polyurethane spray-foam to fill a PVC elbow jacket is prohibited on cold applications.
- K. Firestop Pipe and Duct insulation:
 - Provide firestopping insulation at fire and smoke barriers through penetrations. Fire stopping insulation shall be UL listed as defines in Section 07 84 00, FIRESTOPPING.
 - Pipe and duct penetrations requiring fire stop insulation including, but not limited to the following:
 - a. Pipe risers through floors
 - b. Pipe or duct chase walls and floors
 - c. Smoke partitions
 - d. Fire partitions

3.2 INSULATION INSTALLATION

- A. Mineral Fiber Board:
 - Faced board: Apply board on pins spaced not more than 300 mm (12 inches) on center each way, and not less than 75 mm (3 inches) from each edge of board. In addition to pins, apply insulation bonding adhesive to entire underside of horizontal metal surfaces. Butt insulation edges tightly and seal all joints with laps and butt strips. After applying speed clips cut pins off flush and apply vapor seal patches over clips.
 - 2. Plain board:
 - a. Insulation shall be scored, beveled or mitered to provide tight joints and be secured to equipment with bands spaced 225 mm (9 inches) on center for irregular surfaces or with pins and clips on flat surfaces. Use corner beads to protect edges of insulation.
 - b. For hot equipment: Stretch 25 mm (1 inch) mesh wire, with edges wire laced together, over insulation and finish with insulating

and finishing cement applied in one coat, 6 mm (1/4 inch) thick, trowel led to a smooth finish.

- 3. Exposed, unlined ductwork and equipment in unfinished areas and electrical equipment rooms:
 - a. 40 mm (1-1/2 inch) thick insulation faced with ASJ (white all service jacket): Supply air duct.
- B. Flexible Mineral Fiber Blanket:
 - 1. Adhere insulation to metal with 75 mm (3 inch) wide strips of insulation bonding adhesive at 200 mm (8 inches) on center all around duct. Additionally secure insulation to bottom of ducts exceeding 600 mm (24 inches) in width with pins welded or adhered on 450 mm (18 inch) centers. Secure washers on pins. Butt insulation edges and seal joints with laps and butt strips. Staples may be used to assist in securing insulation. Seal all vapor retarder penetrations with mastic. Sagging duct insulation will not be acceptable. Install firestop duct insulation where required.
 - Supply air ductwork to be insulated includes main and branch ducts from RTU discharge to room supply outlets, and the bodies of ceiling outlets to prevent condensation. Insulate damper frames.
 - 3. Concealed supply air ductwork.
 - a. Above ceilings at a roof level: 50 mm (2 inch) thick insulation faced with FSK.
 - 4. Concealed return air duct:
 - a. Above ceilings at a roof level, unconditioned areas, and in chases with external wall; 40 mm (1-1/2 inch) thick, insulation faced with FSK.
- C. Molded Mineral Fiber Pipe and Tubing Covering:
 - 1. Fit insulation to pipe or duct, aligning longitudinal joints. Seal longitudinal joint laps and circumferential butt strips by rubbing hard with a nylon sealing tool to assure a positive seal. Staples may be used to assist in securing insulation. Seal all vapor retarder penetrations on cold piping with a generous application of vapor barrier mastic. Provide inserts and install with metal insulation shields at outside pipe supports. Install freeze protection insulation over heating cable.
 - 2. Contractor's options for fitting, flange and valve insulation:

- a. Insulating and finishing cement for sizes less than 100 mm (4 inches) operating at surface temperature of 16 degrees C (61 degrees F) or more.
- b. Factory premolded, one piece PVC covers with mineral fiber, (Form B), inserts. Provide two insert layers for pipe temperatures below 4 degrees C (40 degrees F), or above 121 degrees C (250 degrees F). Secure first layer of insulation with twine. Seal seam edges with vapor barrier mastic and secure with fitting tape.
- c. Factory molded, ASTM C547 or field mitered sections, joined with adhesive or wired in place. For hot piping finish with a smoothing coat of finishing cement. For cold fittings, 16 degrees C (60 degrees F) or less, vapor seal with a layer of glass fitting tape imbedded between two 2 mm (1/16 inch) coats of vapor barrier mastic.
- d. Fitting tape shall extend over the adjacent pipe insulation and overlap on itself at least 50 mm (2 inches).
- 3. Nominal thickness in millimeters and inches specified in the schedule at the end of this section.
- D. Rigid Cellular Phenolic Foam:
 - Rigid closed cell phenolic insulation may be provided for piping, ductwork and equipment for temperatures up to 121 degrees C (250 degrees F).
 - Note the NFPA 90A burning characteristics requirements of 25/50 in paragraph 1.3.B
 - 3. Provide secure attachment facilities such as welding pins.
 - 4. Apply insulation with joints tightly drawn together
 - 5. Apply adhesives, coverings, neatly finished at fittings, and valves.
 - Final installation shall be smooth, tight, neatly finished at all edges.
 - 7. Minimum thickness in millimeters (inches) specified in the schedule at the end of this section.
 - Exposed, unlined supply and return ductwork exposed to outdoor weather: 50 mm (2 inch) thick insulation faced with a multi-layer vapor barrier with a maximum water vapor permeance of 0.00 perms.
 - 9. Condensation control insulation: Minimum 25 mm (1.0 inch) thick for all pipe sizes.

- a. HVAC: Cooling coil condensation piping to waste piping fixture or drain inlet. Omit insulation on plastic piping in mechanical rooms.
- E. Flexible Elastomeric Cellular Thermal Insulation:
 - Apply insulation and fabricate fittings in accordance with the manufacturer's installation instructions and finish with two coats of weather resistant finish as recommended by the insulation manufacturer.
 - 2. Pipe and tubing insulation:
 - a. Use proper size material. Do not stretch or strain insulation.
 - b. To avoid undue compression of insulation, provide cork stoppers or wood inserts at supports as recommended by the insulation manufacturer. Insulation shields are specified under Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
 - c. Where possible, slip insulation over the pipe or tubing prior to connection, and seal the butt joints with adhesive. Where the slip-on technique is not possible, slit the insulation and apply it to the pipe sealing the seam and joints with contact adhesive. Optional tape sealing, as recommended by the manufacturer, may be employed. Make changes from mineral fiber insulation in a straight run of pipe, not at a fitting. Seal joint with tape.
 - Apply sheet insulation to flat or large curved surfaces with 100 percent adhesive coverage. For fittings and large pipe, apply adhesive to seams only.
 - Pipe insulation: nominal thickness in millimeters (inches as specified in the schedule at the end of this section.

3.3 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to section 23 08 00 -COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.4 PIPE INSULATION SCHEDULE

Provide insulation for piping systems as scheduled below:

Insulation Wall Thickness Millimeters (Inches)					
		Nominal	Pipe Size	Millimeters	(Inches)
Operating Temperature Range/Service	Insulation Material	Less than 25 (1)	25 - 32 (1 - 1 ¹ / ₄)	38 - 75 (1½ - 3)	100 (4) and Above
	Insulation	Wall Thio	ckness Mill	imeters (In	ches)
100-121 degrees C (212-250 degrees F) (LPS)	Mineral Fiber (Above ground piping only)	62 (2.5)	62 (2.5)	75 (3.0)	75 (3.0)
100-121 degrees C (212-250 degrees F) (LPS)	Rigid Cellular Phenolic Foam	50 (2.0)	50 (2.0)	75 (3.0)	75 (3.0)
38-94 degrees C (100-200 degrees F) (LPR)	Mineral Fiber (Above ground piping only)	38 (1.5)	38 (1.5)	50 (2.0)	50 (2.0)
38-99 degrees C (100-211 degrees F) (LPR)	Rigid Cellular Phenolic Foam	38 (1.5)	38 (1.5)	50 (2.0)	50 (2.0)
38-94 degrees C (100-200 degrees F) (LPR)	Flexible Elastomeric Cellular Thermal (Above ground piping only)	38 (1.5)	38 (1.5)		

- - - E N D - - -

SECTION 23 08 00

COMMISSIONING OF HVAC SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. The requirements of this Section apply to all sections of Division 23.
- B. This project will have selected building systems commissioned. The complete list of equipment and systems to be commissioned is specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS. The commissioning process, which the Contractor is responsible to execute, is defined in Section 01 91 00 GENERAL COMMISSIONING REQUIRMENTS. A Commissioning Agent (CxA) appointed by the VA will manage the commissioning process.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS.
- B. Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- D. Section 23 05 41 NOISE AND VIBRATION CONTROL for HVAC PIPING AND EQUIPMENT.
- E. Section 23 05 93 TESTING, ADJUSTING, AND BALANCING FOR HVAC.
- F. Section 23 09 23 DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.

1.3 SUMMARY

- A. This Section includes requirements for commissioning the HVAC systems of the related subsystems and equipment. This Section supplements the general requirements specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.
- B. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for more details regarding processes and procedures as well as roles and responsibilities for all Commissioning Team members.

1.4 DEFINITIONS

A. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for definitions.

1.5 COMMISSIONED SYSTEMS

A. Commissioning of a system or systems specified in Division 23 is part of the construction process. Documentation and testing of these systems, as well as training of the VA's Operation and Maintenance personnel in accordance with the requirements of Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS and of Division 23, is required in cooperation with the VA and the Commissioning Agent.

B. The Facility HVAC systems commissioning will include the systems listed in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.

1.6 SUBMITTALS

- A. The commissioning process requires review of selected Submittals that pertain to the systems to be commissioned. The Commissioning Agent will provide a list of submittals that will be reviewed by the Commissioning Agent. This list will be reviewed and approved by the VA prior to forwarding to the Contractor. Refer to Section 01 33 23 SHOP DRAWINGS, PRODUCT DATA, and SAMPLES for further details.
- B. The commissioning process requires Submittal review simultaneously with engineering review. Specific submittal requirements related to the commissioning process are specified in Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS.

1.7 APPLICABLE PUBLICATIONS

- A. The following publications form a part of this specification to the extent indicated by the reference thereto. In text the publications are referenced to by the acronym of the organization.
- B. Department of Veterans Affairs (VA): PG 18-10 2007.....Mission Critical Facilities - DRAFT PG 18-10 2007....Life-Safety Protected Facilities - DRAFT
- C. American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc. (ASHRAE):

HANDBOOK 2019.....HVAC Applications ASHRAE Handbook, Chapter 39, Testing, Adjusting, and Balancing, Chapter 44, HVAC Commissioning and Chapter 49, Sound and Vibration Control

HANDBOOK 2017.....HVAC Fundamentals ASHRAE Handbook, Chapter 8, Sound and Vibration

- D. Associated Air Balance Council (AABC): 7th Edition 2016.....AABC National Standards for Total System Balance
- E. National Environmental Balancing Bureau (NEBB): 9th Edition 2019.....Procedural Standards for Testing, Adjusting, Balancing of Environmental Systems

VA Project No. 595-668 Lebanon VAMC AE Works Project No. VLEB-010 New Entryway for Building 17 BID DOCUMENTS 02-01-20 3rd Edition 2015.....Procedural Standards for the Measurement of Sound and Vibration 2rd Edition 2019 ... Standard for Whole Building Technical Commissioning of New Construction F. Sheet Metal and Air Conditioning Contractors National Association (SMACNA): 006 2006.....HVAC Duct Construction Standard - Metal and Flexible Duct 3rd Edition 2005 ... HVAC Systems Testing, Adjusting and Balancing

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 CONSTRUCTION INSPECTIONS

A. Commissioning of HVAC systems will require inspection of individual elements of the HVAC systems construction throughout the construction period. The Contractor shall coordinate with the Commissioning Agent in accordance with Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS and the Commissioning plan to schedule HVAC systems inspections as required to support the Commissioning Process.

3.2 PRE-FUNCTIONAL CHECKLISTS

A. The Contractor shall complete Pre-Functional Checklists to verify systems, subsystems, and equipment installation is complete and systems are ready for Systems Functional Performance Testing. The Commissioning Agent will prepare Pre-Functional Checklists to be used to document equipment installation. Refer to Sections 23 05 41 NOISE AND VIBRATION CONTROL for HVAC PIPING AND EQUIPMENT, Section 23 05 93 TESTING, ADJUSTING, AND BALANCING FOR HVAC and Section 23 09 23 DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC requirements. The Contractor shall complete the checklists. Completed checklists shall be submitted to the VA and to the Commissioning Agent for review. The Commissioning Agent may spot check a sample of completed checklists. If the Commissioning Agent determines that the information provided on the checklist is not accurate, the Commissioning Agent will return the marked-up checklist to the Contractor for correction and resubmission. If the Commissioning Agent determines that a significant number of completed checklists for similar equipment are not accurate, the Commissioning Agent will select a broader sample of checklists for review. If the Commissioning Agent determines that a significant

Lebanon VAMC New Entryway for Building 17 BID DOCUMENTS 02-01-20

number of the broader sample of checklists is also inaccurate, all the checklists for the type of equipment will be returned to the Contractor for correction and resubmission. Refer to SECTION 01 91 00 GENERAL COMMISSIONING REQUIREMENTS for submittal requirements for Pre-Functional Checklists, Equipment Startup Reports, and other commissioning documents.

3.3 CONTRACTORS TESTS

A. Contractor tests as required by other sections of Division 23 shall be scheduled and documented in accordance with Section 01 00 00 GENERAL REQUIREMENTS. All testing shall be incorporated into the project schedule. Contractor shall provide no less than 7 calendar days' notice of testing. The Commissioning Agent will witness selected Contractor tests at the sole discretion of the Commissioning Agent. Contractor tests shall be completed prior to scheduling Systems Functional Performance Testing.

3.4 SYSTEMS FUNCTIONAL PERFORMANCE TESTING:

A. The Commissioning Process includes Systems Functional Performance Testing that is intended to test systems functional performance under steady state conditions, to test system reaction to changes in operating conditions, and system performance under emergency conditions. The Commissioning Agent will prepare detailed Systems Functional Performance Test procedures for review and approval by the Resident Engineer. The Contractor shall review and comment on the tests prior to approval. The Contractor shall provide the required labor, materials, and test equipment identified in the test procedure to perform the tests. The Contractor shall sign the test reports to verify tests were performed. See Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS, for additional requirements.

3.5 TRAINING OF VA PERSONNEL

A. Training of the VA operation and maintenance personnel is required in cooperation with the Resident Engineer and Commissioning Agent. Provide competent, factory authorized personnel to provide instruction to operation and maintenance personnel concerning the location, operation, and troubleshooting of the installed systems. Contractor shall submit training agendas and trainer resumes in accordance with the requirements of Section 01 91 00 GENERAL COMMISSIONING

Lebanon VAMC New Entryway for Building 17 BID DOCUMENTS 02-01-20 REQUIREMENTS. The instruction shall be scheduled in coordination with the VA Resident Engineer after submission and approval of formal

training plans. Refer to Section 01 91 00 GENERAL COMMISSIONING REQUIREMENTS and Division 23 Sections for additional Contractor training requirements.

----- END -----

SECTION 23 09 23 DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC

PART 1 - GENERAL

1.1 DESCRIPTION

- A. General Contractor shall provide direct-digital control system(s) as indicated on the project documents, point list, interoperability tables, drawings and as described in these specifications. Include a complete and working direct-digital control system. Include all engineering, programming, configuration/setup hardware and software, controls and installation materials, installation labor, commissioning and start-up, training, final project documentation and warranty. A System Integrator and Direct Digital Controls Contractor shall be two separate direct subcontractors of General Contractor.
 - The existing direct digital control system is by Intellemation and shall remain. The existing Intellemation system shall be expanded to incorporate the new equipment, sequences, and scope shown on the project documents. The existing Intellemation system consists of high-speed, peer-to-peer network of DDC controllers, and a control system server
 - 2. All new building controllers shall be native BACnet. All new BACNet controllers, devices and components shall be listed by BACnet Testing Laboratories. All new BACNet controllers, devices and components shall be accessible using a HTML5 Web browser interface. Browsers shall not require the use of an extension or add on software in order to access aforementioned controllers, devices, and components.
 - a. If used, gateways shall be BTL listed.
 - b. If used, gateways shall provide all object properties and read/write services shown on VA-approved interoperability schedules.
 - 3. The work administered by this Section of the technical specifications shall include all labor, materials, special tools, equipment, enclosures, power supplies, software, software licenses, Project specific software configurations and database entries, interfaces, wiring, tubing, installation, labeling, engineering, calibration, documentation, submittals, testing, verification, training services, permits and licenses, transportation, shipping,

handling, administration, supervision, management, insurance, Warranty, specified services and any other items required for a complete and fully functional Controls System.

- 4. The control systems shall be designed such that each mechanical system shall operate under stand-alone mode. The A/E shall designate what each "mechanical systems" is composed of. The contractor administered by this Section of the technical specifications shall provide controllers for each mechanical system. In the event of a network communication failure, or the loss of any other controller, the control system shall continue to operate independently.
- B. Some products are furnished but not installed by the contractor administered by this Section of the technical specifications. The contractor administered by this Section of the technical specifications shall formally coordinate in writing and receive from other contractors formal acknowledgements in writing prior to submission the installation of the products. These products include but are not limited to the following:
 - 1. Control valves.
 - 2. Flow switches.
 - 3. Terminal unit controllers.
- C. Some products are installed but not furnished by the contractor administered by this Section of the technical specifications. The contractor administered by this Section of the technical specifications shall formally coordinate in writing and receive from other contractors formal acknowledgements in writing prior to submission the procurement of the products. These products include but are not limited to the following:

1. Factory-furnished accessory thermostats and sensors furnished with unitary equipment.

- D. Some products are not provided by, but are nevertheless integrated with the work executed by, the contractor administered by this Section of the technical specifications. These products include but are not limited to the following:
 - Fire alarm systems. If zoned fire alarm is required by the projectspecific requirements, this interface shall require multiple relays, which are provided and installed by the fire alarm system contractor, to be monitored.42. Terminal units' velocity sensors

- Unitary HVAC equipment (rooftop air conditioning units) controls.
 These include:
 - a. Discharge temperature control.
 - b. Economizer control.
 - c. Flowrate control.
 - d. Setpoint reset.
 - e. Time of day indexing.
 - f. Status alarm.
- Variable frequency drives. These controls, if not native BACnet, will require a BACnet Gateway.
- E. Responsibility Table:

Work/Item/System	Furnish	Install	Low Voltage Wiring	Line Power
Control system low voltage and communication wiring	23 09 23	23 09 23	23 09 23	N/A
Terminal units	23	23	N/A	26
Controllers for terminal units	23 09 23	23	23 09 23	26
LAN conduits and raceway	23 09 23	23 09 23	N/A	N/A
Automatic dampers (not furnished with equipment)	23 09 23	23	N/A	N/A
Automatic damper actuators	23 09 23	23 09 23	23 09 23	23 09 23
Manual valves	23	23	N/A	N/A
Automatic valves	23 09 23	23	23 09 23	23 09 23
Pipe insertion devices and taps, flow and pressure stations.	23	23	N/A	N/A
Current Switches	23 09 23	23 09 23	23 09 23	N/A
Control Relays	23 09 23	23 09 23	23 09 23	N/A
Power distribution system monitoring interfaces	23 09 23	23 09 23	23 09 23	26
All control system nodes, equipment, housings, enclosures and panels.	23 09 23	23 09 23	23 09 23	26
Smoke detectors	28 31 00	28 31 00	28 31 00	28 31 00
VFDs	23	26	23 09 23	26
Fire Alarm shutdown relay interlock wiring	28	28	28	26

Work/Item/System	Furnish	Install	Low Voltage Wiring	Line Power
Control system monitoring of fire alarm smoke control relay	28	28	23 09 23	28
Packaged RTU space-mounted controls (not furnished with equipment)	23 09 23	23 09 23	23 09 23	26
Packaged RTU unit-mounted controls (not furnished with equipment)	23 09 23	23 09 23	23 09 23	26

- F. This facility's existing direct-digital control (DDC) system is manufactured by Delta Controls, Inc. The existing system's top-end communications is via BACnet. The contractor administered by this Section of the technical specifications shall observe the capabilities, communication network, services, and spare capacity of the existing control system prior to beginning work.
- G. The existing system shall be expanded to incorporate the new equipment, sequences, and scope shown on the project drawings. The graphical interface shall be modified to reflect the new equipment and all associated points.
- H. This campus has standardized on an existing standard ASHRAE Standard 135, BACnet/IP Control System supported by a preselected controls service company. This entity is referred to as the "Control System Integrator" in this Section of the technical specifications. The Control system integrator is responsible for ECC system graphics and expansion. It also prescribes control system-specific commissioning/ verification procedures to the contractor administered by this Section of the technical specification. It lastly provides limited assistance to the contractor administered by this Section of the technical specification in its commissioning/verification work.
 - The General Contractor of this project shall directly hire the Control System Integrator in a contract separate from the contract procuring the controls contractor administered by this Section of the technical specifications.
 - The contractor administered by this Section of the technical specifications shall coordinate all work with the Control System Integrator. The contractor administered by this Section of the

Lebanon VAMC New Entryway for Building 17 BID DOCUMENTS 08-01-20

technical specifications shall integrate the ASHRAE Standard 135, BACnet/IP control network(s) with the Control System Integrator's B-AWS through an Ethernet connection provided by either the Control System Integrator or VA.

- 3. The contractor administered by this Section of the technical specifications shall provide a peer-to-peer networked, stand-alone, distributed control system. This direct digital control (DDC) system at least shall include one portable operator terminal laptop, one digital display unit, microprocessor-based controllers, instrumentation, end control devices, wiring, piping, software, and related systems. This contractor is responsible for all device mounting and wiring.
- 4. Responsibility Table:

Item/Task	Section	Control	VA
	23 09 23	system	
	contactor	integrator	
ECC expansion		Х	
ECC programming		Х	
Devices, controllers, control panels	Х		
and equipment			
Point addressing: all hardware and	Х		
software points including setpoint,			
calculated point, data point(analog/			
binary), and reset schedule point			
Point mapping		Х	
Network Programming	Х		
ECC Graphics		Х	
Controller programming and sequences	Х		
Integrity of LAN communications			Х
Electrical wiring	Х		
Operator system training		Х	
LAN connections to devices			Х
LAN connections to ECC			Х
IP addresses			Х
Overall system verification (Cx)		Х	
Controller and system verification	Х		

I. The direct-digital control system shall start and stop equipment, move (position) damper actuators and valve actuators, and vary speed of equipment to execute the mission of the control system. Use electricity as the motive force for all damper and valve actuators.

1.2 RELATED WORK

- A. Section 23 22 13, Steam and Condensate Heating Piping.
- B. Section 23 31 00, HVAC Ducts and Casings.
- C. Section 23 36 00, Air Terminal Units.
- D. Section 23 81 00, Decentralized Unitary HVAC Equipment.

- E. Section 26 05 11, Requirements for Electrical Installations.
- F. Section 26 05 19, Low-Voltage Electrical Power Conductors and Cables (600 Volts and Below).
- G. Section 26 05 33, Raceway and Boxes for Electrical Systems.
- H. Section 26 27 26, Wiring Devices.
- I. Section 26 29 11, Motor Starters.
- J. Section 27 15 00, Communications Horizontal Cabling
- K. Section 28 31 00, Fire Detection and Alarm.

1.3 DEFINITION

- A. Algorithm: A logical procedure for solving a recurrent mathematical problem; A prescribed set of well-defined rules or processes for the solution of a problem in a finite number of steps.
- B. Analog: A continuously varying signal value (e.g., temperature, current, velocity etc.
- C. BACnet: A Data Communication Protocol for Building Automation and Control Networks -as defined by ANSI/ASHRAE Standard 135. This communications protocol allows diverse building automation devices to communicate data and services over a network.
- D. BACnet/IP: Annex J of Standard 135. It defines and allows for using a reserved UDP socket to transmit BACnet messages over IP networks. A BACnet/IP network is a collection of one or more IP sub-networks that share the same BACnet network number.
- E. BACnet Internetwork: Two or more BACnet networks connected with routers. The two networks may use different LAN technologies.
- F. BACnet Network: One or more BACnet segments that have the same network address and are interconnected by bridges at the physical and data link layers.
- G. BACnet Segment: One or more physical segments of BACnet devices on a BACnet network, connected at the physical layer by repeaters.
- H. BACnet Broadcast Management Device (BBMD): A communications device which broadcasts BACnet messages to all BACnet/IP devices and other BBMDs connected to the same BACnet/IP network.
- I. BACnet Interoperability Building Blocks (BIBBs): BACnet Interoperability Building Blocks (BIBBs) are collections of one or more BACnet services. These are prescribed in terms of an "A" and a "B" device. Both of these devices are nodes on a BACnet internetwork.

- J. BACnet Testing Laboratories (BTL). The organization responsible for testing products for compliance with the BACnet standard, operated under the direction of BACnet International.
- K. Baud: It is a signal change in a communication link. One signal change can represent one or more bits of information depending on type of transmission scheme. Simple peripheral communication is normally one bit per Baud. (e.g., Baud rate = 78,000 Baud/sec is 78,000 bits/sec, if one signal change = 1 bit).
- L. Binary: A two-state system where a high signal level represents an "ON" condition and an "OFF" condition is represented by a low signal level.
- M. BMP or bmp: Suffix, computerized image file, used after the period in a DOS-based computer file to show that the file is an image stored as a series of pixels.
- N. Bus Topology: A network topology that physically interconnects workstations and network devices in parallel on a network segment.
- O. Control Unit (CU): Generic term for any controlling unit, stand-alone, microprocessor based, digital controller residing on secondary LAN or Primary LAN, used for local controls or global controls
- P. Deadband: A temperature range over which no heating or cooling is supplied, i.e., 22-25 degrees C (72-78 degrees F), as opposed to a single point change over or overlap).
- Q. Device: a control system component that contains a BACnet Device Object and uses BACnet to communicate with other devices.
- R. Device Object: Every BACnet device requires one Device Object, whose properties represent the network visible properties of that device. Every Device Object requires a unique Object Identifier number on the BACnet internetwork. This number is often referred to as the device instance.
- S. Device Profile: A specific group of services describing BACnet capabilities of a device, as defined in ASHRAE Standard 135-2008, Annex L. Standard device profiles include BACnet Operator Workstations (B-OWS), BACnet Building Controllers (B-BC), BACnet Advanced Application Controllers (B-AAC), BACnet Application Specific Controllers (B-ASC), BACnet Smart Actuator (B-SA), and BACnet Smart Sensor (B-SS). Each device used in new construction is required to have a PICS statement listing which service and BIBBs are supported by the device.

Lebanon VAMC New Entryway for Building 17 BID DOCUMENTS 08-01-20

- T. Diagnostic Program: A software test program, which is used to detect and report system or peripheral malfunctions and failures. Generally, this system is performed at the initial startup of the system.
- U. Direct Digital Control (DDC): Microprocessor based control including Analog/Digital conversion and program logic. A control loop or subsystem in which digital and analog information is received and processed by a microprocessor, and digital control signals are generated based on control algorithms and transmitted to field devices in order to achieve a set of predefined conditions.
- V. Distributed Control System: A system in which the processing of system data is decentralized and control decisions can and are made at the subsystem level. System operational programs and information are provided to the remote subsystems and status is reported back to the Engineering Control Center. Upon the loss of communication with the Engineering Control center, the subsystems shall be capable of operating in a stand-alone mode using the last best available data.
- W. Download: The electronic transfer of programs and data files from a central computer or operation workstation with secondary memory devices to remote computers in a network (distributed) system.
- X. DXF: An AutoCAD 2-D graphics file format. Many CAD systems import and export the DXF format for graphics interchange.
- Y. Electrical Control: A control circuit that operates on line or low voltage and uses a mechanical means, such as a temperature sensitive bimetal or bellows, to perform control functions, such as actuating a switch or positioning a potentiometer.
- Z. Electronic Control: A control circuit that operates on low voltage and uses a solid-state components to amplify input signals and perform control functions, such as operating a relay or providing an output signal to position an actuator.
- AA. Engineering Control Center (ECC): The centralized control point for the intelligent control network. The ECC comprises of personal computer and connected devices to form a single workstation.
- BB. Ethernet: A trademark for a system for exchanging messages between computers on a local area network using coaxial, fiber optic, or twisted-pair cables.

- CC. Firmware: Firmware is software programmed into read only memory (ROM) chips. Software may not be changed without physically altering the chip.
- DD. Gateway: Communication hardware connecting two or more different protocols. It translates one protocol into equivalent concepts for the other protocol. In BACnet applications, a gateway has BACnet on one side and non-BACnet (usually proprietary) protocols on the other side.
- EE. GIF: Abbreviation of Graphic interchange format.
- FF. Graphic Program (GP): Program used to produce images of air handler systems, fans, chillers, pumps, and building spaces. These images can be animated and/or color-coded to indicate operation of the equipment.
- GG. Graphic Sequence of Operation: It is a graphical representation of the sequence of operation, showing all inputs and output logical blocks.
- HH. I/O Unit: The section of a digital control system through which information is received and transmitted. I/O refers to analog input (AI, digital input (DI), analog output (AO) and digital output (DO). Analog signals are continuous and represent temperature, pressure, flow rate etc, whereas digital signals convert electronic signals to digital pulses (values), represent motor status, filter status, on-off equipment etc.
- II. I/P: a method for conveying and routing packets of information over LAN paths. User Datagram Protocol (UDP) conveys information to "sockets" without confirmation of receipt. Transmission Control Protocol (TCP) establishes "sessions", which have end-to-end confirmation and guaranteed sequence of delivery.
- JJ. JPEG: A standardized image compression mechanism stands for Joint Photographic Experts Group, the original name of the committee that wrote the standard.
- KK. Local Area Network (LAN): A communication bus that interconnects operator workstation and digital controllers for peer-to-peer communications, sharing resources and exchanging information.
- LL. Network Repeater: A device that receives data packet from one network and rebroadcasts to another network. No routing information is added to the protocol.
- MM. MS/TP: Master-slave/token-passing (ISO/IEC 8802, Part 3). It uses twisted-pair wiring for relatively low speed and low-cost communication.

- NN. Native BACnet Device: A device that uses BACnet as its primary method of communication with other BACnet devices without intermediary gateways. A system that uses native BACnet devices at all levels is a native BACnet system.
- OO. Network Number: A site-specific number assigned to each network segment to identify for routing. This network number must be unique throughout the BACnet internetwork.
- PP. Object: The concept of organizing BACnet information into standard components with various associated properties. Examples include analog input objects and binary output objects.
- QQ. Object Identifier: An object property used to identify the object, including object type and instance. Object Identifiers must be unique within a device.
- RR. Object Properties: Attributes of an object. Examples include present value and high limit properties of an analog input object. Properties are defined in ASHRAE 135; some are optional and some are required. Objects are controlled by reading from and writing to object properties.
- SS. Operating system (OS): Software, which controls the execution of computer application programs.
- TT. PCX: File type for an image file. When photographs are scanned onto a personal computer they can be saved as PCX files and viewed or changed by a special application program as Photo Shop.
- UU. Peripheral: Different components that make the control system function as one unit. Peripherals include monitor, printer, and I/O unit.
- VV. Peer-to-Peer: A networking architecture that treats all network
 stations as equal partners- any device can initiate and respond to
 communication with other devices.
- WW. PICS: Protocol Implementation Conformance Statement, describing the BACnet capabilities of a device. All BACnet devices have published PICS.
- XX. PID: Proportional, integral, and derivative control, used to control modulating equipment to maintain a setpoint.
- YY. Repeater: A network component that connects two or more physical segments at the physical layer.

- ZZ. Router: a component that joins together two or more networks using different LAN technologies. Examples include joining a BACnet Ethernet LAN to a BACnet MS/TP LAN.
- AAA. Sensors: devices measuring state points or flows, which are then transmitted back to the DDC system.
- BBB. Thermostats : devices measuring temperatures, which are used in control of standalone or unitary systems and equipment not attached to the DDC system.

1.4 QUALITY ASSURANCE

- A. Criteria:
 - 1. Single Source Responsibility of subcontractor: Either the DDC Contractor or the System Integrator shall obtain hardware and software supplied under this Section and delegate the responsibility to a single source controls installation subcontractor. The Integration subcontractor shall be responsible for the complete design, installation, integration, and commissioning of the system. The controls subcontractor shall be in the business of design, installation and service of such building automation control systems similar in size and complexity.
 - 2. Equipment and Materials: Equipment and materials shall be cataloged products of manufacturers regularly engaged in production and installation of HVAC control systems. Products shall be manufacturer's latest standard design and have been tested and proven in actual use.
 - 3. The controls subcontractor shall provide a list of no less than five similar projects which have building control systems as specified in this Section. These projects must be on-line and functional such that the Department of Veterans Affairs (VA) representative could observe the control systems in full operation.
 - 4. The controls subcontractor shall have an in-place facility within 50 miles with technical staff, spare parts inventory for the next five (5) years, and necessary test and diagnostic equipment to support the control systems.
 - 5. The controls subcontractor shall have minimum of three years of experience in design and installation of building automation systems similar in performance to those specified in this Section. Provide evidence of experience by submitting resumes of the project manager,

Lebanon VAMC New Entryway for Building 17 BID DOCUMENTS 08-01-20

the local branch manager, project engineer, the application engineering staff, and the electronic technicians who would be involved with the supervision, the engineering, and the installation of the control systems. Training and experience of these personnel shall not be less than three years. Failure to disclose this information will be a ground for disgualification of the supplier.

- 6. Provide a competent and experienced Project Manager employed by the Controls Contractor. The Project Manager shall be supported as necessary by other Contractor employees in order to provide professional engineering, technical and management service for the work. The Project Manager shall attend scheduled Project Meetings as required and shall be empowered to make technical, scheduling and related decisions on behalf of the Controls Contractor.
- B. Codes and Standards:
 - 1. All work shall conform to the applicable Codes and Standards.
 - Electronic equipment shall conform to the requirements of FCC Regulation, Part 15, Governing Radio Frequency Electromagnetic Interference, and be so labeled.

1.5 PERFORMANCE

- A. The system shall conform to the following:
 - Performance: Programmable Controllers shall be able to execute DDC PID control loops at a selectable frequency from at least once every one (1) second. The controller shall scan and update the process value and output generated by this calculation at this same frequency.
 - Reporting Accuracy: Listed below are minimum acceptable reporting end-to-end accuracies for all values reported by the specified system:

Measured Variable	Reported Accuracy
Space temperature	±0.5°C (±1°F)
Ducted air temperature	±0.5°C [±1°F]
Outdoor air temperature	±1.0°C [±2°F]
Dew Point	±1.5°C [±3°F]
Relative humidity	±2°% RH
Air flow (terminal)	±10% of reading
Air flow (measuring stations)	±5% of reading

Carbon Dioxide (CO_2)	±50 ppm
Air pressure (ducts)	±25 Pa [±0.1" w.c.]
Air pressure (space)	±0.3 Pa [±0.001" w.c.]

3. Control stability and accuracy: Control sequences shall maintain

measured variable at setpoint within the following tolerances:

Controlled Variable	Control Accuracy	Range of Medium
Air Pressure	±50 Pa (±0.2 in. w.g.)	0-1.5 kPa (0-6 in. w.g.)
Air Pressure	±3 Pa (±0.01 in. w.g.)	-25 to 25 Pa
		(-0.1 to 0.1 in. w.g.)
Airflow	±10% of full scale	
Space Temperature	±1.0°C (±2.0°F)	
Duct Temperature	±1.5°C (±3°F)	

 Extent of direct digital control: control design shall allow for at least the points indicated on the points lists on the drawings.

1.6 WARRANTY

- A. Labor and materials for control systems shall be warranted for a period as specified under Warranty in FAR clause 52.246-21.
- B. Control system failures during the warranty period shall be adjusted, repaired, or replaced at no cost or reduction in service to the owner. The system includes all computer equipment, transmission equipment, and all sensors and control devices.
- C. The on-line support service shall allow the Controls supplier to dial out over telephone lines to or connect via (through password-limited access) VPN through the internet to monitor and control the facility's building automation system. This remote connection to the facility shall be within two (2) hours of the time that the problem is reported. This coverage shall include normal business hours, after business hours, weekend and holidays. If the problem cannot be resolved with online support services, the Controls supplier shall dispatch the qualified personnel to the job site to resolve the problem within 24 hours after the problem is reported.
- D. Controls subcontractor shall be responsible for temporary operations and maintenance of the control systems during the construction period until final commissioning, training of facility operators and acceptance of the project by VA.

1.7 SUBMITTALS

- A. Submit shop drawings in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturer's literature and data for all components including but not limited to the following:
 - 1. A wiring diagram for each type of input device and output device including DDC controllers, modems, repeaters, etc. Diagram shall show how the device is wired and powered, showing typical connections at the digital controllers and each power supply, as well as the device itself. Show for all field connected devices, including but not limited to, control relays, motor starters, electric or electronic actuators, and temperature pressure, flow and humidity sensors and transmitters.
 - 2. A diagram of each terminal strip, including digital controller terminal strips, terminal strip location, termination numbers and the associated point names.
 - 3. Control dampers and control valves schedule, including the size and pressure drop.
 - 4. Catalog cut sheets of all equipment used. This includes, but is not limited to software (by manufacturer and by third parties), DDC controllers, panels, peripherals, airflow measuring stations and associated components, and auxiliary control devices such as sensors, actuators, and control dampers. When manufacturer's cut sheets apply to a product series rather than a specific product, the data specifically applicable to the project shall be highlighted. Each submitted piece of literature and drawings should clearly reference the specification and/or drawings that it supposed to represent.
 - Sequence of operations for each system and the associated control diagrams. Equipment and control labels shall correspond to those shown on the drawings.
 - 6. Color prints of proposed graphics with a list of points for display.
 - Furnish a BACnet Protocol Implementation Conformance Statement (PICS) for each BACnet-compliant device.
 - 8. Schematic wiring diagrams for all control, communication and power wiring. Provide a schematic drawing of the central system installation. Label all cables and ports with computer

manufacturers' model numbers and functions. Show all interface wiring to the control system.

- 9. An instrumentation list for each controlled system. Each element of the controlled system shall be listed in table format. The table shall show element name, type of device, manufacturer, model number, and product data sheet number.
- Riser diagrams of wiring between central control unit (CCU) and all control panels.
- 11. Plan drawings showing routing of LAN and locations of control panels, controllers, routers, gateways, and larger controlled devices.
- 12. Construction details for all installed conduit, cabling, raceway, cabinets, and similar. Construction details of all penetrations and their protection.
- 13. Quantities of submitted items may be reviewed but it is the responsibility of the contractor administered by this Section of the technical specifications to provide sufficient quantities for a complete and working system.
- C. Product Certificates: Compliance with Article, QUALITY ASSURANCE.
- D. Licenses: Provide licenses for all software residing on and used by the Controls Systems, and portable OWS and transfer these licenses to the Owner prior to completion.
- E. As Built Control Drawings:
 - Furnish three (3) copies of as-built drawings for each control system. The documents shall be submitted for approval prior to final completion.
 - Furnish one (1) set of applicable control system prints for each mechanical system for wall mounting. The documents shall be submitted for approval prior to final completion.
 - 3. Furnish one (1) CD-ROM in CAD DWG and/or .DXF format for the drawings noted in subparagraphs above.
- F. Operation and Maintenance (O/M) Manuals):
 - 1. Submit in accordance with Article, INSTRUCTIONS, in Specification Section 01 00 00, GENERAL REQUIREMENTS.
 - 2. Include the following documentation:
 - General description and specifications for all components, including logging on/off, alarm handling, producing trend

reports, overriding computer control, and changing set points and other variables.

- b. Detailed illustrations of all the control systems specified for ease of maintenance and repair/replacement procedures, and complete calibration procedures.
- c. One copy of the final version of all software provided including operating systems, programming language, operator workstation software, and graphics software.
- d. Complete troubleshooting procedures and guidelines for all systems.
- e. Complete operating instructions for all systems.
- f. Recommended preventive maintenance procedures for all system components including a schedule of tasks for inspection, cleaning and calibration. Provide a list of recommended spare parts needed to minimize downtime.
- g. Training Manuals: Submit the course outline and training material to the Owner for approval three (3) weeks prior to the training to VA facility personnel. These persons will be responsible for maintaining and the operation of the control systems, including programming. The Owner reserves the right to modify any or all of the course outline and training material.
- h. Licenses, guaranty, and other pertaining documents for all equipment and systems.
- G. Submit Performance Report to COR prior to final inspection.

1.8 INSTRUCTIONS

- A. Instructions to VA operations personnel: Perform in accordance with Article, INSTRUCTIONS, in Specification Section 01 00 00, GENERAL REQUIREMENTS, and as noted below.
 - First Phase: Formal instructions to the VA facilities personnel for a total of 16 hours, given in multiple training sessions (each no longer than four hours in length), conducted sometime between the completed installation and prior to the performance test period of the control system, at a time mutually agreeable to the Contractor and the VA.
 - 2. Second Phase: This phase of training shall comprise of on the job training during start-up, checkout period, and performance test period. VA facilities personnel will work with the Contractor's

installation and test personnel on a daily basis during start-up and checkout period. During the performance test period, controls subcontractor will provide 16 hours of instructions, given in multiple training sessions (each no longer than four hours in length), to the VA facilities personnel.

- 3. The O/M Manuals shall contain approved submittals as outlined in Article 1.7, SUBMITTALS. The Controls subcontractor will review the manual contents with VA facilities personnel during second phase of training.
- Training shall be given by direct employees of the controls system subcontractor.

1.9 PROJECT CONDITIONS (ENVIRONMENTAL CONDITIONS OF OPERATION)

- A. The peripheral devices and system support equipment shall be designed to operate in ambient condition of 20 to 35° C (65 to 90° F) at a relative humidity of 20 to 80% non-condensing.
- B. The Controllers used outdoors shall be mounted in NEMA 4 waterproof enclosures, and shall be rated for operation at -40 to $65^{\circ}C$ (-40 to $150^{\circ}F$).
- C. All electronic equipment shall operate properly with power fluctuations of plus 10 percent to minus 15 percent of nominal supply voltage.
- D. Sensors and controlling devices shall be designed to operate in the environment, which they are sensing or controlling.

1.10 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE): 135-2017.....BACNET Building Automation and Control Networks
- C. American Society of Mechanical Engineers (ASME):

B16.18-2018.....Cast Copper Alloy Solder Joint Pressure
Fittings.
B16.22-2018.....Wrought Copper and Copper Alloy Solder Joint
Pressure Fittings.

D. American Society of Testing Materials (ASTM):

B32-2014.....Standard Specification for Solder Metal B88-2016.....Standard Specifications for Seamless Copper Water Tube VA Project No. 595-668 Lebanon VAMC AE Works Project No. VLEB-010 New Entryway for Building 17 BID DOCUMENTS 08-01-20 B88M-2018..... Standard Specification for Seamless Copper Water Tube (Metric) B280-2019.....Standard Specification for Seamless Copper Tube for Air-Conditioning and Refrigeration Field Service D2737-2018.....Standard Specification for Polyethylene (PE) Plastic Tubing E. Federal Communication Commission (FCC): Rules and Regulations Title 47 Chapter 1-2014 Part 15: Radio Frequency Devices. F. Institute of Electrical and Electronic Engineers (IEEE): 802.3-2018......Information Technology-Telecommunications and Information Exchange between Systems-Local and Metropolitan Area Networks- Specific Requirements-Part 3: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access method and Physical Layer Specifications G. National Fire Protection Association (NFPA): 70-2017...........National Electric Code 90A-2018.....Standard for Installation of Air-Conditioning and Ventilation Systems H. Underwriter Laboratories Inc (UL): 94-2013..... Tests for Flammability of Plastic Materials for Parts and Devices and Appliances 294-2013.....Access Control System Units 486A/486B-2018.....Wire Connectors 555S-2014(R2016).....Standard for Smoke Dampers 916-2015..... Energy Management Equipment

1076-2018..... Proprietary Burglar Alarm Units and Systems

PART 2 - PRODUCTS

2.1 MATERIALS

A. Use new products that the manufacturer is currently manufacturing and that have been installed in a minimum of 25 installations. Spare parts shall be available for at least five years after completion of this contract.

2.2 CONTROLS SYSTEM ARCHITECTURE

- A. General
 - The Controls Systems shall consist of multiple Nodes and associated equipment connected by industry standard digital and communication network arrangements.
 - The building controllers shall be standard products of recognized major manufacturers available through normal PC and computer vendor channels - not "Clones" assembled by a third-party subcontractor.

- 3. The networks shall, at minimum, comprise, as necessary, the following:
 - a. Active processing BACnet-compliant building controllers connected to other BACNet-compliant controllers together with their power supplies and associated equipment.
 - b. Addressable elements, sensors, transducers and end devices.
 - c. Third-party equipment interfaces and gateways as described and required by the Contract Documents.
 - d. Other components required for a complete and working Control Systems as specified.
- B. The Specifications for the individual elements and component subsystems shall be minimum requirements and shall be augmented as necessary by the Contractor to achieve both compliance with all applicable codes, standards, and to meet all requirements of the Contract Documents.
- C. Network Architecture
 - The Controls communication network shall utilize BACnet communications protocol operating over a standard Ethernet LAN and operate at a minimum speed of 100 Mb/sec.
 - The networks shall utilize only copper and optical fiber communication media as appropriate and shall comply with applicable codes, ordinances and regulations.
 - 3. All necessary telephone lines, ISDN lines and internet Service Provider services and connections will be provided by the VA.
- D. Third Party Interfaces:
 - The contractor administered by this Section of the technical specifications shall include necessary hardware, equipment, software and programming to allow data communications between the controls systems and building systems supplied by other trades.
 - 2. Other manufacturers and contractors supplying other associated systems and equipment shall provide their necessary hardware, software and start-up at their cost and shall cooperate fully with the contractor administered by this Section of the technical specifications in a timely manner and at their cost to ensure complete functional integration.

2.3 COMMUNICATION

A. Control products, communication media, connectors, repeaters, hubs, and routers shall comprise a BACnet internetwork. Controller and operator

interface communication shall conform to ANSI/ASHRAE Standard 135, BACnet.

- The Data link / physical layer protocol between the ECC and all B-BC's (for communication) acceptable to the VA throughout its facilities is Ethernet (ISO 8802-3) and BACnet/IP.
- The MS/TP data link / physical layer protocol may be used in new BACnet sub-networks in VA non-healthcare and non-lab (i.e., business and cemetery) facilities.
- B. Each controller shall have a communication port for connection to an operator interface.
- C. Internetwork operator interface and value passing shall be transparent to internetwork architecture.
 - An operator interface connected to a controller shall allow the operator to interface with each internetwork controller as if directly connected. Controller information such as data, status, reports, system software, and custom programs shall be viewable and editable from each internet controller.
 - 2. Inputs, outputs, and control variables used to integrate control strategies across multiple controllers shall be readable by each controller on the internetwork. Program and test all crosscontroller links required to execute specified control system operation. An authorized operator shall be able to edit crosscontroller links by typing a standard object address.
- D. Controllers with real-time clocks shall use the BACnet Time Synchronization service. The system shall automatically synchronize system clocks daily from an operator-designated device via the internetwork. The system shall automatically adjust for daylight savings and standard time as applicable.

2.4 DEVICE NAMING CONVENTION

- A. Device Instances
 - 1. BACnet allows 4194305 unique device instances per BACnet internet
 work. Using Agency's unique device instances are formed as follows:
 "Dev #" = "FFFNNDD" where
 - a. FFF and N are as above and
 - b. DD = 00-99, this allows up to 100 devices per network.
 - 2. Note Special cases, where the network architecture of limiting device numbering to DD causes excessive subnet works. The device

Lebanon VAMC New Entryway for Building 17 BID DOCUMENTS 08-01-20

number can be expanded to DDD and the network number N can become a single digit. In NO case shall the network number N and the device number D exceed 4 digits.

- 3. Facility code assignments:
- 4. 000-400 Building/facility number
- 5. Note that some facilities have a facility code with an alphabetic suffix to denote wings, related structures, etc. The suffix will be ignored. Network numbers for facility codes above 400 will be assigned in the range 000-399.
- C. Device Names
 - 1. Name the control devices based on facility name, location within a facility, the system or systems that the device monitors and/or controls, or the area served. The intent of the device naming is to be easily recognized. Names can be up to 254 characters in length, without embedded spaces. Provide the shortest descriptive, but unambiguous, name. For example, in building #123 prefix the number with a "B" followed by the building number, if there is only one chilled water pump "CHWP-1", a valid name would be "B123.CHWP. 1.STARTSTOP". If there are two pumps designated "CHWP-1", one in a basement mechanical room (Room 0001) and one in a penthouse mechanical room (Room PH01), the names could be "B123.R0001.CHWP.1. STARTSTOP" or "B123.RPH01.CHWP.1.STARTSTOP". In the case of unitary controllers, for example a VAV box controller, a name might be "B123.R101.VAV". These names should be used for the value of the "Object_Name" property of the BACnet Device objects of the controllers involved so that the BACnet name and the EMCS name are the same.

2.5 BACNET DEVICES

A. All BACnet Devices - controllers, gateways, routers, actuators, Operator Displays, and sensors shall conform to BACnet Device Profiles and shall be BACnet Testing Laboratories (BTL) -Listed as conforming to those Device Profiles. Protocol Implementation Conformance Statements (PICSs), describing the BACnet capabilities of the Devices shall be published and available for the Devices through links in the BTL website.

- BACnet Building Controllers, shall conform to the BACnet B-BC Device Profile, and shall be BTL-Listed as conforming to the B-BC Device Profile. The Device's PICS shall be submitted.
- BACnet Advanced Application Controllers shall conform to the BACnet B-AAC Device Profile and shall be BTL-Listed as conforming to the B-AAC Device Profile. The Device's PICS shall be submitted.
- 3. BACnet Application Specific Controllers shall conform to the BACnet B-ASC Device Profile and shall be BTL-Listed as conforming to the B-ASC Device Profile. The Device's PICS shall be submitted.
- BACnet Smart Actuators shall conform to the BACnet B-SA Device Profile and shall be BTL-Listed as conforming to the B-SA Device Profile. The Device's PICS shall be submitted.
- 5. BACnet Smart Sensors shall conform to the BACnet B-SS Device Profile and shall be BTL-Listed as conforming to the B-SS Device Profile. The Device's PICS shall be submitted.
- 6. BACnet routers and gateways shall conform to the BACnet B-OTH Device Profile, and shall be BTL-Listed as conforming to the B-OTH Device Profile. The Device's PICS shall be submitted.

2.6 CONTROLLERS

- A. General. Provide an adequate number of BTL listed B-BC building controllers, BTL listed B-AAC, BTL listed B-ASC, BTL listed B-SA, and BTL listed B-SS's to achieve the performance specified in the Part 1 Article on "System Performance." Each of these controllers shall meet the following requirements.
 - 1. Communication.
 - a. Each B-BC controller shall reside on a BACnet network using the ISO 8802-3 (Ethernet) Data Link/Physical layer protocol for its communications.
 - b. Each B-BC controller shall provide a service communication port using BACnet Data Link/Physical layer protocol for connection to a portable operator's terminal. If this port is not available built into the controller, contractor is to install a 4 port unmanaged switch inside the B-BC control cabinet.
 - Keypad. A local keypad and display shall be provided for each controller. The keypad shall be provided for interrogating and editing data. Provide a system security password shall be available to prevent unauthorized use of the keypad and display.

- 3. Serviceability. Provide diagnostic LEDs for power, communication, and processor. All wiring connections shall be made to fieldremovable, modular terminal strips or to a termination card connected by a ribbon cable.
- 4. Memory. The controller shall maintain all BIOS and programming information in the event of a power loss for at least 72 hours.
- 5. The controller shall be able to operate at 90% to 110% of nominal voltage rating and shall perform an orderly shutdown below 80% nominal voltage. Controller operation shall be protected against electrical noise of 5 to 120 Hz and from keyed radios up to 5 W at 1 m (3 ft).
- Transformer. Power supply for the ASC must be rated at a minimum of 125% of B-ASC power consumption and shall be of the fused or current limiting type.
- B. Provide BTL-Listed B-ASC application specific controllers for each piece of equipment for which they are constructed. Application specific controllers shall communicate with other BACnet devices on the internetwork using the BACnet Read (Execute) Property service.
 - Each B-ASC shall be capable of stand-alone operation and shall continue to provide control functions without being connected to the network.
 - Each B-ASC will contain sufficient I/O capacity to control the target system.
 - 3. Communication.
 - a. Each controller shall reside on a BACnet network using the ISO 8802-3 (Ethernet) Data Link/Physical layer protocol for its communications. Each building controller also shall perform BACnet routing if connected to a network of custom application and application specific controllers.
 - b. Each controller shall have a BACnet Data Link/Physical layer compatible connection for a laptop computer or a portable operator's tool. This connection shall be extended to a space temperature sensor port where shown.
 - 4.Serviceability. Provide diagnostic LEDs for power, communication, and processor. All wiring connections shall be made to field-removable, modular terminal strips or to a termination card connected by a ribbon cable.

- 5. Memory. The application specific controller shall use nonvolatile memory and maintain all BIOS and programming information in the event of a power loss.
- 6. Immunity to power and noise. Controllers shall be able to operate at 90% to 110% of nominal voltage rating and shall perform an orderly shutdown below 80%. Operation shall be protected against electrical noise of 5-120 Hz and from keyed radios up to 5 W at 1 m (3 ft).
- C. Direct Digital Controller Software
 - The software programs specified in this section shall be commercially available, concurrent, multi-tasking operating system and support the use of software application that operates under Microsoft Windows.
 - All points shall be identified by up to 30-character point name and 16-character point descriptor. The same names shall be used at the ECC.
 - 3. All control functions shall execute within the stand-alone control units. All new controllers installed will also include all software and/or hardware required to program, commission, or alter the sequence of operation of said controller(s). Controllers requiring software or hardware that is not commercially available will not be allowed. Installation of software and/or hardware for controller configuration will be the responsibility of the DDC contractor. COR will direct to install said hardware and/or software on either the B-AWS or portable operator terminal. The VA shall be able to customize control strategies and sequences of operations defining the appropriate control loop algorithms and choosing the optimum loop parameters without requiring the services of a DDC contractor.
 - 4. All controllers shall be capable of being programmed to utilize stored default values for assured fail-safe operation of critical processes. Default values shall be invoked upon sensor failure or, if the primary value is normally provided by the central or another CU, or by loss of bus communication. Individual application software packages shall be structured to assume a fail-safe condition upon loss of input sensors. Loss of an input sensor shall result in output of a sensor-failed message at the ECC. Each ACU and RCU shall have capability for local readouts of all functions. The UCUs shall be read remotely.

- 5. All DDC control loops shall be able to utilize any of the following control modes:
 - a. Two position (on-off, slow-fast) control.
 - b. Proportional control.
 - c. Proportional plus integral (PI) control.
 - d. Proportional plus integral plus derivative (PID) control. All PID programs shall automatically invoke integral wind up prevention routines whenever the controlled unit is off, under manual control of an automation system or time-initiated program.
 - e. Automatic tuning of control loops.
- 6. System Security: Operator access shall be secured using individual password and operator's name. Passwords shall restrict the operator to the level of object, applications, and system functions assigned to him. A minimum of three (3)or a maximum of six (6) levels of security for operator access shall be provided.
- 7. Application Software: The controllers shall provide the following programs as a minimum for the purpose of optimizing energy consumption while maintaining comfortable environment for occupants. All application software shall reside and run in the system digital controllers. Editing of the application shall occur at the ECC or via a portable operator's terminal, when it is necessary, to access directly the programmable unit.
 - a. Economizer: An economizer program shall be provided for VAV systems. This program shall control the position of rooftop unit relief, return, and outdoors dampers. If the outdoor air dry bulb temperature and humidity fall below changeover set point the energy control center will modulate the dampers to provide 100 percent outdoor air. The operator shall be able to override the economizer cycle and return to minimum outdoor air operation at any time.
 - b. Night Setback/Morning Warm up Control: The system shall provide the ability to automatically adjust set points for this mode of operation.
 - c. Optimum Start/Stop (OSS): The OSS program shall start HVAC equipment at the latest possible time that will allow the equipment to achieve the desired zone condition by the time of occupancy, and it shall also shut down HVAC equipment at the

Lebanon VAMC New Entryway for Building 17 BID DOCUMENTS 08-01-20

earliest possible time before the end of the occupancy period and still maintain desired comfort conditions. The OSS program shall consider both outside weather conditions and inside zone conditions. The program shall automatically assign longer lead times for weekend and holiday shutdowns. The program shall poll all zones served by the associated RTU and shall select the warmest and coolest zones. These shall be used in the start time calculation. It shall be possible to assign occupancy start times on a per air handler unit basis. The program shall meet the local code requirements for minimum outdoor air while the building is occupied. Modification of assigned occupancy start/stop times shall be possible via the ECC.

- d. Alarm Reporting: The operator shall be able to determine the action to be taken in the event of an alarm. Alarms shall be routed to the ECC based on time and events. An alarm shall be able to start programs, login the event, print and display the messages. The system shall allow the operator to prioritize the alarms to minimize nuisance reporting and to speed operator's response to critical alarms. A minimum of six (6) priority levels of alarms shall be provided for each point.
- e. Remote Communications: The system shall have the ability to dial out in the event of an alarm and alpha-numeric pagers. The alarm message shall include the name of the calling location, the device that generated the alarm, and the alarm message itself. The operator shall be able to remotely access and operate the system using dial up communications. Remote access shall allow the operator to function the same as local access.
- f. Maintenance Management (PM): The program shall monitor equipment status and generate maintenance messages based upon the operators defined equipment run time, starts, and/or calendar date limits. A preventative maintenance alarm shall be printed indicating maintenance requirements based on pre-defined run time. Each preventive message shall include point description, limit criteria and preventative maintenance instruction assigned to that limit. A minimum of 480-character PM shall be provided for each component of units such as air handling units.

2.7 SENSORS (AIR)

- A. Sensors' measurements shall be read back to the DDC system, and shall be visible by the BAS.
- B. Temperature and Humidity Sensors shall be electronic, vibration and corrosion resistant for wall, immersion, and/or duct mounting. Provide all remote sensors as required for the systems.
 - Temperature Sensors: thermistor type for terminal units and Resistance Temperature Device (RTD) with an integral 4-20 mA transmitter type for all other sensors.
 - a. Duct sensors shall be rigid or averaging type as shown on drawings. Averaging sensor shall be a minimum of 1 linear ft of sensing element for each sq ft of cooling/heating coil face area.
 - b. Immersion sensors shall be provided with a separable well made of stainless steel, bronze or monel material. Pressure rating of well is to be consistent with the system pressure in which it is to be installed. Temperature well shall be filled with a thermal compound compatible with installed sensor.
 - c. All space sensors shall be equipped with numerical temperature display on sensor cover and BACNet communication port. Match room thermostats.
 - Public space sensor: setpoint adjustment shall be only through the ECC or through the DDC system's diagnostic device/laptop. Do not provide in-space User set-point adjustment. Provide an opaque keyed-entry cover if needed to restrict in-space User set-point adjustment.
 - d. Outdoor air temperature sensors shall have watertight inlet fittings and be shielded from direct sunlight.
 - e. Wire: Twisted, shielded-pair cable.
 - f. Output Signal: 4-20 mA.
 - 2. Humidity Sensors: Bulk polymer sensing element type.
 - a. Duct and room sensors shall have a sensing range of 20 to 80 percent with accuracy of \pm 2 to \pm 5 percent RH, including hysteresis, linearity, and repeatability.
 - b. Outdoor humidity sensors shall be furnished with element guard and mounting plate and have a sensing range of 0 to 100 percent RH.
 - c. Continuous Output Signal: 4-20 mA
- C. Static Pressure Sensors: Non-directional, temperature compensated.

- 1. 4-20 mA output signal.
- 2. 0 to 5 inches wg for duct static pressure range.
- 3. 0 to 0.25 inch wg for Building static pressure range.
- D. Carbon-Dioxide Sensors:
 - 1. 4-20 mA output signal, linearized to carbon-dioxide concentration in ppm.
 - House electronics in an ABS plastic enclosure. Provide equivalent of NEMA 250, Type 1 enclosure for wall-mounted space applications.
 - 3. Equip with digital display for continuous indication of carbondioxide concentration.
 - 4. Measurement range: Zero to 2000 ppm.
 - 5. Repeatability: Within 1 percent of full scale.
 - Temperature Dependence: Within 0.05 percent of full scale over an operating range of 25 to 110 deg F.
 - 7. Long Term Stability: Within 5 percent of full scale after more than five years.
 - 8. Response Time: Within 60 seconds.
 - 9. Warm-up Time: Within 5 minutes.
 - 10. Provide calibration kit. Turn over to COR at the start of warranty period.
- E. Flow switches:
 - 1. Shall be either paddle or differential pressure type.
 - a. Paddle-type switches (liquid service only) shall be UL Listed, SPDT snap-acting, adjustable sensitivity with NEMA 4 enclosure.
 - b. Differential pressure type switches (air or water service) shall be UL listed, SPDT snap acting, NEMA 4 enclosure, with scale range and differential suitable for specified application.
- F. Current Switches: Current operated switches shall be self powered, solid state with adjustable trip current as well as status, power, and relay command status LED indication. The switches shall be selected to match the current of the application and output requirements of the DDC systems.

2.8 CONTROL CABLES

- A. General:
 - Ground cable shields, drain conductors, and equipment to eliminate shock hazard and to minimize ground loops, common-mode returns,

noise pickup, cross talk, and other impairments. Comply with Sections 27 05 26 and 26 05 26.

- Cable conductors to provide protection against induction in circuits. Crosstalk attenuation within the System shall be in excess of -80 dB throughout the frequency ranges specified.
- 3. Minimize the radiation of RF noise generated by the System equipment so as not to interfere with any audio, video, data, computer main distribution frame (MDF), telephone customer service unit (CSU), and electronic private branch exchange (EPBX) equipment the System may service.
- 4. The as-installed drawings shall identify each cable as labeled, used cable, and bad cable pairs.
- 5. Label system's cables on each end. Test and certify cables in writing to the VA before conducting proof-of-performance testing. Minimum cable test requirements are for impedance compliance, inductance, capacitance, signal level compliance, opens, shorts, cross talk, noise, and distortion, and split pairs on all cables in the frequency ranges used. Make available all cable installation and test records at demonstration to the VA. All changes (used pair, failed pair, etc.) shall be posted in these records as the change occurs.
- 6. Power wiring shall not be run in conduit with communications trunk wiring or signal or control wiring operating at 100 volts or less.
- B. Analogue control cabling shall be not less than No. 18 AWG solid or stranded, with thermoplastic insulated conductors as specified in Section 26 05 21.
- C. Copper digital communication cable between the BASand the B-BC and B-AAC controllers shall be 100BASE-TX Ethernet, Category 5e or 6, not less than minimum 24 American Wire Gauge (AWG) solid, Shielded Twisted Pair (STP) or Unshielded Twisted Pair (UTP), with thermoplastic insulated conductors, enclosed in a thermoplastic outer jacket, as specified in Section 27 15 00.
 - Other types of media commonly used within IEEE Std 802.3 LANs (e.g., 10Base-T and 10Base-2) shall be used only in cases to interconnect with existing media.
- D. All MS/TP communications cables for devices utilizing the EIA-485 standard must be listed for use on EIA-485 networks by the manufacturer

Lebanon VAMC New Entryway for Building 17 BID DOCUMENTS 08-01-20

of the cable. This requirement overrides any cable recommendation by the controller manufacturer. The use of EIA-485 communication cables shall not affect the warranty from the installing DDC contractor. Cables shall have the following characteristic:

- 1. Nominal Impedance: 100-130 Ohms
- 2. Twisted/shielded construction of 1, 1.5, or 2 pairs depending on controller requirements.
- 3. Be plenum rated when required
- Cables designated for use by the cable manufacturer for use in PA or Speaker systems shall not be allowed, regardless of recommendations by the controller manufacturer.
- E. Optical digital communication fiber, if used, shall be Multimode or Singlemode fiber, 62.5/125 micron for multimode or 10/125 micron for singlemode micron with SC or ST connectors as specified in TIA-568-C.1. Terminations, patch panels, and other hardware shall be compatible with the specified fiber and shall be as specified in Section 27 15 00. Fiber-optic cable shall be suitable for use with the 100Base-FX or the 100Base-SX standard (as applicable) as defined in IEEE Std 802.3.

2.9 THERMOSTATS

- A. Wall mounted thermostats shall have manufacturer's recommendation finish, setpoint range, and temperature display and external adjustment:
 - Electronic Thermostats: Solid-state, microprocessor based, programmable to daily, weekend, and holiday schedules.
 - a. Public Space Thermostat: Public space thermostat shall have a thermistor sensor and shall not have a visible means of set point adjustment. Adjustment shall be via the digital controller to which it is connected.
 - b. Battery replacement without program loss.

2.10 FINAL CONTROL ELEMENTS AND OPERATORS

- A. Fail Safe Operation: Control valves and dampers shall provide "fail safe" operation in either the normally open or normally closed position as required for freeze, moisture, and smoke or fire protection.
- B. Spring Ranges: Range as required for system sequencing and to provide tight shut-off.
- C. Power Operated Control Dampers (other than VAV Boxes): Factory fabricated, balanced type dampers. All modulating dampers shall be

opposed blade type and gasketed. Blades for two-position, duct-mounted dampers shall be parallel, airfoil (streamlined) type for minimum noise generation and pressure drop.

- Leakage: Maximum leakage in closed position shall not exceed 7 L/S (15 CFMs) differential pressure for outside air and exhaust dampers and 200 L/S/ square meter (40 CFM/sq. ft.) at 50 mm (2 inches) differential pressure for other dampers.
- Frame shall be galvanized steel channel with seals as required to meet leakage criteria.
- Blades shall be galvanized steel or aluminum, 200 mm (8 inch) maximum width, with edges sealed as required.
- 4. Bearing shall be nylon, bronze sleeve or ball type.
- 5. Hardware shall be zinc-plated steel. Connected rods and linkage shall be non-slip. Working parts of joints shall be brass, bronze, nylon or stainless steel.
- 6. Maximum air velocity and pressure drop through free area the dampers:
 - a. Smoke damper in air handling unit: 305 meter per minute (1000 fpm).

b. Maximum static pressure loss: 50 Pascal (0.20 inches water gage).

- D. Control Valves:
 - Valves shall be rated for a minimum of 150 percent of system operating pressure at the valve location but not less than 900 kPa (125 psig).
 - 2. Valves 50 mm (2 inches) and smaller shall be bronze body with threaded or flare connections.
 - 3. Valves 60 mm (2 1/2 inches) and larger shall be bronze or iron body with flanged connections.
 - Brass or bronze seats except for valves controlling media above 100 degrees C (210 degrees F), which shall have stainless steel seats.
 - 5. Flow characteristics:
 - a. Two-way modulating valves shall be globe pattern. Position versus flow relation shall be linear for steam and equal percentage for water flow control.
 - b. Two-way 2-position valves shall be ball, gate or butterfly type.
 - 6. Maximum pressure drop:
 - a. Two position steam control: 20 percent of inlet gauge pressure.

- b. Modulating Steam Control: 80 percent of inlet gauge pressure
 (acoustic velocity limitation).
- E. Damper and Valve Operators and Relays:
 - 1. Electric operator shall provide full modulating control of dampers and valves. For dampers a linkage and pushrod shall be furnished for mounting the actuator on the damper frame internally in the duct, externally in the duct, externally on the duct wall, or shall be furnished with a direct-coupled design. Metal parts shall be aluminum, mill finish galvanized steel, or zinc plated steel or stainless steel. Provide actuator heads which allow for electrical conduit attachment. The motor(s) shall have sufficient closure torque to allow for complete closure of valve or damper under pressure. Provide multiple motors as required to achieve sufficient close-off torque.
 - 2. Electronic damper operators: Metal parts shall be aluminum, mill finish galvanized steel, or zinc plated steel or stainless steel. Provide actuator heads which allow for electrical conduit attachment. The motors shall have sufficient closure torque to allow for complete closure of valve or damper under pressure. Provide multiple motors as required to achieve sufficient close-off torque.
 - a. VAV Box actuator shall be mounted on the damper axle or shall be of the air valve design, and shall provide complete modulating control of the damper. The motor shall have a closure torque of 35-inch pounds minimum with full torque applied at close off to attain minimum leakage.
 - 3. See and coordinate drawings for required control operation.

2.11 AIR FLOW CONTROL

A. Airflow and static pressure shall be controlled via digital controllers with inputs from airflow control measuring stations and static pressure inputs as specified. Controller outputs shall be analog or pulse width modulating output signals. The controllers shall include the capability to control via simple proportional (P) control, proportional plus integral (PI), proportional plus integral plus derivative (PID), and on-off. The airflow control programs shall be factory-tested programs that are documented in the literature of the control manufacturer.Air Flow Measuring Station -- Electronic Thermal Type: 1. Air Flow Sensor Grid Array:

- a. Each sensor grid shall consist of a lattice network of temperature sensors and linear integral controllers (ICs) situated inside an aluminum casing suitable for mounting in a duct or fan inlet. Each sensor shall be mounted within a strut facing downstream of the airflow and located so that it is protected on the upstream side. All wiring shall be encased (out of the air stream) to protect against mechanical damage.
- b. The casing shall be made of welded aluminum of sufficient strength to prevent structural bending and bowing. Steel or iron composite shall not be acceptable in the casing material.
- c. Pressure drop through the flow station shall not exceed 4 Pascal (0.015" W.G.) at 1,000 meter per minute (3,000 FPM).
- 2. Electronics Panel:
 - a. Electronics Panel shall consist of a surface mounted enclosure complete with solid-state microprocessor and software.
 - b. Electronics Panel shall be A/C powered 24 VAC and shall have the capability to transmit signals of 4-20 ma type or PWM type for use in control of the HVAC Systems. The electronic panel shall have the capability to accept user defined scaling parameters for all output signals.
 - c. Electronics Panel shall have the capability to digitally display airflow in CFM and temperature in degrees F. The displays shall be provided as an integral part of the electronics panel. The electronic panel shall have the capability to totalize the output flow in CFM for two or more systems, as required. A single output signal shall be provided which will equal the sum of the systems totalized. Output signals shall be provided for temperature and airflow. Provide remote mounted air flow or temperature displays where indicated on the plans.
 - d. Electronics Panel shall have the following:
 - 1) Minimum of 12-bit A/D conversion.
 - 2) Field adjustable digital primary output offset and gain.
 - 3) Airflow analog output scaling of 100 to 10,000 FPM.
 - 4) Temperature analog output scaling from -45°C to 70°C (-50°F to $160^\circ\text{F})$.
 - 5) Analog output resolution (full scale output) of 0.025%.
 - e. All readings shall be in I.P. units.

- B. Static Pressure Measuring Station: shall consist of one or more static pressure sensors and transmitters along with relays or auxiliary devices as required for a complete functional system. The span of the transmitter shall not exceed two times the design static pressure at the point of measurement. The output of the transmitter shall be true representation of the input pressure with plus or minus 25 Pascal (0.1 inch) W.G. of the required input pressure:
 - Static pressure sensors shall have the same requirements as Airflow Measuring Devices except that total pressure sensors are optional, and only multiple static pressure sensors positioned on an equal area basis connected to a network of headers are required.
 - 2. For systems with multiple major or main trunk supply ducts, furnish a static pressure transmitter for each trunk duct. The transmitter signal representing the lowest static pressure shall be selected and this shall be the input signal to the controller.
 - 3. The controller shall receive the static pressure transmitter signal and Control Unit (CU) shall provide a control output signal to the supply fan capacity control device. The control mode shall be proportional plus integral (PI) (automatic reset) and where required shall also include derivative mode.
 - 4. In systems with multiple static pressure transmitters, provide a switch located near the fan discharge to prevent excessive pressure during abnormal operating conditions. High-limit switches shall be manually reset.
- C. Airflow Synchronization:
 - 1. Systems shall consist of an air flow measuring station for each main supply and return duct, the CU and such relays, as required to provide a complete functional system that will maintain a constant flow rate difference between supply and return air to an accuracy of ±10%. In systems where there is no suitable location for a flow measuring station that will sense total supply or return flow, provide multiple flow stations with a differential pressure transmitter for each station. Signals from the multiple transmitters shall be added through the CU such that the resultant signal is a true representation of total flow.

 The total flow signals from supply and return air shall be the input signals to the CU. This CU shall track the return air fan capacity in proportion to the supply air flow under all conditions.

2.12 SAFETY

A. Provide hard-wired interlocked connections for such all safety devices, such as freeze stats, smoke detectors, smoke dampers, and refrigerant leak detection devices. All safety devises shall be provided with additional dry contacts and shall be connected to the DDC system for monitoring and sequencing.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. General:
 - Examine project plans for control devices and equipment locations; and report any discrepancies, conflicts, or omissions to COR for resolution before proceeding for installation.
 - Install equipment, piping, wiring /conduit parallel to or at right angles to building lines.
 - Install all equipment and piping in readily accessible locations. Do not run tubing and conduit concealed under insulation or inside ducts.
 - Mount control devices, tubing and conduit located on ducts and apparatus with external insulation on standoff support to avoid interference with insulation.
 - 5. Provide sufficient slack and flexible connections to allow for vibration of piping and equipment.
 - Run tubing and wire connecting devices on or in control cabinets parallel with the sides of the cabinet neatly racked to permit tracing.
 - 7. Install equipment level and plumb.
- B. Electrical Wiring Installation:
 - All wiring and cabling shall be installed in conduits. Install conduits and wiring in accordance with Specification Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS. Conduits carrying control wiring and cabling shall be dedicated to the control wiring and cabling: these conduits shall not carry power wiring. Provide plastic end sleeves at all conduit terminations to protect wiring from burrs.

- Install analog signal and communication cables in conduit and in accordance with Specification Division 27 - COMMINICATIONS. Install digital communication cables in conduit and in accordance with Specification Section 27 15 00, COMMINICATIONS STRUCTURED CABLING.
- 3. Install conduit and wiring between operator workstation(s), digital controllers, electrical panels, indicating devices, instrumentation, miscellaneous alarm points, thermostats, and relays as shown on the drawings or as required under this section.
- 4. Install all electrical work required for a fully functional system and not shown on electrical plans or required by electrical specifications. Where low voltage (less than 50 volt) power is required, provide suitable Class B transformers.
- 5. Install all system components in accordance with local Building Code and National Electric Code.
 - a. Splices: Splices in shielded and coaxial cables shall consist of terminations and the use of shielded cable couplers. Terminations shall be in accessible locations. Cables shall be harnessed with cable ties.
 - b. Equipment: Fit all equipment contained in cabinets or panels with service loops, each loop being at least 300 mm (12 inches) long. Equipment for fiber optics system shall be rack mounted, as applicable, in ventilated, self-supporting, code gauge steel enclosure. Cables shall be supported for minimum sag.
 - c. Cable Runs: Keep cable runs as short as possible. Allow extra length for connecting to the terminal board. Do not bend flexible coaxial cables in a radius less than ten times the cable outside diameter.
 - d. Use vinyl tape, sleeves, or grommets to protect cables from vibration at points where they pass around sharp corners, through walls, panel cabinets, etc.
- Conceal cables, except in mechanical rooms and areas where other conduits and piping are exposed.
- 7. Permanently label or code each point of all field terminal strips to show the instrument or item served. Color-coded cable with cable diagrams may be used to accomplish cable identification.
- Grounding: ground electrical systems per manufacturer's written requirements for proper and safe operation.

- C. Install Sensors and Controls:
 - 1. Temperature Sensors:
 - a. Install all sensors and instrumentation according to manufacturer's written instructions. Temperature sensor locations shall be readily accessible, permitting quick replacement and servicing of them without special skills and tools.
 - b. Calibrate sensors to accuracy specified, if not factory calibrated.
 - c. Use of sensors shall be limited to its duty, e.g., duct sensor shall not be used in lieu of room sensor.
 - d. Install room sensors permanently supported on wall frame. They shall be mounted at 1.5 meter (5.0 feet) above the finished floor unless otherwise noted on the plans or drawings.
 - e. Mount sensors rigidly and adequately for the environment within which the sensor operates. Separate extended-bulb sensors form contact with metal casings and coils using insulated standoffs.
 - f. All wires attached to sensors shall be air sealed in their conduits or in the wall to stop air transmitted from other areas affecting sensor reading.
 - g. Permanently mark terminal blocks for identification. Protect all circuits to avoid interruption of service due to short-circuiting or other conditions. Line-protect all wiring that comes from external sources to the site from lightning and static electricity.
 - 2. Pressure Sensors:
 - a. Install duct static pressure sensor tips facing directly downstream of airflow.
 - 3. Actuators:
 - a. Mount and link damper and valve actuators according to manufacturer's written instructions.
 - b. Check operation of damper/actuator combination to confirm that actuator modulates damper smoothly throughout stroke to both open and closed position.
 - c. Check operation of valve/actuator combination to confirm that actuator modulates valve smoothly in both open and closed position.
 - 4. Flow Switches:

- a. Install flow switch according to manufacturer's written instructions.
- b. Mount flow switch a minimum of 10 pipe diameters up stream and 10 pipe diameters downstream or 600 mm (2 feet) whichever is greater, from fittings and other obstructions.
- c. Assure correct flow direction and alignment.
- d. Mount in horizontal piping-flow switch on top of the pipe.
- D. Installation of digital controllers and programming:
 - Provide a separate digital control panel for each major piece of equipment, such as rooftop unit etc. Points used for control loop reset such as outdoor air, outdoor humidity, or space temperature could be located on any of the remote control units.
 - Provide sufficient internal memory for the specified control sequences and trend logging. There shall be a minimum of 25 percent of available memory free for future use.
 - 3. System point names shall be human readable, permitting easy operator interface without the use of a written point index.
 - 4. Provide software programming for the applications intended for the systems specified, and adhere to the strategy algorithms provided.
 - 5. Provide graphics for each piece of equipment and floor plan in the building. This includes the rooftop unit, terminal unit, etc. These graphics shall show all points dynamically as specified in the point list.

3.2 SYSTEM VALIDATION AND DEMONSTRATION

- A. As part of final system acceptance, a system demonstration is required (see below). Prior to start of this demonstration, the contractor is to perform a complete validation of all aspects of the controls and instrumentation system.
- B. Validation
 - Prepare and submit for approval a validation test plan including test procedures for the performance verification tests. Test Plan shall address all specified functions of the BAS and all specified sequences of operation. Explain in detail actions and expected results used to demonstrate compliance with the requirements of this specification. Explain the method for simulating the necessary conditions of operation used to demonstrate performance of the system. Test plan shall include a test check list to be used by the

Lebanon VAMC New Entryway for Building 17 BID DOCUMENTS 08-01-20

Installer's agent to check and initial that each test has been successfully completed. Deliver test plan documentation for the performance verification tests to the owner's representative 30 days prior to start of performance verification tests. Provide draft copy of operation and maintenance manual with performance verification test.

- 2. After approval of the validation test plan, installer shall carry out all tests and procedures therein. Installer shall completely check out, calibrate, and test all connected hardware and software to insure that system performs in accordance with approved specifications and sequences of operation submitted. Installer shall complete and submit Test Check List.
- C. Demonstration
 - System operation and calibration to be demonstrated by the installer in the presence of the Cx Agent or COR on random samples of equipment as dictated by the COR. Should random sampling indicate improper work, the owner reserves the right to subsequently witness complete calibration of the system at no addition cost to the VA.
 - Demonstrate to authorities that all required safeties and life safety functions are fully functional and complete. PG-18-10 Safety DM
 - Make accessible, personnel to provide necessary adjustments and corrections to systems as directed by balancing agency.
 - 4. The following witnessed demonstrations of field control equipment shall be included:
 - a. Observe HVAC systems in shut down condition. Check dampers and valves for normal position.
 - b. Test application software for its ability to communicate with digital controllers, operator workstation, and uploading and downloading of control programs.
 - c. Demonstrate the software ability to edit the control program offline.
 - d. Demonstrate reporting of alarm conditions for each alarm and ensure that these alarms are received at the assigned location, including operator workstations.
 - e. Demonstrate ability of software program to function for the intended applications-trend reports, change in status etc.

- f. Demonstrate via graphed trends to show the sequence of operation is executed in correct manner, and that the HVAC systems operate properly through the complete sequence of operation, e.g., seasonal change, occupied/unoccupied mode, and warm-up condition.
- g. Demonstrate hardware interlocks and safeties functions, and that the control systems perform the correct sequence of operation after power loss and resumption of power loss.
- h. Prepare and deliver to the VA graphed trends of all control loops to demonstrate that each control loop is stable and the set points are maintained.
- i. Demonstrate that each control loop responds to set point adjustment and stabilizes within one (1) minute. Control loop trend data shall be instantaneous and the time between data points shall not be greater than one (1) minute.

3.3 STARTUP AND TESTING

- A. Perform tests as recommended by product manufacturer and listed standards and under actual or simulated operating conditions and prove full compliance with design and specified requirements. Tests of the various items of equipment shall be performed simultaneously with the system of which each item is an integral part.
- B. When any defects are detected, correct defects and repeat test at no additional cost or time to the Government.
- C. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the COR and Commissioning Agent. Provide a minimum notice of 10 working days prior to startup and testing.

3.4 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- B. Components provided under this section of the specification will be tested as part of a larger system.

3.5 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for 4 hours to instruct each VA personnel responsible in the operation and maintenance of the system.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

3.6 CONSTRUCTION WASTE MANAGEMENT

- A. General: Comply with Contractor's Waste Management Plan and Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT.
- B. To the greatest extent possible, separate reusable and recyclable products from contaminated waste and debris in accordance with the Contractor's Waste Management Plan. Place recyclable and reusable products in designated containers and protect from moisture and contamination.

----- END -----

SECTION 23 21 13 HYDRONIC PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Water piping to connect HVAC equipment, including the following:
 - 1. Drain piping.
- B. A complete listing of common acronyms and abbreviations are included in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- D. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- E. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General mechanical requirements and items, which are common to more than one section of Division 23.
- F. Section 23 07 11, HVAC INSULATION: Piping insulation.
- G. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- H. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Temperature and pressure sensors and valve operators.
- I. Section 23 22 13, STEAM AND CONDENSATE HEATING PIPING.

1.3 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. Where conflicts occur these specifications and the VHA standard will govern.

B. American Society of Mechanical Engineers (ASME): B1.20.1-2013......Pipe Threads, General Purpose (Inch) B16.3-2016.....Malleable Iron Threaded Fittings: Classes 150 and 300 B16.4-2016.....Gray Iron Threaded Fittings: (Classes 125 and 250) B16.5-2017.....Pipe Flanges and Flanged Fittings: NPS 1/2 through NPS 24 Metric/Inch Standard B16.9-2018.....Factory Made Wrought Buttwelding Fittings B16.11-2016.....Forged Fittings, Socket-Welding and Threaded

23 21 13-1

VA Project No. 595-668 Lebanon VAMC AE Works Project No. VLEB-010 New Entryway for Building 17 BID DOCUMENTS 02-01-20 B16.18-2018.....Cast Copper Alloy Solder Joint Pressure Fittings B16.22-2018.....Wrought Copper and Copper Alloy Solder-Joint Pressure Fittings B16.24-2016.....Cast Copper Alloy Pipe Flanges and Flanged Fittings: Classes 150, 300, 600, 900, 1500, and 2500 B16.39-2014......Malleable Iron Threaded Pipe Unions: Classes 150, 250, and 300 B16.42-2016.....Ductile Iron Pipe Flanges and Flanged Fittings B31.9-2014.....Building Services Piping B40.100-2013.....Pressure Gauges and Gauge Attachments ASME Boiler and Pressure Vessel Code: BPVC Section VIII-2015..Rules for Construction of Pressure Vessels C. American Society for Testing and Materials (ASTM): A47/A47M-2018.....Standard Specification for Ferritic Malleable Iron Castings A53/A53M-2018.....Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless A106/A106M-2019.....Standard Specification for Seamless Carbon Steel Pipe for High-Temperature Service A126-2004(R2019).....Standard Specification for Gray Iron Castings for Valves, Flanges, and Pipe Fittings A183-2014..... Standard Specification for Carbon Steel Track Bolts and Nuts A216/A216M-2018.....Standard Specification for Steel Castings, Carbon, Suitable for Fusion Welding, for High-Temperature Service A307-2016.....Standard Specification for Carbon Steel Bolts, Studs, and Threaded Rod 60,000 PSI Tensile Strength A536-1984(R2019).....Standard Specification for Ductile Iron Castings B62-2017..... Standard Specification for Composition Bronze or Ounce Metal Castings

VA Project No. 595-668 Lebanon VAMC AE Works Project No. VLEB-010 New Entryway for Building 17 BID DOCUMENTS 02-01-20 B88-2016..... Standard Specification for Seamless Copper Water Tube F439-2019..... Standard Specification for Chlorinated Poly (Vinyl Chloride) (CPVC) Plastic Pipe Fittings, Schedule 80 F441/F441M-2015.....Standard Specification for Chlorinated Poly (Vinyl Chloride) (CPVC) Plastic Pipe, Schedules 40 and 80 D. American Welding Society (AWS): B2.1/B2.1M-2014.....Standard for Welding Procedure and Performance Specification E. Expansion Joint Manufacturer's Association, Inc. (EJMA): EJMA 2017...... Expansion Joint Manufacturer's Association Standards, Tenth Edition F. Manufacturers Standardization Society (MSS) of the Valve and Fitting Industry, Inc.: SP-67-2017.....Butterfly Valves SP-70-2014.....Gray Iron Gate Valves, Flanged and Threaded Ends SP-71-2014.....Gray Iron Swing Check Valves, Flanged and Threaded Ends SP-80-2014.....Bronze Gate, Globe, Angle, and Check Valves SP-85-2014.....Gray Iron Globe and Angle Valves, Flanged and Threaded Ends SP-110-2014.....Ball Valves Threaded, Socket-Welding, Solder Joint, Grooved and Flared Ends SP-125-2018.....Gray Iron and Ductile Iron In-line, Spring-Loaded, Center-Guided Check Valves G. Tubular Exchanger Manufacturers Association (TEMA):

TEMA Standards2015.....9th Edition

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 23 21 13, HYDRONIC PIPING", with applicable paragraph identification.

- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 - 1. Pipe and equipment supports.
 - 2. Pipe and tubing, with specification, class or type, and schedule.
 - Pipe fittings, including miscellaneous adapters and special fittings.
 - 4. Couplings and fittings.
 - 5. Pipe alignment guides.
- D. Complete operating and maintenance manuals including wiring diagrams, technical data sheets, information for ordering replacement parts, and troubleshooting guide:
 - 1. Include complete list indicating all components of the systems.
 - Include complete diagrams of the internal wiring for each item of equipment.
 - 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.
- E. Completed System Readiness Checklist provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- F. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

1.5 QUALITY ASSURANCE

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. All couplings, fittings, and specialties shall be the products of a single manufacturer.
 - All castings used for coupling housings, fittings, etc., shall be date stamped for quality assurance and traceability.

1.6 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, VA approved substitutions and construction revisions shall be in electronic version on CD or DVD inserted into a three-ring binder. All aspects of system operation and maintenance procedures,

23 21 13-4

Lebanon VAMC New Entryway for Building 17 BID DOCUMENTS 02-01-20

including applicable piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.

- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement. Provide record drawings as follows:
 - Red-lined, hand-marked drawings are to be provided, with one paper copy and a scanned PDF version of the hand-marked drawings provided on CD or DVD.
- D. The as-built drawings shall indicate the location and type of all lockout/tagout points for all energy sources for all equipment and pumps to include breaker location and numbers, valve tag numbers, etc. Coordinate lockout/tagout procedures and practices with local VA requirements.
- E. Certification documentation shall be provided to COR 21 working days prior to submitting the request for final inspection. The documentation shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and provide documentation/certification that all results of tests were within limits specified. Test results shall contain written sequence of test procedure with written test results annotated at each step along with the expected outcome or setpoint. The results shall include all readings, including but not limited to data on device (make, model and performance characteristics), normal pressures, switch ranges, trip points, amp readings, and calibration

etc.

PART 2 - PRODUCTS

2.1 PIPE AND EQUIPMENT SUPPORTS, PIPE SLEEVES, AND WALL AND CEILING PLATES

A. Provide in accordance with Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

2.2 PIPE AND TUBING

- A. Cooling Coil Condensate Drain Piping:
 - 1. From rooftop units: Copper water tube, ASTM B88, Type M or L.
- B. Pipe supports, including insulation shields, for above ground piping: Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

2.3 FITTINGS FOR COPPER TUBING

- A. Joints:
 - 1. Solder Joints: Joints shall be made up in accordance with recommended practices of the materials applied. Apply 95/5 tin and antimony on all copper piping.
 - 2. Mechanically formed tee connection in drain piping: Form mechanically extracted collars in a continuous operation by drilling pilot hole and drawing out tube surface to form collar, having a height of not less than three times the thickness of tube wall. Adjustable collaring device shall ensure proper tolerance and complete uniformity of the joint. Notch and dimple joining branch tube in a single process to provide free flow where the branch tube penetrates the fitting.
- B. Bronze Flanges and Flanged Fittings: ASME B16.24.
- C. Fittings: ASME B16.18 cast copper or ASME B16.22 solder wrought copper.

PART 3 - EXECUTION

3.1 GENERAL

- A. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no additional cost or time to the Government.
- B. The drawings show the general arrangement of pipe and equipment but do not show all required fittings and offsets that may be necessary to connect pipes to equipment, coils, etc., and to coordinate with other trades. Provide all necessary fittings, offsets and pipe runs based on field measurements and at no additional cost or time to the Government. Coordinate with other trades for space available and relative location

of HVAC equipment and accessories to be connected on ceiling grid. Pipe location on the drawings shall be altered by contractor where necessary to avoid interferences and clearance difficulties.

- C. Store materials to avoid excessive exposure to weather or foreign materials. Keep inside of piping relatively clean during installation and protect open ends when work is not in progress.
- D. Support piping securely. Refer to PART 3, Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- E. Unless shown otherwise, slope drain piping down in the direction of flow not less than 25 mm (1 inch) in 12 m (40 feet). Provide eccentric reducers to keep bottom of sloped piping flat.

3.2 PIPE JOINTS

- A. Welded: Beveling, spacing and other details shall conform to ASME B31.9 and AWS B2.1/B2.1M. See Welder's qualification requirements under "Quality Assurance" in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Screwed: Threads shall conform to ASME B1.20.1; joint compound shall be applied to male threads only and joints made up so no more than three threads show. Coat exposed threads on steel pipe with joint compound, or red lead paint for corrosion protection.

3.3 STARTUP AND TESTING

- A. Perform tests as recommended by product manufacturer and listed standards and under actual or simulated operating conditions and prove full compliance with design and specified requirements. Tests of the various items of equipment shall be performed simultaneously with the system of which each item is an integral part.
- B. When any defects are detected, correct defects and repeat test at no additional cost or time to the Government.
- C. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with COR and Commissioning Agent. Provide a minimum notice of 10 working days prior to startup and testing.

3.4 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- B. Components provided under this section of the specification will be tested as part of a larger system.

VA Project No. 595-668 AE Works Project No. VLEB-010 Lebanon VAMC New Entryway for Building 17 BID DOCUMENTS 02-01-20

3.5 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for 4 hours to instruct each VA personnel responsible in operation and maintenance of the system.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

- - - E N D - - -

SECTION 23 22 13 STEAM AND CONDENSATE HEATING PIPING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Steam, condensate and vent piping inside buildings.
- B. A complete listing of common acronyms and abbreviations are included in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- C. Section 01 81 13, SUSTAINABLE CONSTRUCTION REQUIREMENTS.
- D. Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- E. Section 09 91 00, PAINTING.
- F. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- G. Section 23 05 93, TESTING, ADJUSTING, AND BALANCING FOR HVAC.
- H. Section 23 07 11, HVAC INSULATION.
- I. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- J. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. Where conflicts occur these specifications and the VHA standard will govern.
- B. American Society of Mechanical Engineers (ASME): B1.20.1-2013......Pipe Threads, General Purpose (Inch) B16.5-2013.....Pipe Flanges and Flanged Fittings: NPS 1/2 through NPS 24 Metric/Inch Standard B16.9-2012.....Factory Made Wrought Buttwelding Fittings B16.11-2011.....Forged Fittings, Socket-Welding and Threaded B16.42-2016.....Ductile Iron Pipe Flanges and Flanged Fittings: Classes 150 and 300 B31.1-2018.....Power Piping B31.9-2014.....Building Services Piping B40.100-2013.....Pressure Gauges and Gauge Attachments ASME Boiler and Pressure Vessel Code (BPVC) -BPVC Section II-2019 Materials

VA Project No. 595-668 AE Works Project No. VLEB-0		Lebanon VAMC for Building 17 BID DOCUMENTS 02-01-20
BPVC Section VIII-2019	Rules for Construction of Pressur Division 1	e Vessels,
BPVC Section IX-2019Welding, Brazing, and Fusing Qualifications		
C. American Society for Testing and Materials (ASTM):		
A53/A53M-2017	.Standard Specification for Pipe,	Steel, Black
	and Hot-Dipped, Zinc-Coated, Wel	ded and
	Seamless	
A106/A106M-2019	.Standard Specification for Seaml	ess Carbon
	Steel Pipe for High-Temperature	Service
A216/A216M-2019	.Standard Specification for Steel	Castings,
	Carbon, Suitable for Fusion Weld	ing, for High-
	Temperature Service	
A285/A285M-2017	.Standard Specification for Press	ure Vessel
	Plates, Carbon Steel, Low-and In	termediate-
	Tensile Strength	
A307-2019	.Standard Specification for Carbo	n Steel Bolts,
	Studs, and Threaded Rod 60,000 P	SI Tensile
	Strength	
A516/A516M-2017	.Standard Specification for Press	ure Vessel
	Plates, Carbon Steel, for Modera	te- and Lower-
	Temperature Service	
A536-1984(R2017)	.Standard Specification for Ducti	le Iron
	Castings	
B62-2017	.Standard Specification for Compo	sition Bronze
	or Ounce Metal Castings	
D. American Welding Societ	y (AWS):	
B2.1/B2.1M-2014	.Specification for Welding Proced	ure and
	Performance Qualifications	
Z49.1-2012	.Safety in Welding and Cutting and	d Allied
	Processes	
E. Manufacturers Standardi	zation Society (MSS) of the Valve	and Fitting
Industry, Inc.:		
SP-80-2013	.Bronze Gate, Globe, Angle, and C	heck Valves
F. Military Specifications	(Mil. Spec.):	
MIL-S-901D-2017	.Shock Tests, H.I. (High Impact)	Shipboard
	Machinery, Equipment, and System	S

- G. National Board of Boiler and Pressure Vessel Inspectors (NB): Relieving Capacities of Safety Valves and Relief Valves
- H. Tubular Exchanger Manufacturers Association (TEMA): TEMA Standards-2015....9th Edition

1.4 SUBMITTALS

- A. Submittals, including number of required copies, shall be submitted in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Information and material submitted under this section shall be marked "SUBMITTED UNDER SECTION 23 22 13, STEAM AND CONDENSATE HEATING PIPING", with applicable paragraph identification.
- C. Manufacturer's Literature and Data including: Full item description and optional features and accessories. Include dimensions, weights, materials, applications, standard compliance, model numbers, size, and capacity.
 - Pipe and equipment supports. Submit calculations for variable spring and constant support hangers.
 - 2. Pipe and tubing, with specification, class or type, and schedule.
 - Pipe fittings, including miscellaneous adapters and special fittings.
 - 4. Flanges, gaskets and bolting.
 - 5. Valves of all types.
 - 6. Strainers.
 - 7. Pipe alignment guides.
 - 8. Expansion joints.
 - 9. Expansion compensators.
 - 10. Flexible ball joints: Catalog sheets, performance charts, schematic drawings, specifications and installation instructions.
 - 11. All specified steam system components.
 - 12. Gauges.
 - 13. Thermometers and test wells.
- D. Coordination Drawings: Refer to paragraph, SUBMITTALS of Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- E. As-Built Piping Diagrams: Provide drawing as follows for steam and steam condensate piping.
 - 1. One set of reproducible drawings.

- F. Complete operating and maintenance manuals including wiring diagrams, technical data sheets, information for ordering replacement parts, and troubleshooting guide:
 - 1. Include complete list indicating all components of the systems.
 - Include complete diagrams of the internal wiring for each item of equipment.
 - 3. Diagrams shall have their terminals identified to facilitate installation, operation and maintenance.
- G. Completed System Readiness Checklist provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- H. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

1.5 QUALITY ASSURANCE

- A. Section 23 05 11, COMMON WORK RESULTS FOR HVAC, which includes welding qualifications.
- B. The products and execution of work specified in this section shall conform to the referenced codes and standards as required by the specifications. Local codes and amendments shall be enforced, along with requirements of local utility companies. The most stringent requirements of these specifications, local codes, or utility company requirements shall always apply. Any conflicts shall be brought to the attention of the COR.
- C. Welding Qualifications: Before any welding is performed, contractor shall submit a certificate certifying that welders comply with the following requirements:
 - Qualify welding processes and operators for piping according to ASME BPVC Section IX, AWS Z49.1 and AWS B2.1/B2.1M.
 - 2. Comply with provisions in ASME B31.9.
 - Certify that each welder and welding operator has passed AWS qualification tests for welding processes involved and that certification is current and recent. Submit documentation to the COR.
 - All welds shall be stamped according to the provisions of the American Welding Society.

D. ASME Compliance: Comply with ASME B31.9 for materials, products, and installation. Safety valves and pressure vessels shall bear appropriate ASME labels.

1.6 AS-BUILT DOCUMENTATION

- A. Submit manufacturer's literature and data updated to include submittal review comments and any equipment substitutions.
- B. Submit operation and maintenance data updated to include submittal review comments, VA approved substitutions and construction revisions shall be in electronic version on CD or DVD inserted into a three-ring binder. All aspects of system operation and maintenance procedures, including applicable piping isometrics, wiring diagrams of all circuits, a written description of system design, control logic, and sequence of operation shall be included in the operation and maintenance manual. The operations and maintenance manual shall include troubleshooting techniques and procedures for emergency situations. Notes on all special systems or devices shall be included. A List of recommended spare parts (manufacturer, model number, and quantity) shall be furnished. Information explaining any special knowledge or tools the owner will be required to employ shall be inserted into the As-Built documentation.
- C. The installing contractor shall maintain as-built drawings of each completed phase for verification; and, shall provide the complete set at the time of final systems certification testing. Should the installing contractor engage the testing company to provide as-built or any portion thereof, it shall not be deemed a conflict of interest or breach of the 'third party testing company' requirement. Provide record drawings as follows:
 - Red-lined, hand-marked drawings are to be provided, with one paper copy and a scanned PDF version of the hand-marked drawings provided on CD or DVD.
- D. The as-built drawings shall indicate the location and type of all lockout/tagout points for all energy sources for all equipment and pumps to include breaker location and numbers, valve tag numbers, etc. Coordinate lockout/tagout procedures and practices with local VA requirements.
- E. Certification documentation shall be provided to COR 21 working days prior to submitting the request for final inspection. The documentation

Lebanon VAMC New Entryway for Building 17 BID DOCUMENTS 02-01-20

shall include all test results, the names of individuals performing work for the testing agency on this project, detailed procedures followed for all tests, and provide documentation/certification that all results of tests were within limits specified. Test results shall contain written sequence of test procedure with written test results annotated at each step along with the expected outcome or setpoint. The results shall include all readings, including but not limited to data on device (make, model and performance characteristics), normal pressures, switch ranges, trip points, amp readings, and calibration data to include equipment serial numbers or individual identifications, etc.

PART 2 - PRODUCTS

2.1 PIPE AND EQUIPMENT SUPPORTS, PIPE SLEEVES, AND WALL AND CEILING PLATES

A. Provide in accordance with Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

2.2 PIPE AND TUBING

- A. Steam Piping: Steel, ASTM A53/A53M, Grade B, seamless or ERW; ASTM A106/A106M Grade B, seamless; Schedule 40.
- B. Steam Condensate Piping: Steel, ASTM A53/A53M, Grade B, seamless or ERW; or ASTM A106/A106M Grade B, seamless, Schedule 80.
- C. Vent Piping: Steel, ASTM A53/A53M, Grade B, seamless or ERW; ASTM A106/A106M Grade B, seamless; Schedule 40, galvanized.

2.3 FITTINGS FOR STEEL PIPE

- A. 50 mm (2 inches) and Smaller: Screwed or welded.
 - Cast iron fittings or piping is not acceptable for steam and steam condensate piping. Bushing reduction or use of close nipples is not acceptable.
 - 2. Forged steel, socket welding or threaded: ASME B16.11, 13,790 kPa (2000 psig) class with ASME B1.20.1 threads. Use Schedule 80 pipe and fittings for threaded joints. Lubricant or sealant shall be oil and graphite or other compound approved for the intended service.
 - 3. Unions: Forged steel, 13,790 kPa (2000 psig) class or 20,685 kPa (3000 psig) class on piping 50 mm (2 inches) and under.
 - 4. Steam line drip station and strainer quick-couple blowdown hose connection: Straight through, plug and socket, screw or cam locking type for 15 mm (1/2 inch) ID hose. No integral shut-off is required.

B. Welded Branch and Tap Connections: Forged steel weldolets, or branchlets and threadolets may be used for branch connections up to one pipe size smaller than the main. Forged steel half-couplings, ASME B16.11 may be used for drain, vent and gauge connections.

2.4 DIELECTRIC FITTINGS

- A. Provide where dissimilar metal pipe are joined.
- B. 50 mm (2 inches) and Smaller: Threaded dielectric union.
- C. Temperature Rating, 121 degrees C (250 degrees F) for steam condensate and as required for steam service.
- D. Contractor's option: On pipe sizes 50 mm (2 inches) and smaller, screwed end steel gate valves or dielectric nipples may be used in lieu of dielectric unions.

2.5 VALVES

- A. Asbestos packing is not acceptable.
- B. All valves of the same type shall be products of a single manufacturer.
- C. Provide chain operators for valves 150 mm (6 inches) and larger when the centerline is located 2.1 m (7 feet) or more above the floor or operating platform.
- D. Shut-Off Valves:
 - 1. Gate Valves:
 - a. 50 mm (2 inches) and smaller: Forged steel body, rated for 1380 kPa (200 psig) saturated steam, 2758 kPa (400 psig) WOG, bronze wedges and Monel or stainless-steel seats, threaded ends, rising stem, and union bonnet.
- E. Globe and Angle Valves:
 - 1. Globe Valves:
 - a. 50 mm (2 inches) and smaller: Forged steel body, rated for 1380 kPa (200 psig) saturated steam, 2758 kPa (400 psig) WOG, hardened stainless steel disc and seat, threaded ends, rising stem, union bonnet, and renewable seat rings.
 - 2. Angle Valves:
 - a. 50 mm (2 inches) and smaller: Cast steel 1035 kPa (150 psig), union bonnet with metal plug type disc.
- F. Swing Check Valves:
 - 1. 50 mm (2 inches) and smaller: Cast steel, 1035 kPa (150 psig), 45degree swing disc.

2.6 STRAINERS

- A. Basket or Y Type. Tee type is acceptable for gravity flow and pumped steam condensate service.
- B. All Services: Rated 861 kPa (125 psig) saturated steam.1. 50 mm (2 inches) and smaller: Cast steel body.
- C. Screens: Bronze, Monel metal or 18-8 stainless steel, free area not less than 2-1/2 times pipe area, with perforations as follows:
 - 75 mm (3 inches) and smaller: 20 mesh for steam and 1.1 mm (0.045 inch) diameter perforations for liquids.

2.7 PIPE ALIGNMENT

A. Guides: Provide factory-built guides along the pipe line to permit axial movement only and to restrain lateral and angular movement. Guides must be designed to withstand a minimum of 15 percent of the axial force which will be imposed on the expansion joints and anchors. Field-built guides may be used if detailed on the contract drawings.

2.8 EXPANSION JOINTS

- A. Factory built devices, inserted in the pipe lines, designed to absorb axial cyclical pipe movement which results from thermal expansion and contraction. This includes factory-built or field-fabricated guides located along the pipe lines to restrain lateral pipe motion and direct the axial pipe movement into the expansion joints.
- B. Minimum Service Requirements:
 - 1. Pressure Containment:
 - a. Steam Service 35-200 kPa (5-29 psig): Rated 345 kPa (50 psig) at 148 degrees C (298 degrees F).
 - b. Condensate Service: Rated 690 kPa (100 psig) at 154 degrees C (309 degrees F).
 - 2. Number of Full Reverse Cycles without failure: Minimum 1000.
 - 3. Movement: 2 inches of compression and 2 inches of extension plus recommended safety factor of manufacturer.
- C. Manufacturing Quality Assurance: Conform to Expansion Joints Manufacturers Association Standards.
- D. Bellows Internally Pressurized Type:
 - 1. Multiple corrugations of Type 304 or Type A240-321 stainless steel.
 - 2. Internal stainless-steel sleeve entire length of bellows.
 - External cast iron equalizing rings for services exceeding 345 kPa (50 psig).

- 4. Welded ends.
- 5. Design shall conform to standards of EJMA and ASME B31.1.
- External tie rods designed to withstand pressure thrust force upon anchor failure if one or both anchors for the joint are at change in direction of pipeline.
- 7. Integral external cover.
- E. Bellows Externally Pressurized Type:
 - 1. Multiple corrugations of Type 304 stainless steel.
 - 2. Internal and external guide integral with joint.
 - 3. Design for external pressurization of bellows to eliminate squirm.
 - 4. Welded ends.
 - 5. Conform to the standards of EJMA and ASME B31.1.
 - 6. Threaded connection at bottom, 25 mm (1 inch) minimum, for drain or drip point.
 - 7. Integral external cover and internal sleeve.
- F. Expansion Joint Identification: Provide stamped brass or stainlesssteel nameplate on each expansion joint listing the manufacturer, the allowable movement, flow direction, design pressure and temperature, date of manufacture, and identifying the expansion joint by the identification number on the contract drawings.

2.9 FLEXIBLE BALL JOINTS

- A. Design and Fabrication: One-piece component construction, fabricated from steel with welded ends, designed for a working steam pressure of 1725 kPa (250 psig) and a temperature of 232 degrees C (450 degrees F). Each joint shall provide for 360 degrees rotation in addition to a minimum angular flexible movement of 30 degrees for sizes 6 mm (1/4 inch) to 150 mm (6 inch) inclusive, and 15 degrees for sizes 65 mm (2-1/2 inches) to 762 mm (30 inches). Joints through 355 mm (14 inches) shall have forged pressure retaining members; while size 406 mm (16 inches) through 762 mm (30 inches) shall be of one-piece construction.
- B. Material:
 - Cast or forged steel pressure containing parts and bolting in accordance with ASME BPVC Section II or ASME B31.1. Retainer may be ductile iron ASTM A536, Grade 65-45-12, or ASME BPVC Section II SA 515, Grade 70.

- Gaskets: Steam pressure molded composition design for a temperature range of from minus 10 degrees C (50 degrees F) to plus 274 degrees C (525 degrees F).
- C. Certificates: Submit qualifications of ball joints in accordance with the following test data:
 - Low pressure leakage test: 41 kPa (6 psig) saturated steam for 60 days.
 - Flex cycling: 800 Flex cycles at 3447 kPa (500 psig) saturated steam.
 - Thermal cycling: 100 saturated steam pressure cycles from atmospheric pressure to operating pressure and back to atmospheric pressure.
 - Environmental shock tests: Forward certificate from a recognized test laboratory, that ball joints of the type submitted has passed shock testing in accordance with Mil. Spec MIL-S-901.
 - 5. Vibration: 170 hours on each of three mutually perpendicular axes at 25 to 125 Hz; 1.3 mm to 2.5 mm (0.05 inch to 0.10 inch) double amplitude on a single ball joint and 3 ball joint off set.

2.10 STEAM SYSTEM COMPONENTS

- A. Safety Valves and Accessories: Comply with ASME BPVC Section VIII. Capacities shall be certified by National Board of Boiler and Pressure Vessel Inspectors, maximum accumulation 10 percent. Provide lifting lever. Provide drip pan elbow where shown. Valve shall have stainless steel seats and trim.
- B. Steam Trap: Each type of trap shall be the product of a single manufacturer. Provide trap sets at all low points and at 61 m (200 feet) intervals on the horizontal main lines.
 - Floats and linkages shall provide sufficient force to open trap valve over full operating pressure range available to the system. Unless otherwise indicated on the drawings, traps shall be sized for capacities indicated at minimum pressure drop as follows:
 - a. For equipment with modulating control value: 1.7 kPa (1/4 psig), based on a condensate leg of 76 mm (3 inches) at the trap inlet and gravity flow to the receiver.
 - b. For main line drip trap sets and other trap sets at steam pressure: Up to 70 percent of design differential pressure.

- 2. Trap bodies: Cast Iron, constructed to permit ease of removal and servicing working parts without disturbing connecting piping. The use of raised face flange is required on pipe sizes 1½ inch and above. The use of unions is acceptable for pipe sizes below 1½ inches. For systems without relief valve traps shall be rated for the pressure upstream of the steam supplying the system.
- 3. Balanced pressure thermostatic elements: Phosphor bronze, stainless steel or Monel metal.
- 4. Valves and seats: Suitable hardened corrosion resistant alloy.
- 5. Mechanism: Brass, stainless steel or corrosion resistant alloy.
- 6. Floats: Stainless steel.
- 7. Provide with vacuum breaker.
- 8. Inverted bucket traps: Provide bi-metallic thermostatic element for rapid release of non-condensables.
- C. Thermostatic Air Vent (Steam): Steel body, balanced pressure bellows, stainless steel (renewable) valve and seat, rated 861 kPa (125 psig) working pressure, 20 mm (3/4 inch) screwed connections. Air vents shall be balanced pressure type that responds to steam pressure-temperature curve and vents air at any pressure.
- D. Steam Humidifiers:
 - 1. Fabrication requirements:
 - a. Humidifier will be steam separator type providing full separation ahead of an integral steam jacketed control valve which discharges through an internal steam jacketed drying chamber, silencing chamber, and a steam jacketed distribution manifold.
 - b. Separating chamber will be of a volume and design that will disengage and remove all water droplets and all particulate matter larger than 3 microns when humidifier is operating at maximum capacity.
 - c. The stainless steel metering valve will be integral within the body of the humidifier and will be jacketed by steam at supply temperature and pressure to prevent condensation.
 - d. The stainless steel metering valve will be a parabolic plug with a 3-1/4 inch stroke, providing high range abilities required to achieve full and accurate modulation of steam flow over the entire stroke of the valve.

- e. The internal drying chamber will receive steam at essentially atmospheric pressure and be jacketed by steam at supply pressure and utilize a stainless steel silencing medium.
- f. The distribution manifold will provide uniform distribution over its entire length and be jacketed by steam to assure that vapor discharged is free of water droplets.
- g. Humidifier will be equipped with an interlocked temperature switch to prevent the humidifier from operating before start-up condensate is drained.
- 2. Mounting: Humidifier shall be mounted on trapeze hangers with threaded steel rods, hardware, and predrilled angle irons.
- 3. Steam trap and strainer: Humidifier shall include an inverted bucket steam trap and steam supply line strainer.
- Controls: Refer to drawings for sequence of operations and points list.
- 5. Distribution Manifold: Stainless steel, composed of dispersion pipe and surrounding steam jacket, manifold shall span the width of duct.

2.11 FIRESTOPPING MATERIAL

A. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

PART 3 - EXECUTION

3.1 GENERAL

- A. If an installation is unsatisfactory to the COR, the Contractor shall correct the installation at no additional cost or time to the Government.
- B. The drawings show the general arrangement of pipe and equipment but do not show all required fittings and offsets that may be necessary to connect pipes to equipment, fan-coils, coils, radiators, etc., and to coordinate with other trades. Provide all necessary fittings, offsets and pipe runs based on field measurements and at no additional cost or time to the Government. Coordinate with other trades for space available and relative location of HVAC equipment and accessories to be connected on ceiling grid. Pipe location on the drawings shall be altered by contractor where necessary to avoid interferences and clearance difficulties.

- C. Store materials to avoid excessive exposure to weather or foreign materials. Keep inside of piping relatively clean during installation and protect open ends when work is not in progress.
- D. Support piping securely. Refer to PART 3, Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- E. Install piping generally parallel to walls and column center lines, unless shown otherwise on the drawings. Space piping, including insulation, to provide 25 mm (1 inch) minimum clearance between adjacent piping and another surface. Unless shown otherwise, slope steam, condensate and drain piping down in the direction of flow not less than 25 mm (1 inch) in 12 m (40 feet). Provide eccentric reducers to keep bottom of sloped piping flat.
- F. Locate and orient valves to permit proper operation and access for maintenance of packing, seat and disc. Generally, locate valve stems in overhead piping in horizontal position. Provide a union adjacent to one end of all threaded end valves. Control valves usually require reducers to connect to pipe sizes shown on the drawing.
- G. Offset equipment connections to allow valving off for maintenance and repair with minimal removal of piping. Provide flexibility in equipment connections and branch line take-offs with 3-elbow swing joints where noted on the drawings.
- H. Connect piping to equipment as shown on the drawings. Install components furnished by others such as flow elements (orifice unions), control valve bodies, flow switches, pressure taps with valve, and wells for sensors.
- I. Firestopping: Fill openings around uninsulated piping penetrating floors or fire walls, with firestop material. For firestopping insulated piping refer to Section 23 07 11, HVAC INSULATION.

3.2 WELDING

- A. The contractor is entirely responsible for the quality of the welding and shall:
 - Conduct tests of the welding procedures used on the project, verify the suitability of the procedures used, verify that the welds made will meet the required tests, and also verify that the welding operators have the ability to make sound welds under standard conditions.

- Perform all welding operations required for construction and installation of the piping systems.
- B. Qualification of Welders: Rules of procedure for qualification of all welders and general requirements for fusion welding shall conform with the applicable portions of ASME B31.1, AWS B2.1/B2.1M, AWS Z49.1, and also as outlined below.
- C. Examining Welder: Examine each welder at job site, in the presence of the COR, to determine the ability of the welder to meet the qualifications required. Test welders for piping for all positions, including welds with the axis horizontal (not rolled) and with the axis vertical. Each welder shall be allowed to weld only in the position in which he has qualified and shall be required to identify his welds with his specific code marking signifying his name and number assigned.
- D. Examination Results: Provide the COR with a list of names and corresponding code markings. Retest welders who fail to meet the prescribed welding qualifications. Disqualify welders, who fail the second test, for work on the project.
- E. Beveling: Field bevels and shop bevels shall be done by mechanical means or by flame cutting. Where beveling is done by flame cutting, surfaces shall be thoroughly cleaned of scale and oxidation just prior to welding. Conform to specified standards.
- F. Alignment: Provide approved welding method for joints on all pipes greater than 50 mm (2 inches) to assure proper alignment, complete weld penetration, and prevention of weld spatter reaching the interior of the pipe.
- G. Erection: Piping shall not be split, bent, flattened, or otherwise damaged before, during, or after installation. If the pipe temperature falls to 0 degrees C (32 degrees F) or lower, the pipe shall be heated to approximately 38 degrees C (100 degrees F) for a distance of 300 mm (1 foot) on each side of the weld before welding, and the weld shall be finished before the pipe cools to 0 degrees C (32 degrees F).
- H. Non-Destructive Examination of Piping Welds:
 - Perform radiographic examination of 50 percent of the first 10 welds made and 10 percent of all additional welds made. The COR reserves the right to identify individual welds for which the radiographic examination must be performed. All welds will be visually inspected by the COR. The VA reserves the right to require testing on

additional welds up to 100 percent if more than 25 percent of the examined welds fail the inspection.

- 2. An approved independent testing firm regularly engaged in radiographic testing shall perform the radiographic examination of pipe joint welds. All radiographs shall be reviewed and interpreted by an ASNT Certified Level III radiographer, employed by the testing firm, who shall sign the reading report.
- 3. Comply with ASME B31.1. Furnish a set of films showing each weld inspected, a reading report evaluating the quality of each weld, and a location plan showing the physical location where each weld is to be found in the completed project. The COR and the commissioning agent shall be given a copy of all reports to be maintained as part of the project records and shall review all inspection records.
- I. Defective Welds: Replace and reinspect defective welds. Repairing defective welds by adding weld material over the defect or by peening are prohibited. Welders responsible for defective welds must be requalified prior to resuming work on the project.
- J. Electrodes: Electrodes shall be stored in a dry heated area, and be kept free of moisture and dampness during the fabrication operations. Discard electrodes that have lost part of their coating.

3.3 PIPE JOINTS

- A. Welded: Beveling, spacing and other details shall conform to ASME B31.1 and AWS B2.1/B2.1M. See Welder's qualification requirements under "Quality Assurance" in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Screwed: Threads shall conform to ASME B1.20.1; joint compound shall be applied to male threads only and joints made up so no more than three threads show. Coat exposed threads on steel pipe with joint compound, or red lead paint for corrosion protection.
- C. 125 Pound Cast Steel Flange (Plain Face): Mating flange shall have raised face, if any, removed to avoid overstressing the cast steel flange.

3.4 EXPANSION JOINTS (BELLOWS AND SLIP TYPE)

A. Anchors and Guides: Provide type, quantity and spacing as recommended by manufacturer of expansion joint and as shown. A professional engineer shall verify in writing that anchors and guides are properly designed for forces and moments which will be imposed.

- B. Cold Set: Provide setting of joint travel at installation as recommended by the manufacturer for the ambient temperature during the installation.
- C. Preparation for Service: Remove all apparatus provided to restrain joint during shipping or installation. Representative of manufacturer shall visit the site and verify that installation is proper.
- D. Access: Expansion joints must be located in readily accessible space. Locate joints to permit access without removing piping or other devices. Allow clear space to permit replacement of joints and to permit access to devices for inspection of all surfaces and for adding packing.

3.5 STEAM TRAP PIPING

- A. Install to permit gravity flow to the trap. Provide gravity flow (avoid lifting condensate) from the trap where modulating control valves are used. Support traps weighing over 11 kg (24 pounds) independently of connecting piping.
 - On pipe size 1 ½ inch and above a raised face flange is required to allow for removal of the steam trap without disturbing surrounding piping.
 - On pipe size below 1 ½ inch raised face flanges or unions may be used to allow for removal of the traps.

3.6 LEAK TESTING

- A. Inspect all joints and connections for leaks and workmanship and make corrections as necessary, to the satisfaction of the COR in accordance with the specified requirements. Testing shall be performed in accordance with the specification requirements.
- B. An operating test at design pressure, and for hot systems, design maximum temperature.
- C. A hydrostatic test at 1.5 times design pressure. Factory tested equipment (convertors, exchangers, coils, etc.) need not be field tested. Avoid excessive pressure on mechanical seals and safety devices.
- D. Prepare and submit test and inspection reports to the COR within 5 working days of test completion and prior to covering the pipe.
- E. All tests shall be witnessed by the COR, their representative, or the Commissioning Agent and be documented by each section tested, date tested, and list or personnel present.

VA Project No. 595-668 AE Works Project No. VLEB-010

3.7 FLUSHING AND CLEANING PIPING SYSTEMS

A. Steam, Condensate and Vent Piping: The piping system shall be flushed clean prior to equipment connection. Cleaning includes pulling all strainer screens and cleaning all scale/dirt legs during startup operation. Contractor shall be responsible for damage caused by inadequately cleaned/flushed systems.

3.8 STARTUP AND TESTING

- A. Perform tests as recommended by product manufacturer and listed standards and under actual or simulated operating conditions and prove full compliance with design and specified requirements. Tests of the various items of equipment shall be performed simultaneously with the system of which each item is an integral part.
- B. When any defects are detected, correct defects and repeat test at no additional cost or time to the Government.
- C. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with COR and Commissioning Agent. Provide a minimum notice of 10 working days prior to startup and testing.

3.9 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- B. Components provided under this section of the specification will be tested as part of a larger system.

3.10 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for 4 hours to instruct each VA personnel responsible in operation and maintenance of the system.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.

- - - E N D - - -

SECTION 23 31 00 HVAC DUCTS AND CASINGS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Ductwork and accessories for HVAC including the following:
 - 1. Supply air, return air, and exhaust air systems.
- B. Definitions:
 - 1. SMACNA Standards as used in this specification means the HVAC Duct Construction Standards, Metal and Flexible.
 - Seal or Sealing: Use of liquid or mastic sealant, with or without compatible tape overlay, or gasketing of flanged joints, to keep air leakage at duct joints, seams and connections to an acceptable minimum.
 - 3. Duct Pressure Classification: SMACNA HVAC Duct Construction Standards, Metal and Flexible.
 - 4. Exposed Duct: Exposed to view in a finished room.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Section 07 84 00, FIRESTOPPING: Fire Stopping Material.
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General Mechanical Requirements.
- D. Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT: Noise Level Requirements.
- E. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC: Testing and Balancing of Air Flows.
- F. Section 23 07 11, HVAC INSULATION: Duct Insulation.
- G. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC: Duct Mounted Instrumentation.
- H. Section 23 34 00, HVAC FANS: Exhaust Air Fans.
- I. Section 23 36 00, AIR TERMINAL UNITS: Terminal Units.
- J. Section 23 81 00, DECENTRALIZED UNITARY HVAC EQUIPMENT: Supply Air Fans.
- K. Section 28 31 00, FIRE DETECTION and ALARM: Smoke Detectors.

1.3 QUALITY ASSURANCE

A. Refer to article, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

- B. Fire Safety Code: Comply with NFPA 90A.
- C. Duct System Construction and Installation: Referenced SMACNA Standards are the minimum acceptable quality.
- D. Duct Sealing & Air Leakage Criteria: Ducts shall be sealed as per duct sealing requirements of SMACNA HVAC Air Duct Leakage Test Manual for duct pressure classes shown on the drawings.
- E. Duct accessories exposed to the air stream, such as dampers of all types and access openings, shall be of the same material as the duct or provide at least the same level of corrosion resistance.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Rectangular ducts:
 - a. Schedules of duct systems, materials and selected SMACNA construction alternatives for joints, sealing, gage and reinforcement.
 - b. Sealants and gaskets.
 - c. Access doors.
 - 2. Round duct construction details:
 - a. Manufacturer's details for duct fittings.
 - b. Sealants and gaskets.
 - c. Access sections.
 - d. Installation instructions.
 - 3. Volume dampers, back draft dampers.
 - 4. Upper hanger attachments.
 - 5. Flexible ducts and clamps, with manufacturer's installation instructions.
 - 6. Flexible connections.
 - 7. Instrument test fittings.
 - 8. Details and design analysis of alternate or optional duct systems.
- C. Coordination Drawings: Refer to article, SUBMITTALS, in Section 23 05 11-COMMON WORK RESULTS FOR HVAC.

1.5 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.

VA Project No. 595-668 Lebanon VAMC AE Works Project No. VLEB-010 New Entryway for Building 17 BID DOCUMENTS 02-01-20 B. American Society of Civil Engineers (ASCE): ASCE7-2017......Minimum Design Loads for Buildings and Other Structures C. American Society for Testing and Materials (ASTM): A167-2009..... Standard Specification for Stainless and Heat-Resisting Chromium-Nickel Steel Plate, Sheet, and Strip A653-2019.....Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy coated (Galvannealed) by the Hot-Dip process A1011-2018.....Standard Specification for Steel, Sheet and Strip, Hot rolled, Carbon, structural, High-Strength Low-Alloy, High Strength Low-Alloy with Improved Formability, and Ultra-High Strength B209-2014.....Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate C1071-2019..... Standard Specification for Fibrous Glass Duct Lining Insulation (Thermal and Sound Absorbing Material) E84-2014.....Standard Test Method for Surface Burning Characteristics of Building Materials D. National Fire Protection Association (NFPA): 90A-2018..... Standard for the Installation of Air Conditioning and Ventilating Systems 96-2018..... Standard for Ventilation Control and Fire Protection of Commercial Cooking Operations E. Sheet Metal and Air Conditioning Contractors National Association (SMACNA): 3rd Edition -2006.....HVAC Duct Construction Standards, Metal and Flexible 2nd Edition -2012.....HVAC Air Duct Leakage Test Manual 6th Edition -2016.....Fibrous Glass Duct Construction Standards F. Underwriters Laboratories, Inc. (UL): 181-2013......Factory-Made Air Ducts and Air Connectors 555-2006.....Standard for Fire Dampers 555S-2014.....Standard for Smoke Dampers

PART 2 - PRODUCTS

2.1 DUCT MATERIALS AND SEALANTS

- A. General: Except for systems specified otherwise, construct ducts, casings, and accessories of galvanized sheet steel, ASTM A653, coating G90; or, aluminum sheet, ASTM B209, alloy 1100, 3003 or 5052.
- B. Specified Corrosion Resistant Systems: Stainless steel sheet, ASTM A167, Class 302 or 304, Condition A (annealed) Finish No. 4 for exposed ducts and Finish No. 2B for concealed duct or ducts located in mechanical and electrical rooms.
- C. Joint Sealing: Refer to SMACNA HVAC Duct Construction Standards.
 - 1. Sealant: Elastomeric compound, gun or brush grade, maximum 25 flame spread, and 50 smoke developed (dry state) compounded specifically for sealing ductwork as recommended by the manufacturer. Generally, provide liquid sealant, with or without compatible tape, for low clearance slip joints and heavy, permanently elastic, mastic type where clearances are larger. Oil base caulking and glazing compounds are not acceptable because they do not retain elasticity and bond.
 - Tape: Use only tape specifically designated by the sealant manufacturer and apply only over wet sealant. Pressure sensitive tape shall not be used on bare metal or on dry sealant.
 - 3. Gaskets in Flanged Joints: Soft neoprene.
- D. Approved factory-made joints may be used.

2.2 DUCT CONSTRUCTION AND INSTALLATION

- A. Regardless of the pressure classifications outlined in the SMACNA Standards, fabricate and seal the ductwork in accordance with the following pressure classifications:
- B. Duct Pressure Classification:
 - 0 to 50 mm (2 inch)
 - > 50 mm to 75 mm (2 inch to 3 inch)
 - > 75 mm to 100 mm (3 inch to 4 inch)
- C. Seal Class: All ductwork shall receive Class A Seal
- D. Provide a welded stainless-steel duct section for housing the ductmounted terminal humidifiers. Ductwork shall be at least 4 feet long on the upstream side and 4 feet long on the downstream side. Slope the ductwork against the direction of airflow and provide drain connections.

- E. Round Ducts: Furnish duct and fittings made by the same manufacturer to insure good fit of slip joints. When submitted and approved in advance, round duct, with size converted on the basis of equal pressure drop, may be furnished in lieu of rectangular duct design shown on the drawings.
 - Elbows: Diameters 80 through 200 mm (3 through 8 inches) shall be two sections die stamped, all others shall be gored construction, maximum 18 degree angle, with all seams continuously welded or standing seam. Coat galvanized areas of fittings damaged by welding with corrosion resistant aluminum paint or galvanized repair compound.
 - Provide bell mouth, conical tees or taps, laterals, reducers, and other low loss fittings as shown in SMACNA HVAC Duct Construction Standards.
 - Ribbed Duct Option: Lighter gage round duct and fittings may be furnished provided certified tests indicating that the rigidity and performance is equivalent to SMACNA standard gage ducts are submitted.
 - Ducts: Manufacturer's published standard gage, G90 coating, spiral lock seam construction with an intermediate standing rib.
 - b. Fittings: May be manufacturer's standard as shown in published catalogs, fabricated by spot welding and bonding with neoprene base cement or machine formed seam in lieu of continuous welded seams.
- F. Casings and Plenums: Construct in accordance with SMACNA HVAC Duct Construction Standards Section 6, including curbs and access doors. Access doors shall be hollow metal, insulated, with latches and door pulls, 500 mm (20 inches) wide by 1200 - 1350 mm (48 - 54 inches) high. Provide view port in the doors where shown.
- G. Volume Dampers: Single blade or opposed blade, multi-louver type as detailed in SMACNA Standards. Refer to SMACNA for Single Blade and Figure 2.13 for Multi-blade Volume Dampers.
- H. Duct Hangers and Supports: Refer to SMACNA Standards Section IV. Avoid use of trapeze hangers for round duct.

2.3 DUCT ACCESS DOORS, PANELS AND SECTIONS

A. Provide access doors, sized and located for maintenance work, upstream, in the following locations:

- 1. Each humidifier and automatic control damper.
- 2. Each duct mounted smoke detector.
- B. Openings shall be as large as feasible in small ducts, 300 mm by 300 mm (12 inch by 12 inch) minimum where possible. Access sections in insulated ducts shall be double-wall, insulated. Transparent shatterproof covers are preferred for uninsulated ducts.
 - For rectangular ducts: Refer to SMACNA HVAC Duct Construction Standards (Figure 2-12).
 - For round duct: Refer to SMACNA HVAC duct Construction Standards (Figure 2-11).

2.4 FLEXIBLE AIR DUCT

- A. General: Factory fabricated, complying with NFPA 90A for connectors not passing through floors of buildings. Flexible ducts shall not penetrate any fire or smoke barrier which is required to have a fire resistance rating of one hour or more. Flexible duct length shall not exceed 1.5 m (5 feet). Provide insulated acoustical air duct connectors in supply air duct systems and elsewhere as shown.
- B. Flexible ducts shall be listed by Underwriters Laboratories, Inc., complying with UL 181. Ducts larger than 200 mm (8 inches) in diameter shall be Class 1. Ducts 200 mm (8 inches) in diameter and smaller may be Class 1 or Class 2.
- C. Insulated Flexible Air Duct: Factory made including mineral fiber insulation with maximum C factor of 0.25 at 24 degrees C (75 degrees F) mean temperature, encased with a low permeability moisture barrier outer jacket, having a puncture resistance of not less than 50 Beach Units. Acoustic insertion loss shall not be less than 3 dB per 300 mm (foot) of straight duct, at 500 Hz, based on 150 mm (6 inch) duct, of 750 m/min (2500 fpm).
- D. Application Criteria:
 - Temperature range: -18 to 93 degrees C (0 to 200 degrees F) internal.
 - 2. Maximum working velocity: 1200 m/min (4000 feet per minute).
 - 3. Minimum working pressure, inches of water gage: 2500 Pa (10 inches) positive, 500 Pa (2 inches) negative.
- E. Duct Clamps: 100 percent nylon strap, 80 kg (175 pounds) minimum loop tensile strength manufactured for this purpose or stainless-steel strap

with cadmium plated worm gear tightening device. Apply clamps with sealant and as approved for UL 181, Class 1 installation.

2.5 FLEXIBLE DUCT CONNECTIONS

Where duct connections are made to fans and rooftop units, install a non-combustible flexible connection of 822 g (29 ounce) neoprene coated fiberglass fabric approximately 150 mm (6 inches) wide. For connections exposed to sun and weather provide hypalon coating in lieu of neoprene. Burning characteristics shall conform to NFPA 90A. Securely fasten flexible connections to round ducts with stainless steel or zinc-coated iron draw bands with worm gear fastener. For rectangular connections, crimp fabric to sheet metal and fasten sheet metal to ducts by screws 50 mm (2 inches) on center. Fabric shall not be stressed other than by air pressure. Allow at least 25 mm (one inch) slack to ensure that no vibration is transmitted.

2.6 FIRESTOPPING MATERIAL

Refer to Section 07 84 00, FIRESTOPPING.

2.7 DUCT MOUNTED TEMPERATURE SENSOR (AIR)

Refer to Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.

2.8 INSTRUMENT TEST FITTINGS

- A. Manufactured type with a minimum 50 mm (two inch) length for insulated duct, and a minimum 25 mm (one inch) length for duct not insulated. Test hole shall have a flat gasket for rectangular ducts and a concave gasket for round ducts at the base, and a screw cap to prevent air leakage.
- B. Provide instrument test holes at each duct or casing mounted temperature sensor or transmitter, and at entering and leaving side of each heating coil, cooling coil, and heat recovery unit.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with provisions of Section 23 05 11, COMMON WORK RESULTS FOR HVAC, particularly regarding coordination with other trades and work in existing buildings.
- B. Fabricate and install ductwork and accessories in accordance with referenced SMACNA Standards:
 - Drawings show the general layout of ductwork and accessories but do not show all required fittings and offsets that may be necessary to connect ducts to equipment, boxes, diffusers, grilles, etc., and to

coordinate with other trades. Fabricate ductwork based on field measurements. Provide all necessary fittings and offsets at no additional cost to the government. Coordinate with other trades for space available and relative location of HVAC equipment and accessories on ceiling grid. Duct sizes on the drawings are inside dimensions which shall be altered by Contractor to other dimensions with the same air handling characteristics where necessary to avoid interferences and clearance difficulties.

- 2. Provide duct transitions, offsets and connections to dampers, coils, and other equipment in accordance with SMACNA Standards. Provide streamliner, when an obstruction cannot be avoided and must be taken in by a duct. Repair galvanized areas with galvanizing repair compound.
- 3. Provide bolted construction and tie-rod reinforcement in accordance with SMACNA Standards.
- 4. Construct casings, eliminators, and pipe penetrations in accordance with SMACNA Standards, Chapter 6. Design casing access doors to swing against air pressure so that pressure helps to maintain a tight seal.
- C. Install duct hangers and supports in accordance with SMACNA Standards.
- D. Seal openings around duct penetrations of floors and fire rated partitions with fire stop material as required by NFPA 90A.
- E. Flexible duct installation: Refer to SMACNA Standards, Chapter 3. Ducts shall be continuous, single pieces not over 1.5 m (5 feet) long (NFPA 90A), as straight and short as feasible, adequately supported. Centerline radius of bends shall be not less than two duct diameters. Make connections with clamps as recommended by SMACNA. Clamp per SMACNA with one clamp on the core duct and one on the insulation jacket. Flexible ducts shall not penetrate floors, or any chase or partition designated as a fire or smoke barrier, including corridor partitions fire rated one hour or two hours. Support ducts SMACNA Standards.
- F. Where diffusers, registers and grilles cannot be installed to avoid seeing inside the duct, paint the inside of the duct with flat black paint to reduce visibility.
- G. Control Damper Installation:

- Provide necessary blank-off plates required to install dampers that are smaller than duct size. Provide necessary transitions required to install dampers larger than duct size.
- Assemble multiple sections dampers with required interconnecting linkage and extend required number of shafts through duct for external mounting of damper motors.
- 3. Provide necessary sheet metal baffle plates to eliminate stratification and provide air volumes specified. Locate baffles by experimentation, and affix and seal permanently in place, only after stratification problem has been eliminated.
- 4. Install all damper control/adjustment devices on stand-offs to allow complete coverage of insulation.
- H. Air Flow Measuring Devices (AFMD): Install units with minimum straight run distances, upstream and downstream as recommended by the manufacturer.
- I. Protection and Cleaning: Adequately protect equipment and materials against physical damage. Place equipment in first class operating condition or return to source of supply for repair or replacement, as determined by Resident Engineer. Protect equipment and ducts during construction against entry of foreign matter to the inside and clean both inside and outside before operation and painting. When new ducts are connected to existing ductwork, clean both new and existing ductwork by mopping and vacuum cleaning inside and outside before operation.

3.2 TESTING, ADJUSTING AND BALANCING (TAB)

Refer to Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.

3.3 OPERATING AND PERFORMANCE TESTS

Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

- - - E N D - - -

SECTION 23 34 00 HVAC FANS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Fans for heating, ventilating and air conditioning.
- B. Product Definitions: AMCA Publication 99, Standard 1-66.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- C. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- D. Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC and STEAM GENERATION EQUIPMENT.
- E. Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- F. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.
- G. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- H. Section 23 81 00, DECENTRALIZED UNITARY HVAC EQUIPMENT.
- I. Section 26 29 11, LOW-VOLTAGE MOTOR STARTERS.

1.3 QUALITY ASSURANCE

- A. Refer to paragraph, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Fans and power ventilators shall be listed in the current edition of AMCA 261 and shall bear the AMCA performance seal.
- C. High-plume exhaust fans must be tested in accordance with AMCA publications 211 and 311 in an AMCA accredited laboratory and certified for air and sound performance.
- D. High-plume exhaust fans shall be vibration tested before shipping, as an assembly, in accordance with ANSI/AMCA standard 204. Each assembled fan shall be test run at the factory at the specified fan RPM and vibration signatures shall be taken on each bearing in three planes horizontal, vertical, and axial. The maximum allowable fan vibration shall be less than 0.10 in./sec peak velocity; filter-in reading as measured at the fan RPM. This report shall be provided at no charge to the customer upon request.
- E. Operating Limits for Centrifugal Fans: AMCA 99 (Class I, II, and III).

2. Sound Rating: AMCA 300.

- G. Vibration Tolerance for Fans and Power Ventilators: Section 23 05 41, NOISE AND VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- H. Performance Criteria:
 - The fan schedule shall show the design air volume and static pressure. Select the fan motor HP by increasing the fan BHP by 10 percent to account for the drive losses and field conditions.
 - 2. Select the fan operating point as follows:
 - a. Forward Curve and Axial Flow Fans: Right hand side of peak pressure point
 - b. Air Foil, Backward Inclined, or Tubular: At or near the peak static efficiency
- Safety Criteria: Provide manufacturer's standard screen on fan inlet and discharge where exposed to operating and maintenance personnel.
- J. Corrosion Protection:
 - All steel shall be mill-galvanized, or phosphatized and coated with minimum two coats, corrosion resistant enamel paint. Manufacturer's paint and paint system shall meet the minimum specifications of: ASTM D1735 water fog; ASTM B117 salt spray; ASTM D3359 adhesion; and ASTM G152 and G153 for carbon arc light apparatus for exposure of non-metallic material.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturers Literature and Data:
 - 1. Fan sections, motors and drives.
 - 2. Prefabricated roof curbs.
 - 3. Power roof ventilators.
 - 4. High-plume exhaust fans.
- C. Certified Sound power levels for each fan.
- D. Motor ratings types, electrical characteristics and accessories.
- E. Roof curbs.
- G. Maintenance and Operating manuals in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
- H. Certified fan performance curves for each fan showing cubic feet per minute (CFM) versus static pressure, efficiency, and horsepower for design point of operation.

1.5 APPLICABLE PUBLICATIONS

A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.

в.	Air Movement and Control Association International, Inc. (AMCA):
	99-2016Standards Handbook
	204-2012 Balance Quality and Vibration Levels for Fans
	210-2016 Fans for
	Aerodynamic Performance Rating
	211-2012 Product Ratings Program - Product Rating
	Manual for Fan Air Performance
	261-2017Directory of Products Licensed to bear the AMCA
	Certified Ratings Seal - Published Annually
	300-2014Reverberant Room Method for Sound Testing of
	Fans
	311-2010 Product Ratings Program - Product Rating
	Material for Fan Sound Performance
	500-D-12-2012Laboratory Methods of Testing Louvers for
	Rating
	500-L-12-2012Laboratory Methods of Testing Dampers for
	Rating
с.	American National Standards Institute (ANSI):
	11-1999 AMBA Method of Evaluating Load Ratings of
	Bearings
	Z9.5-2012Laboratory Ventilation
D.	American Society for Testing and Materials (ASTM):
	B117-2018 Standard Practice for Operating Salt Spray
	(Fog) Apparatus
	D1735-2008Standard Practice for Testing Water Resistance
	of Coatings Using Water Fog Apparatus
	D3359-2017 Standard Test Methods for Measuring Adhesion by
	Tape Test
	G152-2013 Open Flame
	Carbon Arc Light Apparatus for Exposure of Non-
	Metallic Materials

VA Project No. 595-668 Lebanon VAMC AE Works Project No. VLEB-010 New Entryway for Building 17 BID DOCUMENTS 02-01-20 G153-2013..... Standard Practice for Operating Enclosed Carbon Arc Light Apparatus for Exposure of Non-Metallic Materials E. National Fire Protection Association (NFPA): NFPA 96-2018.....Standard for Ventilation Control and Fire Protection of Commercial Cooking Operations F. National Sanitation Foundation (NSF): 37-2017..... Air Curtains for Entrance Ways in Food and Food Service Establishments G. Underwriters Laboratories, Inc. (UL): 181-2013......Factory Made Air Ducts and Air Connectors

705-2017.....Power Ventilators

PART 2 - PRODUCTS

2.1 ROOFTOP UNIT FAN SECTION

Refer to specification Section 23 81 00, DECENTRALIZED UNITARY HVAC EQUIPMENT.

2.2 POWER ROOF VENTILATOR

- A. Standards and Performance Criteria: Refer to Paragraph, QUALITY ASSURANCE.
- B. Type: Downblast, Centrifugal fan, backward inclined blades.
- C. Construction: Steel or aluminum, completely weatherproof, for curb mounting, exhaust cowl or entire drive assembly readily removable for servicing, aluminum bird screen on discharge, UL approved safety disconnect switch, conduit for wiring, vibration isolators for wheel, motor and drive assembly. Provide self acting back draft damper.
- D. Motor and Drive: Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC. Bearings shall be pillow block ball type with a minimum L-50 life of 200,000 hours. Motor shall be located out of air stream.
- E. Prefabricated Roof Curb: As specified in paragraph 2.3 of this section.

2.3 PREFABRICATED ROOF CURBS

A. Construction: Galvanized steel, with continuous welded corner seams, 50 mm (2 inch) wall thickness, treated wood nailer 40 mm (1-1/2 inch) thick, 48 kg per cubic meter (3 pound) density rigid mineral fiberboard insulation with metal liner, built-in cant strip (except for gypsum or tectum decks). For surface insulated roof deck provide raised cant strip to start at the upper surface of the insulation. Curbs shall be

built for pitched roof or ridge mounting as required to keep top of curb level.

B. Curb Height: 300 mm (12 inches) above finished roof.

2.4 HIGH-PLUME EXHAUST FANS

- A. General
 - a. Base fan performance at standard conditions (density 0.075 lb./ft³)
 - b. Fans selected shall be capable of accommodating static pressure and flow variations of +/- 15% of scheduled values.
 - c. Each fan shall be direct drive.
 - d. Each fan to be equipped with 316 stainless steel lifting lugs for corrosion resistance.
 - e. Fan assembly shall be designed for a minimum of 125 mph wind loading, without the use of guy wires.
 - f. Custom Paint Finish: Manufacturer shall provide custom paint finish to match, as closely as possible, the existing building façade color. Final color to be selected by architect.
- B. Fan Housing and Inlet
 - a. Fan housing to be aerodynamically designed with high-efficiency inlet, engineered to reduce incoming air turbulence.
 - b. Fan housing shall be welded steel and meet section 1.3 subsectionH for corrosion protection. No uncoated metal fan parts shall be acceptable.
 - c. Load bearing or structural fan components that are fabricated of polypropylene or fiberglass that have lower mechanical properties than steel, have rough interior surfaces in which corrosive, hazardous compounds can collect, and/or which chalk and structurally degrade due to the UV component of sunlight shall not be acceptable.
 - d. A high velocity conical discharge nozzle shall be supplied by the fan manufacturer and be designed to efficiently handle an outlet velocity of up to 6000 fpm (30.48 m/s). Discharge nozzles shall be steel with corrosion resistant coating or chemical resistant medium density polyethylene with UV inhibitors to prevent chalking and have smooth interior surfaces. Discharge stack caps or hinged covers, impeding exhaust flow shall not be permitted.
 - e. Provide housing drain for removal of rain and condensation.

- f. Motor compartment shall be sealed from the contaminated airstream and have integral cooling vents to fan exterior housing to prevent heat build-up.
- g. Housing shall have a bolted and gasketed access panel allowing for inspection of impeller.
- h. Impeller, inlet cone, and motor shall be removable in a single cartridge from the exterior of the fan housing without removal of the fan housing from roof curb.
- C. Fan Impeller
 - a. Fan impeller shall be centrifugal, backward curved, with laminar blade geometry and non-stall characteristics. The impeller shall be electronically balanced both statically and dynamically per AMCA Standard 204.
 - b. Fan impeller shall be manufactured of aluminum (AMCA type B spark resistant) and meet section 1.3 subsection H for corrosion resistant coating.
 - c. Aluminum centrifugal impellers shall be coated with Hi Pro polyester resin.
- D. Heavy Load Roof Curb
 - a. Exhaust fan manufacturer shall supply a structural support curbi. Curb Height: 14 inches.
 - b. Curb shall be fabricated of a minimum of 14 gauge of galvanized, corrosion resistant coated steel and structurally reinforced.
 - c. Curb shall be insulated.
 - d. When properly anchored to roof structure, the standard curb/blower assembly shall withstand wind loads of up to 125 mph without additional structural support.
 - e. If curb/blower assembly is not capable of meeting wind loads of up to 125 mph, manufacturer shall provide guy wires. Quantity and location to be determined per manufacturer's installation instructions.

E. Fan Motors and Disconnects

a. Motors shall be premium efficiency, standard NEMA frame, 1800 or 3600 RPM, Totally Enclosed Fan Cooled (TEFC) with a 1.15 service factor on line (sinewave) frequency. Motor shall be labeled for for use with a VFD with a 10:1 VT and 1.0 service factor.

- b. Furnish variable speed fan motor controllers where shown on the drawings. Refer to Section 26 29 11, MOTOR STARTERS. Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC for controller/motor combination requirements.
- c. Motor bearings shall be sealed for life and require no lubrication or maintenance.
- d. Motors shall be equipped with internal shaft grounding ring to protect motor bearings from the shaft voltages.
- e. Motor bearings shall be sized for an L-10 life of no less than 100,000 hours in vertical shaft down application.
- f. A factory-mounted NEMA 3R disconnect switch shall be provided for each fan.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install fan, motor and drive in accordance with manufacturer's instructions.
- B. Bolt equipment to curbs with galvanized lag bolts.
- C. Install vibration control devices as shown on drawings and specified in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.

3.2 PRE-OPERATION MAINTENANCE

- A. Lubricate bearings, pulleys, belts and other moving parts with manufacturer recommended lubricants.
- B. Rotate impeller by hand and check for shifting during shipment and check all bolts, collars, and other parts for tightness.
- C. Clean fan interiors to remove foreign material and construction dirt and dust.

3.3 START-UP AND INSTRUCTIONS

- A. Verify operation of motor, drive system and fan wheel according to the drawings and specifications.
- B. Check vibration and correct as necessary for air balance work.
- C. After air balancing is complete and permanent sheaves are in place perform necessary field mechanical balancing to meet vibration tolerance in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.

- - - E N D - - -

SECTION 23 36 00 AIR TERMINAL UNITS

PART 1 - GENERAL

1.1 DESCRIPTION

Air terminal units.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- C. Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- D. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.
- E. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- F. Section 23 31 00, HVAC DUCTS and CASINGS.

1.3 QUALITY ASSURANCE

Refer to Article, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Air Terminal Units: Submit test data.
- C. Certificates:
 - 1. Compliance with Article, QUALITY ASSURANCE.
 - 2. Compliance with specified standards.
- D. Operation and Maintenance Manuals: Submit in accordance with paragraph, INSTRUCTIONS, in Section 01 00 00, GENERAL REQUIREMENTS.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Conditioning and Refrigeration Institute (AHRI)/(ARI): 880-2017.....Performance Rating of Air Terminals
- C. National Fire Protection Association (NFPA): 90A-2018.....Standard for the Installation of Air Conditioning and Ventilating Systems

VA Project No. 595-668 AE Works Project No. VLEB-010

- D. Underwriters Laboratories, Inc. (UL): 181-2013.....Standard for Factory-Made Air Ducts and Air Connectors
- E. American Society for Testing and Materials (ASTM): C 665-2006.....Standard Specification for Mineral-Fiber Blanket Thermal Insulation for Light Frame Construction and Manufactured Housing

1.6 GUARUNTEE

In accordance with the GENERAL CONDITIONS

PART 2 - PRODUCTS

2.1 GENERAL

- A. Coils:
 - 1. Electric Heating Coils:
 - a. ARI certified, spiral fin type.
 - b. Capacity: As indicated, based on scheduled data.
 - c. Coil: Enclosed copper tube, aluminum finned element of coiled nickel-chrome resistance wire centered in tubes and embedded in refractory material. Exposed helical coil of nickel-chrome resistance wire with refractory ceramic support bushings will not be allowed.
- B. Labeling: Control box shall be clearly marked with an identification label that lists such information as nominal CFM, maximum and minimum factory-set airflow limits, coil type and coil connection orientation, where applicable.
- C. Factory calibrate air terminal units to air flow rate indicated. All settings including maximum and minimum air flow shall be field adjustable.
- D. Dampers with internal air volume control: See section 23 31 00 HVAC DUCTS and CASINGS.

2.2 AIR TERMINAL UNITS (BOXES)

A. General: Factory built, pressure independent units, factory set-field adjustable air flow rate, suitable for single duct applications. Use of dual-duct air terminal units is not permitted. Clearly show on each unit the unit number and factory set air volumes corresponding to the contract drawings. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC work assumes factory set air volumes. Coordinate flow controller sequence and damper operation details with the drawings and Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC. All air terminal units shall be brand new products of the same manufacturer.

B. Sound Power Levels:

Acoustic performance of the air terminal units shall be based on the design noise levels for the spaces stipulated in Section 23 05 41 (Noise and Vibration Control for HVAC Piping and Equipment). Equipment schedule "VAV TERMINAL UNIT SCHEDULE" shall show the sound power levels in all octave bands.

- C. Casing: Unit casing shall be constructed of galvanized steel no lighter than 0.85 mm (22 Gauge). Provide hanger brackets for attachment of supports.
 - 1. Lining material: Suitable to provide required acoustic performance, thermal insulation and prevent sweating. Meet the requirements of NFPA 90A and comply with UL 181 for erosion as well as ASTM C 665 antimicrobial requirements. Insulation shall consist of 13 mm (1/2 IN) thick non-porous foil faced rigid fiberglass insulation of 1-1/2-lb/cu.ft, secured by full length galvanized steel z-strips which enclose and seal all edges. Tape and adhesives shall not be used. Materials shall be non-friable and with surfaces, including all edges, fully encapsulated and faced with perforated metal or coated so that the air stream will not detach material.
 - 2. Access panels (or doors): Provide panels large enough for inspection, adjustment and maintenance without disconnecting ducts, and for cleaning heating coils attached to unit, even if there are no moving parts. Panels shall be insulated to same standards as the rest of the casing and shall be secured and gasketed airtight. It shall require no tool other than a screwdriver to remove.
 - 3. Total leakage from casing: Not to exceed 2 percent of the nominal capacity of the unit when subjected to a static pressure of 750 Pa (3 inch WG), with all outlets sealed shut and inlets fully open.
- D. Construct dampers and other internal devices of corrosion resisting materials which do not require lubrication or other periodic maintenance.
 - Damper Leakage: Not greater than 2 percent of maximum rated capacity, when closed against inlet static pressure of 1 kPa (4 inch WG).

E. Provide multi-point velocity pressure sensors with external pressure taps.

1. Provide direct reading air flow rate table pasted to box.

- F. Provide static pressure tubes.
- G. Externally powered DDC variable air volume controller and damper actuator to be furnished under Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC for factory mounting on air terminal units. The DDC controller shall be electrically actuated.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Work shall be installed as shown and according to the manufacturer's diagrams and recommendations.
- B. Handle and install units in accordance with manufacturer's written instructions.
- C. Support units rigidly so they remain stationary at all times. Cross-bracing or other means of stiffening shall be provided as necessary. Method of support shall be such that distortion and malfunction of units cannot occur.
- D. Locate air terminal units to provide a straight section of inlet duct for proper functioning of volume controls. See VA Standard Detail.

3.2 OPERATIONAL TEST

Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

- - - E N D - - -

SECTION 23 37 00 AIR OUTLETS AND INLETS

PART 1 - GENERAL

1.1 DESCRIPTION

A. Air Outlets and Inlets: Diffusers, Registers, and Grilles.

1.2 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Section 23 05 11, COMMON WORK RESULTS FOR HVAC and STEAM GENERATION.
- C. Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- D. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.

1.3 QUALITY ASSURANCE

- A. Refer to Article, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Fire Safety Code: Comply with NFPA 90A.

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:

1. Diffusers, registers, grilles and accessories.

C. Coordination Drawings: Refer to article, SUBMITTALS, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Diffusion Council Test Code: 1062 GRD-2015....Certification, Rating, and Test Manual 4th

Edition

- C. American Society of Civil Engineers (ASCE): ASCE7-2017.....Minimum Design Loads for Buildings and Other Structures
- D. American Society for Testing and Materials (ASTM):

A167-99 2009.....Standard Specification for Stainless and Heat-Resisting Chromium-Nickel Steel Plate, Sheet and Strip VA Project No. 595-668 Lebanon VAMC
AE Works Project No. VLEB-010 New Entryway for Building 17
BID DOCUMENTS
02-01-20
B209- 2014.....Standard Specification for Aluminum and
Aluminum-Alloy Sheet and Plate
E. National Fire Protection Association (NFPA):
90A-2018.....Standard for the Installation of Air
Conditioning and Ventilating Systems
F. Underwriters Laboratories, Inc. (UL):
181-2013.....UL Standard for Safety Factory-Made Air Ducts
and Connectors

PART 2 - PRODUCTS

2.1 AIR OUTLETS AND INLETS

- A. Materials:
 - 1. Aluminum. Provide manufacturer's standard gasket.
 - Exposed Fastenings: The same material as the respective inlet or outlet. Fasteners for aluminum may be stainless steel.
 - Contractor shall review all ceiling drawings and details and provide all ceiling mounted devices with appropriate dimensions and trim for the specific locations.
- B. Performance Test Data: In accordance with Air Diffusion Council Code 1062GRD. Refer to Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT for NC criteria.
- C. Air Supply Outlets:
 - Ceiling Diffusers (S-5 & S-6): Suitable for surface mounting, exposed T-bar or special tile ceilings, off-white finish, square or round neck connection as shown on the drawings. Provide plaster frame for units in plaster ceilings.
 - a. Square, plaque, fully adjustable pattern (S-4): Round neck, surface mounting unless shown otherwise on the drawings. Provide equalizing or control grid and volume control damper.
 - b. Slot diffuser/plenum (S-1 & S-2):
 - Diffuser: Frame and support bars shall be constructed of heavy gauge extruded aluminum. Use adjustable pattern controllers, to provide stable, adjustable air flow pattern over a wide range of operating conditions.
 - 2) Galvanized steel boot lined with 13 mm (1/2 inch) thick fiberglass conforming to NFPA 90A and complying with UL 181 for erosion. The internal lining shall be factory-fabricated, anti-microbial, and non-friable.

- 3) Provide inlet connection diameter equal to duct diameter shown on drawings or provide transition coupling if necessary. Inlet duct and plenum size shall be as recommended by the manufacturer.
- Maximum pressure drop at design flow rate: 37 Pa (0.15 inch W.G.)
- 5) Diffuser lengths greater than 6 feet shall be furnished in multiple sections and joined together end-to-end with alignment pins to form a continuous slot appearance. All alignment components shall be provided by the manufacturer.
- Refer to "REGISTERS, GRILLES, AND DIFFUSERS SCHEDULE" for number of slots and slot spacing.
- 2. Sidewall Diffusers (S-3, S-4):
 - Diffuser: Frame and support bars shall be constructed of heavy gauge extruded aluminum. Use adjustable pattern controllers, to provide stable, adjustable air flow pattern over a wide range of operating conditions.
 - Refer to "REGISTERS, GRILLES, AND DIFFUSERS SCHEDULE" for number of slots and slot spacing.
- D. Return and Exhaust Registers and Grilles: Provide opposed blade damper without removable key operator for registers.
 - Finish: Off-white baked enamel for ceiling mounted units. Wall units shall have a prime coat for field painting or shall be extruded aluminum with manufacturer's standard aluminum finish.
 - 2. Louvered Type (E-1, E-2, T-1): Fixed horizontal face bars set at 30 to 45 degrees, 3/4" blade spacing, approximately 30 mm (1-1/4 inch) margin.
 - Egg Crate Grilles (R-1): Aluminum 1/2 by 1/2 by 1/2 inch grid providing 90% free area.
 - a. Heavy extruded aluminum frame shall have countersunk screw mounting. Unless otherwise indicated, register blades and frame shall have factory applied white finish.
 - b. Grille shall be suitable for duct or surface mounting as indicated on drawings. All necessary appurtenances shall be provided to allow for mounting.

2.4 WIRE MESH GRILLE

- A. Fabricate grille with 2 x 2 mesh 13 mm (1/2 inch) galvanized steel or aluminum hardware cloth in a spot welded galvanized steel frame with approximately 40 mm (1-1/2 inch) margin.
- B. Use grilles where shown in unfinished areas such as mechanical rooms.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with provisions of Section 23 05 11, COMMON WORK RESULTS FOR HVAC AND STEAM GENERATION, particularly regarding coordination with other trades and work in existing buildings.
- B. Protection and Cleaning: Protect equipment and materials against physical damage. Place equipment in first class operating condition, or return to source of supply for repair or replacement, as determined by Resident Engineer. Protect equipment during construction against entry of foreign matter to the inside and clean both inside and outside before operation and painting.

3.2 TESTING, ADJUSTING AND BALANCING (TAB)

Refer to Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.

3.3 OPERATING AND PERFORMANCE TESTS

Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

- - - E N D - - -

SECTION 23 81 00 DECENTRALIZED UNITARY HVAC EQUIPMENT

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies rooftop units.
- B. Definitions:
 - Energy Efficiency Ratio (EER): The ratio of net cooling capacity is Btu/h to total rate of electricity input in watts under designated operating conditions (Btu hour/Watt).
 - 2. Seasonal Energy Efficiency Ratio (EER): The ratio of the total cooling output of an air conditioner during its normal annual usage period for cooling in Btu/h divided by total electric energy input in watts during the same period (Btu hour/Watt).
 - 3. Unitary: A Unitary Air Conditioner consists of one or more factorymade assemblies which normally include an evaporator or cooling coil, a compressor and condenser combination, and may include a heating function as well.
 - 4. Where such equipment is provided in more than one assembly the separated assemblies are to be designed to be used together and the requirements of rating are based upon use of matched assemblies.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES
- C. Section 07 72 00, ROOF ACCESSORIES.
- D. Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- E. Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC
- F. Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT.
- G. Section 23 05 93, TESTING, ADJUSTING, and BALANCING FOR HVAC.
- H. Section 23 07 11, HVAC INSULATION.
- I. Section 23 08 00, COMMISSIONING OF HVAC SYSTEMS.
- J. Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
- K. Section 23 31 00, HVAC DUCTS and CASINGS.
- L. Section 23 36 00, AIR TERMINAL UNITS.
- M. Section 28 31 00, FIRE DETECTION and ALARM.

1.3 QUALITY ASSURANCE

- A. Refer to specification Section 23 05 11, COMMON WORK RESULTS FOR HVAC.
- B. Safety Standards: ASHRAE Standard 15, Safety Code for Mechanical Refrigeration.

1.4 SUBMITTALS

- A. Submit in accordance with specification Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES
- B. Manufacturer's literature and data:
 - Sufficient information, including capacities, pressure drops, and piping connections clearly presented, shall be included to determine compliance with drawings and specifications for units noted below:
 - a. Unitary air conditioners:
 - 1) Rooftop units
 - Unit Dimensions required clearances, operating weights accessories and start-up instructions.
 - Electrical requirements, wiring diagrams, interlocking and control wiring showing factory installed and portions to be field installed.
 - 4. Mounting and flashing of the roof curb to the roofing structure with coordinating requirements for the roof membrane system.
- C. Certification: Submit proof of specified ARI Certification.
- D. Performance Rating: Submit catalog selection data showing equipment ratings and compliance with required sensible-to-heat-ratio, energy efficiency ratio (EER), and coefficient of performance (COP).
- E. Operating and Maintenance Manual: Submit three copies of Operating and Maintenance manual to Resident Engineer three weeks prior to final inspection.
- F. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air-Conditioning, Heating, and Refrigeration Institute (AHRI): 210/240-2017.....Performance Rating of Unitary Air-Conditioning and Air-Source Heat Pump Equipment

238100-2

VA Project No. 595-668 Lebanon VAMC AE Works Project No. VLEB-010 New Entryway for Building 17 BID DOCUMENTS 03-01-20 270-2015..... Sound Rating of Outdoor Unitary Equipment 310/380-2017.....Standard for Packaged Terminal Air-Conditioners and Heat Pumps (CSA-C744-04) 340/360-2015.....Performance Rating of Commercial and Industrial Unitary Air-Conditioning and Heat Pump Equipment 520-2004.....Performance Rating of Positive Displacement Condensing Units C. Air Movement and Control Association (AMCA): 210-2016..... Fans for Aerodynamic Performance Rating (ANSI) 410-1996.....Recommended Safety Practices for Users and Installers of Industrial and Commercial Fans D. American National Standards Institute (ANSI): S12.51-2017..... Acoustics - Determination of Sound Power Levels of Noise Sources Using Sound Pressure -Precision Method for Reverberation Rooms (same as ISO 3741:1999) E. American Society of Civil Engineers (ASCE) ASCE 7-2017......Minimum Design Loads for Buildings and Other Structures F. American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE): Handbook 2016.....HVAC Systems and Equipment 15-2019.....Safety Standard for Refrigeration Systems (ANSI) 62.1-2016......Ventilation for Acceptable Indoor Air Quality (ANSI) G. American Society of Testing and Materials (ASTM): B117-2018......Standard Practice for Operating Salt Spray (Fog) Apparatus H. Federal Specifications (Fed. Spec.): A-A-50502-2009..... Air conditioner (Unitary Heat Pump) Air to Air (3000-300,000 Btu) I. Military Specifications (Mil. Specs.): MIL-PRF-26915D.....Primer Coating, for Steel Surfaces J. National Electrical Manufacturer's Association (NEMA):

Lebanon VAMC New Entryway for Building 17 BID DOCUMENTS 03-01-20

ICS 1-2005.....Industrial Controls and Systems: General Requirements

MG 1-2019..... Motors and Generators (ANSI)

K. National Fire Protection Association (NFPA) Publications: 90A-2018.....Standard for the Installation of Air-Conditioning and Ventilating Systems

PART 2 - PRODUCTS

2.1 ROOFTOP AIR CONDITIONERS

- A. Casing: Formed and reinforced insulated panels, fabricated to allow removal for access to internal parts and components, with joints between sections sealed. Casing shall be constructed of 1.3 mm (0.052 inch) thick galvanized steel with factory-painted finish, with knockouts with grommet seals for electrical and piping connections and lifting lugs. Casing insulation and adhesive shall comply with NFPA 90A or NFPA 90B and comply with ASTM C 1071, Type I and shall be 50 mm (2 inch) thick. Removable cam latched access panel to allow access to internal parts.
- B. Corrosion Prevention: Paint shall be treated for prevention of rust with a factory coating or paint system that will withstand 500 hours in a salt-spray fog test. The salt-spray fog test shall be in accordance with ASTM B117 using a 20 percent sodium chloride solution.
- C. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.
- D. Supply-Air Fan: Direct driven, double width, backward inclined, centrifugal; with permanently lubricated, multi-speed EC motor resiliently mounted in the fan inlet. Fan wheel shall be aluminum or painted-steel, and fan scroll shall be galvanized- or painted-steel.
- E. Condenser-Coil Fan: Propeller, mounted on shaft of permanently lubricated motor.
- F. Fan Motor: Comply with requirements in Section 23 05 12, GENERAL MOTOR REQUIREMENTS FOR HVAC and STEAM GENERATION EQUIPMENT.
- G. Supply-Air Refrigerant Coil: Aluminum-plate fins and seamless internally grooved copper tube in steel casing with equalizing-type vertical distributor. Polymer strip shall prevent all copper coil from contacting steel coil frame or condensate pan. Coil split shall be interlaced. Coil shall have baked phenolic coating.

- H. Condensate Drain Pan: Formed sections of stainless-steel sheet, a minimum of 50 mm (2 inches) deep and complying with ASHRAE 62.1. Drain connections shall be threaded nipple.
- I. Electric-Resistance Heating Coil: Resistance wire of 80 percent nickel and 20 percent chromium, supported and insulated by floating ceramic bushings recessed into casing openings, fastened to supporting brackets, and mounted in galvanized-steel frame.
 - 1. Terminals: Stainless-steel machine-staked terminals secured with stainless-steel hardware.
 - Overtemperature Protection: Disk-type, automatically reset, thermalcutout, safety device; serviceable through terminal box.
 - Overcurrent Protection: Manual-reset thermal cutouts, factory wired in each heater stage.
 - Control Panel: Unit mounted with disconnecting means and overcurrent protection and shall include magnetic contactors.
 - SCR Controller: Have pilot lights operate on load ratio, a minimum of five steps.
 - 6. Time-delay relay.
 - 7. Airflow proving switch.
- J. Refrigerant Circuit Components:
 - 1. Number of Independent Refrigerant Circuits: Two.
 - Compressor: Hermetic, scroll, mounted on vibration isolators; with internal overcurrent and high-temperature protection, internal pressure relief, and crankcase heater.
- K. Refrigerant: R-410A unless otherwise indicated.
- L. Refrigeration Specialties:
 - 1. Expansion valve with replaceable thermostatic element.
 - 2. Refrigerant filter/dryer.
 - 3. Manual-reset high-pressure safety switch.
 - 4. Automatic-reset low-pressure safety switch.
 - 5. Minimum off-time relay.
 - 6. Automatic-reset compressor motor thermal overload.
 - Brass service valves installed in compressor suction and liquid lines.
 - 8. Low-ambient kit high-pressure sensor.

- 9. Four-way reversing valve with a replaceable magnetic coil, thermostatic expansion valves with bypass check valves, and a suction line accumulator.
- M. Air Filtration: Minimum arrestance according to ASHRAE 52.1, and MERV rating according to ASHRAE 52.2.

1. Pleated: Minimum 80 percent arrestee, and MERV 14.

- N. Outdoor-Air Damper: 0 to 100 percent outdoor air, with motorized damper filter.
- O. Outdoor- and Return-Air Mixing Dampers: Parallel- or opposed-blade galvanized-steel dampers mechanically fastened to cadmium plated for galvanized-steel operating rod in reinforced cabinet.
- P. Damper Motor: Modulating with adjustable minimum position.
- Q. Relief-Air Damper: Motorized, complying with ASHRAE/IESNA 90.1, and having bird screen and hood.
- R. Electrical Power Connection: A single connection of power to unit with unit-mounted disconnect switch accessible from outside unit and control-circuit transformer with built-in overcurrent protection.
- S. Controls:
 - 1. Basic Unit Controls: Refer to drawings for sequence of operation
 - a. Control-voltage transformer.
 - b. Data entry and access port to input temperature set points, occupied and unoccupied periods, and output room temperature, supply-air temperature, operating mode, and status.
 - c. Unit-mounted annunciator panel with lights to indicate power on, cooling, heating, fan running, filter dirty, and unit alarm or failure.
 - d. DDC controller or programmable timer and interface with HVAC instrumentation and control system and to digital display outdoor-air temperature, supply-air temperature, return-air temperature, economizer damper position, indoor-air quality, and control parameters. Interface with BMS/DDC system via BACnet open protocol.
 - 2. DDC controller shall have volatile-memory backup.
 - 3. Interface Requirements for HVAC Instrumentation and Control System:
 - a. Interface relay for scheduled operation.
 - b. Interface relay to provide indication of fault at the central workstation and diagnostic code storage.

Lebanon VAMC New Entryway for Building 17 BID DOCUMENTS 03-01-20

- c. Compatible with BACnet for central HVAC control workstation for adjusting set points, monitoring supply fan start, stop, and operation, inquiring data to include outdoor-air damper position, supply-temperature and humidity, monitoring occupied and unoccupied operations, monitoring constant and variable motor loads, monitoring cooling load, monitoring economizer cycles and monitoring air-distribution static pressure and ventilation air volume.
- T. Accessories:
 - Duplex, 115-V, ground-fault-interrupter outlet with 15-A overcurrent protection. Include transformer if required. Outlet shall be energized even if the unit main disconnect is open.
 - 2. Filter differential pressure switch with sensor tubing on both sides of filter. Set for final filter pressure loss.
- U. Roof curbs: Vibration isolators shall be as specified in Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT. Manufacturer's standard curbs constructed of galvanized steel with corrosion-protection coating, watertight gaskets, and factory-installed wood nailer; complying with NRCA standards.
 - 1. Curb Insulation and Adhesive: Factory applied and complying with NFPA 90A or NFPA 90B and ASTM C 1071, Type I or II. Thickness shall be 25 mm (1 inch). Insulation shall be applied with adhesive and mechanical fasteners to the internal surface of curb. Liner adhesive shall comply with ASTM C 916, Type I. Liner shall be fastened with mechanical fasteners of galvanized steel, suitable for adhesive attachment, mechanical attachment, or welding attachment to duct without damaging liner when applied without causing leakage in cabinet. Liner materials shall have air-stream surface coated with a temperature-resistant coating or faced with a plain or coated fibrous mat or fabric depending on service air velocity. Liner adhesive shall comply with ASTM C 916, Type I.
 - 2. Curb Height: 355 mm (14 inches).

PART 3 EXECUTION

3.1 INSTALLATION

A. Roof Curb: Install on roof structure, level and secure, according to ARI Guideline B. Install RTUs on curbs and coordinate roof penetrations and flashing with roof construction specified in Section 07 72 00, ROOF ACCESSORIES. Secure RTUs to upper curb rail, and secure curb base to roof framing with anchor bolts.

- B. Rooftop Unit Support: Install unit level on structural curb. Coordinate roof penetrations and flashing with roof construction. Secure rooftop units to structural support with anchor bolts.
- C. Install units level and plumb maintaining manufacturer's recommended clearances and tolerances.
- D. Install vibration spring isolators under base of self-contained unit, with minimum static deflection of 25 mm (1 inch) unless otherwise indicated. Refer to Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT

3.2 CONNECTIONS

- A. Verify condensate drainage requirements.
- B. Install condensate drain, minimum connection size, with trap and indirect connection to nearest roof drain or area drain.
- C. Install piping adjacent to units to allow service and maintenance.
- D. Install ducts to termination at top of roof curb. Cut roof decking only as required for passage of ducts. Do not cut out decking under entire roof curb.
- E. Connect supply ducts to units with flexible duct connectors specified in Section 23 31 00, HVAC DUCTS and CASINGS.
- F. Install return-air duct continuously through roof structure.
- G. Ground equipment and install power wiring, switches, and controls for self contained systems.
- J. Connect refrigerant piping to coils with shutoff valves on the suction and liquid lines at the coil and a union or flange at each connection at the coil and condenser.
- H. Install ducts to the units with flexible duct connections.

3.3 FIELD QUALITY CONTROL

- A. Perform tests and inspections and prepare test reports.
- B. Tests and Inspections: After installing units and after electrical circuitry has been energized, test units for compliance with requirements. Inspect for and remove shipping bolts, blocks, and tiedown straps. After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and

equipment. Remove and replace malfunctioning units and retest as specified above.

3.4 STARTUP AND TESTING

- A. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the Resident Engineer and Commissioning Agent. Provide a minimum of 7 days prior notice.
- B. Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of units.

3.5 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 23 08 00 -COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.6 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of units.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS.

---END---

SECTION 23 82 00 CONVECTION HEATING UNITS

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies wall mounted electric heaters.

1.2 RELATED WORK

- A. Section 01 00 00, GENERAL REQUIREMENTS.
- B. Section 01 09 00, GENERAL COMMISSIONING REQUIREMENTS
- C. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES
- D. Section 23 05 11, COMMON WORK RESULTS FOR HVAC: General mechanical requirements and items, which are common to more than one section of Division 23.
- E. Section 23 05 41, NOISE and VIBRATION CONTROL FOR HVAC PIPING and EQUIPMENT: Noise requirements.
- F. Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS: Requirements for commissioning, systems readiness checklists, and training.

1.3 QUALITY ASSURANCE

Refer to Paragraph, QUALITY ASSURANCE, in Section 23 05 11, COMMON WORK RESULTS FOR HVAC. Provide guarantee in accordance with FAR clause 52.246-21

1.4 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, and SAMPLES.
- B. Manufacturer's Literature and Data:
 - 1. Wall Mounted Electric Heaters.
- C. Certificates:
 - 1. Compliance with Article, QUALITY ASSURANCE.
 - 2. Compliance with specified standards.
- D. Operation and Maintenance Manuals: Submit in accordance with Article, INSTRUCTIONS, in Section 01 00 00, GENERAL REQUIREMENTS.
- E. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 23 08 00 COMMISSIONING OF HVAC SYSTEMS.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. National Fire Protection Association (NFPA): 90A-2018.....Standard for the Installation of Air Conditioning and Ventilating Systems
 - 70-2017.....Code Code
- C. Underwriters Laboratories, Inc. (UL):

1995-2015..... Heating and Cooling Equipment

PART 2 - PRODUCTS

2.1 WALL-MOUNTED ELECTRIC HEATERS

- A. General: Electric heat, fan driven, thermostatic control, UL listed.
- B. Enclosure:
 - 1. Wall box: Not less than 1.3 mm (18 gage) steel, recessed type.
 - 2. Ribbed 1.6 mm (16 gage) steel front cover.
 - 3. Closely spaced discharge louvers.
 - 4. Concealed screws for locking trim frame to front cover.
 - 5. Finished in baked enamel of manufacturer's standard color with satin finish anodized aluminum trim frame.
- C. Heating Elements: 80/20 nickel-chromium resistance wire enclosed in a steel sheath to which plate fins are copper brazed.
- D. Integral Controls:
 - 1. Single-pole terminal block.
 - 2. Built-in fan delay switch.
 - 3. Automatic reset line voltage internal thermal overheats protection.
 - 4. Built-in thermostat comfort control with adjustment range between 4 to 30 degree C (40-85 degrees F), and manually set "No Heat" position; tamper resistant adjustment by inserting screwdriver through front cover louvers.
- E. Accessories:
 - 1. Surface mounting frame.
 - 2. Tamper-resistant front cover.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Work shall be installed as shown and according to the manufacturer's diagrams and recommendations.

- B. Handle and install units in accordance with manufacturer's written instructions.
- C. Support units rigidly so they always remain stationary. Cross-bracing or other means of stiffening shall be provided as necessary. Method of support shall be such that distortion and malfunction of units cannot occur.

3.2 OPERATIONAL TEST

Refer to Section 23 05 11, COMMON WORK RESULTS FOR HVAC.

3.3 STARTUP AND TESTING

A. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the Resident Engineer and Commissioning Agent. Provide a minimum of 7 days prior notice.

3.4 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 23 08 00 -COMMISSIONING OF HVAC SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.5 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of units.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 23 08 00 - COMMISSIONING OF HVAC SYSTEMS.

- - - E N D - - -

SECTION 26 0100 BASIC ELECTRICAL REQUIREMENTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this and the other sections of Division 26.
- B. This section is a Division 26 Common Work Results for Electrical section and is a part of each Division 26 Section.
- C. Requirements of the following Division 26 Sections apply to this section:
- D. Common Work Results for Electrical.

1.2 SUMMARY

- A. This Section includes general administrative and procedural requirements for electrical installations. The following administrative and procedural requirements are included in this Section to expand the requirements specified in Division 1 - reference individual sections for further expansion of these requirements:
 - 1. Pre-Construction Meeting.
 - 2. Abbreviations and Definitions.
 - 3. Permits, Codes, and Inspections.
 - 4. Utilities.
 - 5. Visiting Premises.
 - 6. Submittals.
 - 7. Project Drawings and Specifications.
 - 8. Cooperation and Coordination with Other Trades.
 - 9. Space Priority.
 - 10. Product Listing.
 - 11. Nameplate Data.
 - 12. Record Documents.
 - 13. Maintenance Manuals.
 - 14. Warranty.
 - 15. Performance of Equipment.
 - 16. Delivery, Storage and Handling.
 - 17. Sequence of Work.
 - 18. Rough-ins.
 - 19. Electrical Installations.
 - 20. Cutting and Patching.

- 21. Cleaning.
- 22. Testing.
- 23. Instructions to the Owner.

1.3 ABBREVIATIONS AND DEFINITIONS

A. General: Utilize the following abbreviations and definitions for

discernment within the Drawings and Specifications.

1. Abbreviations:

ANSI	American National Standards Institute.
ASA	American Standards Association.
ASTM	American Society of Testing Materials.
CBM	Certified Ballast Manufacturers.
E.C.	Electrical Contractor.
IA	Electronic Industries Association.
ETL	Electrical Testing Laboratories, Inc.
G.C.	General Contractor.
HVAC	Heating, Ventilating, Air Conditioning Contractor.
ICEA	International Cable Engineers Association.
IEEE	Institute of Electrical and Electronics Engineers.
IES	Illuminating Engineering Society.
NEC	National Electrical Code.
NEMA	National Electrical Manufacturers Association.
NFPA	National Fire Protection Association.
O.E.M.	Original Equipment Manufacturer.
OSHA	Occupational Safety and Health Admin.
P.C.	Plumbing Contractor.
UL	Underwriter's Laboratories, Inc.

1.4 DEFINITIONS

- A. PROVIDE means to furnish, place, erect, connect, test, and turn over to Owner, complete and ready for the regular operation, the work referred to.
- B. INSTALL means to join, unite, fasten, link, attach, set up or otherwise connect before testing and turning over to Owner, complete and ready for regular operation, the work referred to.
- C. FURNISH means to supply all materials, labor, equipment, testing apparatus, controls, tests, accessories, and all other items customarily required for the proper and complete application for the work referred to.
- D. WIRING means the inclusion of all raceways, fittings, conductors, connectors, tape, junction and outlet boxes, connections, splices, and all other items necessary and/or required in connection with such work.
- E. CONDUIT means the inclusion of all fittings, hangers, supports, sleeves, etc.

- F. AS DIRECTED means as directed by the Contracting Officer Representative (COR) or their representative.
- G. CONCEALED means embedded in masonry or other construction, installed behind wall furring or within double partitions or installed within hung ceilings.
- H. ACCEPTED means as accepted by the Contracting Officer Representative (COR) or their representative.
- I. APPROVED means as approved by the Contracting Officer Representative (COR) or their representative.
- J. EQUAL means equivalent as approved by the Contracting Officer Representative (COR) or their representative.
- K. CONTRACTOR as stated herein shall mean Electrical Contractor.

1.5 PERMITS, CODES, AND INSPECTIONS

- A. General: Contractor shall obtain and pay for all permits and inspections required by laws, ordinances, rules, and regulations having jurisdiction for work included under this Contract and shall submit approval certificates to the Contracting Officer Representative (COR).
- B. Codes: The electrical installation shall comply fully with all local, county, and state laws, ordinances, and regulations applicable to electrical installations.
- C. The Electrical installation shall follow the requirements of the latest revisions of:
 - 1. Occupational Safety and Health Act (OSHA).
 - 2. institution of Electrical and Electronic Engineers (IEEE).
 - 3. National Electric Code (NEC).
 - 4. National Electrical Safety Code (NESC).
 - 5. National Board of Fire Underwriter's (NBFU).
 - 6. Authority having Jurisdiction.
 - 7. Underwriter's Laboratories, Inc. (UL).
 - 8. National Electrical Manufacturer's Association (NEMA).
 - 9. National Electrical Contractors Association (NECA).
 - 10. National Safety Code.
 - 11. Legislative Act 235 (1965) Handicapped.
 - 12. Legislative Act 287 (1974) Excavation.
 - 13. International Building Code (IBC).
 - 14. Americans with Disabilities Act (ADA).
 - 15. all local codes and ordinances in effect and having jurisdiction.

BASIC ELECTRICAL REQUIREMENTS 26 01 00 - 3

- 16. All requirements of electric, telephone, and CATV utility companies.
- 17. All approved published instructions set forth by equipment manufacturers.
- D. Submit certificates issued by approved authorized agencies to indicate conformance of all work with the above requirements, as well as any additional certificates as may be required for the performance of this contract work.
- E. Should any change in Drawings or Specifications be required to comply with governmental regulations, the Contractor shall notify Contracting Officer Representative (COR) prior to execution of the work. The work shall be carried out according to the requirements of such code in accordance with the instruction of the Contracting Officer Representative (COR) and at no additional cost to the Owner.

1.6 VISITING PREMISES

- A. General: The Bidder shall visit the project site before submitting their bid, to familiarize themselves with existing conditions that may affect their work. It is the Contractor's responsibility to analyze existing conditions. Sufficient allowances shall be provided in the Contractor's bid to cover work, due to existing conditions, that will be required to complete this contract work.
- B. By submission of a bid, the Contractor is attesting that responsible personnel did in fact visit the site during the bidding period and verified all existing pertinent conditions.
- C. Contractor shall verify all measurements and dimensions at the site prior to submitting a bid.

1.7 PROJECT DRAWINGS AND SPECIFICATIONS

- A. Contractor shall carefully examine the Drawings and Specifications of all trades and report all discrepancies to the Contracting Officer Representative (COR) in writing to obtain corrective action. No departures from the Contract Documents will be made without prior written approval from the Contracting Officer Representative (COR).
- B. Questions or disputes regarding the intent or meaning of Contract Documents shall be resolved by the interpretation of the Contracting Officer Representative (COR). The Contracting Officer Representative (COR)'s interpretation is final and binding.

- C. The Drawings and Specifications are not intended to define all details, finish materials, and special construction that may be required or necessary. The Contractor shall provide all installations complete and adequate as implied by the project documents.
- D. Drawings are diagrammatic only and do not show exact routes and locations of equipment and associated wiring. The Contractor shall verify the work of all other trades and shall arrange their work to avoid conflicts. In the event of a conflict, the Contractor shall obtain corrective action from the Contracting Officer Representative (COR).
- E. All work shall be considered new, unless noted otherwise.

1.8 COOPERATION AND COORDINATION WITH OTHER TRADES

- A. This Electrical Contractor must cooperate completely and coordinate work with the Contractors of other trades providing equipment under this division and other divisions of the specifications.
- B. Coordinate the location of each electrical panel, pull box, transfer switch, etc. with the Contracting Officer Representative (COR) before rough-in. The above required floor plans shall be reviewed and approved by the Owner and Contracting Officer Representative (COR) and shall be signed by both the Owner and the Contracting Officer Representative (COR).
- C. Individual trade interference drawings may be used as shop drawings and/or as record drawings at the completion of the project.

1.9 COORDINATION OF THE WORK

- A. Certain materials will be provided by other trades. Examine the contract documents to ascertain these requirements.
- B. Carefully check space requirements with the existing conditions and the physical confines of the area to ensure that all material can be installed in the spaces allotted there to including finished suspended ceilings. Make modifications there to as required.
- C. Transmit to other trades all information required for work to be provided under their respective sections in ample time for installation.
- D. Wherever work interconnects with work of other trades, coordinate with other trades to ensure that all trades have the information necessary so that they may properly install all the necessary connections and

equipment. Identify all items of work that require access so that the ceiling trade will know where to install access doors and panels.

- E. Due to the type of the installation, a fixed sequence of operation is required to properly install the complete systems. Coordinate, project, and schedule work with the Contracting Officer Representative (COR) in accordance with the construction sequence.
- F. The locations of panels and other equipment indicated on the Drawings are approximately correct, but they are understood to be subject to such revision as may be found necessary or desirable at the time the work is installed.
- G. Exercise particular caution with reference to the location of panels and have precise and definite locations approved by the Engineer before proceeding with the installation.
- H. The Drawings show only the general run of raceways and approximate location of outlets. Any significant changes in location of outlets, cabinets, etc., necessary to meet field conditions shall be brought to the immediate attention of the Contracting Officer Representative (COR) and receive his approval before such alterations are made. All such modifications shall be made without additional cost to the VAMC.
- I. Obtain from the Contracting Officer Representative (COR) in the field the location of such devices or equipment not definitely located on the Drawings.
- J. Circuit "tags" in the form of arrows are used where shown to indicate the home runs of raceways to electrical distribution points. These tags show the circuits in each home run and the panel designation. Show the actual circuit numbers on the finished record tracing and on panel directory card. Where circuiting is not indicated, Electrical Contractor must provide required circuiting in accordance with the loading indicated on the drawings and/or as directed.
- K. The Drawings generally do not indicate the exact number wires in each conduit for the branch circuit wiring of fixtures, and outlets, or the actual circuiting. Provide the correct wire size and quantity as required by the indicated circuiting and/or circuit numbers indicated and control wiring diagrams, if any, specified voltage drop or maximum distance limitations, and the applicable requirements of the NEC.
- L. Adjust location of conduits, panels, equipment, pull boxes, fixtures, etc. to accommodate the work to prevent interferences, both anticipated

and encountered. Determine the exact route and location of each raceway prior to installation.

M. Contractor shall furnish services of an experienced Superintendent, who shall be in constant charge of all work, and who shall coordinate his work with the work of other trades. No work shall be installed before coordinating with other trades.

1.10 SPACE PRIORITY

- A. Ensure equitable use of available space for materials and equipment installed above ceilings. Allocate space in the order of priority as listed below. Items are listed in the order of priority, with items of equal importance listed under a single priority number.
 - 1. Gravity flow piping systems.
 - 2. Vent piping systems.
 - 3. Ceiling recessed lighting fixtures.
 - 4. Concealed air terminal units, fans.
 - 5. Air duct systems.
 - 6. Sprinkler systems piping.
 - 7. Forced flow piping systems.
 - 8. Electrical conduit, wiring, control wiring.
 - Order of priority does not dictate installation sequence. Installation sequence shall be as mutually agreed by all affected trades.
 - 10. Change in order of priority is permissible by mutual agreement of all affected trades.
 - 11. The work of a particular trade shall not infringe upon the allocated space of another trade without permission of the Contractor for the affected trade.
 - 12. The work of a particular trade shall not obstruct access for installation, operation and maintenance of the Work, materials, and equipment of another trade.

1.11 NAMEPLATE DATA

A. Provide permanent operational data nameplate on each item of power operated equipment, indicating manufacturer, product name, model number, serial number, capacity, operating and power characteristics, labels of tested compliances, and similar essential data. Locate nameplate in an accessible location.

1.12 OMISSIONS FROM THE DRAWINGS

VA Project 595-668 AE Works Project VLEB-010

Lebanon VAMC New Entryway for Building 17 BID DOCUMENTS

A. Should a Bidder find discrepancies in or omissions from the drawings or specifications or be in doubt as to their meaning, they shall notify the Contracting Officer Representative (COR) before submitting their proposal. The Contracting Officer Representative (COR) will in turn, send written instructions to all Bidders. Neither the Contracting Officer Representative (COR) nor the Design Professional will be responsible for oral instructions. If the Contractor fails to comply with this requirement, they shall accept the Engineer's interpretation as to the intended meaning of the drawings and specifications.

PART 2 - PRODUCTS

2.1 GENERAL

- A. Major items of equipment shall have manufacturer's name, address, and catalog number on a plate securely attached in a convenient place. All equipment or apparatus of anyone (1) system must be the product of one (1) manufacturer or approved equivalent products of a few manufacturer's that are suitable for use in a unified system.
- B. All materials and equipment for which Underwriter's Laboratories have established standards shall bear a UL label of approval.
- C. In all cases where a device, function or item of equipment is herein referred to in the singular, such reference shall apply to as many such items as are required to complete the installation.
- D. All listed materials and equipment shown on drawings and/or specified herein, are indicative of complete and whole units and shall be furnished as such.
- E. Comply with manufacturer's printed instructions and recommendations as minimum criteria for the installation of equipment.
- F. All materials and equipment provided under this Contract shall be completely satisfactory and acceptable in operation, performance, and capacity. No approval, either verbal or written, of any drawing, descriptive data or samples of such materials, equipment and/or appurtenances, shall relieve this Contractor of his responsibility to turn over all items in perfect working order at completion of the work.

PART 3 - EXECUTION

3.1 DELIVERY, STORAGE, AND HANDLING

A. Deliver products to the project properly identified with names, model numbers, types, grades, compliance labels, and other information needed

for distinct identification; adequately packaged and protected to prevent damage during shipment, storage, and handling.

- B. Store equipment and materials at the site unless off-site storage is authorized in writing. Protect stored equipment and materials from damage.
- C. Coordinate deliveries of electrical materials and equipment to minimize construction site congestion. Limit each shipment of materials and equipment to the items and quantities needed for the smooth and efficient flow of installations.

3.2 SEQUENCE OF WORK

A. Construct work in a sequence in accordance with Division 1.

3.3 ROUGH-IN

- A. Obtain written approval of locations of all electrical devices from the Contracting Officer Representative (COR) prior to rough-in. The Contracting Officer Representative (COR) reserves the right to move any or all electrical devices prior to rough-in, at no additional cost.
- B. Verify final locations for rough ins with field measurements and with the requirements of the actual equipment to be connected.
- C. Refer to equipment specifications in Divisions 2 through 33 for roughin requirements.
- D. Contractor shall obtain detailed and specific information regarding location of all equipment. Final locations may differ from those indicated on drawings. Work improperly placed because of Contractor's failure to obtain this information shall be relocated and reinstalled as directed, without additional costs to the Contract.
- E. The design shall be subject to such revisions as may be necessary to overcome building obstructions. No charges shall be made in location of equipment without prior written approval.
- F. Door swings may vary from plans. Make note of actual door swings at time of rough-in. Do not install switches or other items behind the swing of any door.
- G. Rough ins for devices in concrete block walls shall be installed level and plumb. Devices adjacent to each other shall be installed at the same elevation. Saw cut openings to the size required, such that oversized cover plates are not required.

3.4 INSTALLATIONS

- A. General: Sequence, coordinate, and integrate the various elements of electrical systems, materials, and equipment. Comply with the following requirements:
 - Coordinate electrical systems, equipment, and materials installation with other building components.
 - 2. Verify all dimensions by field measurements.
 - Arrange for chases, slots, and openings in other building components during progress of construction, to allow for electrical installations.
 - Coordinate the installation of required supporting devices and sleeves to be set in poured-in-place concrete and other structural components, as they are constructed.
 - 5. Sequence, coordinate, and integrate installations of electrical materials and equipment for efficient flow of the Work. Give particular attention to large equipment requiring positioning prior to closing in the building.
 - 6. 6. Where mounting heights are not detailed or dimensioned, install systems, materials, and equipment to provide the maximum headroom possible.
 - 7. Coordinate connection of electrical systems with exterior underground and overhead utilities and services. Comply with requirements of governing regulations, franchised service companies, and controlling agencies. Provide required connection for each service.
 - 8. Install systems, materials, and equipment to conform with approved submittal data, including coordination drawings, to greatest extent possible. Conform to arrangements indicated by the Contract Documents, recognizing that portions of the Work are shown only in diagrammatic form. Where coordination requirements conflict with individual system requirements, refer conflict to the Contracting Officer Representative (COR).
 - 9. Install systems, materials, and equipment level and plumb, parallel, and perpendicular to other building systems and components.
 - 10. Coordinate the cutting and patching of building components to accommodate installation of electrical equipment and materials.
 - 11. Coordinate the installation of electrical materials and equipment above existing ceilings with suspension system, existing mechanical equipment and systems, and existing structural components.

BASIC ELECTRICAL REQUIREMENTS 26 01 00 - 10 12.Install electrical equipment to facilitate servicing, maintenance, and repair or replacement of equipment components. Connect equipment for ease of disconnecting, with minimum of interference with other installations.

- 12. Install access panel or doors where units are concealed behind finished surfaces. Access panels and doors are specified in Division 26 Section Common Work Results for Electrical.
- 13. Install systems, materials, and equipment giving right-of-way priority to systems required to be installed at a specified slope.

3.5 EQUIPMENT ACCESSORIES

- A. Establish sizes and location of the various concrete bases required. Coordinate with General Contractor and provide all necessary anchor bolts together with templates for holding these bolts in position.
- B. Provide supports, hangers and auxiliary structural members required for support of the work.
- C. Furnish and set all sleeves for passage of raceways through structural, masonry and concrete walls and floors and elsewhere as will be required for the proper protection of each raceway and passing through building surfaces.
- D. Wall-mounted equipment may be directly secured to wall by means of steel bolts. Maintain at least 1" air space between equipment and supporting wall. Groups or arrays of equipment may be mounted on adequately sized steel angles, channels, or bars. Prefabricated steel channels providing a high degree of mounting flexibility may be used for mounting arrays of equipment.

3.6 CUTTING AND PATCHING

- A. General: Perform cutting and patching in accordance with Division 1. In addition to the requirements specified in Division 1, the following requirements apply:
 - Perform cutting, fitting, and patching of electrical equipment and materials required to:
 - a. Uncover Work to provide for installation of ill-timed Work.
 - b. Remove and replace defective Work.
 - c. Remove and replace Work not conforming to requirements of the Contract Documents.
 - d. Remove samples of installed Work as specified for testing.
 - e. Install equipment and materials in existing structures.

BASIC ELECTRICAL REQUIREMENTS 26 01 00 - 11

- f. Upon written instructions from the Contracting Officer Representative (COR), uncover and restore Work to provide for Contracting Officer Representative (COR) observation of concealed Work.
- Cut, remove, and legally dispose of selected electrical equipment, components, and materials as indicated, including but not limited to removal of electrical items indicated to be removed and items made obsolete by the new Work.
- 3. Protect the structure, furnishings, finishes, and adjacent materials not indicated or scheduled to be removed.
- 4. Provide and maintain temporary partitions or dust barriers adequate to prevent the spread of dust and dirt to adjacent areas.
- 5. Protection of Installed Work: During cutting and patching operations, protect adjacent installations.
- 6. Arrange and pay for repairs required to restore other work, because of damage caused because of electrical installations.
- No additional compensation will be authorized for cutting and patching work that is necessitated by ill-timed, defective, or nonconforming installations.
- Patch all finished surfaces and building components using new materials specified for the original installation and experienced Installers. For Installers' qualifications refer to the materials and methods required for the surface and building components being patched.

a. Refer to Division 1 for definition of experienced "Installer."

3.7 CLEANING

- A. Refer to Division 1 for general requirements for final cleaning.
- B. Clean all light fixtures, lamps, and lenses prior to final acceptance. Replace all inoperative lamps.

3.8 DEBRIS

- A. Debris resulting from work under this Contract, shall all be removed promptly from the premises by this Contractor.
- B. Remove all dead wire and associated raceway resulting from work under this contract.

3.9 TESTING

A. Contractor, at his own expense, shall make any tests directed by an inspection authority or by the Contracting Officer Representative

(COR) shall provide all equipment, instruments, and materials to make such tests.

- B. All overload devices, including equipment furnished under other contracts, shall be set, and adjusted to suit load conditions.
- C. Unless otherwise approved, all connections shall be made and all components shall be in place, complete and operational, at time of final inspection and tests.
- D. Time of such tests, the way they are made and the results of the tests, shall be subject to approval.
- E. Upon completion of work, all component parts, both singularly and, shall be set, calibrated, adjusted, and left in satisfactory operating condition to suit load conditions, by means of instruments furnished by the Contractor.
- F. Complete testing of equipment and systems shall be provided throughout this project.
- G. Industry standards shall apply except as otherwise specified.
- H. Provide all labor, premium labor and materials required by shop and field testing as specified in the Contract Documents and as required by the authorities having jurisdiction.
- I. Notify the Contracting Officer Representative (COR) seven (7) days prior to the testing dates. Upon completion of a test, a statement of certification shall be forwarded to the Contracting Officer Representative (COR) for their approval.
- J. Conduct tests at a time agreeable to the Contracting Officer Representative (COR). Provide premium labor as necessary.
- K. Products which are found defective or do not pass such tests shall be removed and replaced at the Contractor's expense. Tests shall be repeated.

3.10 FIRE STOPS

A. Openings for electrical equipment penetrating a fire rated floor, wall, or ceiling, shall be resealed as required by Code. Install fire rated sealant equal to or greater than the fire rating of the penetrated surface.

3.11 WATERPROOFING

A. Avoid, if possible, the penetration of any waterproof membranes such as roofs, machine room floors, basement walls and the like. If such

penetration is necessary, perform it prior to the waterproofing and furnish all sleeves or pitch-pockets required.

- B. If Contractor penetrates any walls or surfaces after they have been waterproofed, they shall restore the waterproof integrity of that surface at their own expense and as directed by the Contracting Officer Representative (COR).
- C. Contractor shall advise the Contracting Officer Representative (COR) and obtain written permission before penetrating any waterproof membrane, even where such penetration is shown on the drawings. Such work shall be performed in such a manner as to maintain any warranties in place.

3.12 CONSTRUCTION PROGRESS AND NOTIFICATION

A. The Contractor shall notify, in writing, the Owner and the Engineer of construction progress. At a minimum, the Contractor shall notify at the 50% rough in of conduit, prior to enclosing or burying, and at "punch list" timelines.

---END---

SECTION 26 0200 QUALITY REQUIREMENTS

PART 1 - GENERAL

1.1 SECTION INCLUDES

- A. Contractors Guarantee.
- B. Materials, Workmanship, and Methods.
- C. Control of Installation.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.1 CONTROL OF INSTALLATION

- A. Monitor quality control over suppliers, manufacturers, products, services, site conditions, and workmanship, to produce Work of specified quality.
- B. Comply with manufacturers' instructions, including each step-in sequence.
- C. Should manufacturers' instructions conflict with Contract Documents, request clarification from Contracting Officer Representative (COR) before proceeding.
- D. Comply with specified standards as minimum quality for the Work except where more stringent tolerances, codes, or specified requirements indicate higher standards or more precise workmanship.
- E. Have work performed by persons qualified to produce required and specified quality.
- F. Verify that field measurements are as indicated on shop drawings or as instructed by the manufacturer.

G. Secure products in place with positive anchorage devices designed and sized to withstand stresses, vibration, physical distortion, and disfigurement.

3.2 MATERIALS, WORKMANSHIP AND METHODS

- A. All materials and equipment shall be new, of highest quality, and shall conform in all respects to these specifications. All work shall be performed in keeping with the highest standards of workmanship and quality. All mechanical equipment shall be installed in accordance with the manufacturer's installation instructions which shall be available at the job site. All mechanical equipment shall bear the label of an approved agency.
- B. The means, methods, techniques, sequences and procedures, and job site safety shall be the sole responsibility of the contractor.

3.3 DEFECT ASSESSMENT

- A. Replace Work or portions of the Work not conforming to specified requirements.
- B. If, in the opinion of Contracting Officer Representative (COR), it is not practical to remove and replace the Work, Contracting Officer Representative (COR) will direct an appropriate remedy or adjust payment.

---END---

SECTION 26 0500 COMMON WORK RESULTS FOR ELECTRICAL

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.
- B. This section is a Division 26 Common Work Results for Electrical Section, and is a part of each Division 26 section.

1.2 SUMMARY

- A. This Section includes limited scope general construction materials and methods for application with electrical installations as follows:
 - 1. Sleeves and Penetrations.
 - 2. Fire Stopping
 - 3. Access panels and doors in walls, ceilings, and floors for access to electrical materials and equipment.
 - 4. Locations
 - 5. Outages and Disruptions
 - 6. Temporary
 - 7. Scaffolding
 - 8. Painting
 - 9. Vibration Isolation

1.3 SUBMITTALS

- A. General: Submit the following in accordance with Conditions of Contract and Division 1 Specification Sections.
- B. Product data for the following products:
 - 1. Access panels and doors
 - 2. Joint sealers
 - 3. Firestop materials
- C. Shop drawings detailing fabrication and installation for metal fabrications and wood supports, and anchorage for electrical materials and equipment.

1.4 QUALITY ASSURANCE

- A. Installer Qualifications: Engage an experienced installer for the installation and application joint sealers, access panels, and doors.
- B. Qualify welding processes and welding operators in accordance with AWS D1.1, "Structural Welding Code - Steel."

QUALITY REQUIREMENTS 26 02 00 - 1

- C. Certify that each welder has satisfactorily passed AWS qualification tests for welding processes involved and, if pertinent, has undergone recertification.
- D. Fire-resistance Ratings: Where a fire-resistance classification is indicated, provide access door assembly with panel door, frame, hinge, and latch from manufacturer listed in the UL "Building Materials Directory" for rating shown.
- E. Provide UL Label on each fire-rated access door.
- F. ASTM E-814 or UL 1479 for firestop system assemblies that provide a fire rating equal to that of construction being penetrated.
- G. ANSI Compliance: Comply with requirements of ANSI Standard A13.1, "Scheme for the identification of Piping Systems," regarding type and size of lettering for cable labels.
- H. Electrical Component Standard: Components and installation shall comply with NFPA 70, "National Electrical Code."
- 1.5 DELIVERY, STORAGE, AND HANDLING
 - A. deliver joint sealer materials in original unopened containers or bundles with labels informing about manufacturer, product name and designation, color, expiration period for use, pot life, curing time, and mixing instructions for multi-component materials.
 - B. Store and handle joint sealer materials in compliance with the manufacturers' recommendations to prevent their deterioration and damage.
 - C. Deliver firestop materials undamaged in manufacturer's clearly labeled, unopened containers, identified with brand type, and UL label. Store materials under cover and protect from weather and damage. Comply with recommended procedure, precautions and remedies described in material data sheets.

1.6 SEQUENCE AND SCHEDULING

- A. Coordinate electrical equipment installation with other building components.
- B. Arrange for chases, slots, and openings in building structure during progress of construction to allow for mechanical installations.
- C. Coordinate the installation of required supporting devices and set sleeves in poured-in-place concrete and other structural components as they are constructed.

- D. Sequence, coordinate, and integrate installations of electrical materials and equipment for efficient flow of the work. Coordinate installation of large equipment requiring positioning prior to closing in the building.
- E. Coordinate connection of electrical services with equipment provided under other sections of the specifications.
- F. Coordinate requirements for access panels and doors where items requiring access are concealed behind finished surfaces.
- G. Coordinate installation of identifying devices after completing covering and painting where devices are applied to surfaces. Install identifying devices prior to installing acoustical ceilings and similar concealment.
- H. Coordinate delivery of firestop materials with scheduled installation date to allow minimum storage at job site
- I. Coordinate the shut-off and disconnection of electrical service with the Contracting Officer Representative (COR).
- J. Notify the Contracting Officer Representative (COR) at least 5 days prior to commencing demolition operations.
- K. Perform demolition in phases as indicated. Coordinate electrical equipment installation with other building components.

PART 2 - - PRODUCTS

2.1 MISCELLANEOUS METALS

- A. Steel plates, shapes, bars, and bar grating: ASTM A-36.
- B. Cold-formed Steel Tubing: ASTM A-500
- C. Hot-rolled Steel Tubing: ASTM A-501.
- D. Steel Pipe: ASTM A-53, Schedule 40, welded.
- E. Non-shrink, Non-metallic Grout: Premixed, factory-packaged, nonstaining, non-corrosive, non-gaseous grout, recommended for interior and exterior applications.
- F. Fasteners: Zinc-coated, type, grade, and class as required.

2.2 MISCELLANEOUS LUMBER

A. Framing Materials: Standard grade, light-framing-size lumber of any species. Number 3 Common or Standard grade boards complying with WCLIB or AWPA rules, or Number 3 boards complying with SPIB rules. Lumber shall be preservative treated in accordance with AWPB LP-2, and kilndried to a moisture content of not more than 19 percent.

> QUALITY REQUIREMENTS 26 02 00 - 3

B. Construction Panels: Plywood panels; APA C-D PLUGGED INT, with exterior glue; thickness as indicated, or if not indicated, not less than 15/32 inches.

2.3 JOINT SEALERS

- A. General: Joint sealers, joint fillers, and other related materials compatible with each other and with joint substrates under conditions of service and application.
- B. Colors: As selected by the Contracting Officer Representative (COR) from manufacturer's standard colors.
- C. Elastomeric Joint Sealers: Provide the following types:
 - One part, mildew-resistant, silicone sealant complying with ASTM C920, Type S, Grade NS, Class 25, for uses in non-traffic areas for glass, aluminum, and non-porous joint substrates; formulated with fungicide; intended for sealing interior joints with non-porous substrates; and subject to in-service exposure to conditions of high humidity and temperature extremes.

2.4 FIRESTOPPING

- A. Use only that manufacturer listed in UL Fire Resistance Directory for the UL system involved.
- B. All firestopping materials used on this project shall be the products of one manufacturer. Each trade shall use products of the same manufacturer.
- C. Standards: The firestop systems and products shall have been tested in accordance with the procedures of U.L. 1479 (ASTM E814-81) and material shall be UL classified as Fill, Void or Cavity Materials for use in Through-Penetration Firestops. The firestop system shall comply with NEC Paragraph 300-21. All work shall comply with NFPA 101-Life Safety Code, latest edition.

2.5 ACCESS DOORS

- A. Steel Access Doors and Frames: Factory-fabricated and assembled units, complete with attachment devices and fasteners ready for installation. Joints and seams shall be continuously welded steel, with welds ground smooth and flush with adjacent surfaces.
- B. Frames: 16-gage steel, with a 1-inch-wide exposed perimeter flange for units installed in unit masonry, pre-cast, or cast-in-place concrete, ceramic tile, or wood paneling.

- 1. For installation in masonry, concrete, ceramic tile: 1 inch-wideexposed perimeter flange and adjustable metal masonry anchors.
- 2. For gypsum wallboard or plaster: perforated flanges with wallboard bead.
- C. Flush Panel Doors: 14-gage sheet steel, with concealed spring hinges or concealed continuous piano hinge set to open 175 degrees; factoryapplied prime paint.
- D. Fire-Rated Units: Insulated flush panel doors, with continuous piano hinge and self-closing mechanism.
- E. Locking Devices: Flush, screwdriver-operated cam locks.
- F. Locking Devices: Where indicated, provide 5-pin or 5-disc type cylinder locks, individually keyed; provide 2 keys.

PART 3 - - EXECUTION

3.1 GENERAL

- A. All construction under this contract shall be completed in a neat and craftsman like manner. Work that, in the judgement of the Contracting Officer Representative (COR), is not satisfactorily installed shall be removed and replaced to the Contracting Officer Representative (COR) satisfaction, at the Contractor's expense.
- B. Housekeeping: Throughout construction, all work areas and storage areas shall be kept clean. The Contractor shall keep all items clean of dirt, rust, dust and fingermarks.

3.2 SLEEVES AND PENETRATIONS

- A. Contractor shall provide sleeves where raceways pass through walls, partitions, floors, and ceilings.
- B. Sleeves in bearing and/or masonry walls and/or partitions shall be of galvanized rigid steel conduit finished with smooth edges. For other than masonry or bearing walls/partitions, sleeves shall be EMT conduit.
- C. Sleeves in masonry ceilings and floors shall be galvanized rigid steel conduit finished with smooth edges. For other than masonry ceilings and floors, sleeves shall be EMT conduit. All sleeves shall be properly installed and cemented in place.
- D. Floor sleeves shall extend 1" above finished floor, unless otherwise noted. Space between floor sleeves and piping or raceway shall be caulked with UL listed fire resistive and waterproof caulking compound as approved.

- E. Where piping or raceways pass through waterproofed floors or walls, design of sleeves shall be such that waterproofing can be flashed into and around the sleeves.
- F. Where items provided under this Contract pass through roofs this Contractor shall coordinate the installation with the Roofing Contractor and shall provide an approved penetration. The Electrical Contractor shall make provisions not to void the roof bond.
- G. Sleeves through exterior walls below grade shall be fitted with seals which could be ratcheted tight via bolts.
- H. Where sleeves pass through walls from the interior to the exterior, conduits shall be sealed on the inside with an UL approved sealant

3.3 FIRESTOPPING

- A. Where conduits, conduit sleeves, wireways and other electrical raceways or cables pass through fire partitions, fire walls, fire floors, or smoke walls, the Electrical Contractor shall provide a fire or smoke stopping that provides an effective barrier against the spread of fire, smoke or gases.
- B. Installation of Fire-Stopping Materials: Install materials to fill openings around electrical services penetrating floors and walls and provide fire-stops with fire-resistance ratings indicated for floor or wall assembly in which penetration occurs. Install materials in accordance with printed instructions of the UL Fire Resistance Directory and per manufacturer's published instructions.
- C. All cables that are installed in conduit sleeves or in wireways through fire or smoke floors or partitions shall be provided with an equally rated re-enterable U.L. listed fire and smoke rated silicone RTV foam in the opening.
- D. Examine fire/smoke-stopped areas to ensure proper installation before concealing or enclosing areas.
- E. Keep areas of work accessible until inspection by applicable code authorities.

3.4 INSTALLATION OF ACCESS DOORS

- A. Set frames accurately in position and securely attached to supports, with face panels plumb and level in relation to adjacent finish surfaces.
- B. Adjust hardware and panels after installation for proper operation.

3.5 3.5 LOCATIONS

- A. Obtain written approval of locations of all electrical devices from the Contracting Officer Representative (COR) prior to rough-in. The Contracting Officer Representative (COR) reserves the right to move any or all electrical devices prior to rough-in, at no additional cost.
- B. Contractor shall obtain detailed and specific information regarding location of all equipment. Final locations may differ from those indicated on Drawings. Work improperly placed because of Contractor's failure to obtain this information shall be relocated and reinstalled as directed, without additional costs to the Contract.
- C. The design shall be subject to such revisions as may be necessary to overcome building obstructions. No changes shall be made in location of equipment without prior written approval.
- D. Door swings may vary from plans. Take note of actual door swings at time of rough-in. Do not install switches or other items behind the swing of any door.

3.6 TEMPORARY

- A. Temporary Electricity:
 - 1. The Electrical Contractor shall provide temporary electric services to the construction areas at locations acceptable to all trades.
 - The Contractor shall provide power outlets for construction operations, branch wiring, distribution boxes. Each individual Contractor will provide flexible power cords as required.
 - 3. Power required for tools and operating equipment used for the installation of equipment, that exceeds the power available, shall be temporarily installed and removed by the Contractor requiring it.
 - Provide wiring and connections for temporary heating equipment required for construction purposes and to prevent building freeze up.
 - Distribution wiring and equipment/devices used for temporary services shall not be installed as part of the permanent building distribution system.
 - Permanent distribution wiring and equipment/devices shall not be used for temporary services.
- B. Temporary Lighting:
 - The Contractor shall provide temporary lights and all associated wiring as required by the project conditions.

3.7 SCAFFOLDING

- A. The Contractor shall furnish, set, erect and maintain all scaffolding, aerial equipment and ladders required in the installation of this Contract work.
- B. Install temporary platforms to be supported only by the existing steel truss framework. Do not allow any additional loading from construction operations to transfer to suspended lath and plaster ceilings.

3.8 PAINTING

- A. Except in Mechanical Rooms, Electrical Rooms, all exposed items provided or installed under this Contract shall be painted in accordance with Division 1 requirements.
- B. Unless painting is provided by others, as elsewhere specified, all painting for items furnished or installed under this Contract shall be the responsibility of this Contractor.
- C. Factory-painted equipment cabinets and trim shall not be field-painted except for touching up scratches or damage where necessary to achieve like-new finish. Touching up shall be done after equipment is in its final location.
- D. Paint for metal surfaces shall be Rust-o-leum or as approved, one prime coat and two finish coats of color selected by Architect.
- E. Items to be painted shall be cleaned and degreased and shall be free of dirt, rust and corrosion prior to application of paint. All paint shall be applied in accordance with all the manufacturer's recommendations (i.e. temperature, dew point, ventilation).
- F. All patchwork performed under this Contract shall be painted. Color shall match the color of adjacent walls, ceilings and floors in which patchwork occurs. Area to be painted shall extend a minimum of 24" all around patchwork; however, final limit shall be set by the Architect. Blend new paint work with existing painted surfaces. Where existing finish is stained or varnished woodwork, all damaged or patched surfaces shall be restored to match the existing adjacent surface, as approved. Paint, stain, varnish and method of application shall be as set out in the specifications for General Construction, or as otherwise approved. Except where painting of patchwork is provided by others, as elsewhere specified, all painting of patchwork required under this Contract shall be the responsibility of this Contractor.

VA 595-668 AE Works Project No. VLEB-010

3.9 VIBRATION ISOLATION

- A. Isolation mounting shall be provided for all moving equipment where the energy of the vibration is of sufficient magnitude to produce perceptible vibration or structure transmitted noise in occupied areas. Isolation equipment shall be selected, installed and adjusted in accordance with manufacturer's recommendations.
- B. All equipment and material shall be installed to operate without objectionable noise or vibration as determined by Architect and Owner. Should such objectionable noise or vibration be produced and transmitted to occupied portions of the building by apparatus, piping or other parts of this work, any necessary changes as approved shall be made by the Contractor.
- C. All conduit terminations to noise or vibration producing equipment (i.e. motors, transformers) shall be made with a short section of liquid tight flexible metal conduit.

3.10 SELECTIVE DEMOLITION

- A. Examination:
 - Verify field measurements and circuiting arrangements are as shown on Drawings.
 - Verify that abandoned wiring and equipment serve only abandoned facilities.
 - Drawings are based on casual field observation and existing record documents. Report discrepancies to Contracting Officer Representative (COR) before disturbing existing installation.
 - 4. Beginning of demolition means installer accepts existing conditions.
- B. Preparation:
 - Disconnect electrical systems in walls, floors, and ceiling scheduled for removal.
 - 2. Coordinate utility service outages with utility company.
 - Provide temporary wiring and connections to maintain existing systems in service during construction. When work must be performed on energized equipment or circuits, use personnel experienced in such operations.
 - The Contractor shall maintain the operating condition of the existing Fire Alarm System until the new Fire Alarm System is operational. After the new Fire Alarm System has been installed,

tested, inspected and is fully operational the Contractor shall remove the existing Fire Alarm System completely.

- C. Demolition and Extension of Existing Electrical Work:
 - Demolish and extend existing electrical work under provisions of Division 1 and this section.
 - 2. Remove, relocate, and extend existing installations to accommodate new construction.
 - 3. All abandoned wiring shall be disconnected at both ends and removed.
 - Remove exposed, abandoned conduit, including abandoned conduit above accessible ceilings. Cut conduit flush with walls and floors, and patch surfaces.
 - 5. Disconnect abandoned outlets and remove devices. Remove abandoned outlets if conduit servicing them is abandoned and removed.
 - 6. Disconnect and remove abandoned panelboards and distribution equipment.
 - 7. Disconnect and remove electrical devices and equipment serving utilization equipment that has been removed.
 - Disconnect and remove abandoned luminaries. Remove brackets, stems, hangers, and other accessories.
 - 9. Repair adjacent construction and finishes damaged during demolition and extension work, as approved.
 - 10. Maintain access to existing electrical installations that remain active. Modify installation or provide access panel as appropriate.
 - Extend existing installations using materials and methods compatible with existing electrical installations, or as specified.
 - 12. Maintain, restore, and provide electrical service for all receptacles, outlets, lighting fixtures and electrically operated equipment not being demolished. Intercept existing circuit, connect new circuiting into existing circuiting and extend new circuiting back to panelboard or previous "up-stream" device, which is not being removed.
- D. Disposition of Equipment:
 - Unless specified, indicated or directed otherwise, all material and equipment not intended for reuse on this project that is to be dismantled or removed under this contract, shall become Contractor's property and shall be transported from the premises by him.

VA 595-668 AE Works Project No. VLEB-010

- Exceptions: Contractor shall remove and transport the following items without damage to an on-site location as directed, for inspection and possible salvage by Owner:
 - a. Panel boards and Load centers
 - b. Lighting Fixtures
 - c. Circuit Breakers and Safety Switches
 - d. Dimmer Board
 - e. Emergency Generator and Accessories
- 3. Additional Items as the Owner sees fit during demolition.
- 4. Any and/or all the foregoing items that Owner may elect not to accept as salvageable materials, shall become Contractor's property, and shall be removed from the premises by him.

3.11 OUTAGES AND DISRUPTIONS

- A. Continuity of operation of all essential HVAC, plumbing and electrical items, including water, gas, electrical service, lighting, outlets, power and controls for heating and cooling equipment, auxiliary systems, fire alarm, emergency lighting and power, program, sound, alarms and telephones shall be provided as required for occupancy of the premises during the construction period.
- B. The schedule and timing of any interruption of electrical service or disruption of occupied areas that may affect use of the premises by the Owner and the public shall be coordinated with the Contracting Officer Representative (COR). Temporary or interim use feeders and facilities shall be provided by the Contractor, as approved and/or directed, to minimize the duration and extent of outages or interruptions.
- C. In areas where the construction work will interfere unduly with use of the premises, the Owner may direct that construction work be performed during time periods other than indicated above or on Saturdays, Sundays, or Holidays. Judgment as to whether such undue interference may exist shall rest solely with the Owner. Also, the Owner may require that temporary or interim use feeders and facilities shall be provided by the Contractor as approved and/or directed, to minimize the duration and extent of outages or interruptions.
 - Preparatory work shall be performed as completely as possible in each instance prior to scheduled service outages.

- D. Contractor shall be responsible for all premium time/overtime required to perform outages and cutovers of services. Coordinate with Contracting Officer Representative (COR).
- E. Contractor shall be responsible for any and all premium time/overtime required to complete the work in the various areas within the allotted time, as well as any premium/overtime required to install work through unaffected or remote areas from the work as necessary to maintain continuity of services and occupancy of the existing buildings, as required. Coordinate with Contracting Officer Representative (COR).

---END---

SECTION 26 05 11 REQUIREMENTS FOR ELECTRICAL INSTALLATIONS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section applies to all sections of Division 26.
- B. Furnish and install electrical systems, materials, equipment, and accessories in accordance with the specifications and drawings. Capacities and ratings of motors, transformers, conductors and cable, switchboards, switchgear, panelboards, motor control centers, generators, automatic transfer switches, and other items and arrangements for the specified items are shown on the drawings.
- C. Conductor ampacities specified or shown on the drawings are based on copper conductors, with the conduit and raceways sized per NEC. Aluminum conductors are prohibited.

1.2 MINIMUM REQUIREMENTS

- A. The latest International Building Code (IBC), Underwriters Laboratories, Inc. (UL), Institute of Electrical and Electronics Engineers (IEEE), and National Fire Protection Association (NFPA) codes and standards are the minimum requirements for materials and installation.
- B. The drawings and specifications shall govern in those instances where requirements are greater than those stated in the above codes and standards.

1.3 TEST STANDARDS

- A. All materials and equipment shall be listed, labeled, or certified by a Nationally Recognized Testing Laboratory (NRTL) to meet Underwriters Laboratories, Inc. (UL), standards where test standards have been established. Materials and equipment which are not covered by UL standards will be accepted, providing that materials and equipment are listed, labeled, certified or otherwise determined to meet the safety requirements of a NRTL. Materials and equipment which no NRTL accepts, certifies, lists, labels, or determines to be safe, will be considered if inspected or tested in accordance with national industrial standards, such as ANSI, NEMA, and NETA. Evidence of compliance shall include certified test reports and definitive shop drawings.
- B. Definitions:

- 1. Listed: Materials and equipment included in a list published by an organization that is acceptable to the Authority Having Jurisdiction and concerned with evaluation of products or services, that maintains periodic inspection of production or listed materials and equipment or periodic evaluation of services, and whose listing states that the materials and equipment either meets appropriate designated standards or has been tested and found suitable for a specified purpose.
- 2. Labeled: Materials and equipment to which has been attached a label, symbol, or other identifying mark of an organization that is acceptable to the Authority Having Jurisdiction and concerned with product evaluation, that maintains periodic inspection of production of labeled materials and equipment, and by whose labeling the manufacturer indicates compliance with appropriate standards or performance in a specified manner.
- 3. Certified: Materials and equipment which:
 - a. Have been tested and found by a NRTL to meet nationally recognized standards or to be safe for use in a specified manner.
 - b. Are periodically inspected by a NRTL.
 - c. Bear a label, tag, or other record of certification.
- Nationally Recognized Testing Laboratory: Testing laboratory which is recognized and approved by the Secretary of Labor in accordance with OSHA regulations.

1.4 QUALIFICATIONS (PRODUCTS AND SERVICES)

- A. Manufacturer's Qualifications: The manufacturer shall regularly and currently produce, as one of the manufacturer's principal products, the materials and equipment specified for this project, and shall have manufactured the materials and equipment for at least three years.
- B. Product Qualification:
 - Manufacturer's materials and equipment shall have been in satisfactory operation, on three installations of similar size and type as this project, for at least three years.
 - 2. The Government reserves the right to require the Contractor to submit a list of installations where the materials and equipment have been in operation before approval.
- C. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render

satisfactory service to this installation within four hours of receipt of notification that service is needed. Submit name and address of service organizations.

1.5 APPLICABLE PUBLICATIONS

- A. Applicable publications listed in all Sections of Division 26 shall be the latest issue, unless otherwise noted.
- B. Products specified in all sections of Division 26 shall comply with the applicable publications listed in each section.

1.6 MANUFACTURED PRODUCTS

- A. Materials and equipment furnished shall be of current production by manufacturers regularly engaged in the manufacture of such items, and for which replacement parts shall be available. Materials and equipment furnished shall be new, and shall have superior quality and freshness.
- B. When more than one unit of the same class or type of materials and equipment is required, such units shall be the product of a single manufacturer.
- C. Equipment Assemblies and Components:
 - Components of an assembled unit need not be products of the same manufacturer.
 - Manufacturers of equipment assemblies, which include components made by others, shall assume complete responsibility for the final assembled unit.
 - 3. Components shall be compatible with each other and with the total assembly for the intended service.
 - Constituent parts which are similar shall be the product of a single manufacturer.
- D. Factory wiring and terminals shall be identified on the equipment being furnished and on all wiring diagrams.

1.7 VARIATIONS FROM CONTRACT REQUIREMENTS

A. Where the Government or the Contractor requests variations from the contract requirements, the connecting work and related components shall include, but not be limited to additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods.

1.8 MATERIALS AND EQUIPMENT PROTECTION

- A. Materials and equipment shall be protected during shipment and storage against physical damage, vermin, dirt, corrosive substances, fumes, moisture, cold and rain.
 - 1. Store materials and equipment indoors in clean dry space with uniform temperature to prevent condensation.
 - During installation, equipment shall be protected against entry of foreign matter, and be vacuum-cleaned both inside and outside before testing and operating. Compressed air shall not be used to clean equipment. Remove loose packing and flammable materials from inside equipment.
 - 3. Damaged equipment shall be repaired or replaced, as determined by the Resident Engineeror COR.
 - 4. Painted surfaces shall be protected with factory installed removable heavy kraft paper, sheet vinyl or equal.
 - 5. Damaged paint on equipment shall be refinished with the same quality of paint and workmanship as used by the manufacturer so repaired areas are not obvious.

1.9 WORK PERFORMANCE

- A. All electrical work shall comply with requirements of the latest NFPA 70 (NEC), NFPA 70B, NFPA 70E, NFPA 99, NFPA 110, OSHA Part 1910 subpart J - General Environmental Controls, OSHA Part 1910 subpart K - Medical and First Aid, and OSHA Part 1910 subpart S - Electrical, in addition to other references required by contract.
- B. Job site safety and worker safety is the responsibility of the Contractor.
- C. Electrical work shall be accomplished with all affected circuits or equipment de-energized. However, energized electrical work may be performed only for the non-destructive and non-invasive diagnostic testing(s), or when scheduled outage poses an imminent hazard to patient care, safety, or physical security. In such case, all aspects of energized electrical work, such as the availability of appropriate/correct personal protective equipment (PPE) and the use of PPE, shall comply with the latest NFPA 70E, as well as the following requirements:
 - Only Qualified Person(s) shall perform energized electrical work. Supervisor of Qualified Person(s) shall witness the work of its

entirety to ensure compliance with safety requirements and approved work plan.

- 2. At least two weeks before initiating any energized electrical work, the Contractor and the Qualified Person(s) who is designated to perform the work shall visually inspect, verify and confirm that the work area and electrical equipment can safely accommodate the work involved.
- 3. At least two weeks before initiating any energized electrical work, the Contractor shall develop and submit a job specific work plan, and energized electrical work request to the Resident Engineeror COR, and Medical Center's Chief Engineer or his/her designee. At the minimum, the work plan must include relevant information such as proposed work schedule, area of work, description of work, name(s) of Supervisor and Qualified Person(s) performing the work, equipment to be used, procedures to be used on and near the live electrical equipment, barriers to be installed, safety equipment to be used, and exit pathways.
- 4. Energized electrical work shall begin only after the Contractor has obtained written approval of the work plan, and the energized electrical work request from the Resident Engineer or COR, and Medical Center's Chief Engineer or his/her designee. The Contractor shall make these approved documents present and available at the time and place of energized electrical work.
- 5. Energized electrical work shall begin only after the Contractor has invited and received acknowledgment from the Resident Engineer or COR, and Medical Center's Chief Engineer or his/her designee to witness the work.
- D. For work that affects existing electrical systems, arrange, phase and perform work to assure minimal interference with normal functioning of the facility. Refer to Article OPERATIONS AND STORAGE AREAS under Section 01 00 00, GENERAL REQUIREMENTS.
- E. New work shall be installed and connected to existing work neatly, safely and professionally. Disturbed or damaged work shall be replaced or repaired to its prior conditions, as required by Section 01 00 00, GENERAL REQUIREMENTS.
- F. Coordinate location of equipment and conduit with other trades to minimize interference.

1.10 EQUIPMENT INSTALLATION AND REQUIREMENTS

- A. Equipment location shall be as close as practical to locations shown on the drawings.
- B. Working clearances shall not be less than specified in the NEC.
- C. Inaccessible Equipment:
 - Where the Government determines that the Contractor has installed equipment not readily accessible for operation and maintenance, the equipment shall be removed and reinstalled as directed at no additional cost to the Government.
 - 2. "Readily accessible" is defined as being capable of being reached quickly for operation, maintenance, or inspections without the use of ladders, or without climbing or crawling under or over obstacles such as, but not limited to, motors, pumps, belt guards, transformers, piping, ductwork, conduit and raceways.

1.11 EQUIPMENT IDENTIFICATION

- A. In addition to the requirements of the NEC, install an identification sign which clearly indicates information required for use and maintenance of items such as switchboards and switchgear, panelboards, cabinets, motor controllers, fused and non-fused safety switches, generators, automatic transfer switches, separately enclosed circuit breakers, individual breakers and controllers in switchboards, switchgear and motor control assemblies, control devices and other significant equipment.
- B. Identification signs for Normal Power System equipment shall be laminated black phenolic resin with a white core with engraved lettering. Identification signs for Essential Electrical System (EES) equipment, as defined in the NEC, shall be laminated red phenolic resin with a white core with engraved lettering. Lettering shall be a minimum of 12 mm (1/2 inch) high. Identification signs shall indicate equipment designation, rated bus amperage, voltage, number of phases, number of wires, and type of EES power branch as applicable. Secure nameplates with screws.
- C. Install adhesive arc flash warning labels on all equipment as required by the latest NFPA 70E. Label shall show specific and correct information for specific equipment based on its arc flash calculations. Label shall show the followings:
 - 1. Nominal system voltage.

- Equipment/bus name, date prepared, and manufacturer name and address.
- 3. Arc flash boundary.
- 4. Available arc flash incident energy and the corresponding working distance.
- 5. Minimum arc rating of clothing.
- 6. Site-specific level of PPE.

1.12 SUBMITTALS

- A. Submit to the Resident Engineer or COR in accordance with Section 01 3323, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. The Government's approval shall be obtained for all materials and equipment before delivery to the job site. Delivery, storage or installation of materials and equipment which has not had prior approval will not be permitted.
- C. All submittals shall include six copies of adequate descriptive literature, catalog cuts, shop drawings, test reports, certifications, samples, and other data necessary for the Government to ascertain that the proposed materials and equipment comply with drawing and specification requirements. Catalog cuts submitted for approval shall be legible and clearly identify specific materials and equipment being submitted.
- D. Submittals for individual systems and equipment assemblies which consist of more than one item or component shall be made for the system or assembly and as a whole. Partial submittals will not be considered for approval.
 - 1. Mark the submittals, "SUBMITTED UNDER SECTION ".
 - 2. Submittals shall be marked to show specification reference including the section and paragraph numbers.
 - 3. Submit each section separately.
- E. The submittals shall include the following:
 - Information that confirms compliance with contract requirements. Include the manufacturer's name, model or catalog numbers, catalog information, technical data sheets, shop drawings, manuals, pictures, nameplate data, and test reports as required.
 - Submittals are required for all equipment anchors and supports.
 Submittals shall include weights, dimensions, center of gravity,

standard connections, manufacturer's recommendations and behavior problems (e.g., vibration, thermal expansion, etc.) associated with equipment or piping so that the proposed installation can be properly reviewed. Include sufficient fabrication information so that appropriate mounting and securing provisions may be designed and attached to the equipment.

- 3. Elementary and interconnection wiring diagrams for communication and signal systems, control systems, and equipment assemblies. All terminal points and wiring shall be identified on wiring diagrams.
- 4. Parts list which shall include information for replacement parts and ordering instructions, as recommended by the equipment manufacturer.
- F. Maintenance and Operation Manuals:
 - Submit as required for systems and equipment specified in the technical sections. Furnish in hardcover binders or an approved equivalent.
 - 2. Inscribe the following identification on the cover: the words "MAINTENANCE AND OPERATION MANUAL," the name and location of the system, material, equipment, building, name of Contractor, and contract name and number. Include in the manual the names, addresses, and telephone numbers of each subcontractor installing the system or equipment and the local representatives for the material or equipment.
 - 3. Provide a table of contents and assemble the manual to conform to the table of contents, with tab sheets placed before instructions covering the subject. The instructions shall be legible and easily read, with large sheets of drawings folded in.
 - 4. The manuals shall include:
 - a. Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of the equipment.
 - b. A control sequence describing start-up, operation, and shutdown.
 - c. Description of the function of each principal item of equipment.
 - d. Installation instructions.
 - e. Safety precautions for operation and maintenance.
 - f. Diagrams and illustrations.
 - g. Periodic maintenance and testing procedures and frequencies, including replacement parts numbers.
 - h. Performance data.

- i. Pictorial "exploded" parts list with part numbers. Emphasis shall be placed on the use of special tools and instruments. The list shall indicate sources of supply, recommended spare and replacement parts, and name of servicing organization.
- j. List of factory approved or qualified permanent servicing organizations for equipment repair and periodic testing and maintenance, including addresses and factory certification qualifications.
- G. Approvals will be based on complete submission of shop drawings, manuals, test reports, certifications, and samples as applicable.

1.13 SINGULAR NUMBER

A. Where any device or part of equipment is referred to in these specifications in the singular number (e.g., "the switch"), this reference shall be deemed to apply to as many such devices as are required to complete the installation as shown on the drawings.

1.14 ACCEPTANCE CHECKS AND TESTS

- A. The Contractor shall furnish the instruments, materials, and labor for tests.
- B. Where systems are comprised of components specified in more than one section of Division 26, the Contractor shall coordinate the installation, testing, and adjustment of all components between various manufacturer's representatives and technicians so that a complete, functional, and operational system is delivered to the Government.
- C. When test results indicate any defects, the Contractor shall repair or replace the defective materials or equipment, and repeat the tests for the equipment. Repair, replacement, and re-testing shall be accomplished at no additional cost to the Government.

1.15 WARRANTY

A. All work performed and all equipment and material furnished under this Division shall be free from defects and shall remain so for a period of one year from the date of acceptance of the entire installation by the Contracting Officer for the Government.

1.16 INSTRUCTION

A. Instruction to designated Government personnel shall be provided for the particular equipment or system as required in each associated technical specification section.

- B. Furnish the services of competent and factory-trained instructors to give full instruction in the adjustment, operation, and maintenance of the specified equipment and system, including pertinent safety requirements. Instructors shall be thoroughly familiar with all aspects of the installation, and shall be factory-trained in operating theory as well as practical operation and maintenance procedures.
- C. A training schedule shall be developed and submitted by the Contractor and approved by the Resident Engineer or COR at least 30 days prior to the planned training.
- PART 2 PRODUCTS (NOT USED)
- PART 3 EXECUTION (NOT USED)

---END---

SECTION 26 05 19

LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of the electrical conductors and cables for use in electrical systems rated 600 V and below, indicated as cable(s), conductor(s), wire, or wiring in this section.

1.2 RELATED WORK

- A. Section 07 84 00, FIRESTOPPING: Sealing around penetrations to maintain the integrity of fire-resistant rated construction.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits for conductors and cables.
- E. Section 26 05 41, UNDERGROUND ELECTRICAL CONSTRUCTION: Installation of conductors and cables in manholes and ducts.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit the following data for approval:
 - Electrical ratings and insulation type for each conductor and cable.
 - 2) Splicing materials and pulling lubricant.

- Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the conductors and cables conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the conductors and cables have been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. Publications are reference in the text by designation only.
- B. American Society of Testing Material (ASTM): D2301-10Standard Specification for Vinyl Chloride Plastic Pressure-Sensitive Electrical Insulating Tape D2304-10Test Method for Thermal Endurance of Rigid Electrical Insulating Materials D3005-10Low-Temperature Resistant Vinyl Chloride Plastic Pressure-Sensitive Electrical Insulating Tape C. National Electrical Manufacturers Association (NEMA): WC 70-09Power Cables Rated 2000 Volts or Less for the Distribution of Electrical Energy D. National Fire Protection Association (NFPA): 70-17National Electrical Code (NEC) E. Underwriters Laboratories, Inc. (UL): 83-14Thermoplastic-Insulated Wires and Cables 467-13Grounding and Bonding Equipment 486A-486B-13Wire Connectors 486C-13Splicing Wire Connectors 486D-15Sealed Wire Connector Systems 486E-15Equipment Wiring Terminals for Use with Aluminum and/or Copper Conductors 493-07 Thermoplastic-Insulated Underground Feeder and Branch Circuit Cables
 - 514B-12Conduit, Tubing, and Cable Fittings

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES

- A. Conductors and cables shall be in accordance with ASTM, NEMA, NFPA, UL, as specified herein, and as shown on the drawings.
- B. All conductors shall be copper.
- C. Single Conductor and Cable:
 - 1. No. 12 AWG: Minimum size, except where smaller sizes are specified herein or shown on the drawings.
 - 2. No. 8 AWG and larger: Stranded.
 - 3. No. 10 AWG and smaller: Solid; except shall be stranded for final connection to motors, transformers, and vibrating equipment.
 - 4. Insulation: THHN-THWN and XHHW-2. XHHW-2 shall be used for isolated power systems.
- E. Color Code:
 - 1. No. 10 AWG and smaller: Solid color insulation or solid color coating.
 - 2. No. 8 AWG and larger: Color-coded using one of the following methods:
 - a. Solid color insulation or solid color coating.
 - b. Stripes, bands, or hash marks of color specified.
 - c. Color using 19 mm (0.75 inches) wide tape.
 - For modifications and additions to existing wiring systems, color coding shall conform to the existing wiring system.
 - 5. Conductors shall be color-coded as follows:

208/120 V	Phase	480/277 V
Black	А	Brown
Red	В	Orange
Blue	С	Yellow
White	Neutral	Gray *
* or white with	colored (other	than green) tracer.

6. Lighting circuit "switch legs", and 3-way and 4-way switch "traveling wires," shall have color coding that is unique and distinct (e.g., pink and purple) from the color coding indicated above. The unique color codes shall be solid and in accordance with the NEC. Coordinate color coding in the field with the //Resident Engineer or COR.

7. Color code for isolated power system wiring shall be in accordance with the NEC.

2.2 SPLICES

- A. Splices shall be in accordance with NEC and UL.
- B. Above Ground Splices for No. 10 AWG and Smaller:
 - Solderless, screw-on, reusable pressure cable type, with integral insulation, approved for copper and aluminum conductors.
 - 2. The integral insulator shall have a skirt to completely cover the stripped conductors.
 - The number, size, and combination of conductors used with the connector, as listed on the manufacturer's packaging, shall be strictly followed.
- C. Above Ground Splices for No. 8 AWG to No. 4/0 AWG:
 - Compression, hex screw, or bolt clamp-type of high conductivity and corrosion-resistant material, listed for use with copper and aluminum conductors.
 - Insulate with materials approved for the particular use, location, voltage, and temperature. Insulation level shall be not less than the insulation level of the conductors being joined.
 - 3. Splice and insulation shall be product of the same manufacturer.
 - 4. All bolts, nuts, and washers used with splices shall be zinc-plated steel.
- D. Above Ground Splices for 250 kcmil and Larger:
 - Long barrel "butt-splice" or "sleeve" type compression connectors, with minimum of two compression indents per wire, listed for use with copper and aluminum conductors.
 - Insulate with materials approved for the particular use, location, voltage, and temperature. Insulation level shall be not less than the insulation level of the conductors being joined.
 - 3. Splice and insulation shall be product of the same manufacturer.
- E. Underground Splices for No. 10 AWG and Smaller:
 - Solderless, screw-on, reusable pressure cable type, with integral insulation. Listed for wet locations, and approved for copper and aluminum conductors.

- 2. The integral insulator shall have a skirt to completely cover the stripped conductors.
- 3. The number, size, and combination of conductors used with the connector, as listed on the manufacturer's packaging, shall be strictly followed.
- F. Underground Splices for No. 8 AWG and Larger:
 - Mechanical type, of high conductivity and corrosion-resistant material. Listed for wet locations, and approved for copper and aluminum conductors.
 - Insulate with materials approved for the particular use, location, voltage, and temperature. Insulation level shall be not less than the insulation level of the conductors being joined.
 - 3. Splice and insulation shall be product of the same manufacturer.//
- G. Plastic electrical insulating tape: Per ASTM D2304, flame-retardant, cold and weather resistant.

2.3 CONNECTORS AND TERMINATIONS

- A. Mechanical type of high conductivity and corrosion-resistant material, listed for use with copper and aluminum conductors.
- B. Long barrel compression type of high conductivity and corrosion-resistant material, with minimum of two compression indents per wire, listed for use with copper and aluminum conductors.
- C. All bolts, nuts, and washers used to connect connections and terminations to bus bars or other termination points shall be zincplated steel.

2.4 CONTROL WIRING

- A. Unless otherwise specified elsewhere in these specifications, control wiring shall be as specified herein, except that the minimum size shall be not less than No. 14 AWG.
- B. Control wiring shall be sized such that the voltage drop under in-rush conditions does not adversely affect operation of the controls.

2.5 WIRE LUBRICATING COMPOUND

- A. Lubricating compound shall be suitable for the wire insulation and conduit, and shall not harden or become adhesive.
- B. Shall not be used on conductors for isolated power systems.

PART 3 - EXECUTION

3.1 GENERAL

- A. Installation shall be in accordance with the NEC, as shown on the drawings, and manufacturer's instructions.
- B. Install all conductors in raceway systems.
- C. Splice conductors only in outlet boxes, junction boxes, pull boxes, manholes, or handholes.
- D. Conductors of different systems (e.g., 120 V and 277 V) shall not be installed in the same raceway.
- E. Install cable supports for all vertical feeders in accordance with the NEC. Provide split wedge type which firmly clamps each individual cable and tightens due to cable weight.
- F. In panelboards, cabinets, wireways, switches, enclosures, and equipment assemblies, neatly form, train, and tie the conductors with nonmetallic ties.
- G. For connections to motors, transformers, and vibrating equipment, stranded conductors shall be used only from the last fixed point of connection to the motors, transformers, or vibrating equipment.
- H. Use expanding foam or non-hardening duct-seal to seal conduits entering a building, after installation of conductors.
- I. Conductor and Cable Pulling:
 - Provide installation equipment that will prevent the cutting or abrasion of insulation during pulling. Use lubricants approved for the cable.
 - 2. Use nonmetallic pull ropes.
 - 3. Attach pull ropes by means of either woven basket grips or pulling eyes attached directly to the conductors.
 - 4. All conductors in a single conduit shall be pulled simultaneously.
 - 5. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.
- J. No more than three branch circuits shall be installed in any one conduit.
- K. When stripping stranded conductors, use a tool that does not damage the conductor or remove conductor strands.

3.2 INSTALLATION IN MANHOLES

A. Train the cables around the manhole walls, but do not bend to a radius less than six times the overall cable diameter.

26 05 19 - 6

- B. Fireproofing:
 - Install fireproofing on low-voltage conductors where the low-voltage conductors are installed in the same manholes with medium-voltage conductors.
 - 2. Use fireproofing tape as specified in Section 26 05 13, MEDIUM-VOLTAGE CABLES, and apply the tape in a single layer, half-lapped, or as recommended by the manufacturer. Install the tape with the coated side towards the cable and extend it not less than 25 mm (1 inch) into each duct.
 - 3. Secure the fireproofing tape in place by a random wrap of glass cloth tape.

3.3 SPLICE AND TERMINATION INSTALLATION

- A. Splices and terminations shall be mechanically and electrically secure, and tightened to manufacturer's published torque values using a torque screwdriver or wrench.
- B. Where the Government determines that unsatisfactory splices or terminations have been installed, replace the splices or terminations at no additional cost to the Government.

3.4 CONDUCTOR IDENTIFICATION

A. When using colored tape to identify phase, neutral, and ground conductors larger than No. 8 AWG, apply tape in half-overlapping turns for a minimum of 75 mm (3 inches) from terminal points, and in junction boxes, pull boxes, and manholes. Apply the last two laps of tape with no tension to prevent possible unwinding. Where cable markings are covered by tape, apply tags to cable, stating size and insulation type.

3.5 FEEDER CONDUCTOR IDENTIFICATION

A. In each interior pull box and each underground manhole and handhole, install brass tags on all feeder conductors to clearly designate their circuit identification and voltage. The tags shall be the embossed type, 40 mm (1-1/2 inches) in diameter and 40 mils thick. Attach tags with plastic ties.

3.6 EXISTING CONDUCTORS

A. Unless specifically indicated on the plans, existing conductors shall not be reused.

3.7 CONTROL WIRING INSTALLATION

- A. Unless otherwise specified in other sections, install control wiring and connect to equipment to perform the required functions as specified or as shown on the drawings.
- B. Install a separate power supply circuit for each system, except where otherwise shown on the drawings.

3.8 CONTROL WIRING IDENTIFICATION

- A. Install a permanent wire marker on each wire at each termination.
- B. Identifying numbers and letters on the wire markers shall correspond to those on the wiring diagrams used for installing the systems.
- C. Wire markers shall retain their markings after cleaning.
- D. In each manhole and handhole, install embossed brass tags to identify the system served and function.

3.9 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests: Inspect physical condition.
 - 2. Electrical tests:
 - a. After installation but before connection to utilization devices, such as fixtures, motors, or appliances, test conductors phaseto-phase and phase-to-ground resistance with an insulation resistance tester. Existing conductors to be reused shall also be tested.
 - b. Applied voltage shall be 500 V DC for 300 V rated cable, and 1000 V DC for 600 V rated cable. Apply test for one minute or until reading is constant for 15 seconds, whichever is longer. Minimum insulation resistance values shall not be less than 25 megohms for 300 V rated cable and 100 megohms for 600 V rated cable.
 - c. Perform phase rotation test on all three-phase circuits.

---END---

SECTION 26 05 26 GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, connection, and testing of grounding and bonding equipment, indicated as grounding equipment in this section.
- B. "Grounding electrode system" refers to grounding electrode conductors and all electrodes required or allowed by NEC, as well as made, supplementary, and lightning protection system grounding electrodes.
- C. The terms "connect" and "bond" are used interchangeably in this section and have the same meaning.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- C. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduit and boxes.
- D. Section 26 22 00, LOW-VOLTAGE TRANSFORMERS: Low-voltage transformers.
- E. Section 26 24 16, PANELBOARDS: Low-voltage panelboards.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit plans showing the location of system grounding electrodes and connections, and the routing of aboveground and underground grounding electrode conductors.
 - 2. Test Reports:

- a. Two weeks prior to the final inspection, submit ground resistance field test reports to the Resident Engineer or //COR.
- 3. Certifications:
 - a. Certification by the Contractor that the grounding equipment has been properly installed and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American Society for Testing and Materials (ASTM):
 - B1-13 Standard Specification for Hard-Drawn Copper Wire
 - B3-13Standard Specification for Soft or Annealed Copper Wire
 - B8-11Standard Specification for Concentric-Lay-Stranded Copper Conductors, Hard, Medium-Hard, or Soft
- C. Institute of Electrical and Electronics Engineers, Inc. (IEEE):
 - 81-12 EEE Guide for Measuring Earth Resistivity,
 - Ground Impedance, and Earth Surface Potentials
 - of a Ground System Part 1: Normal Measurements
- D. National Fire Protection Association (NFPA):
 - 70-17National Electrical Code (NEC)
 - 70E-15National Electrical Safety Code
 - 99-15Health Care Facilities
- E. Underwriters Laboratories, Inc. (UL): 44-14Thermoset-Insulated Wires and Cables 83-14Thermoplastic-Insulated Wires and Cables 467-13Grounding and Bonding Equipment
- PART 2 PRODUCTS

2.1 GROUNDING AND BONDING CONDUCTORS

A. Equipment grounding conductors shall be insulated stranded copper, except that sizes No. 10 AWG and smaller shall be solid copper. Insulation color shall be continuous green for all equipment grounding conductors, except that wire sizes No. 4 AWG and larger shall be identified per NEC.

- B. Bonding conductors shall be bare stranded copper, except that sizes No. 10 AWG and smaller shall be bare solid copper. Bonding conductors shall be stranded for final connection to motors, transformers, and vibrating equipment.
- C. Conductor sizes shall not be less than shown on the drawings, or not less than required by the NEC, whichever is greater.
- D. Insulation: THHN-THWN and XHHW-2. XHHW-2 shall be used for isolated power systems.

2.2 GROUND RODS

- A. Copper clad steel , 19 mm (0.75 inch) diameter by 3 M (10 feet) long.
- B. Quantity of rods shall be as shown on the drawings, and as required to obtain the specified ground resistance.

2.3 CONCRETE ENCASED ELECTRODE

A. Concrete encased electrode shall be No. 4 AWG bare copper wire, installed per NEC.

2.4 GROUND CONNECTIONS

- A. Below Grade and Inaccessible Locations: Exothermic-welded type connectors.
- B. Above Grade:
 - Bonding Jumpers: Listed for use with aluminum and copper conductors. For wire sizes No. 8 AWG and larger, use compression-type connectors. For wire sizes smaller than No. 8 AWG, use mechanical type lugs. Connectors or lugs shall use zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.
 - 2. Connection to Building Steel: Exothermic-welded type connectors.
 - 3. Connection to Grounding Bus Bars: Listed for use with aluminum and copper conductors. Use mechanical type lugs, with zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.
 - 4. Connection to Equipment Rack and Cabinet Ground Bars: Listed for use with aluminum and copper conductors. Use mechanical type lugs, with zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.

2.5 EQUIPMENT RACK AND CABINET GROUND BARS

A. Provide solid copper ground bars designed for mounting on the framework of open or cabinet-enclosed equipment racks. Ground bars shall have minimum dimensions of 6.3 mm (0.25 inch) thick x 19 mm (0.75 inch) wide, with length as required or as shown on the drawings. Provide insulators and mounting brackets.

2.6 GROUND TERMINAL BLOCKS

A. At any equipment mounting location (e.g., backboards and hinged cover enclosures) where rack-type ground bars cannot be mounted, provide mechanical type lugs, with //zinc-plated steel bolts, nuts, and washers. Bolts shall be torqued to the values recommended by the manufacturer.

2.7 GROUNDING BUS BAR

A. Pre-drilled rectangular copper bar with stand-off insulators, minimum 6.3 mm (0.25 inch) thick x 100 mm (4 inches) high in cross-section, length as shown on the drawings, with hole size, quantity, and spacing per detail shown on the drawings. Provide insulators and mounting brackets.

PART 3 - EXECUTION

3.1 GENERAL

- A. Installation shall be in accordance with the NEC, as shown on the drawings, and manufacturer's instructions.
- B. System Grounding:
 - Secondary service neutrals: Ground at the supply side of the secondary disconnecting means and at the related transformer.
 - Separately derived systems (transformers downstream from the service entrance): Ground the secondary neutral.
- C. Equipment Grounding: Metallic piping, building structural steel, electrical enclosures, raceways, junction boxes, outlet boxes, cabinets, machine frames, and other conductive items in close proximity with electrical circuits, shall be bonded and grounded.

3.2 INACCESSIBLE GROUNDING CONNECTIONS

A. Make grounding connections, which are normally buried or otherwise inaccessible, by exothermic weld.

3.4 SECONDARY VOLTAGE EQUIPMENT AND CIRCUITS

- A.Metallic Piping, Building Structural Steel, and Supplemental
 - 2. Provide a supplemental ground electrode as shown on the drawings and bond to the grounding electrode system.

26 05 26 - 4

- C. Panelboards, and other electrical equipment:
 - 1. Connect the equipment grounding conductors to the ground bus.
 - 2. Connect metallic conduits by grounding bushings and equipment grounding conductor to the equipment ground bus.
- D. Transformers:
 - 1.Separately derived systems (transformers downstream from service equipment): Ground the secondary neutral at the transformer. Provide a grounding electrode conductor from the transformer to the nearest component of the grounding electrode system .

3.5 RACEWAY

- A. Conduit Systems:
 - Ground all metallic conduit systems. All metallic conduit systems shall contain an equipment grounding conductor.
 - Non-metallic conduit systems, except non-metallic feeder conduits that carry a grounded conductor from exterior transformers to interior or building-mounted service entrance equipment, shall contain an equipment grounding conductor.
 - 3. Metallic conduit that only contains a grounding conductor, and is provided for its mechanical protection, shall be bonded to that conductor at the entrance and exit from the conduit.
 - 4. Metallic conduits which terminate without mechanical connection to an electrical equipment housing by means of locknut and bushings or adapters, shall be provided with grounding bushings. Connect bushings with an equipment grounding conductor to the equipment ground bus.
- B. Feeders and Branch Circuits: Install equipment grounding conductors with all feeders, and power and lighting branch circuits.
- C. Boxes, Cabinets, Enclosures, and Panelboards:
 - Bond the equipment grounding conductor to each pull box, junction box, outlet box, device box, cabinets, and other enclosures through which the conductor passes (except for special grounding systems for intensive care units and other critical units shown).
 - 2. Provide lugs in each box and enclosure for equipment grounding conductor termination.
- E. Receptacles shall not be grounded through their mounting screws. Ground receptacles with a jumper from the receptacle green ground terminal to

the device box ground screw and a jumper to the branch circuit equipment grounding conductor.

- F. Ground lighting fixtures to the equipment grounding conductor of the wiring system. Fixtures connected with flexible conduit shall have a green ground wire included with the power wires from the fixture through the flexible conduit to the first outlet box.
- G. Fixed electrical appliances and equipment shall be provided with a ground lug for termination of the equipment grounding conductor.

3.6 CORROSION INHIBITORS

A. When making grounding and bonding connections, apply a corrosion inhibitor to all contact surfaces. Use corrosion inhibitor appropriate for protecting a connection between the metals used.

3.7CONDUCTIVE PIPING

- A. Bond all conductive piping systems, interior and exterior, to the grounding electrode system. Bonding connections shall be made as close as practical to the equipment ground bus.
- B. In operating rooms and at intensive care and coronary care type beds, bond the medical gas piping and medical vacuum piping at the outlets directly to the patient ground bus.

extensions of the building grounding ring, as shown on the drawings.

3.9 EXTERIOR LIGHT POLES

A. Provide 6.1 M (20 feet) of No. 4 AWG bare copper coiled at bottom of pole base excavation prior to pour, plus additional un-spliced length in and above foundation as required to reach pole ground stud.

3.10 GROUND RESISTANCE

- A. Grounding system resistance to ground shall not exceed 5 ohms. Make any modifications or additions to the grounding electrode system necessary for compliance without additional cost to the Government. Final tests shall ensure that this requirement is met.
- B. Grounding system resistance shall comply with the electric utility company ground resistance requirements.

3.11 GROUND ROD INSTALLATION

- A. For outdoor installations, drive each rod vertically in the earth, until top of rod is 610 mm (24 inches) below final grade.
- B. For indoor installations, leave 100 mm (4 inches) of each rod exposed.

- C. Where buried or permanently concealed ground connections are required, make the connections by the exothermic process, to form solid metal joints. Make accessible ground connections with mechanical pressuretype ground connectors.
- D. Where rock or impenetrable soil prevents the driving of vertical ground rods, install angled ground rods or grounding electrodes in horizontal trenches to achieve the specified ground resistance.

3.12 ACCEPTANCE CHECKS AND TESTS

- A. Resistance of the grounding electrode system shall be measured using a four-terminal fall-of-potential method as defined in IEEE 81. Ground resistance measurements shall be made before the electrical distribution system is energized or connected to the electric utility company ground system, and shall be made in normally dry conditions not fewer than 48 hours after the last rainfall.
- B. Resistance measurements of separate grounding electrode systems shall be made before the systems are bonded together. The combined resistance of separate systems may be used to meet the required resistance, but the specified number of electrodes must still be provided.
- C. Below-grade connections shall be visually inspected by the Resident Engineer or COR prior to backfilling. The Contractor shall notify the Resident Engineeror COR 24 hours before the connections are ready for inspection.

---END---

SECTION 26 05 33 RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, and connection of conduit, fittings, and boxes, to form complete, coordinated, grounded raceway systems. Raceways are required for all wiring unless shown or specified otherwise.
- B. Definitions: The term conduit, as used in this specification, shall mean any or all of the raceway types specified.

1.2 RELATED WORK

- A. Section 06 10 00, ROUGH CARPENTRY: Mounting board for telephone closets.
- B. Section 07 60 00, FLASHING AND SHEET METAL: Fabrications for the deflection of water away from the building envelope at penetrations.
- C. Section 07 84 00, FIRESTOPPING: Sealing around penetrations to maintain the integrity of fire rated construction.
- D. Section 07 92 00, JOINT SEALANTS: Sealing around conduit penetrations through the building envelope to prevent moisture migration into the building.
- E. Section 09 91 00, PAINTING: Identification and painting of conduit and other devices.
- F. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items that are common to more than one section of Division 26.
- G. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- HI. Section 26 05 41, UNDERGROUND ELECTRICAL CONSTRUCTION: Underground conduits.
- J. Section 31 20 00, EARTHWORK: Bedding of conduits.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Size and location of main feeders.
 - b. Size and location of panels and pull-boxes.
 - c. Layout of required conduit penetrations through structural elements.
 - d. Submit the following data for approval:
 - 1) Raceway types and sizes.
 - 2) Conduit bodies, connectors and fittings.
 - 3) Junction and pull boxes, types and sizes.
 - Certifications: Two weeks prior to final inspection, submit the following:
 - a. Certification by the manufacturer that raceways, conduits, conduit bodies, connectors, fittings, junction and pull boxes, and all related equipment conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that raceways, conduits, conduit bodies, connectors, fittings, junction and pull boxes, and all related equipment have been properly installed.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American Iron and Steel Institute (AISI):
 S100-12North American Specification for the Design of Cold-Formed Steel Structural Members
 C. National Electrical Manufacturers Association (NEMA):
 C80.1-15Electrical Rigid Steel Conduit
 C80.3-15Steel Electrical Metal Tubing
 C80.6-05Electrical Intermediate Metal Conduit
 FB1-14Fittings, Cast Metal Boxes and Conduit Bodies for Conduit, Electrical Metallic Tubing and Cable

VA 595-668 Lebanon VAMC New Entryway for Building 17 AE Works Project No. VLEB-010 BID DOCUMENTS FB2.10-13Selection and Installation Guidelines for Fittings for use with Non-Flexible Conduit or Tubing (Rigid Metal Conduit, Intermediate Metallic Conduit, and Electrical Metallic Tubing) FB2.20-14Selection and Installation Guidelines for Fittings for use with Flexible Electrical Conduit and Cable TC-2-13Electrical Polyvinyl Chloride (PVC) Tubing and Conduit TC-3-13PVC Fittings for Use with Rigid PVC Conduit and Tubing D. National Fire Protection Association (NFPA): 70-17National Electrical Code (NEC) E. Underwriters Laboratories, Inc. (UL): 1-05Flexible Metal Conduit 5-16 Surface Metal Raceway and Fittings 6-07Electrical Rigid Metal Conduit - Steel 50-15 Enclosures for Electrical Equipment 360-13Liquid-Tight Flexible Steel Conduit 467-13Grounding and Bonding Equipment 514A-13Metallic Outlet Boxes 514B-12Conduit, Tubing, and Cable Fittings 514C-14Nonmetallic Outlet Boxes, Flush-Device Boxes and Covers 651-11Schedule 40 and 80 Rigid PVC Conduit and Fittings 651A-11Type EB and A Rigid PVC Conduit and HDPE Conduit 797-07Electrical Metallic Tubing 1242-14Electrical Intermediate Metal Conduit - Steel

PART 2 - PRODUCTS

2.1 MATERIAL

A. Conduit Size: In accordance with the NEC, but not less than 19 mm (0.75-inch) unless otherwise shown. Where permitted by the NEC, 13 mm (0.5-inch) flexible conduit may be used for tap connections to recessed lighting fixtures.

- B. Conduit:
 - 1. Size: In accordance with the NEC, but not less than 13 mm (0.5-inch).
 - 2. Rigid Steel Conduit (RMC):
 - 3. Rigid Intermediate Steel Conduit (IMC): Shall conform to UL 1242 and NEMA C80.6.
 - Electrical Metallic Tubing (EMT): Shall conform to UL 797 and NEMA C80.3. Maximum size not to exceed 105 mm (4 inches) and shall be permitted only with cable rated 600 V or less.
 - 5. Flexible Metal Conduit: Shall conform to UL 1.
 - 6. Liquid-tight Flexible Metal Conduit: Shall conform to UL 360.
 - 77. Direct Burial Plastic Conduit: Shall conform to UL 651 and UL 651A, heavy wall PVC or high density polyethylene (PE).
 - 8. Surface Metal Raceway: Shall conform to UL 5.
- C. Conduit Fittings:
 - 1. Rigid Steel and Intermediate Metallic Conduit Fittings:
 - a. Fittings shall meet the requirements of UL 514B and NEMA FB1.
 - b. Standard threaded couplings, locknuts, bushings, conduit bodies, and elbows: Only steel or malleable iron materials are acceptable. Integral retractable type IMC couplings are also acceptable.
 - c. Locknuts: Bonding type with sharp edges for digging into the metal wall of an enclosure.
 - d. Bushings: Metallic insulating type, consisting of an insulating insert, molded or locked into the metallic body of the fitting. Bushings made entirely of metal or nonmetallic material are not permitted.
 - e. Erickson (Union-Type) and Set Screw Type Couplings: Approved for use in concrete are permitted for use to complete a conduit run where conduit is installed in concrete. Use set screws of casehardened steel with hex head and cup point to firmly seat in conduit wall for positive ground. Tightening of set screws with pliers is prohibited.
 - f. Sealing Fittings: Threaded cast iron type. Use continuous drain-type sealing fittings to prevent passage of water vapor. In concealed work, install fittings in flush steel boxes with

blank cover plates having the same finishes as that of other electrical plates in the room.

- 3. Electrical Metallic Tubing Fittings:
 - a. Fittings and conduit bodies shall meet the requirements of UL 514B, NEMA C80.3, and NEMA FB1.
 - b. Only steel or malleable iron materials are acceptable.
 - c. Setscrew Couplings and Connectors: Use setscrews of casehardened steel with hex head and cup point, to firmly seat in wall of conduit for positive grounding.
 - d. Indent-type connectors or couplings are prohibited.
 - e. Die-cast or pressure-cast zinc-alloy fittings or fittings made of "pot metal" are prohibited.
- 4. Flexible Metal Conduit Fittings:
 - a. Conform to UL 514B. Only steel or malleable iron materials are acceptable.
 - b. Clamp-type, with insulated throat.
- 5. Liquid-tight Flexible Metal Conduit Fittings:
 - a. Fittings shall meet the requirements of UL 514B and NEMA FB1.
 - b. Only steel or malleable iron materials are acceptable.
 - c. Fittings must incorporate a threaded grounding cone, a steel or plastic compression ring, and a gland for tightening. Connectors shall have insulated throats.
- 6. Direct Burial Plastic Conduit Fittings: Fittings shall meet the requirements of UL 514C and NEMA TC3.
- 7. Surface Metal Raceway Fittings: As recommended by the raceway manufacturer. Include couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, conduit entry fittings, accessories, and other fittings as required for complete system.
- 8. Expansion and Deflection Couplings:
 - a. Conform to UL 467 and UL 514B.
 - b. Accommodate a 19 mm (0.75-inch) deflection, expansion, or contraction in any direction, and allow 30 degree angular deflections.
 - c. Include internal flexible metal braid, sized to guarantee conduit ground continuity and a low-impedance path for fault currents, in

accordance with UL 467 and the NEC tables for equipment grounding conductors.

- d. Jacket: Flexible, corrosion-resistant, watertight, moisture and heat-resistant molded rubber material with stainless steel jacket clamps.
- D. Conduit Supports:
 - 1. Parts and Hardware: Zinc-coat or provide equivalent corrosion protection.
 - Individual Conduit Hangers: Designed for the purpose, having a pre-assembled closure bolt and nut, and provisions for receiving a hanger rod.
 - 3. Multiple Conduit (Trapeze) Hangers: Not less than 38 mm x 38 mm (1.5 x 1.5 inches), 12-gauge steel, cold-formed, lipped channels; with not less than 9 mm (0.375-inch) diameter steel hanger rods.
 - Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion.
- E. Outlet, Junction, and Pull Boxes:
 - 1. Comply with UL-50 and UL-514A.
 - 2. Rustproof cast metal where required by the NEC or shown on drawings.
 - 3. Sheet Metal Boxes: Galvanized steel, except where shown on drawings.
- F. Metal Wireways: Equip with hinged covers, except as shown on drawings. Include couplings, offsets, elbows, expansion joints, adapters, holddown straps, end caps, and other fittings to match and mate with wireways as required for a complete system.

PART 3 - EXECUTION

3.1 PENETRATIONS

- A. Cutting or Holes:
 - Cut holes in advance where they should be placed in the structural elements, such as ribs or beams. Obtain the approval of the Resident Engineer or COR prior to drilling through structural elements.
 - 2. Cut holes through concrete and masonry in new and existing structures with a diamond core drill or concrete saw. Pneumatic hammers, impact electric, hand, or manual hammer-type drills are not allowed, except when permitted by the Resident Engineer or COR where working space is limited.

- B. Firestop: Where conduits, wireways, and other electrical raceways pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against the spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING.
- C. Waterproofing: At floor, exterior wall, and roof conduit penetrations, completely seal the gap around conduit to render it watertight, as specified in Section 07 92 00, JOINT SEALANTS.

3.2 INSTALLATION, GENERAL

- A. In accordance with NEC, NEMA, UL, as shown on drawings, and as specified herein.
- B. Raceway systems used for Essential Electrical Systems (EES) shall be entirely independent of other raceway systems.
- C. Install conduit as follows:
 - In complete mechanically and electrically continuous runs before pulling in cables or wires.
 - Unless otherwise indicated on the drawings or specified herein, installation of all conduits shall be concealed within finished walls, floors, and ceilings.
 - 3. Flattened, dented, or deformed conduit is not permitted. Remove and replace the damaged conduits with new conduits.
 - 4. Assure conduit installation does not encroach into the ceiling height head room, walkways, or doorways.
 - 5. Cut conduits square, ream, remove burrs, and draw up tight.
 - 6. Independently support conduit at 2.4 M (8 feet) on centers with specified materials and as shown on drawings.
 - 7. Do not use suspended ceilings, suspended ceiling supporting members, lighting fixtures, other conduits, cable tray, boxes, piping, or ducts to support conduits and conduit runs.
 - Support within 300 mm (12 inches) of changes of direction, and within 300 mm (12 inches) of each enclosure to which connected.
 - 9. Close ends of empty conduits with plugs or caps at the rough-in stage until wires are pulled in, to prevent entry of debris.
 - 10. Conduit installations under fume and vent hoods are prohibited.
 - 11. Secure conduits to cabinets, junction boxes, pull-boxes, and outlet boxes with bonding type locknuts. For rigid steel and IMC conduit installations, provide a locknut on the inside of the enclosure,

made up wrench tight. Do not make conduit connections to junction box covers.

- 12. Flashing of penetrations of the roof membrane is specified in Section 07 60 00, FLASHING AND SHEET METAL.
- 13. Conduit bodies shall only be used for changes in direction, and shall not contain splices.
- D. Conduit Bends:
 - 1. Make bends with standard conduit bending machines.
 - Conduit hickey may be used for slight offsets and for straightening stubbed out conduits.
 - 3. Bending of conduits with a pipe tee or vise is prohibited.
- E. Layout and Homeruns:
 - Install conduit with wiring, including homeruns, as shown on drawings.
 - Deviations: Make only where necessary to avoid interferences and only after drawings showing the proposed deviations have been submitted and approved by the //Resident Engineer// //COR//.

3.3 CONCEALED WORK INSTALLATION

- A. In Concrete:
 - 1. Conduit: Rigid steel, IMC, or EMT. Do not install EMT in concrete slabs that are in contact with soil, gravel, or vapor barriers.
 - 2. Align and run conduit in direct lines.
 - 3. Install conduit through concrete beams only:
 - a. Where shown on the structural drawings.
 - b. As approved by the Resident Engineer or COR prior to construction, and after submittal of drawing showing location, size, and position of each penetration.
 - Installation of conduit in concrete that is less than 75 mm (3 inches) thick is prohibited.
 - a. Conduit outside diameter larger than one-third of the slab thickness is prohibited.
 - b. Space between conduits in slabs: Approximately six conduit diameters apart, and one conduit diameter at conduit crossings.
 - c. Install conduits approximately in the center of the slab so that there will be a minimum of 19 mm (0.75-inch) of concrete around the conduits.

- 5. Make couplings and connections watertight. Use thread compounds that are UL approved conductive type to ensure low resistance ground continuity through the conduits. Tightening setscrews with pliers is prohibited.
- B. Above Furred or Suspended Ceilings and in Walls:
 - 1. Conduit for Conductors Above 600 V: Rigid steel. Mixing different types of conduits in the same system is prohibited.
 - Conduit for Conductors 600 V and Below: Rigid steel, IMC, or EMT. Mixing different types of conduits in the same system is prohibited.
 - Align and run conduit parallel or perpendicular to the building lines.
 - 4. Connect recessed lighting fixtures to conduit runs with maximum 1.8M (6 feet) of flexible metal conduit extending from a junction box to the fixture.
 - 5. Tightening set screws with pliers is prohibited.
 - 6. For conduits running through metal studs, limit field cut holes to no more than 70% of web depth. Spacing between holes shall be at least 457 mm (18 inches). Cuts or notches in flanges or return lips shall not be permitted.

3.4 EXPOSED WORK INSTALLATION

- A. Unless otherwise indicated on drawings, exposed conduit is only permitted in mechanical and electrical rooms.
- B. Conduit for Conductors Above 600 V: Rigid steel or rigid aluminum.Mixing different types of conduits in the system is prohibited.
- C. Conduit for Conductors 600 V and Below: Rigid steel, IMC, or EMT. Mixing different types of conduits in the system is prohibited.
- D. Align and run conduit parallel or perpendicular to the building lines.
- E. Install horizontal runs close to the ceiling or beams and secure with conduit straps.
- F. Support horizontal or vertical runs at not over 2.4 M (8 feet) intervals.
- G. Surface Metal Raceways: Use only where shown on drawings.
- H. Painting:
 - 1. Paint exposed conduit as specified in Section 09 91 00, PAINTING.
 - Paint all conduits containing cables rated over 600 V safety orange. Refer to Section 09 91 00, PAINTING for preparation, paint type, and

exact color. In addition, paint legends, using 50 mm (2 inch) high black numerals and letters, showing the cable voltage rating. Provide legends where conduits pass through walls and floors and at maximum 6 M (20 feet) intervals in between.

3.5 DIRECT BURIAL INSTALLATION

Refer to Section 26 05 41, UNDERGROUND ELECTRICAL CONSTRUCTION.

3.6 WET OR DAMP LOCATIONS

- A. Use rigid steel or IMC conduits unless as shown on drawings.
- B. Provide sealing fittings to prevent passage of water vapor where conduits pass from warm to cold locations, i.e., refrigerated spaces, constant-temperature rooms, air-conditioned spaces, building exterior walls, roofs, or similar spaces.
- C. Use rigid steel or IMC conduit within 1.5 M (5 feet) of the exterior and below concrete building slabs in contact with soil, gravel, or vapor barriers, unless as shown on drawings. Conduit shall be halflapped with 10 mil PVC tape before installation. After installation, completely recoat or retape any damaged areas of coating.
- D. Conduits run on roof shall be supported with integral galvanized lipped steel channel, attached to UV-inhibited polycarbonate or polypropylene blocks every 2.4 M (8 feet) with 9 mm (3/8-inch) galvanized threaded rods, square washer and locknut. Conduits shall be attached to steel channel with conduit clamps.

3.7 MOTORS AND VIBRATING EQUIPMENT

- A. Use flexible metal conduit for connections to motors and other electrical equipment subject to movement, vibration, misalignment, cramped quarters, or noise transmission.
- B. Use liquid-tight flexible metal conduit for installation in exterior locations, moisture or humidity laden atmosphere, corrosive atmosphere, water or spray wash-down operations, inside airstream of HVAC units, and locations subject to seepage or dripping of oil, grease, or water.
- C. Provide a green equipment grounding conductor with flexible and liquidtight flexible metal conduit.

3.8 EXPANSION JOINTS

A. Conduits 75 mm (3 inch) and larger that are secured to the building structure on opposite sides of a building expansion joint require expansion and deflection couplings. Install the couplings in accordance with the manufacturer's recommendations. VA 595-668 AE Works Project No. VLEB-010

- B. Provide conduits smaller than 75 mm (3 inch) with junction boxes on both sides of the expansion joint. Connect flexible metal conduits to junction boxes with sufficient slack to produce a 125 mm (5 inch) vertical drop midway between the ends of the flexible metal conduit. Flexible metal conduit shall have a green insulated copper bonding jumper installed. In lieu of this flexible metal conduit, expansion and deflection couplings as specified above are acceptable.
- C. Install expansion and deflection couplings where shown.

3.9 CONDUIT SUPPORTS

- A. Safe working load shall not exceed one-quarter of proof test load of fastening devices.
- B. Use pipe straps or individual conduit hangers for supporting individual conduits.
- C. Support multiple conduit runs with trapeze hangers. Use trapeze hangers that are designed to support a load equal to or greater than the sum of the weights of the conduits, wires, hanger itself, and an additional 90 kg (200 lbs). Attach each conduit with U-bolts or other approved fasteners.
- D. Support conduit independently of junction boxes, pull-boxes, fixtures, suspended ceiling T-bars, angle supports, and similar items.
- E. Fasteners and Supports in Solid Masonry and Concrete:
 - New Construction: Use steel or malleable iron concrete inserts set in place prior to placing the concrete.
 - 2. Existing Construction:
 - a. Steel expansion anchors not less than 6 mm (0.25-inch) bolt size and not less than 28 mm (1.125 inch) in embedment.
 - b. Power set fasteners not less than 6 mm (0.25-inch) diameter with depth of penetration not less than 75 mm (3 inch).
 - c. Use vibration and shock-resistant anchors and fasteners for attaching to concrete ceilings.
- F. Hollow Masonry: Toggle bolts.
- G. Bolts supported only by plaster or gypsum wallboard are not acceptable.
- H. Metal Structures: Use machine screw fasteners or other devices specifically designed and approved for the application.
- Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited.

- J. Chain, wire, or perforated strap shall not be used to support or fasten conduit.
- K. Spring steel type supports or fasteners are prohibited for all uses except horizontal and vertical supports/fasteners within walls.
- L. Vertical Supports: Vertical conduit runs shall have riser clamps and supports in accordance with the NEC and as shown. Provide supports for cable and wire with fittings that include internal wedges and retaining collars.

3.10 BOX INSTALLATION

- A. Boxes for Concealed Conduits:
 - 1. Flush-mounted.
 - 2. Provide raised covers for boxes to suit the wall or ceiling, construction, and finish.
- B. In addition to boxes shown, install additional boxes where needed to prevent damage to cables and wires during pulling-in operations or where more than the equivalent of 4-90 degree bends are necessary.
- C. Locate pullboxes so that covers are accessible and easily removed. Coordinate locations with piping and ductwork where installed above ceilings.
- D. Remove only knockouts as required. Plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes.
- E. Outlet boxes mounted back-to-back in the same wall are prohibited. A minimum 600 mm (24 inch) center-to-center lateral spacing shall be maintained between boxes.
- F. Flush-mounted wall or ceiling boxes shall be installed with raised covers so that the front face of raised cover is flush with the wall. Surface-mounted wall or ceiling boxes shall be installed with surfacestyle flat or raised covers.
- G. Minimum size of outlet boxes for ground fault circuit interrupter (GFCI) receptacles is 100 mm (4 inches) square x 55 mm (2.125 inches) deep, with device covers for the wall material and thickness involved.
- H. Stencil or install phenolic nameplates on covers of the boxes identified on riser diagrams; for example "SIG-FA JB No. 1."
- I. On all branch circuit junction box covers, identify the circuits with black marker.

- - - E N D - - -

SECTION 26 05 41 UNDERGROUND ELECTRICAL CONSTRUCTION

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, and connection of underground ducts and raceways, and precast manholes and pullboxes to form a complete underground electrical raceway system.
- B. The terms "duct" and "conduit" are used interchangeably in this section.

1.2 RELATED WORK

- A. Section 07 92 00, JOINT SEALANTS: Sealing of conduit penetrations.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- D. Section 31 20 11, EARTH MOVING (SHORT FORM): Trenching, backfill, and compaction.

1.3 QUALITY ASSURANCE

- A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
- B. Coordinate layout and installation of ducts, manholes, and pullboxes with final arrangement of other utilities, site grading, and surface features.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit information on manholes, pullboxes, ducts, and hardware. Submit manhole plan and elevation drawings, showing openings, pulling irons, cable supports, cover, ladder, sump, and other accessories.

- c. Proposed deviations from the drawings shall be clearly marked on the submittals. If it is necessary to locate manholes, pullboxes, or duct banks at locations other than shown on the drawings, show the proposed locations accurately on scaled site drawings, and submit to the Resident Engineer for approval prior to construction.
- 2. Certifications: Two weeks prior to the final inspection, submit the following.
 - a. Certification by the manufacturer that the materials conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the materials have been properly installed, connected, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American Concrete Institute (ACI): Building Code Requirements for Structural Concrete 318-14/318M-14Building Code Requirements for Structural Concrete & Commentary SP-66-04ACI Detailing Manual C. American National Standards Institute (ANSI): 77-14 Underground Enclosure Integrity D. American Society for Testing and Materials (ASTM): C478 REV A-15Standard Specification for Precast Reinforced Concrete Manhole Sections C858-10Underground Precast Concrete Utility Structures C990-09Joints for Concrete Pipe, Manholes and Precast Box Sections Using Preformed Flexible Joint Sealants. E. National Electrical Manufacturers Association (NEMA): TC 2-13Electrical Polyvinyl Chloride (PVC) Conduit TC 3-15Polyvinyl Chloride (PVC) Fittings for Use With Rigid PVC Conduit And Tubing TC 6 & 8-13Polyvinyl Chloride (PVC) Plastic Utilities Duct

For Underground Installations

TC 9-04Fittings For Polyvinyl Chloride (PVC) Plastic Utilities Duct For Underground Installation

- F. National Fire Protection Association (NFPA):
 - 70-17National Electrical Code (NEC)

70E-15National Electrical Safety Code

G. Underwriters Laboratories, Inc. (UL):

6-07Electrical Rigid Metal Conduit-Steel

467-13Grounding and Bonding Equipment

651-11Schedule 40, 80, Type EB and A Rigid PVC Conduit and Fittings

651A-11Schedule 40 and 80 High Density Polyethylene (HDPE) Conduit

PART 2 - PRODUCTS

2.1 PRE-CAST CONCRETE MANHOLES AND HARDWARE

- A. Structure: Factory-fabricated, reinforced-concrete, monolithicallypoured walls and bottom. Frame and cover shall form top of manhole.
- B. Cable Supports:
 - Cable stanchions shall be hot-rolled, heavy duty, hot-dipped galvanized "T" section steel, 56 mm (2.25 inches) x 6 mm (0.25 inch) in size, and punched with 14 holes on 38 mm (1.5 inches) centers for attaching cable arms.
 - Cable arms shall be 5 mm (0.1875 inch) gauge, hot-rolled, hot-dipped galvanized sheet steel, pressed to channel shape. Arms shall be approximately 63 mm (2.5 inches) wide x 350 mm (14 inches) long.
 - 3. Insulators for cable supports shall be porcelain, and shall be saddle type or type that completely encircles the cable.
 - Equip each cable stanchion with one spare cable arm, with three spare insulators for future use.
- C. Ladder: Fiberglass with 400 mm (16 inches) rung spacing. Provide securely-mounted ladder for every manhole over 1.2 M (4 feet) deep.
- D. Ground Rod Sleeve: Provide a 75 mm (3 inches) PVC sleeve in manhole floors so that a driven ground rod may be installed.
- E. Sump: Provide 305 mm x 305 mm (12 inches x 12 inches) covered sump frame and grated cover.

2.2 PULLBOXES

A. General: Size as indicated on the drawings. Provide pullboxes with weatherproof, non-skid covers with recessed hook eyes, secured with

corrosion- and tamper-resistant hardware. Cover material shall be identical to pullbox material. Covers shall have molded lettering, ELECTRIC or SIGNAL as applicable. Pullboxes shall comply with the requirements of ANSI 77 Tier 22 loading. Provide pulling irons, 22 mm (0.875 inch) diameter galvanized steel bar with exposed triangularshaped opening.

2.3 DUCTS

- A. Number and sizes shall be as shown on the drawings.
- B. Ducts (concrete-encased):
 - 1. Plastic Duct:
 - a. NEMA TC6 & 8 and TC9 plastic utilities duct UL 651 and 651A Schedule 40 PVC conduit.
 - b. Duct shall be suitable for use with 90 $^{\circ}$ C (194 $^{\circ}$ F) rated conductors.
 - 2. Conduit Spacers: Prefabricated plastic.

2.4 GROUNDING

A. Ground Rods and Ground Wire: Per Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.

2.5 WARNING TAPE

A. 4-mil polyethylene 75 mm (3 inches) wide detectable tape, red with black letters, imprinted with "CAUTION - BURIED ELECTRIC CABLE BELOW" or similar.

2.6 PULL ROPE FOR SPARE DUCTS

A. Plastic with 890 N (200 lb) minimum tensile strength.

PART 3 - EXECUTION

3.1 MANHOLE AND PULLBOX INSTALLATION

- A. Assembly and installation shall be per the requirements of the manufacturer.
 - 1. Install manholes and pullboxes level and plumb.
 - 2. Units shall be installed on a 300 mm (12 inches) thick level bed of 90% compacted granular fill, well-graded from the 25 mm (1 inch) sieve to the No. 4 sieve. Granular fill shall be compacted with a minimum of four passes with a plate compactor.
- B. Access: Ensure the top of frames and covers are flush with finished grade.
- C. Grounding in Manholes:

- Ground Rods in Manholes: Drive a ground rod into the earth, through the floor sleeve, after the manhole is set in place. Fill the sleeve with sealant to make a watertight seal. Rods shall protrude approximately 100 mm (4 inches) above the manhole floor.
- Install a No. 3/0 AWG bare copper ring grounding conductor around the inside perimeter of the manhole and anchor to the walls with metallic cable clips.
- 3. Connect the ring grounding conductor to the ground rod by an exothermic welding process.
- Bond the ring grounding conductor to the duct bank equipment grounding conductors, the exposed non-current carrying metal parts of racks, sump covers, and like items in the manholes with a minimum No. 6 AWG bare copper jumper using an exothermic welding process.

3.2 TRENCHING

- A. Refer to Section 31 20 11 EARTH MOVING (SHORT FORM) for trenching, backfilling, and compaction.
- B. Before performing trenching work at existing facilities, a Ground Penetrating Radar Survey shall be carefully performed by a certified technician to reveal all existing underground ducts, conduits, cables, and other utility systems.
- C. Work with extreme care near existing ducts, conduits, and other utilities to avoid damaging them.
- D. Cut the trenches neatly and uniformly.
- E. For Concrete-Encased Ducts:
 - After excavation of the trench, stakes shall be driven in the bottom of the trench at 1.2 M (4 feet) intervals to establish the grade and route of the duct bank.
 - Pitch the trenches uniformly toward manholes or both ways from high points between manholes for the required duct line drainage. Avoid pitching the ducts toward buildings wherever possible.
 - 3. The walls of the trench may be used to form the side walls of the duct bank, provided that the soil is self-supporting and that the concrete envelope can be poured without soil inclusions. Forms are required where the soil is not self-supporting.
 - After the concrete-encased duct has sufficiently cured, the trench shall be backfilled to grade with earth, and appropriate warning tape installed.

F. Individual conduits to be installed under existing paved areas and roads that cannot be disturbed shall be jacked into place using rigid metal conduit, or bored using plastic utilities duct or PVC conduit, as approved by the Resident Engineer.

3.3 DUCT INSTALLATION

- A. General Requirements:
 - Ducts shall be in accordance with the NEC, as shown on the drawings, and as specified.
 - Join and terminate ducts with fittings recommended by the manufacturer.
 - 3. Slope ducts to drain towards manholes and pullboxes, and away from building and equipment entrances. Pitch not less than 100 mm (4 inches) in 30 M (100 feet).
 - 4. Underground conduit stub-ups and sweeps to equipment inside of buildings shall be galvanized rigid metal conduit half-lap wrapped with PVC tape, and shall extend a minimum of 1.5 M (5 feet) outside the building foundation. Tops of conduits below building slab shall be minimum 610 mm (24 inches) below bottom of slab.
 - 5. Stub-ups and sweeps to equipment mounted on outdoor concrete slabs shall be galvanized rigid metal conduit half-lap wrapped with PVC tape, and shall extend a minimum of 1.5 M (5 feet) away from the edge of slab.
 - 6. Install insulated grounding bushings on the conduit terminations.
 - 7. Radius for sweeps shall be sufficient to accomplish pulls without damage. Minimum radius shall be six times conduit diameter.
 - 8. All multiple conduit runs shall have conduit spacers. Spacers shall securely support and maintain uniform spacing of the duct assembly a minimum of 75 mm (3 inches) above the bottom of the trench during the concrete pour. Spacer spacing shall not exceed 1.5 M (5 feet). Secure spacers to ducts and earth to prevent floating during concrete pour. Provide nonferrous tie wires to prevent displacement of the ducts during concrete pour. Tie wires shall not act as substitute for spacers.
 - 9. Duct lines shall be installed no less than 300 mm (12 inches) from other utility systems, such as water, sewer, chilled water.
 - 10. Clearances between individual ducts:
 - a. For similar services, not less than 75 mm (3 inches).

b. For power and signal services, not less than 150 mm (6 inches).

- 11. Duct lines shall terminate at window openings in manhole walls as shown on the drawings. All ducts shall be fitted with end bells.
- 12. Couple the ducts with proper couplings. Stagger couplings in rows and layers to ensure maximum strength and rigidity of the duct bank.
- 13. Keep ducts clean of earth, sand, or gravel, and seal with tapered plugs upon completion of each portion of the work.
- 14. Spare Ducts: Where spare ducts are shown, they shall have a nylon pull rope installed. They shall be capped at each end and labeled as to location of the other end.
- 15. Duct Identification: Place continuous strip of warning tape approximately 300 mm (12 inches) above ducts before backfilling trenches. Warning tape shall be preprinted with proper identification.
- 16. Duct Sealing: Seal ducts, including spare ducts, at building entrances and at outdoor terminations for equipment, with a suitable non-hardening compound to prevent the entrance of foreign objects and material, moisture, and gases.
- 17. Use plastic ties to secure cables to insulators on cable arms. Use minimum two ties per cable per insulator.
- B. Concrete-Encased Ducts:
 - Install concrete-encased ducts for medium-voltage systems, lowvoltage systems, and signal systems, unless otherwise shown on the drawings.
 - Duct banks shall be single or multiple duct assemblies encased in concrete. Ducts shall be uniform in size and material throughout the installation.
 - 3. Tops of concrete-encased ducts shall be:
 - a. Not less than 600 mm (24 inches) and not less than shown on the drawings, below finished grade.
 - b. Not less than 750 mm (30 inches) and not less than shown on the drawings, below roads and other paved surfaces.
 - c. Additional burial depth shall be required in order to accomplish NEC-required minimum bend radius of ducts.
 - d. Conduits crossing under grade slab construction joints shall be installed a minimum of 1.2 M (4 feet) below slab.

- Extend the concrete envelope encasing the ducts not less than 75 mm
 (3 inches) beyond the outside walls of the outer ducts.
- 5. Within 3 M (10 feet) of building and manhole wall penetrations, install reinforcing steel bars at the top and bottom of each concrete envelope to provide protection against vertical shearing.
- Install reinforcing steel bars at the top and bottom of each concrete envelope of all ducts underneath roadways and parking areas.
- 7. Where new ducts and concrete envelopes are to be joined to existing manholes, pullboxes, ducts, and concrete envelopes, make the joints with the proper fittings and fabricate the concrete envelopes to ensure smooth durable transitions.
- Duct joints in concrete may be placed side by side horizontally, but shall be staggered at least 150 mm (6 inches) vertically.
- 9. Pour each run of concrete envelope between manholes or other terminations in one continuous pour. If more than one pour is necessary, terminate each pour in a vertical plane and install 19 mm (0.75 inch) reinforcing rod dowels extending 450 mm (18 inches) into concrete on both sides of joint near corners of envelope.
- 10. Pour concrete so that open spaces are uniformly filled. Do not agitate with power equipment unless approved by Resident Engineer.
- D. Connections to Manholes: Ducts connecting to manholes shall be flared to have an enlarged cross-section to provide additional shear strength. Dimensions of the flared cross-section shall be larger than the corresponding manhole opening dimensions by no less than 300 mm (12 inches) in each direction. Perimeter of the duct bank opening in the manhole shall be flared toward the inside or keyed to provide a positive interlock between the duct and the wall of the manhole. Use vibrators when this portion of the encasement is poured to ensure a seal between the envelope and the wall of the structure.
- E. Connections to Existing Manholes: For duct connections to existing manholes, break the structure wall out to the dimensions required and preserve the steel in the structure wall. Cut steel and extend into the duct bank envelope. Chip the perimeter surface of the duct bank opening to form a key or flared surface, providing a positive connection with the duct bank envelope.

- F. Connections to Existing Ducts: Where connections to existing ducts are indicated, excavate around the ducts as necessary. Cut off the ducts and remove loose concrete from inside before installing new ducts. Provide a reinforced-concrete collar, poured monolithically with the new ducts, to take the shear at the joint of the duct banks.
- G. Partially-Completed Ducts: During construction, wherever a construction joint is necessary in a duct bank, prevent debris such as mud and dirt from entering ducts by providing suitable plugs. Fit concrete envelope of a partially completed ducts with reinforcing steel extending a minimum of 600 mm (2 feet) back into the envelope and a minimum of 600 mm (2 feet) beyond the end of the envelope. Provide one No. 4 bar in each corner, 75 mm (3 inches) from the edge of the envelope. Secure corner bars with two No. 3 ties, spaced approximately 300 mm (12 inches) apart. Restrain reinforcing assembly from moving during pouring of concrete.

3.4 ACCEPTANCE CHECKS AND TESTS

- A. Duct Testing and Cleaning:
 - Upon completion of the duct installation, a standard flexible mandrel shall be pulled through each duct to loosen particles of earth, sand, or foreign material left in the duct, and to test for out-of-round conditions.
 - 2. The mandrel shall be not less than 300 mm (12 inches) long, and shall have a diameter not less than 13 mm (0.5 inch) less than the inside diameter of the duct. A brush with stiff bristles shall then be pulled through each duct to remove the loosened particles. The diameter of the brush shall be the same as, or slightly larger than, the diameter of the duct.
 - 3. If testing reveals obstructions or out-of-round conditions, the Contractor shall replace affected section(s) of duct and retest to the satisfaction of the Resident Engineer.
 - 4. Mandrel pulls shall be witnessed by the Resident Engineer.

---END---

SECTION 26 09 23 LIGHTING CONTROLS

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies the furnishing, installation and connection of the lighting controls.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General requirements that are common to more than one section of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW): Cables and wiring.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path
- E. Section 26 27 26, WIRING DEVICES: Wiring devices used for control of the lighting systems.
- F. Section 26 51 00, INTERIOR LIGHTING: Luminaire drivers used in control of lighting systems.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit the following information for each type of lighting controls.
 - b. Material and construction details.
 - c. Physical dimensions and description.
 - d. Wiring schematic and connection diagram.
 - e. Installation details.
 - 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, complete maintenance and operating manuals, including technical data sheets, wiring diagrams, and information for ordering replacement parts.

- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the Contractor that the lighting control systems have been properly installed and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. National Electrical Manufacturer's Association (NEMA):

C136.10-10American National Standard for Roadway and Area Lighting Equipment—Locking-Type Photocontrol Devices and Mating Receptacles—Physical and Electrical Interchangeability and Testing ICS-1-15Standard for Industrial Control and Systems General Requirements

- ICS-2-05Standard for Industrial Control and Systems: Controllers, Contractors, and Overload Relays Rated Not More than 2000 Volts AC or 750 Volts DC: Part 8 - Disconnect Devices for Use in Industrial Control Equipment
- ICS-6-16Standard for Industrial Controls and Systems Enclosures
- C. National Fire Protection Association (NFPA): 70-17National Electrical Code (NEC)
- D. Underwriters Laboratories, Inc. (UL):

20-10Standard for General-Use Snap Switches

- 98-16Enclosed and Dead-Front Switches
- 773-16Standard for Plug-In Locking Type Photocontrols for Use with Area Lighting
- 773A-16Nonindustrial Photoelectric Switches for Lighting Control
- 916-15 Standard for Energy Management Equipment Systems

917-06Clock Operated Switches

924-16 Emergency Lighting and Power Equipment (for use when controlling emergency circuits).

PART 2 - PRODUCTS

2.1 OUTDOOR PHOTOELECTRIC SWITCHES

- A. Solid state, with SPST dry contacts rated for 1800 VA tungsten or 1000 VA inductive, complying with UL 773A.
 - 1. Light-Level Monitoring Range: 1.5 to 10 fc, with adjustable turn-on and turn-off levels.
 - 2. Time Delay: 15-second minimum.
 - 3. Surge Protection: Metal-oxide varistor.
 - Mounting: Twist lock, with base-and-stem mounting or stem-andswivel mounting accessories as required.

2.2 TIMER SWITCHES

- A. Digital switches with backlit LCD display, 120/277 volt rated, fitting as a replacement for standard wall switches.
 - 1. Compatibility: Compatible with all ballasts.
 - Warning: Audible warning to sound during the last minute of "on" operation.
 - 3. Time-out: Adjustable from 5 minutes to 12 hours.
 - 4. Faceplate: Refer to wall plate material and color requirements for toggle switches, as specified in Section 26 27 26, WIRING DEVICES.

2.5 INDOOR OCCUPANCY SENSORS

- A. Wall- or ceiling-mounting, solid-state units with a power supply and relay unit, suitable for the environmental conditions in which installed.
 - Operation: Unless otherwise indicated, turn lights on when covered area is occupied and off when unoccupied; with a 1 to 15 minute adjustable time delay for turning lights off.
 - Sensor Output: Contacts rated to operate the connected relay. Sensor shall be powered from the relay unit.
 - 3. Relay Unit: Dry contacts rated for 20A ballast load at 120 volt and 277 volt, for 13A tungsten at 120 volt, and for 1 hp at 120 volt.
 - 4. Mounting:
 - a. Sensor: Suitable for mounting in any position on a standard outlet box.

- b. Time-Delay and Sensitivity Adjustments: Recessed and concealed behind hinged door.
- 5. Indicator: LED, to show when motion is being detected during testing and normal operation of the sensor.
- 6. Bypass Switch: Override the on function in case of sensor failure.
- 7. Manual/automatic selector switch.
- Automatic Light-Level Sensor: Adjustable from 21.5 to 2152 lx (2 to 200 fc); keep lighting off when selected lighting level is present.
- Faceplate for Wall-Switch Replacement Type: Refer to wall plate material and color requirements for toggle switches, as specified in Section 26 27 26, WIRING DEVICES.
- B. Dual-technology Type: Ceiling mounting; combination PIR and ultrasonic detection methods, field-selectable.
 - 1. Sensitivity Adjustment: Separate for each sensing technology.
 - 2. Detector Sensitivity: Detect occurrences of 150 mm (6-inch) minimum movement of any portion of a human body that presents a target of not less than 232 sq. cm (36 sq. in), and detect a person of average size and weight moving not less than 305 mm (12 inches) in either a horizontal or a vertical manner at an approximate speed of 305 mm/s (12 inches/s).
- C. Detection Coverage: Shall be sufficient to provide coverage as required by sensor locations shown on drawing.

2.6 INDOOR VACANCY SENSOR SWITCH

- A. Wall mounting, solid-state units with integral sensor and switch.
 - Operation: Manually turn lights on with switch and sensor detects vacancy to turn lights off.
 - Switch Rating: 120/277 volt, 1200 watts at 277 volt, 800 watts at 120 volt unit.
 - 3. Mounting:
 - a. Sensor: Suitable for mounting in a standard switch box.
 - b. Time-Delay and Sensitivity Adjustments: Integral with switch and accessible for reprogramming without removing switch.
 - 4. Indicator: LED, to show when motion is being detected during testing and normal operation of the sensor.
 - 5. Switch: Manual operation to turn lights on and override lights off.
 - 6. Faceplate: Refer to wall plate material and color requirements for toggle switches, as specified in Section 26 27 26, WIRING DEVICES.

2.11 LIGHTING CONTROL SYSTEM - RELAY PANEL TYPE (STAND ALONE)

- A. System Description:
 - The lighting control system shall be with lighting relay panels. Lighting control devices connect to the relay panels and communicate via the panel controller. System includes all interfaces and wiring, relay panels, control modules, input modules, panel processors, relays, photocells, switches, dimmers, time clock, and occupancy sensors.
 - System shall include the capability of BACnet IP communication with other systems as described. System communication protocol shall be compatible with the building automation system specified in Section 23 09 23, DIRECT-DIGITAL CONTROL SYSTEM FOR HVAC.
 - 3. Panel Controller shall provide programmable operation of lights connected via system relays and controlled with system devices. System software shall provide control of relays and control devices, time and sequence scheduling, timed out and blink light operation and monitoring and reporting of system events and components. Initial programming shall be as shown on plans and schedules.
- B. Panel Controller: Comply with UL 508; programmable, solid-state, astronomic 365-day control unit with non-volatile memory, mounted in preassembled relay panel with low-voltage-controlled, latching-type, single-pole lighting circuit relays. Controller shall be capable of receiving inputs from control devices and other sources. Where indicated, a limited number of digital or analog, low-voltage controlcircuit outputs shall be supported by control unit and circuit boards associated with relays.
- C. Cabinet: Steel with hinged, locking door. Barriers separate lowvoltage and line-voltage components.
- D. Directory: Identifies each relay as to load controlled.
- E. System Power Supply: Transformer and full-wave rectifier with filtered dc output for panel, controllers and control devices. Feed from an equipment emergency circuit at a minimum.
- F. Single-Pole Relays: Mechanically held unless otherwise indicated; split-coil, momentary-pulsed type, rated 20 A, 125 volt AC for tungsten filaments and 20 A, 277 volt AC for electronic ballasts, 50,000 cycles at rated capacity.

VA 595-668 AE Works Project No. VLEB-010

G. Control Devices: All occupancy sensors (Ultrasonic, IR and Dual Technology type), photocells, switches and timers shall be provided with system and designed to operate on system network. Supplemental power packs shall be provided as required for multiple control devices. This equipment shall be identified in shop drawing submission.

This equipment shall be identified in shop drawing submission.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC, manufacturer's instructions, as shown on the drawings, and as specified.
- B. Aim outdoor photoelectric sensor according to manufacturer's recommendations. Set adjustable window slide for 1 footcandle turn-on.
- C. Aiming for wall-mounted and ceiling-mounted motion sensor switches shall be per manufacturer's recommendations.
- D. Set occupancy sensor "on" duration to as directed by the Resident Engineer or COR to a time between 5 and 15 minutes.
- E. Locate photoelectric sensors as indicated and in accordance with the manufacturer's recommendations. Adjust sensor for the available light level at the typical work plane for that area.
- F. Label time switches and contactors with a unique designation.
- G. Program lighting control panels per schedule on drawings.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations.
- B. Upon completion of installation, conduct an operating test to show that equipment operates in accordance with requirements of this section.
- C. Test for full range of dimming ballast and dimming controls capability. Observe for visually detectable flicker over full dimming range.
- D. Test occupancy sensors for proper operation. Observe for light control over entire area being covered.
- E. Upon completion of the installation, the system shall be commissioned by the manufacturer's factory-authorized technician who will verify all adjustments and sensor placements.

3.3 FOLLOW-UP VERIFICATION

Upon completion of acceptance checks and tests, the Contractor shall show by demonstration in service that the lighting control devices are in good operating condition and properly performing the intended function in the presence of Resident Engineer.

3.4 INSTRUCTION

- A. Furnish the services of a factory-trained technician for one 8-hour training period for instructing personnel in the maintenance and operation of the lighting control system on the dates requested by the Resident Engineer .
- B. Contractor shall submit written instructions on training and maintenance as reviewed in training session.

- - - E N D - - -

SECTION 26 22 00 LOW-VOLTAGE TRANSFORMERS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of low-voltage dry-type general-purpose transformers, indicated as transformers in this section.

1.2 RELATED WORK

- A. Section 03 30 00, CAST-IN-PLACE CONCRETE: Requirements for concrete equipment pads.
 - B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
 - C. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
 - D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
 - E. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduit.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Include electrical ratings, dimensions, mounting details, materials, required clearances, terminations, weight, temperature rise, wiring and connection diagrams, plan, front, side, and rear elevations, accessories, and device nameplate data.
 - 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals including technical data sheets and wiring diagrams.

- Schematic signal and control diagrams, with all terminals identified, matching terminal identification in the transformers.
- Include information for testing, repair, troubleshooting, assembly, disassembly, and factory recommended/required periodic maintenance procedures and frequency.
- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- 3. Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the transformers conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the transformers have been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. International Code Council (ICC):
 IBC-15International Building Code
- C. National Fire Protection Association (NFPA): 70-17National Electrical Code (NEC)
- D. National Electrical Manufacturers Association (NEMA): TR 1-13Transformers, Step Voltage Regulators and

Reactors

ST 20-14Dry Type Transformers for General Applications

- E. Underwriters Laboratories, Inc. (UL): UL 506-17Standard for Specialty Transformers UL 1561-11Dry-Type General Purpose and Power Transformers
- F. United States Department of Energy:

10 CFR Part 431Energy Efficiency Program for Certain Commercial and Industrial Equipment

PART 2 - PRODUCTS

2.1 TRANSFORMERS

- A. Unless otherwise specified, transformers shall be in accordance with NEMA, NFPA, UL and as shown on the drawings.
- B. Transformers shall have the following features:
 - Self-cooled by natural convection, isolating windings, indoor dry type. Autotransformers will not be accepted.
 - 2. Rating and winding connections shall be as shown on the drawings.
 - 3. Ratings shown on the drawings are for continuous duty without the use of cooling fans.
 - 4. Copper windings.
 - 5. Insulation systems:
 - a. Transformers 30 kVA and larger: UL rated 220 °C (428 °F) system with an average maximum rise by resistance of 150 °C (302 °F) in a maximum ambient of 40 °C (104 °F).
 - b. Transformers below 30 kVA: Same as for 30 kVA and larger or UL rated 185 °C (365 °F) system with an average maximum rise by resistance of 115 °C (239 °F) in a maximum ambient of 40 °C (104 °F).
 - 6. Core and coil assemblies:
 - a. Rigidly braced to withstand the stresses caused by short-circuit currents and rough handling during shipment.
 - b. Cores shall be grain-oriented, non-aging, and silicon steel.
 - c. Coils shall be continuous windings without splices except for taps.
 - d. Coil loss and core loss shall be minimized for efficient operation.
 - e. Primary and secondary tap connections shall be brazed or pressure type.
 - f. Coil windings shall have end filters or tie-downs for maximum strength.
 - 7. Average audible sound levels shall comply with NEMA.
 - If not shown on drawings, nominal impedance shall be as permitted by NEMA.
 - 9. All transformers rated 30 kVA and larger shall have two 2.5% full capacity taps above, and four 2.5% full capacity taps below normal rated primary voltage.

- 10. Core assemblies shall be grounded to their enclosures with adequate flexible ground straps.
- 11. Enclosures:
 - a. Comprised of not less than code gauge steel.
 - b. Outdoor enclosures shall be NEMA 3R.
 - c. Temperature rise at hottest spot shall conform to NEMA Standards and shall not bake and peel off the enclosure paint after the transformer has been placed in service.
 - d. Ventilation openings shall prevent accidental access to live components.
 - e. The enclosure at the factory shall be thoroughly cleaned and painted with manufacturer's prime coat and standard finish.
- 12. Standard NEMA features and accessories, including ground pad, lifting provisions, and nameplate with the wiring diagram and sound level indicated.
- 13. Dimensions and configurations shall conform to the spaces designated for their installations.
- 14. Transformers shall meet the energy conservation standards for transformers per the United States Department of Energy's 10 CFR Part 431.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation of transformers shall be in accordance with the NEC, as recommended by the equipment manufacturer and as shown on the drawings.
- B. Anchor transformers with rustproof bolts, nuts, and washers, in accordance with manufacturer's instructions, and as shown on drawings.
- E. Install transformers with manufacturer's recommended clearance from wall and adjacent equipment for air circulation. Minimum clearance shall be 150 mm (6 inches).
- F. Install transformers on vibration pads designed to suppress transformer noise and vibrations.

3.2 ACCEPTANCE CHECKS AND TESTS

A. Perform tests in accordance with the manufacturer's recommendations. In addition, include the following:

26 22 00 - 4

- 1. Visual Inspection and Tests:
 - a. Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical and mechanical condition.
 - c. Inspect all field-installed bolted electrical connections, using the calibrated torque-wrench method to verify tightness of accessible bolted electrical connections.
 - d. Perform specific inspections and mechanical tests as recommended by manufacturer.
 - e. Verify correct equipment grounding.
 - f. Verify proper secondary phase-to-phase and phase-to-neutral voltage after energization and prior to connection to loads.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks, settings, and tests, the contractor shall demonstrate that the transformers are in good operating condition, and properly performing the intended function. ---END---

SECTION 26 24 16 PANELBOARDS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of panelboards.

1.2 RELATED WORK

- A. Section 09 91 00, PAINTING: Painting of panelboards.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- C. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- E. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Include electrical ratings, dimensions, mounting details, materials, required clearances, terminations, weight, circuit breakers, wiring and connection diagrams, accessories, and nameplate data.
 - 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, complete maintenance and operating manuals including technical data sheets, wiring diagrams, and information for ordering circuit breakers and replacement parts.

26 24 16 - 1

- Include schematic diagrams, with all terminals identified, matching terminal identification in the panelboards.
- Include information for testing, repair, troubleshooting, assembly, and disassembly.
- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the panelboards conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the panelboards have been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. International Code Council (ICC): IBC-15International Building Code
- C. National Electrical Manufacturers Association (NEMA):
 PB 1-11Panelboards
 250-14Enclosures for Electrical Equipment (1,000V

Maximum)

```
70E-18 .....Standard for Electrical Safety in the Workplace
```

E. Underwriters Laboratories, Inc. (UL):

50-15 Enclosures for Electrical Equipment

67-09Panelboards

489-16 Molded Case Circuit Breakers and Circuit

Breaker Enclosures

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

A. Panelboards shall be in accordance with NEC, NEMA, UL, as specified, and as shown on the drawings.

- B. Panelboards shall have main breaker or main lugs, bus size, voltage, phases, number of circuit breaker mounting spaces, top or bottom feed, flush or surface mounting, branch circuit breakers, and accessories as shown on the drawings.
- C. Panelboards shall be completely factory-assembled with molded case circuit breakers and integral accessories as shown on the drawings or specified herein.
- D. Non-reduced size copper bus bars, rigidly supported on molded insulators, and fabricated for bolt-on type circuit breakers.
- E. Bus bar connections to the branch circuit breakers shall be the "distributed phase" or "phase sequence" type.
- F. Mechanical lugs furnished with panelboards shall be cast, stamped, or machined metal alloys listed for use with the conductors to which they will be connected.
- G. Neutral bus shall be 100% rated, mounted on insulated supports.
- H. Grounding bus bar shall be equipped with screws or lugs for the connection of equipment grounding conductors.
- I. Bus bars shall be braced for the available short-circuit current as shown on the drawings, but not be less than 10,000 A symmetrical for 120/208 V and 120/240 V panelboards, and 14,000 A symmetrical for 277/480 V panelboards.
- J. In two-section panelboards, the main bus in each section shall be full
- J Series-rated panelboards are not permitted.

2.2 ENCLOSURES AND TRIMS

- A. Enclosures:
 - Provide galvanized steel enclosures, with NEMA rating as shown on the drawings or as required for the environmental conditions in which installed.
 - 2. Enclosures shall not have ventilating openings.
 - 3. Enclosures may be of one-piece formed steel or of formed sheet steel with end and side panels welded, riveted, or bolted as required.
 - Provide manufacturer's standard option for prepunched knockouts on top and bottom endwalls.
 - 5. Include removable inner dead front cover, independent of the panelboard cover.
- B. Trims:
 - 1. Hinged "door-in-door" type.

- Interior hinged door with hand-operated latch or latches, as required to provide access only to circuit breaker operating handles, not to energized parts.
- 3. Outer hinged door shall be securely mounted to the panelboard enclosure with factory bolts, screws, clips, or other fasteners, requiring a key or tool for entry. Hand-operated latches are not acceptable.
- 4. Inner and outer doors shall open left to right.
- 5. Trims shall be flush or surface type as shown on the drawings.

2.3 MOLDED CASE CIRCUIT BREAKERS

- A. Circuit breakers shall be per UL, NEC, as shown on the drawings, and as specified.
- B. Circuit breakers shall be bolt-on type.
- C. Circuit breakers shall have minimum interrupting rating as required to withstand the available fault current, but not less than:
 - 1. 120/208 V Panelboard: 10,000 A symmetrical.
 - 2. 277/480 V Panelboard: 14,000 A symmetrical.
- D. Circuit breakers shall have automatic, trip free, non-adjustable, inverse time, and instantaneous magnetic trips for less than 400 A frame.
- E. Circuit breaker features shall be as follows:
 - 1. A rugged, integral housing of molded insulating material.
 - 2. Silver alloy contacts.
 - 3. Arc quenchers and phase barriers for each pole.
 - 4. Quick-make, quick-break, operating mechanisms.
 - 5. A trip element for each pole, thermal magnetic type with long time delay and instantaneous characteristics, a common trip bar for all poles and a single operator.
 - 6. Electrically and mechanically trip free.
 - An operating handle which indicates closed, tripped, and open positions.
 - 8. An overload on one pole of a multi-pole breaker shall automatically cause all the poles of the breaker to open.
- 9. For circuit breakers being added to existing panelboards, coordinate the breaker type with existing panelboards. Modify the panel directory accordingly.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the manufacturer's instructions, the NEC, as shown on the drawings, and as specified.
- B. Locate panelboards so that the present and future conduits can be conveniently connected.
- C. Install a printed schedule of circuits in each panelboard after approval by the Resident Engineer or COR. Schedules shall reflect final load descriptions, room numbers, and room names connected to each circuit breaker. Schedules shall be printed on the panelboard directory cards and be installed in the appropriate panelboards
- E. Mount panelboards such that the maximum height of the top circuit breaker above the finished floor shall not exceed 1980 mm (78 inches).
- F. Provide blank cover for each unused circuit breaker mounting space.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.
 - c. Verify appropriate anchorage and required area clearances.
 - d. Verify that circuit breaker sizes and types correspond to approved shop drawings.
 - e. To verify tightness of accessible bolted electrical connections, use the calibrated torque-wrench method or perform thermographic survey after energization.
 - f. Vacuum-clean enclosure interior. Clean enclosure exterior.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks, settings, and tests, the Contractor shall demonstrate that the panelboards are in good operating condition and properly performing the intended function.

---END---

SECTION 26 27 26 WIRING DEVICES

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, connection, and testing of wiring devices.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements that are common to more than one section of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Cables and wiring.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduit and boxes.
- E. Section 26 51 00, INTERIOR LIGHTING: LED drivers for use with manual dimming controls.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Include electrical ratings, dimensions, mounting details, construction materials, grade, and termination information.
 - 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals, including technical data sheets and information for ordering replacement parts.

- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the wiring devices conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the wiring devices have been properly installed and adjusted.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by basic designation only.
- B. National Electrical Manufacturers Association (NEMA):
 WD 1-99(R2015)General Color Requirements for Wiring Devices
 WD 6-16Wiring Devices Dimensional Specifications
- C. National Fire Protection Association (NFPA): 70-17National Electrical Code (NEC) 99-18Health Care Facilities
- D. Underwriter's Laboratories, Inc. (UL):
 - 5-16Surface Metal Raceways and Fittings
 - 20-10General-Use Snap Switches
 - 231-16Power Outlets
 - 467-13Grounding and Bonding Equipment
 - 498-17Attachment Plugs and Receptacles
 - 943-16Ground-Fault Circuit-Interrupters
 - 1449-14Surge Protective Devices
 - 1472-15Solid State Dimming Controls
- PART 2 PRODUCTS

2.1 RECEPTACLES

- A. General: All receptacles shall comply with NEMA, NFPA, UL, and as shown on the drawings.
 - Mounting straps shall be nickel plated brass, brass, nickel plated steel or galvanize steel with break-off plaster ears and shall include a self-grounding feature. Terminal screws shall be brass, brass plated or a copper alloy metal.

- Receptacles shall have provisions for back wiring with separate metal clamp type terminals (four minimum) and side wiring from four captively held binding screws.
- B. Duplex Receptacles Hospital-grade: shall be listed for hospital grade, single phase, 20 ampere, 120 volts, 2-pole, 3-wire, NEMA 5-20R, with break-off feature for two-circuit operation.
 - 1. Bodies shall be as directed by the architect.
 - 2. Switched duplex receptacles shall be wired so that only the top receptacle is switched. The lower receptacle shall be unswitched.
 - 3. Duplex Receptacles on Emergency Circuit:
 - a. In rooms without emergency powered general lighting, the emergency receptacles shall be of the self-illuminated type.
 - 4. Ground Fault Current Interrupter (GFCI) Duplex Receptacles: Shall be an integral unit, hospital-grade, suitable for mounting in a standard outlet box, with end-of-life indication and provisions to isolate the face due to improper wiring. GFCI receptacles shall be self-test receptacles in accordance with UL 943.
 - a. Ground fault interrupter shall consist of a differential current transformer, self-test, solid state sensing circuitry and a circuit interrupter switch. Device shall have nominal sensitivity to ground leakage current of 4-6 milliamperes and shall function to interrupt the current supply for any value of ground leakage current above five milliamperes (+ or - 1 milliampere) on the load side of the device. Device shall have a minimum nominal tripping time of 0.025 second.
 - b. Self-test function shall be automatically initiated within 5 seconds after power is activated to the receptacles. Self-test function shall be periodically and automatically performed every 3 hours or less.
 - c. End-of-life indicator light shall be a persistent flashing or blinking light to indicate that the GFCI receptacle is no longer in service.
 - 5. Tamper-Resistant Duplex Receptacles:
 - a. Bodies shall be gray in color.
 - Shall permit current to flow only while a standard plug is in the proper position in the receptacle.

- Screws exposed while the wall plates are in place shall be the tamperproof type.
- C. Duplex Receptacles Non-hospital Grade: shall be the same as duplex receptacles hospital grade in accordance with sections 2.1A and 2.1B of this specification, except for the hospital grade listing.

 Bodies shall be brown nylon.
- D. Receptacles 20, 30, and 50 ampere, 250 Volts: Shall be complete with appropriate cord grip plug.
- E. Weatherproof Receptacles: Shall consist of a duplex receptacle, mounted in box with a gasketed, weatherproof, cast metal cover plate and cap over each receptacle opening. The cap shall be permanently attached to the cover plate by a spring-hinged flap. The weatherproof integrity shall not be affected when heavy duty specification or hospital grade attachment plug caps are inserted. Cover plates on outlet boxes mounted flush in the wall shall be gasketed to the wall in a watertight manner.

2.2 TOGGLE SWITCHES

- A. Toggle switches shall be totally enclosed tumbler type with nylon bodies. Handles shall be as directed by the architect.
 - Switches installed in hazardous areas shall be explosion-proof type in accordance with the NEC and as shown on the drawings.
 - 2. Shall be single unit toggle, butt contact, quiet AC type, heavy-duty general-purpose use with an integral self-grounding mounting strap with break-off plasters ears and provisions for back wiring with separate metal wiring clamps and side wiring with captively held binding screws.
 - 3. Switches shall be rated 20 amperes at 120-277 Volts AC.

2.3 MANUAL DIMMING CONTROL

- A. Electronic full-wave manual slide dimmer with on/off switch and audible frequency and EMI/RFI suppression filters.
- B. Manual dimming controls shall be fully compatible with //fluorescent electronic dimming ballasts and approved by the ballast manufacturer// //LED dimming driver and be approved by the driver manufacturer//, shall operate over full specified dimming range, and shall not degrade the performance or rated life of the electronic dimming ballast and lamp.
- C. Provide single-pole, three-way or four-way, as shown on the drawings.

D. Manual dimming control and faceplates shall be //ivory// // in color unless otherwise specified.

2.4 WALL PLATES

- A. Wall plates for switches and receptacles shall be type // 302 stainless steel in finished areas. Galvanized steel wall plates in Electrical or Mechanical Rooms. Oversize plates are not acceptable.
- B. For receptacles or switches mounted adjacent to each other, wall plates shall be common for each group of receptacles or switches.
- C. In areas requiring tamperproof wiring devices, wall plates shall be type 302 stainless steel, and shall have tamperproof screws and beveled edges.
- D. Duplex Receptacles on Emergency Circuit: Wall plates shall be red nylon with the word "EMERGENCY" engraved in 6 mm (1/4 inch) white letters.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC and as shown as on the drawings.
- B. Install wiring devices after wall construction and painting is complete.
- C. The ground terminal of each wiring device shall be bonded to the outlet box with an approved green bonding jumper, and connected to the branch circuit equipment grounding conductor.
- D. Outlet boxes for toggle switches and manual dimming controls shall be mounted on the strike side of doors.
- E. Provide barriers in multi-gang outlet boxes to comply with the NEC.
- F. Coordinate the electrical work with the work of other trades to ensure that wiring device flush outlets are positioned with box openings aligned with the face of the surrounding finish material. Pay special attention to installations in cabinet work, and in connection with laboratory equipment.
- G. Exact field locations of floors, walls, partitions, doors, windows, and equipment may vary from locations shown on the drawings. Prior to locating sleeves, boxes, and chases for roughing-in of conduit and equipment, the Contractor shall coordinate exact field location of the above items with other trades.
- H. Install wall switches 1.2 M (48 inches) above floor, with the toggle OFF position down.

- I. Install wall dimmers 1.2 M (48 inches) above floor.
- J. Install receptacles 450 mm (18 inches) above floor, and 152 mm (6 inches) above counter backsplash or workbenches. Install specific-use receptacles at heights shown on the drawings.
- K. Install horizontally mounted receptacles with the ground pin to the right.
- L. When required or recommended by the manufacturer, use a torque screwdriver. Tighten unused terminal screws.
- M. Label device plates with a permanent adhesive label listing panel and circuit feeding the wiring device.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform manufacturer's required field checks in accordance with the manufacturer's recommendations, and the latest NFPA 99. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Inspect physical and electrical conditions.
 - b. Vacuum-clean surface metal raceway interior. Clean metal raceway exterior.
 - c. Test wiring devices for damaged conductors, high circuit resistance, poor connections, inadequate fault current path, defective devices, or similar problems using a portable receptacle tester. Correct circuit conditions, remove malfunctioning units and replace with new, and retest as specified above.
 - d. Test GFCI receptacles.
 - Receptacle testing in the Patient Care Spaces, such as retention force of the grounding blade of each receptacle, shall comply with the latest NFPA 99.

---END---

SECTION 26 29 11 MOTOR CONTROLLERS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the furnishing, installation, connection, and testing of motor controllers, including all low- and medium-voltage motor controllers and manual motor controllers, indicated as motor controllers in this section, and low-voltage variable speed motor controllers.
- B. Motor controllers, whether furnished with the equipment specified in other sections or otherwise (except for elevator motor controllers specified in Division 14 and fire pump controllers specified in Division 21), shall meet this specification and all related specifications.

1.2 RELATED WORK

- A. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- B. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- C. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- D. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Include electrical ratings, dimensions, weights, mounting details, materials, overcurrent protection devices, overload

relays, sizes of enclosures, wiring diagrams, starting characteristics, interlocking, and accessories.

- 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals, including technical data sheets, wiring diagrams, and information for ordering replacement parts.
 - 1) Wiring diagrams shall have their terminals identified to facilitate installation, maintenance, and operation.
 - Wiring diagrams shall indicate internal wiring for each item of equipment and interconnections between the items of equipment.
 - Elementary schematic diagrams shall be provided for clarity of operation.
 - Include the catalog numbers for the correct sizes of overload relays for the motor controllers.
 - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the motor controllers conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the motor controllers have been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by basic designation only.
- B. Institute of Electrical and Electronic Engineers (IEEE): 519-14Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems C37.90.1-12Standard Surge Withstand Capability (SWC) Tests for Relays and Relay Systems Associated with Electric Power Apparatus

C. International Code Council (ICC): IBC-15International Building Code D. National Electrical Manufacturers Association (NEMA): ICS 1-00(R2015)Industrial Control and Systems: General Requirements ICS 1.1-84(R2015)Safety Guidelines for the Application, Installation and Maintenance of Solid State Control ICS 2-00(R2005)Industrial Control and Systems Controllers, Contactors, and Overload Relays Rated 600 Volts ICS 4-15Industrial Control and Systems: Terminal Blocks ICS 6-93(R2016)Industrial Control and Systems: Enclosures ICS 7-14Industrial Control and Systems: Adjustable-Speed Drives ICS 7.1-14Safety Standards for Construction and Guide for Selection, Installation, and Operation of Adjustable-Speed Drive Systems E. National Fire Protection Association (NFPA): 70-17National Electrical Code (NEC) F. Underwriters Laboratories Inc. (UL): 508A-13 Industrial Control Panels 508C-16 Power Conversion Equipment

1449-14Surge Protective Devices

PART 2 - PRODUCTS

2.2 MANUAL MOTOR CONTROLLERS

- A. Shall be in accordance with applicable requirements of 2.1 above.
- B. Manual motor controllers shall have the following features:
 - Controllers shall be general-purpose Class A, manually operated type with full voltage controller for induction motors, rated in horsepower.
 - 2. Units shall include thermal overload relays, on-off operator .
- C. Fractional horsepower manual motor controllers shall have the following features:
 - Controllers shall be general-purpose Class A, manually operated type with full voltage controller for fractional horsepower induction motors.

- 2. Units shall include thermal overload relays, red pilot light, and toggle operator.
- H. Operating and Design Conditions:
 - 1. Elevation: 1500 feet Above Mean Sea Level (AMSL)
 - 2. Temperatures: Maximum +90°F Minimum -10°F
 - 3. Relative Humidity: 95%

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install motor controllers in accordance with the NEC, as shown on the drawings, and as recommended by the manufacturer.

---END---

SECTION 26 29 21 ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies the furnishing, installation, and connection of fused and unfused disconnect switches (indicated as switches in this section), and separately-enclosed circuit breakers for use in electrical systems rated 600 V and below.

1.2 RELATED WORK

- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- C. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground faults.
- E. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits.
- F. Section 26 24 16, PANELBOARDS: Molded-case circuit breakers.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit sufficient information to demonstrate compliance with drawings and specifications.
 - b. Submit the following data for approval:
 - Electrical ratings, dimensions, mounting details, materials, required clearances, terminations, weight, fuses, circuit breakers, wiring and connection diagrams, accessories, and device nameplate data.
 - 2. Manuals:

- a. Submit complete maintenance and operating manuals including technical data sheets, wiring diagrams, and information for ordering fuses, circuit breakers, and replacement parts.
 - Include schematic diagrams, with all terminals identified, matching terminal identification in the enclosed switches and circuit breakers.
 - Include information for testing, repair, troubleshooting, assembly, and disassembly.
- b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the manufacturer that the enclosed switches and circuit breakers conform to the requirements of the drawings and specifications.
 - b. Certification by the Contractor that the enclosed switches and circuit breakers have been properly installed, adjusted, and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. International Code Council (ICC):
 IBC-15International Building Code
- C. National Electrical Manufacturers Association (NEMA): FU 1-12Low Voltage Cartridge Fuses KS 1-13Heavy Duty Enclosed and Dead-Front Switches (600 Volts Maximum)
- D. National Fire Protection Association (NFPA):

70-17National Electrical Code (NEC)

E. Underwriters Laboratories, Inc. (UL): 98-16Enclosed and Dead-Front Switches 248 1-11Low Voltage Fuses 489-13Molded Case Circuit Breakers and Circuit Breaker Enclosures

PART 2 - PRODUCTS

2.1 FUSED SWITCHES RATED 600 AMPERES AND LESS

- A. Switches shall be in accordance with NEMA, NEC, UL, as specified, and as shown on the drawings.
- B. Shall be NEMA classified General Duty (GD) for 240 V switches, and NEMA classified Heavy Duty (HD) for 480 V switches.
- C. Shall be horsepower (HP) rated.
- D. Shall have the following features:
 - 1. Switch mechanism shall be the quick-make, quick-break type.
 - 2. Copper blades, visible in the open position.
 - 3. An arc chute for each pole.
 - External operating handle shall indicate open and closed positions, and have lock-open padlocking provisions.
 - 5. Mechanical interlock shall permit opening of the door only when the switch is in the open position, defeat able to permit inspection.
 - 6. Fuse holders for the sizes and types of fuses specified.
 - 7. Solid neutral for each switch being installed in a circuit which includes a neutral conductor.
 - 8. Ground lugs for each ground conductor.
 - 9. Enclosures:
 - a. Shall be the NEMA types shown on the drawings.
 - b. Where the types of switch enclosures are not shown, they shall be the NEMA types most suitable for the ambient environmental conditions.
 - c. Shall be finished with manufacturer's standard gray baked enamel paint over pretreated steel.

2.2 UNFUSED SWITCHES RATED 600 AMPERES AND LESS

A. Shall be the same as fused switches, but without provisions for fuses.

2.3 MOTOR RATED TOGGLE SWITCHES

- A. Type 1, general purpose for single-phase motors rated up to 1 horsepower.
- B. Quick-make, quick-break toggle switch with external reset button and thermal overload protection matched to nameplate full-load current of actual protected motor.

2.5 CARTRIDGE FUSES

- A. Shall be in accordance with NEMA FU 1.
- B. Motor Branch Circuits: Class Class RK5 time delay.

F. Control Circuits: Class CC, time delay.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC, as shown on the drawings, and manufacturer's instructions.
- B. Fused switches shall be furnished complete with fuses. Arrange fuses such that rating information is readable without removing the fuses.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform in accordance with the manufacturer's recommendations. In addition, include the following:
 - 1. Visual Inspection and Tests:
 - a. Compare equipment nameplate data with specifications and approved shop drawings.
 - b. Inspect physical, electrical, and mechanical condition.
 - c. Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method.
 - d. Vacuum-clean enclosure interior. Clean enclosure exterior.

3.3 SPARE PARTS

A. Two weeks prior to the final inspection, furnish one complete set of spare fuses for each fused disconnect switch installed on the project. Deliver the spare fuses to the Resident Engineer or COR.

---END---

SECTION 26 51 00 INTERIOR LIGHTING

PART 1 - GENERAL

1.1 DESCRIPTION:

A. This section specifies the furnishing, installation, and connection of the interior lighting systems. The terms "lighting fixture," "fixture," and "luminaire" are used interchangeably.

1.2 RELATED WORK

- A. Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT: Disposal of lamps.
- B. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: Requirements that apply to all sections of Division 26.
- C. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES: Low-voltage conductors.
- D. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents.
- E. Section 26 27 26, WIRING DEVICES: Wiring devices used for control of the lighting systems.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit the following information for each type of lighting fixture designated on the LIGHTING FIXTURE SCHEDULE, arranged in order of lighting fixture designation.
 - b. Material and construction details, include information on housing and optics system.
 - c. Physical dimensions and description.
 - d. Wiring schematic and connection diagram.
 - e. Installation details.

- f. Energy efficiency data.
- g. Photometric data based on laboratory tests complying with IES Lighting Measurements testing and calculation guides.
- h. Lamp data including lumen output (initial and mean), color rendition index (CRI), rated life (hours), and color temperature (degrees Kelvin).
- i. For LED lighting fixtures, submit US DOE LED Lighting Facts label, and IES L70 rated life.
- 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, complete maintenance and operating manuals, including technical data sheets, wiring diagrams, and information for ordering replacement parts.
 - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the Contractor that the interior lighting systems have been properly installed and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American Society for Testing and Materials (ASTM): C635/C635M REV A-13Manufacture, Performance, and Testing of Metal Suspension Systems for Acoustical Tile and Layin Panel Ceilings
- C. Environmental Protection Agency (EPA): 40 CFR 261Identification and Listing of Hazardous Waste
- D. Federal Communications Commission (FCC): CFR Title 47, Part 15 ..Radio Frequency Devices CFR Title 47, Part 18 ..Industrial, Scientific, and Medical Equipment
- E. Illuminating Engineering Society of North America (IESNA): LM-79-08Electrical and Photometric Measurements of Solid-State Lighting Products

VA 595-668 Lebanon VAMC AE Works Project No. VLEB-010 New Entryway for Building 17 BID DOCUMENTS LM-80-15 Measuring Lumen Maintenance of LED Light Sources LM-82-12Characterization of LED Light Engines and LED Lamps for Electrical and Photometric Properties as a Function of Temperature F. Institute of Electrical and Electronic Engineers (IEEE): C62.41-91(R1995)Surge Voltages in Low Voltage AC Power Circuits G. International Code Council (ICC): IBC-15International Building Code H. National Electrical Manufacturer's Association (NEMA): C78.376-14Chromaticity of Fluorescent Lamps C82.1-04(R2015)Lamp Ballasts - Line Frequency Fluorescent Lamp Ballasts C82.2-02(R2016)Method of Measurement of Fluorescent Lamp Ballasts C82.4-17Lamp Ballasts - Ballasts for High-Intensity Discharge and Low-Pressure Sodium (LPS) Lamps (Multiple-Supply Type) C82.11-17 Lamp Ballasts - High Frequency Fluorescent Lamp Ballasts LL 9-11Dimming of T8 Fluorescent Lighting Systems SSL 1-16 Electronic Drivers for LED Devices, Arrays, or Systems I. National Fire Protection Association (NFPA): 70-17National Electrical Code (NEC) 101-18Life Safety Code J. Underwriters Laboratories, Inc. (UL): 496-17Lampholders 542-05 Fluorescent Lamp Starters 844-12Luminaires for Use in Hazardous (Classified) Locations 924-16 Emergency Lighting and Power Equipment 935-01 Fluorescent-Lamp Ballasts 1029-94 High-Intensity-Discharge Lamp Ballasts 1029A-06.....Ignitors and Related Auxiliaries for HID Lamp Ballasts 1598-08Luminaires

1574-04.....Track Lighting Systems
2108-15....Low-Voltage Lighting Systems
8750-15...Light Emitting Diode (LED) Light Sources for
Use in Lighting Products
SPEC WRITER NOTE: Delete between // ----

// if not applicable to project. Also delete any other item or paragraph not applicable to the section and renumber the paragraphs.

PART 2 - PRODUCTS

2.1 LIGHTING FIXTURES

- A. Shall be in accordance with NFPA, UL, as shown on drawings, and as specified.
- B. Sheet Metal:
 - Shall be formed to prevent warping and sagging. Housing, trim and lens frame shall be true, straight (unless intentionally curved), and parallel to each other as designed.
 - Wireways and fittings shall be free of burrs and sharp edges, and shall accommodate internal and branch circuit wiring without damage to the wiring.
 - 3. When installed, any exposed fixture housing surface, trim frame, door frame, and lens frame shall be free of light leaks.
 - 4. Hinged door frames shall operate smoothly without binding. Latches
- C. Recessed fixtures mounted in an insulated ceiling shall be listed for use in insulated ceilings.
- D. Mechanical Safety: Lighting fixture closures (lens doors, trim frame, hinged housings, etc.) shall be retained in a secure manner by captive screws, chains, aircraft cable, captive hinges, or fasteners such that they cannot be accidentally dislodged during normal operation or routine maintenance.
- H. Metal Finishes:
 - 1. The manufacturer shall apply standard finish (unless otherwise specified) over a corrosion-resistant primer, after cleaning to free the metal surfaces of rust, grease, dirt and other deposits. Edges of pre-finished sheet metal exposed during forming, stamping or shearing processes shall be finished in a similar corrosion resistant manner to match the adjacent surface(s). Fixture finish

shall be free of stains or evidence of rusting, blistering, or flaking, and shall be applied after fabrication.

- Interior light reflecting finishes shall be white with not less than
 85 percent reflectance, except where otherwise shown on the drawing.
- 3. Exterior finishes shall be as shown on the drawings.
- H. Lighting fixtures shall have a specific means for grounding metallic wireways and housings to an equipment grounding conductor.
- I. Light Transmitting Components for Fixtures:
 - 1. Shall be 100 percent virgin acrylic.
 - Flat lens panels shall have not less than 3 mm (1/8 inch) of average thickness.
 - 3. Unless otherwise specified, lenses, reflectors, diffusers, and louvers shall be retained firmly in a metal frame by clips or clamping ring in such a manner as to allow expansion and contraction without distortion or cracking.

2.2 LED EXIT LIGHT FIXTURES

- A. Exit light fixtures shall meet applicable requirements of NFPA and UL.
- B. Housing and door shall be die-cast aluminum.
- C. For general purpose exit light fixtures, door frame shall be hinged, with latch. For vandal-resistant exit light fixtures, door frame shall be secured with tamper-resistant screws.
- D. Finish shall be satin or fine-grain brushed aluminum.
- E. There shall be no radioactive material used in the fixtures.
- F. Fixtures:
 - Inscription panels shall be cast or stamped aluminum a minimum of 2.25 mm (0.090 inch) thick, stenciled with 150 mm (6 inch) high letters, baked with red color stable plastic or fiberglass. Lamps shall be luminous Light Emitting Diodes (LED) mounted in center of letters on red color stable plastic or fiberglass.
 - 2. Double-Faced Fixtures: Provide double-faced fixtures where required or as shown on drawings.
 - 3. Directional Arrows: Provide directional arrows as part of the inscription panel where required or as shown on drawings. Directional arrows shall be the "chevron-type" of similar size and width as the letters and meet the requirements of NFPA 101.
- G. Voltage: Multi-voltage (120 277V).

2.3 LED LIGHT FIXTURES

- A. General:
 - 1. LED light fixtures shall be in accordance with IES, NFPA, UL, as shown on the drawings, and as specified.
 - LED light fixtures shall be Reduction of Hazardous Substances (RoHS)-compliant.
 - 3. LED drivers shall include the following features unless otherwise indicated:
 - a. Minimum efficiency: 85% at full load.
 - b. Minimum Operating Ambient Temperature: -20° C. (-4° F.)
 - c. Input Voltage: 120 277V ($\pm 10\%$) at 60 Hz.
 - d. Integral short circuit, open circuit, and overload protection.
 - e. Power Factor: \geq 0.95.
 - f. Total Harmonic Distortion: ≤ 20%.
 - g. Comply with FCC 47 CFR Part 15.
 - LED modules shall include the following features unless otherwise indicated:
 - a. Comply with IES LM-79 and LM-80 requirements.
 - b. Minimum CRI 80 and color temperature 3000° K unless otherwise specified in LIGHTING FIXTURE SCHEDULE.
 - c. Minimum Rated Life: 50,000 hours per IES L70.
 - d. Light output lumens as indicated in the LIGHTING FIXTURE SCHEDULE.
- B. LED Downlights:
 - Housing, LED driver, and LED module shall be products of the same manufacturer.
- C. LED Troffers:
 - LED drivers, modules, and reflector shall be accessible, serviceable, and replaceable from below the ceiling.
 - 2. Housing, LED driver, and LED module shall be products of the same manufacturer.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Installation shall be in accordance with the NEC, manufacturer's instructions, and as shown on the drawings or specified.
- B. Align, mount, and level the lighting fixtures uniformly.

- C. Wall-mounted fixtures shall be attached to the studs in the walls, or to a 20 gauge metal backing plate that is attached to the studs in the walls. Lighting fixtures shall not be attached directly to gypsum board.
- D. Lighting Fixture Supports:
 - Shall provide support for all of the fixtures. Supports may be anchored to channels of the ceiling construction, to the structural slab or to structural members within a partition, or above a suspended ceiling.
 - 2. Shall maintain the fixture positions after cleaning and relamping.
 - 3. Shall support the lighting fixtures without causing the ceiling or partition to deflect.
- 4. Hardware for recessed fixtures:
 - a. Where the suspended ceiling system is supported at the four corners of the fixture opening, hardware devices shall clamp the fixture to the ceiling system structural members, or plaster frame at not less than four points in such a manner as to resist spreading of the support members and safely lock the fixture into the ceiling system.
 - b. Where the suspended ceiling system is not supported at the four corners of the fixture opening, hardware devices shall independently support the fixture from the building structure at four points.
 - 5. Hardware for surface mounting fixtures to suspended ceilings:
 - a. In addition to being secured to any required outlet box, fixtures shall be bolted to a grid ceiling system at four points spaced near the corners of each fixture. The bolts shall be not less than 6 mm (1/4 inch) secured to channel members attached to and spanning the tops of the ceiling structural grid members. Nonturning studs may be attached to the ceiling structural grid members or spanning channels by special clips designed for the purpose, provided they lock into place and require simple tools for removal.
 - b. In addition to being secured to any required outlet box, fixtures shall be bolted to ceiling structural members at four points spaced near the corners of each fixture. Pre-positioned 6 mm (1/4 inch) studs or threaded plaster inserts secured to ceiling

structural members shall be used to bolt the fixtures to the ceiling. In lieu of the above, 6 mm (1/4 inch) toggle bolts may be used on new or existing ceiling provided the plaster and lath can safely support the fixtures without sagging or cracking.

- 6. Hardware for recessed lighting fixtures:
 - a. All fixture mounting devices connecting fixtures to the ceiling system or building structure shall have a capacity for a horizontal force of 100 percent of the fixture weight and a vertical force of 400 percent of the fixture weight.
 - b. Mounting devices shall clamp the fixture to the ceiling system structure (main grid runners or fixture framing cross runners) at four points in such a manner as to resist spreading of these supporting members. Each support point device shall utilize a screw or approved hardware to "lock" the fixture housing to the ceiling system, restraining the fixture from movement in any direction relative to the ceiling. The screw (size No. 10 minimum) or approved hardware shall pass through the ceiling member (T-bar, channel or spline), or it may extend over the inside of the flange of the channel (or spline) that faces away from the fixture, in a manner that prevents any fixture movement.
 - c. In addition to the above, the following is required for fixtures exceeding 9 kg (20 pounds) in weight.
 - Where fixtures mounted in ASTM Standard C635 "Intermediate Duty" and "Heavy Duty" ceilings and weigh between 9 kg and 25 kg (20 pounds and 56 pounds), provide two 12 gauge safety hangers hung slack between diagonal corners of the fixture and the building structure.
 - 2) Where fixtures weigh over 25 kg (56 pounds), they shall be independently supported from the building structure by approved hangers. Two-way angular bracing of hangers shall be provided to prevent lateral motion.
 - d. Where ceiling cross runners are installed for support of lighting fixtures, they must have a carrying capacity equal to that of the main ceiling runners and be rigidly secured to the main runners.
 - 7. Surface mounted lighting fixtures:

- a. Fixtures shall be bolted against the ceiling independent of the outlet box at four points spaced near the corners of each unit. The bolts (or stud-clips) shall be minimum 6 mm (1/4 inch) bolt, secured to main ceiling runners and/or secured to cross runners. Non-turning studs may be attached to the main ceiling runners and cross runners with special non-friction clip devices designed for the purpose, provided they bolt through the runner, or are also secured to the building structure by 12 gauge safety hangers. Studs or bolts securing fixtures weighing in excess of 25 kg (56 pounds) shall be supported directly from the building structure.
- b. Where ceiling cross runners are installed for support of lighting fixtures, they must have a carrying capacity equal to that of the main ceiling runners and be rigidly secured to the main runners.
- c. Fixtures less than 6.8 kg (15 pounds) in weight and occupying less than 3715 sq cm (two square feet) of ceiling area may, when designed for the purpose, be supported directly from the outlet box when all the following conditions are met.
 - Screws attaching the fixture to the outlet box pass through round holes (not key-hole slots) in the fixture body.
 - The outlet box is attached to a main ceiling runner (or cross runner) with approved hardware.
 - The outlet box is supported vertically from the building structure.
- d. Fixtures mounted in open construction shall be secured directly to the building structure with approved bolting and clamping devices.
- 8. Single or double pendant-mounted lighting fixtures:
 - a. Each stem shall be supported by an approved outlet box mounted swivel joint and canopy which holds the stem captive and provides spring load (or approved equivalent) dampening of fixture oscillations. Outlet box shall be supported vertically from the building structure.
- 9. Outlet boxes for support of lighting fixtures (where permitted) shall be secured directly to the building structure with approved devices or supported vertically in a hung ceiling from the building structure with a nine gauge wire hanger, and be secured by an

approved device to a main ceiling runner or cross runner to prevent any horizontal movement relative to the ceiling.

- E. Furnish and install the new lamps as specified for all lighting fixtures installed under this project, and for all existing lighting fixtures reused under this project.
- F. The electrical and ceiling trades shall coordinate to ascertain that approved lighting fixtures are furnished in the proper sizes and installed with the proper devices (hangers, clips, trim frames, flanges, etc.), to match the ceiling system being installed.
- G. Bond lighting fixtures to the grounding system as specified in Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.
- H. At completion of project, replace all defective components of the lighting fixtures at no cost to the Government.

3.2 ACCEPTANCE CHECKS AND TESTS

- A. Perform the following:
 - 1. Visual Inspection:
 - a. Verify proper operation by operating the lighting controls.
 - b. Visually inspect for damage to fixtures, lenses, reflectors, diffusers, and louvers. Clean fixtures, lenses, reflectors, diffusers, and louvers that have accumulated dust, dirt, or fingerprints during construction.
 - 2. Electrical tests:
 - a. Exercise dimming components of the lighting fixtures over full range of dimming capability by operating the control devices(s) in the presence of the Resident Engineer or COTR. Observe for visually detectable flicker over full dimming range, and replace defective components at no cost to the Government.
 - b.

3.3 FOLLOW-UP VERIFICATION

A. Upon completion of acceptance checks and tests, the Contractor shall show by demonstration in service that the lighting systems are in good operating condition and properly performing the intended function. ---END---

26 51 00 - 10

SECTION 26 56 00 EXTERIOR LIGHTING

PART 1 - GENERAL

1.1 DESCRIPTION

This section specifies the furnishing, installation, and connection of exterior fixtures, poles, and supports. The terms "lighting fixtures", "fixture" and "luminaire" are used interchangeably.

1.2 RELATED WORK

- A. Section 03 30 00, CAST-IN-PLACE CONCRETE.
- BC. Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS: General electrical requirements and items that are common to more than one section of Division 26.
- CD. Section 26 05 19, LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW): Low voltage power and lighting wiring.
- DE. Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS: Requirements for personnel safety and to provide a low impedance path for possible ground fault currents.
- EF. Section 26 05 33, RACEWAY AND BOXES FOR ELECTRICAL SYSTEMS: Conduits, fittings, and boxes for raceway systems.
- FG. Section 26 05 41, UNDERGROUND ELECTRICAL CONSTRUCTION: Underground handholes and conduits.
- G. Section 26 09 23, LIGHTING CONTROLS: Controls for exterior lighting.

1.3 QUALITY ASSURANCE

A. Quality Assurance shall be in accordance with Paragraph, QUALIFICATIONS (PRODUCTS AND SERVICES) in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.

1.4 SUBMITTALS

- A. Submit in accordance with Paragraph, SUBMITTALS in Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS, and the following requirements:
 - 1. Shop Drawings:
 - a. Submit the following information for each type of lighting fixture designated on the LIGHTING FIXTURE SCHEDULE, arranged in order of lighting fixture designation.
 - b. Material and construction details, include information on housing and optics system.
 - c. Physical dimensions and description.

- d. Wiring schematic and connection diagram.
- e. Installation details.
- f. Energy efficiency data.
- g. Photometric data based on laboratory tests complying with IES Lighting Measurements testing and calculation guides.
- h. Lamp data including lumen output (initial and mean), color rendition index (CRI), rated life (hours), and color temperature (degrees Kelvin).
- i. Ballast data including ballast type, starting method, ambient temperature, ballast factor, sound rating, system watts, and total harmonic distortion (THD).
- j. For LED lighting fixtures, submit US DOE LED Lighting Facts label, and IES L70 rated life.
- k. Submit site plan showing all exterior lighting fixtures with fixture tags consistent with Lighting Fixture Schedule as shown on drawings. Site plan shall show computer generated point-bypoint illumination calculations. Include lamp lumen and light loss factors used in calculations.
- 2. Manuals:
 - a. Submit, simultaneously with the shop drawings, complete maintenance and operating manuals, including technical data sheets, wiring diagrams, and information for ordering replacement parts.
 - b. If changes have been made to the maintenance and operating manuals originally submitted, submit updated maintenance and operating manuals two weeks prior to the final inspection.
- Certifications: Two weeks prior to final inspection, submit the following.
 - a. Certification by the Contractor that the exterior lighting systems have been properly installed and tested.

1.5 APPLICABLE PUBLICATIONS

- A. Publications listed below (including amendments, addenda, revisions, supplements, and errata) form a part of this specification to the extent referenced. Publications are referenced in the text by designation only.
- B. American Association of State Highway and Transportation Officials (AASHTO):

VA 595-668 Lebanon VAMC AE Works Project No. VLEB-010 New Entryway for Building 17 BID DOCUMENTS LRFDLTS-17Structural Supports for Highway Signs, Luminaires and Traffic Signals C. American Concrete Institute (ACI): 318-14Building Code Requirements for Structural Concrete D. American National Standards Institute (ANSI): H35.1/H35 1M-17American National Standard Alloy and Temper Designation Systems for Aluminum E. American Society for Testing and Materials (ASTM): A123/A123M-17Zinc (Hot-Dip Galvanized) Coatings on Iron and Steel Products A153/A153M-16Zinc Coating (Hot-Dip) on Iron and Steel Hardware B108/B108M-15Aluminum-Alloy Permanent Mold Castings FG. Illuminating Engineering Society of North America (IESNA): HB-9-00Lighting Handbook RP-8-14Roadway Lighting LM-72-97 (R2010)Directional Positioning of Photometric Data LM-79-08Approved Method for the Electrical and Photometric Measurements of Solid-Sate Lighting Products LM-80-15 Approved Method for Measuring Luminous Flux and Color Maintenance of LED Packages, Arrays and Modules TM-15-11Luminaire Classification System for Outdoor Luminaires GH. National Electrical Manufacturers Association (NEMA): C136.3-14For Roadway and Area Lighting Equipment -Luminaire Attachments ICS 6-93(R2016)Enclosures H. National Fire Protection Association (NFPA): 70-17National Electrical Code (NEC) 101-18Life Safety Code I. Underwriters Laboratories, Inc. (UL): 496-17Lampholders

773-16Plug-In, Locking Type Photocontrols for Use with Area Lighting 773A-16Nonindustrial Photoelectric Switches for Lighting Control 1598-08Luminaires 8750-15....Light Emitting Diode (LED) Equipment for Use in Lighting Products

1.6 DELIVERY, STORAGE, AND HANDLING

Provide manufacturer's standard provisions for protecting pole finishes during transport, storage, and installation. Do not store poles on ground. Store poles so they are at least 305 mm (12 inches) above ground level and growing vegetation. Do not remove factory-applied pole wrappings until just before installing pole.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

Luminaires, materials and equipment shall be in accordance with NEC, UL, ANSI, and as shown on the drawings and specified.

2.2 POLES

- A. General:
 - 1. Poles shall be as shown on the drawings, and as specified. Finish shall be as specified on the drawings.
 - 2. The pole and arm assembly shall be designed for wind loading of 161 km/hr (100 mph) minimum, as required by wind loading conditions at project site, with an additional 30% gust factor and supporting luminaire(s) and accessories such as shields, banner arms, and banners that have the effective projected areas indicated. The effective projected area of the pole shall be applied at the height of the pole base, as shown on the drawings.
 - 3. Poles shall be anchor-bolt type designed for use with underground supply conductors. Poles shall have handhole having a minimum clear opening of 65 x 125 mm (2.5 x 5 inches). Handhole covers shall be secured by stainless steel captive screws.
 - 4. Provide a steel-grounding stud opposite handhole openings, designed to prevent electrolysis when used with copper wire.
 - 5. Provide a base cover that matches the pole in material and color to conceal the mounting hardware pole-base welds and anchor bolts.

- 6. Hardware and Accessories: All necessary hardware and specified accessories shall be the product of the pole manufacturer.
- Provide manufacturer's standard finish, as scheduled on the drawings. Where indicated on drawings, provide finishes as indicated in Section 09 06 00, SCHEDULE FOR FINISHES.
- B. Types:
 - //1. Aluminum: Provide //round// //square// aluminum poles manufactured of corrosion-resistant AA AAH35.1 aluminum alloys conforming to AASHTO LTS-4. Poles shall be seamless extruded or spun seamless type. //

2.3 FOUNDATIONS FOR POLES

- A. Foundations shall be cast-in-place concrete, having 3000 psi minimum 28-day compressive strength.
- B. Foundations shall support the effective projected area of the specified pole, arm(s), luminaire(s), and accessories, such as shields, banner arms, and banners, under wind conditions previously specified in this section.
- C. Place concrete in spirally-wrapped treated paper forms for round foundations, and construct forms for square foundations.
- D. Rub-finish and round all above-grade concrete edges to approximately 6 mm (0.25-inch) radius.
- E. Anchor bolt assemblies and reinforcing of concrete foundations shall be as shown on the drawings. Anchor bolts shall be in a welded cage or properly positioned by the tie wire to stirrups.
- F. Prior to concrete pour, install electrode per Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.

2.4 LUMINAIRES

- A. Luminaires shall be weatherproof, heavy duty, outdoor types designed for efficient light utilization, adequate dissipation of lamp and ballast heat, and safe cleaning andrepairs.
- B. Illumination distribution patterns, BUG ratings and cutoff types as defined by the IESNA shall be as shown on the drawings.
- C. Incorporate ballasts in the luminaire housing, except where otherwise shown on the drawings.

- D. Lenses shall be frame-mounted, heat-resistant, borosilicate glass, with prismatic refractors, unless otherwise shown on the drawings. Attach the frame to the luminaire housing by hinges or chain. Use heat and aging-resistant, resilient gaskets to seal and cushion lenses and refractors in luminaire doors.
- EF. Pre-wire internal components to terminal strips at the factory.
- FG. Bracket-mounted luminaires shall have leveling provisions and clamptype adjustable slip-fitters with locking screws.

G. Materials shall be rustproof. Latches and fittings shall be non-ferrous metal.

- H. Provide manufacturer's standard finish, as scheduled on the drawings. Where indicated on drawings, match finish process and color of pole or support materials. Where indicated on drawings, provide finishes as indicated in Section 09 06 00, SCHEDULE FOR FINISHES.
- H.Luminaires shall carry factory labels, showing complete, specific LED and driver information.

2.5 SOURCE

- F. LED sources shall meet the following requirements:
 - Operating temperature rating shall be between -40 degrees C (-40 degrees F) and 50 degrees C (120 degrees F).
 - 2. Correlated Color Temperature (CCT): 4000K.
 - 3. Color Rendering Index (CRI): \geq 85.
 - 4. The manufacturer shall have performed reliability tests on the LEDs luminaires complying with Illuminating Engineering Society (IES) LM79 for photometric performance and LM80 for lumen maintenance and L70 life.

2.9 LED DRIVERS

- A. LED drivers shall meet the following requirements:
 - 1. Drivers shall have a minimum efficiency of 85%.
 - 2. Starting Temperature: -40 degrees C (-40 degrees F).
 - 3. Input Voltage: 120 to 480 (±10%) volt.
 - 4. Power Supplies: Class I or II output.
 - 5. Surge Protection: The system must survive 250 repetitive strikes of "C Low" (C Low: $6kV/1.2 \times 50 \mu s$, $10kA/8 \times 20 \mu s$) waveforms at 1-minute intervals with less than 10% degradation in clamping voltage.

"C Low" waveforms are as defined in IEEE/ASNI C62.41.2-2002, Scenario 1 Location Category C.

- 6. Power Factor (PF): \geq 0.90.
- 7. Total Harmonic Distortion (THD): \leq 20%.
- 8. Comply with FCC Title 47 CFR Part 18 Non-consumer RFI/EMI Standards.
- 9. Drivers shall be reduction of hazardous substances (ROHS)-compliant.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install lighting in accordance with the NEC, as shown on the drawings, and in accordance with manufacturer's recommendations.
- B. Pole Foundations:
 - Excavate only as necessary to provide sufficient working clearance for installation of forms and proper use of tamper to the full depth of the excavation. Prevent surface water from flowing into the excavation. Thoroughly compact backfill with compacting arranged to prevent pressure between conductor, jacket, or sheath, and the end of conduit.
 - 2. Set anchor bolts according to anchor-bolt templates furnished by the pole manufacturer.
 - 3. Install poles as necessary to provide a permanent vertical position with the bracket arm in proper position for luminaire location.
 - 4. After the poles have been installed, shimmed, and plumbed, grout the spaces between the pole bases and the concrete base with non-shrink concrete grout material. Provide a plastic or copper tube, of not less than 9 mm (0.375-inch) inside diameter through the grout, tight to the top of the concrete base to prevent moisture weeping from the interior of the pole.
- C. Adjust luminaires that require field adjustment or aiming.

3.2 GROUNDING

Ground noncurrent-carrying parts of equipment, including metal poles, luminaires, mounting arms, brackets, and metallic enclosures, as specified in Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS. Where copper grounding conductor is connected to a metal other than copper, provide specially-treated or lined connectors suitable and listed for this purpose. VA 595-668

3.3 ACCEPTANCE CHECKS AND TESTS

Verify operation after installing luminaires and energizing circuits.

- - - E N D - - -

SECTION 27 05 11 REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section includes common requirements to communications installations and applies to all sections of Division 27 and Division 28.
- B. Provide completely functioning communications systems.
- C. Comply with VAAR 852.236.91 and FAR clause 52.236-21 in circumstance of a need for additional detail or conflict between drawings, specifications, reference standards or code.

1.2 REFERENCES

- A. Abbreviations and Acronyms
 - Refer to http://www.cfm.va.gov/til/sdetail.asp for Division 00, ARCHITECTURAL ABBREVIATIONS.
 - 2. Additional Abbreviations and Acronyms:

A	Ampere
AC	Alternating Current
AE	Architect and Engineer
AFF	Above Finished Floor
AHJ	Authority Having Jurisdiction
ANSI	American National Standards Institute
AWG	American Wire Gauge (refer to STP and UTP)
AWS	Advanced Wireless Services
BCT	Bonding Conductor for Telecommunications (also
	Telecommunications Bonding Conductor (TBC))
BDA	Bi-Directional Amplifier
BICSI	Building Industry Consulting Service International
BIM	Building Information Modeling
BOM	Bill of Materials
BTU	British Thermal Units
BUCR	Back-up Computer Room
BTS	Base Transceiver Station
CAD	AutoCAD
CBOPC	Community Based Out Patient Clinic

	09-01-
CBC	Coupled Bonding Conductor
CBOC	Community Based Out Patient Clinic (refer to CBOPC,
	OPC, VAMC)
CCS	TIP's Cross Connection System (refer to VCCS and
	HCCS)
CFE	Contractor Furnished Equipment
CFM	US Department of Veterans Affairs Office of
	Construction and Facilities Management
CFR	Consolidated Federal Regulations
CIO	Communication Information Officer (Facility, VISN or
	Region)
CM	Centimeters
CO	Central Office
COR	Contracting Officer Representative
CPU	Central Processing Unit
CSU	Customer Service Unit
CUP	Conditional Use Permit(s) - Federal/GSA for VA
dB	Decibel
dBm	Decibel Measured
dBmV	Decibel per milli-Volt
DC	Direct Current
DEA	United States Drug Enforcement Administration
DSU	Data Service Unit
EBC	Equipment Bonding Conductor
ECC	Engineering Control Center (refer to DCR, EMCR)
EDGE	Enhanced Data (Rates) for GSM Evolution
EDM	Electrical Design Manual
EMCR	Emergency Management Control Room (refer to DCR, ECC)
EMI	Electromagnetic Interference (refer to RFI)
EMS	Emergency Medical Service
EMT	Electrical Metallic Tubing or thin wall conduit
ENTR	Utilities Entrance Location (refer to DEMARC, POTS,
	LEC)

	09-01-
EPBX	Electronic Digital Private Branch Exchange
ESR	Vendor's Engineering Service Report
FA	Fire Alarm
FAR	Federal Acquisition Regulations in Chapter 1 of Title
	48 of Code of Federal Regulations
FMS	VA's Headquarters or Medical Center Facility's
	Management Service
FR	Frequency (refer to RF)
FTS	Federal Telephone Service
GFE	Government Furnished Equipment
GPS	Global Positioning System
GRC	Galvanized Rigid Metal Conduit
GSM	Global System (Station) for Mobile
HCCS	TIP's Horizontal Cross Connection System (refer to
	CCS & VCCS)
HDPE	High Density Polyethylene Conduit
HDTV	Advanced Television Standards Committee High-
	Definition Digital Television
HEC	Head End Cabinets (refer to HEIC, PA)
HEIC	Head End Interface Cabinets (refer to HEC, PA)
HF	High Frequency (Radio Band; Re FR, RF, VHF & UHF)
HSPA	High Speed Packet Access
HZ	Hertz
IBT	Intersystem Bonding Termination (NEC 250.94)
IC	Intercom
ICRA	Infectious Control Risk Assessment
IDEN	Integrated Digital Enhanced Network
IDC	Insulation Displacement Contact
IDF	Intermediate Distribution Frame
ILSM	Interim Life Safety Measures
IMC	Rigid Intermediate Steel Conduit
IRM	Department of Veterans Affairs Office of Information
	Resources Management

	09-01-	
ISDN	Integrated Services Digital Network	
ISM	Industrial, Scientific, Medical	
IWS	Intra-Building Wireless System	
LAN	Local Area Network	
LBS	Location Based Services, Leased Based Systems	
LEC	Local Exchange Carrier (refer to DEMARC, PBX & POTS)	
LED	Light Emitting Diode	
LMR	Land Mobile Radio	
LTE	Long Term Evolution, or 4G Standard for Wireless Data	
	Communications Technology	
М	Meter	
MAS	Medical Administration Service	
MATV	Master Antenna Television	
MCR	Main Computer Room	
MCOR	Main Computer Operators Room	
MDF	Main Distribution Frame	
MH	Manholes or Maintenance Holes	
MHz	Megaherts (10 ⁶ Hz)	
mm	Millimeter	
MOU	Memorandum of Understanding	
MW	Microwave (RF Band, Equipment or Services)	
NID	Network Interface Device (refer to DEMARC)	
NEC	National Electric Code	
NOR	Network Operations Room	
NRTL	OSHA Nationally Recognized Testing Laboratory	
NS	Nurse Stations	
NTIA	U.S. Department of Commerce National	
	Telecommunications and Information Administration	
OEM	Original Equipment Manufacturer	
T&IO	Office of Information and Technology	
OPC	VA's Outpatient Clinic (refer to CBOC, VAMC)	
OSH	Department of Veterans Affairs Office of Occupational	
	Safety and Health	

0.0117	09-01	
OSHA	United States Department of Labor Occupational Safety	
	and Health Administration	
OTDR	Optical Time-Domain Reflectometer	
PA	Public Address System (refer to HE, HEIC, RPEC)	
PBX	Private Branch Exchange (refer to DEMARC, LEC, POTS)	
PCR	Police Control Room (refer to SPCC, could be	
	designated SCC)	
PCS	Personal Communications Service (refer to UPCS)	
PE	Professional Engineer	
PM	Project Manager	
PoE	Power over Ethernet	
POTS	Plain Old Telephone Service (refer to DEMARC, LEC,	
	PBX)	
PSTN	Public Switched Telephone Network	
PSRAS	Public Safety Radio Amplification Systems	
PTS	Pay Telephone Station	
PVC	Poly-Vinyl Chloride	
PWR	Power (in Watts)	
RAN	Radio Access Network	
RBB	Rack Bonding Busbar	
RE	Resident Engineer or Senior Resident Engineer	
RF	Radio Frequency (refer to FR)	
RFI	Radio Frequency Interference (refer to EMI)	
RFID	RF Identification (Equipment, System or Personnel)	
RMC	Rigid Metal Conduit	
RMU	Rack Mounting Unit	
RPEC	Radio Paging Equipment Cabinets(refer to HEC, HEIC,	
	PA)	
RTLS	Real Time Location Service or System	
RUS	Rural Utilities Service	
SCC	Security Control Console (refer to PCR, SPCC)	
SMCS	Spectrum Management and Communications Security	
	(COMSEC)	

	09-01-	
SFO	Solicitation for Offers	
SME	Subject Matter Experts (refer to AHJ)	
SMR	Specialized Mobile Radio	
SMS	Security Management System	
SNMP	Simple Network Management Protocol	
SPCC	Security Police Control Center (refer to PCR, SMS)	
STP	Shielded Balanced Twisted Pair (refer to UTP)	
STR	Stacked Telecommunications Room	
TAC	VA's Technology Acquisition Center, Austin, Texas	
ТСО	Telecommunications Outlet	
TER	Telephone Equipment Room	
TGB	Telecommunications Grounding Busbar (also Secondary	
	Bonding Busbar (SBB))	
TIP	Telecommunications Infrastructure Plant	
TMGB	Telecommunications Main Grounding Busbar (also	
	Primary Bonding Busbar (PBB))	
TMS	Traffic Management System	
TOR	Telephone Operators Room	
TP	Balanced Twisted Pair (refer to STP and UTP)	
TR	Telecommunications Room (refer to STR)	
TWP	Twisted Pair	
UHF	Ultra High Frequency (Radio)	
UMTS	Universal Mobile Telecommunications System	
UPCS	Unlicensed Personal Communications Service (refer to	
	PCS)	
UPS	Uninterruptible Power Supply	
USC	United States Code	
UTP	Unshielded Balanced Twisted Pair (refer to TP and	
	STP)	
UV	Ultraviolet	
V	Volts	
VAAR	Veterans Affairs Acquisition Regulation	
VACO	Veterans Affairs Central Office	

	000 01
VAMC	VA Medical Center (refer to CBOC, OPC, VACO)
VCCS	TIP's Vertical Cross Connection System (refer to CCS
	and HCCS)
VHF	Very High Frequency (Radio)
VISN	Veterans Integrated Services Network (refers to
	geographical region)
VSWR	Voltage Standing Wave Radio
W	Watts
WEB	World Electronic Broadcast
WiMAX	Worldwide Interoperability (for MW Access)
WI-FI	Wireless Fidelity
WMTS	Wireless Medical Telemetry Service
WSP	Wireless Service Providers
Definiti	

B. Definitions:

- Access Floor: Pathway system of removable floor panels supported on adjustable pedestals to allow cable placement in area below.
- 2. BNC Connector (BNC): United States Military Standard MIL-C-39012/21 bayonet-type coaxial connector with quick twist mating/unmating, and two lugs preventing accidental disconnection from pulling forces on cable.
- 3. Bond: Permanent joining of metallic parts to form an electrically conductive path to ensure electrical continuity and capacity to safely conduct any currents likely to be imposed to earth ground.
- 4. Bundled Microducts: All forms of jacketed microducts.
- 5. Conduit: Includes all raceway types specified.
- 6. Conveniently Accessible: Capable of being reached without use of ladders, or without climbing or crawling under or over obstacles such as, motors, pumps, belt guards, transformers, piping, ductwork, conduit and raceways.
- 7. Distributed (in house) Antenna System (DAS): An Emergency Radio Communications System installed for Emergency Responder (or first responders and Government personnel) use while inside facility to maintain contact with each respective control point; refer to Section 27 53 19, DISTRIBUTED RADIO ANTENNA (WITHIN BUILDING) EQUIPMENT AND SYSTEMS.

- 8. DEMARC, Extended DMARC or ENTR: Service provider's main point of demarcation owned by LEC or service provider and establishes a physical point where service provider's responsibilities for service and maintenance end. This point is called NID, in data networks.
- Effectively Grounded: Intentionally bonded to earth through connections of low impedance having current carrying capacity to prevent buildup of currents and voltages resulting in hazard to equipment or persons.
- 10. Electrical Supervision: Analyzing a system's function and components (i.e. cable breaks / shorts, inoperative stations, lights, LEDs and states of change, from primary to backup) on a 24/7/365 basis; provide aural and visual emergency notification signals to minimum two remote designated or accepted monitoring stations.
- 11. Electrostatic Interference (ESI) or Electrostatic Discharge Interference: Refer to EMI and RFI.
- 12. Emergency Call Systems: Wall units (in parking garages and stairwells) and pedestal mounts (in parking lots) typically provided with a strobe, camera and two-way audio communication functions. Additional units are typically provided in facility's emergency room, designated nurses stations, director's office, Disaster Control Center, SCC, ECC.
- 13. Project 25 (2014) (P25 (TIA-102 Series)): Set of standards for local, state and Federal public safety organizations and agencies digital LMR services. P25 is applicable to LMR equipment authorized or licensed under the US Department of Commerce National Telecommunications and Information Administration or FCC rules and regulations, and is a required standard capability for all LMR equipment and systems.
- 14. Grounding Electrode Conductor: (GEC) Conductor connected to earth grounding electrode.
- 15. Grounding Electrode System: Electrodes through which an effective connection to earth is established, including supplementary, communications system grounding electrodes and GEC.
- 16. Grounding Equalizer or Backbone Bonding Conductor (BBC): Conductor that interconnects elements of telecommunications grounding infrastructure.

- 17. Head End (HE): Equipment, hardware and software, or a master facility at originating point in a communications system designed for centralized communications control, signal processing, and distribution that acts as a common point of connection between equipment and devices connected to a network of interconnected equipment, possessing greatest authority for allowing information to be exchanged, with whom other equipment is subordinate.
- 18. Microducts: All forms of air blown fiber pathways.
- 19. Ohm: A unit of restive measurement.
- 20. Received Signal Strength Indication (RSSI): A measurement of power present in a received RF signal.
- 21. Service Provider Demarcation Point (SPDP): Not owned by LEC or service provider, but designated by Government as point within facility considered the DEMARC.
- 22. Sound (SND): Changing air pressure to audible signals over given time span.
- 23. System: Specific hardware, firmware, and software, functioning together as a unit, performing task for which it was designed.
- 24. Telecommunications Bonding Backbone (TBB): Conductors of appropriate size (minimum 53.49 mm2 [1/0 AWG]) stranded copper wire, that connect to Grounding Electrode System and route to telecommunications main grounding busbar (TMGB) and circulate to interconnect various TGBs and other locations shown on drawings.
- 25. Voice over Internet Protocol (VoIP): A telephone system in which voice signals are converted to packets and transmitted over LAN network using Transmission Control Protocol (TCP)/Internet Protocol (IP). VA'S VoIP is not listed or coded for life and public safety, critical, emergency or other protection functions. When VoIP system or equipment is provided instead of PBX system or equipment, each TR (STR) and DEMARC requires increased AC power provided to compensate for loss of PBX's telephone instrument line power; and, to compensate for absence of PBX's UPS capability.
- 26. Wide Area Network (WAN): A digital network that transcends localized LANs within a given geographic location. VA'S WAN/LAN is not nationally listed or coded for life and public safety, critical, emergency or other safety functions.

VA Project 595-668 AE Works Project VLEB-010

1.3 APPLICABLE PUBLICATIONS

- A. Applicability of Standards: Unless documents include more stringent requirements, applicable construction industry standards have same force and effect as if bound or copied directly into the documents to extent referenced. Such standards are made a part of these documents by reference.
 - 1. Each entity engaged in construction must be familiar with industry standards applicable to its construction activity.
 - 2. Obtain standards directly from publication source, where copies of standards are needed to perform a required construction activity.
- B. Government Codes, Standards and Executive Orders: Refer to http://www.cfm.va.gov/TIL/cPro.asp:
 - 1. Federal Communications Commission, (FCC) CFR, Title 47:
 - Part 15 Restrictions of use for Part 15 listed RF Equipment in Safety of Life Emergency Functions
 - Part 47 Chapter A, Paragraphs 6.1-6.23, Access to Telecommunications Service, Telecommunications

Equipment and Customer Premises Equipment

and Equipment Locations

- Part 58 Television Broadcast Service
- Part 73 Radio and Television Broadcast Rules
- Part 90 Rules and Regulations, Appendix C
- Form 854 Antenna Structure Registration
- Chapter XXIII National Telecommunications and Information Administration (NTIA, P/O Commerce, Chapter XXIII) the 'Red Book' - Chapters 7, 8 & 9 compliments CFR, Title 47, FCC Part 15, RF Restriction of Use and Compliance in "Safety of Life" Functions & Locations
- 2. US Department of Agriculture, (Title 7, USC, Chapter 55, Sections 2201, 2202 & 2203:RUS 1755 Telecommunications Standards and Specifications for Materials, Equipment and Construction: RUS Bull 1751F-630 Design of Aerial Cable Plants RUS Bull 1751F-640 Design of Buried Cable Plant, Physical Considerations RUS Bull 1751F-643 Underground Plant Design RUS Bull 1751F-815 Electrical Protection of Outside Plants,

VA Project 595-668 Lebanon VAMC AE Works Project VLEB-010 New Entryway for Building 17 BID DOCUMENTS 09-01-19 RUS Bull 1753F-201 Acceptance Tests of Telecommunications Plants (PC-4) RUS Bull 1753F-401 Splicing Copper and Fiber Optic Cables (PC-2) RUS Bull 345-50 Trunk Carrier Systems (PE-60) RUS Bull 345-65 Shield Bonding Connectors (PE-65) RUS Bull 345-72 Filled Splice Closures (PE-74) RUS Bull 345-83 Gas Tube Surge Arrestors (PE-80) 3. US Department of Commerce/National Institute of Standards Technology, (NIST): FIPS PUB 1-1 Telecommunications Information Exchange FIPS PUB 100/1 Interface between Data Terminal Equipment (DTE) Circuit Terminating Equipment for operation with Packet Switched Networks, or Between Two DTEs, by Dedicated Circuit FIPS PUB 140/2 Telecommunications Information Security Algorithms FIPS PUB 143 General Purpose 37 Position Interface between DTE and Data Circuit Terminating Equipment FIPS 160/2 Electronic Data Interchange (EDI), FIPS 175 Federal Building Standard for Telecommunications Pathway and Spaces FIPS 191 Guideline for the Analysis of Local Area Network Security Advanced Encryption Standard (AES) FIPS 197 FIPS 199 Standards for Security Categorization of Federal Information and Information Systems 4. US Department of Defense, (DoD): MIL-STD-188-110 Interoperability and Performance Standards for Data Modems Electrical Characteristics of Digital Interface MIL-STD-188-114 Circuits MIL-STD-188-115 Communications Timing and Synchronizations Subsystems MIL-C-28883 Advanced Narrowband Digital Voice Terminals MIL-C-39012/21 Connectors, Receptacle, Electrical, Coaxial, Radio Frequency, (Series BNC (Uncabled), Socket Contact, Jam Nut Mounted, Class 2)

	oject 595-668 ks Project VLEB-010		New Entryway	Lebanon VAMC for Building 17 BID DOCUMENTS 09-01-19
5.	5. US Department of Health and Human Services:			
	The Health Insurance	Portability and Acc	ountability Ac	t of 1996
	(HIPAA) Privacy, Sec	urity and Breach Not	ification Rule	S
6.	US Department of Jus	tice:		
	2010 Americans with	Disabilities Act Sta	ndards for Acc	essible Design
	(ADAAD).			
7.	7. US Department of Labor, (DoL) - Public Law 426-62 - CFR, Title 29,			R, Title 29,
	Part 1910, Chapter XVII - Occupational Safety and Health			
	Administration (OSHA	.), Occupational Safe	ty and Health	Standards):
	Subpart 7	Approved NRTLs; obt	ain a copy at	
		https://www.osha.go	v/dts/otpca/nr	tl/nrtllist.ht
		ml		
	Subpart 35	Compliance with NFP	A 101, Life Sa	fety Code
	Subpart 36	Design and Construc	tion Requireme	nts for Exit
		Routes		
	Subpart 268	Telecommunications		
	Subpart 305	Wiring Methods, Com	ponents, and E	quipment for
		General Use		
	Subpart 508	Americans with Disa	bilities Act A	ccessibility
		Guidelines; technic	al requirement	for
		accessibility to bu	ildings and fa	cilities by
		individuals with di	sabilities	
8.	US Department of Tra	nsportation, (DoT):		

- Public Law 85-625, CFR, Title 49, Part 1, Subpart C Federal Aviation Administration (FAA):AC 110/460-ID & AC 707 / 460-2E -Advisory Circulars Standards for Construction of Antenna Towers, and 7450 and 7460-2 - Antenna Construction Registration Forms.
- 9. US Department of Veterans Affairs (VA): Office of Telecommunications (OI&T), MP-6, PART VIII, TELECOMMUNICATIONS, CHAPTER 5, AUDIO, RADIO AND TELEVISION (and COMSEC) COMMUNICATIONS SYSTEMS: Spectrum Management and COMSEC Service (SMCS), AHJ for:
 - a. CoG, "Continuance of Government" communications guidelines and compliance.

 - c. COOP, "Continuance of Operations" emergency communications guidelines and compliance.

- d. FAA, FCC, and US Department of Commerce National Telecommunications and Information Administration, "VA wide RF Co-ordination, Compliance and Licensing."
- e. Handbook 6100 Telecommunications: Cyber and Information
 Security Office of Cyber and Information Security, and Handbook
 6500 Information Security Program.
- f. Low Voltage Special Communications Systems "Design, Engineering, Construction Contract Specifications and Drawings Conformity, Proof of Performance Testing, VA Compliance and Life Safety Certifications for CFM and VA Facility Low Voltage Special Communications Projects (except Fire Alarm, Telephone and Data Systems)."
- g. SATCOM, "Satellite Communications" guidelines and compliance, and Security and Law Enforcement Systems - "Coordinates the Design, Engineering, Construction Contract Specifications and Drawings Conformity, Proof of Performance Testing, VA Compliance, DEA and Public Safety Certification(s) for CFM and VA Facility Security Low Voltage Special Communications and Physical Security Projects.
- h. VHA's National Center for Patient Safety Veterans Health Administration (VHA) Warning System, Failure of Medical Alarm Systems using Paging Technology to Notify Clinical Staff, July 2004.
- i. VA's CEOSH, concurrence with warning identified in VA Directive 7700.
- j. Wireless and Handheld Devices, "Guidelines and Compliance,"
- k. Office of Security and Law Enforcement: VA Directive 0730 and Health Special Presidential Directive (HSPD)-12.
- C. NRTL Standards: Refer to https://www.osha.gov/lawsregs/regulations/standardnumber/1926
 - 1. Canadian Standards Association (CSA); same tests as presented by UL
 - Communications Certifications Laboratory (CEL); same tests as presented by UL.
 - Intertek Testing Services NA, Inc., (ITSNA), formerly Edison Testing Laboratory (ETL) same tests as presented by UL).
 - 4. Underwriters Laboratory (UL): 1-2005 Flexible Metal Conduit

5-2011	Surface Metal Raceway and Fittings
6-2007	Rigid Metal Conduit
44-010	Thermoset-Insulated Wires and Cables
50-1995	Enclosures for Electrical Equipment
65-2010	Wired Cabinets
83-2008	Thermoplastic-Insulated Wires and Cables
96-2005	Lightning Protection Components
96A-2007	Installation Requirements for Lightning
	Protection Systems
360-2013	Liquid-Tight Flexible Steel Conduit
444-2008	Communications Cables
467-2013	Grounding and Bonding Equipment
486A-486B-2013	Wire Connectors
486C-2013	Splicing Wire Connectors
486D-2005	Sealed Wire Connector Systems
486E-2009	Standard for Equipment Wiring Terminals for Use
	with Aluminum and/or Copper Conductors
493-2007	Thermoplastic-Insulated Underground Feeder and
	Branch Circuit Cable
497/497A/497B/497C	
497D/497E	Protectors for Paired Conductors/Communications
	Circuits/Data Communications and Fire Alarm
	Circuits/coaxial circuits/voltage
	protections/Antenna Lead In
510-2005	Polyvinyl Chloride, Polyethylene and Rubber
	Insulating Tape
514A-2013	Metallic Outlet Boxes
514B-2012	Fittings for Cable and Conduit
514C-1996	Nonmetallic Outlet Boxes, Flush-Device Boxes
	and Covers
651-2011	Schedule 40 and 80 Rigid PVC Conduit
651A-2011	Type EB and A Rigid PVC Conduit and HDPE
	Conduit
797-2007	Electrical Metallic Tubing
884-2011	Underfloor Raceways and Fittings
1069-2007	Hospital Signaling and Nurse Call Equipment
1242-2006	Intermediate Metal Conduit

VA Project 595-668 AE Works Project VLEB-010	Lebanon VAMC New Entryway for Building 17 BID DOCUMENTS 09-01-19
1449-2006	Standard for Transient Voltage Surge
	Suppressors
1479-2003	Fire Tests of Through-Penetration Fire Stops
1480-2003	Speaker Standards for Fire Alarm, Emergency,
	Commercial and Professional use
1666-2007	Standard for Wire/Cable Vertical (Riser) Tray
	Flame Tests
1685-2007	Vertical Tray Fire Protection and Smoke Release
	Test for Electrical and Fiber Optic Cables
1861-2012	Communication Circuit Accessories
1863-2013	Standard for Safety, communications Circuits
	Accessories
1865-2007	Standard for Safety for Vertical-Tray Fire
	Protection and Smoke-Release Test for
	Electrical and Optical-Fiber Cables
2024-2011	Standard for Optical Fiber Raceways
2024-2014	Standard for Cable Routing Assemblies and
	Communications Raceways
2196-2001	Standard for Test of Fire Resistive Cable
60950-1 ed. 2-2014	Information Technology Equipment Safety
D. Industry Standards:	
1. Advanced Television	Systems Committee (ATSC):
A/53 Part 1: 2013	ATSC Digital Television Standard, Part 1,
	Digital Television System
A/53 Part 2: 2011	ATSC Digital Television Standard, Part 2,
	RF/Transmission System Characteristics
A/53 Part 3: 2013	ATSC Digital Television Standard, Part 3,
	Service Multiplex and Transport System
	Characteristics
A/53 Part 4: 2009	ATSC Digital Television Standard, Part 4, MPEG-
	2 Video System Characteristics
A/53 Part 5: 2014	ATSC Digital Television Standard, Part 5, AC-3
	Audio System Characteristics
A/53 Part 6: 2014	ATSC digital Television Standard, Part 6,
	Enhanced AC-3 Audio System Characteristics
2. American Institute o	f Architects (AIA): 2006 Guidelines for Design &

 American Institute of Architects (AIA): 2006 Guidelines for Design & Construction of Health Care Facilities.

VA Project 595-668 AE Works Project VLEB-010	Lebanon VAMC New Entryway for Building 17 BID DOCUMENTS 09-01-19
3. American Society of	Mechanical Engineers (ASME):
A17.1 (2013)	Safety Code for Elevators and Escalators
	Includes Requirements for Elevators,
	Escalators, Dumbwaiters, Moving Walks, Material
	Lifts, and Dumbwaiters with Automatic Transfer
	Devices
17.3 (2011)	Safety Code for Existing Elevators and
	Escalators
17.4 (2009)	Guide for Emergency Personnel
17.5 (2011)	Elevator and Escalator Electrical Equipment
4. American Society for	Testing and Materials (ASTM):
B1 (2001)	Standard Specification for Hard-Drawn Copper
	Wire
B8 (2004)	Standard Specification for Concentric-Lay-
	Stranded Copper Conductors, Hard, Medium-Hard,
	or Soft
D1557 (2012)	Standard Test Methods for Laboratory Compaction
	Characteristics of Soil Using Modified Effort
	56,000 ft-lbf/ft3 (2,700 kN-m/m3)
D2301 (2004)	Standard Specification for Vinyl Chloride
	Plastic Pressure Sensitive Electrical
	Insulating Tape
B258-02 (2008)	Standard Specification for Standard Nominal
	Diameters and Cross-Sectional Areas of AWG
	Sizes of Solid Round Wires Used as Electrical
	Conductors
D709-01(2007)	Standard Specification for Laminated
	Thermosetting Materials
D4566 (2008)	Standard Test Methods for Electrical
	Performance Properties of Insulations and
	Jackets for Telecommunications Wire and Cable
_	nd Telegraph Corporation (AT&T) - Obtain
_	cations at https://ebiznet.sbc.com/sbcnebs/
ATT-TP-76200 (2013)	Network Equipment and Power Grounding,
	Environmental, and Physical Design Requirements
ATT-TP-76300(2012)	Merged AT&T Affiliate Companies Installation
	Requirements

VA Project 595-668 Lebanon VAMC New Entryway for Building 17 AE Works Project VLEB-010 BID DOCUMENTS 09-01-19 ATT-TP-76305 (2013) Common Systems Cable and Wire Installation and Removal Requirements - Cable Racks and Raceways ATT-TP-76306 (2009) Electrostatic Discharge Control ATT-TP-76400 (2012) Detail Engineering Requirements ATT-TP-76402 (2013) AT&T Raised Access Floor Engineering and Installation Requirements ATT-TP-76405 (2011) Technical Requirements for Supplemental Cooling Systems in Network Equipment Environments ATT-TP-76416 (2011) Grounding and Bonding Requirements for Network Facilities ATT-TP-76440 (2005) Ethernet Specification ATT-TP-76450 (2013) Common Systems Equipment Interconnection Standards for AT&T Network Equipment Spaces ATT-TP-76461 (2008) Fiber Optic Cleaning ATT-TP-76900 (2010) AT&T Installation Testing Requirement ATT-TP-76911 (1999) AT&T LEC Technical Publication Notice 6. British Standards Institution (BSI): BS EN 50109-2 Hand Crimping Tools - Tools for The Crimp Termination of Electric Cables and Wires for Low Frequency and Radio Frequency Applications - All Parts & Sections. October 1997 7. Building Industry Consulting Service International (BICSI): ANSI/BICSI 002-2011 Data Center Design and Implementation Best Practices ANSI/BICSI 004-2012 Information Technology Systems Design and Implementation Best Practices for Healthcare Institutions and Facilities ANSI/NECA/BICSI 568-2006 Standard for Installing Commercial Building Telecommunications Cabling NECA/BICSI 607-2011 Standard for Telecommunications Bonding and Grounding Planning and Installation Methods for Commercial Buildings ANSI/BICSI 005-2013 Electronic Safety and Security (ESS) System Design and Implementation Best Practices 8. Electronic Components Assemblies and Materials Association, (ECA).

VA Project 595-668 AE Works Project VLEB-010		Lebanon VAMC New Entryway for Building 17 BID DOCUMENTS 09-01-19
	ECA EIA/RS-270 (1973)Tools, Crimping, Solderless Wiring Devices -
		Recommended Procedures for User Certification
	EIA/ECA 310-E (2005)	Cabinets, and Associated Equipment
9.	Facility Guidelines	Institute: 2010 Guidelines for Design and
	Construction of Heal	th Care Facilities.
10.	Insulated Cable Engi	neers Association (ICEA):
	ANSI/ICEA	
	S-80-576-2002	Category 1 & 2 Individually Unshielded Twisted-
		Pair Indoor Cables for Use in Communications
		Wiring Systems
	ANSI/ICEA	
	S-84-608-2010	Telecommunications Cable, Filled Polyolefin
		Insulated Copper Conductor, S-87-640(2011)
		Optical Fiber Outside Plant Communications
		Cable
	ANSI/ICEA	
	S-90-661-2012	Category 3, 5, & 5e Individually Unshielded
		Twisted-Pair Indoor Cable for Use in General
		Purpose and LAN Communication Wiring Systems
	S-98-688 (2012)	Broadband Twisted Pair Cable Aircore,
		Polyolefin Insulated, Copper Conductors
	S-99-689 (2012)	Broadband Twisted Pair Cable Filled, Polyolefin
		Insulated, Copper Conductors
	ICEA S-102-700	
	(2004)	Category 6 Individually Unshielded Twisted Pair
		Indoor Cables (With or Without an Overall
		Shield) for use in Communications Wiring
		Systems Technical Requirements
11.	Institute of Electri	cal and Electronics Engineers (IEEE):
	ISSN 0739-5175	March-April 2008 Engineering in Medicine and
		Biology Magazine, IEEE (Volume: 27, Issue:2)
		Medical Grade-Mission Critical-Wireless
		Networks
	IEEE C2-2012	National Electrical Safety Code (NESC)
	C62.41.2-2002/	

AE Works	ject 595-668 s Project VLEB-010	Lebanon VAMC New Entryway for Building 17 BID DOCUMENTS 09-01-19
(Cor 1-2012 IEEE	Recommended Practice on Characterization of
		Surges in Low-Voltage (1000 V and Less) AC
		Power Circuits 4)
(262.45-2002	IEEE Recommended Practice on Surge Testing for
		Equipment Connected to Low-Voltage (1000 V and
		Less) AC Power Circuits
8	81-2012 IEEE	Guide for Measuring Earth Resistivity, Ground
		Impedance, and Earth Surface Potentials of a
		Grounding System
1	100-1992	IEEE the New IEEE Standards Dictionary of
		Electrical and Electronics Terms
6	602-2007	IEEE Recommended Practice for Electric Systems
		in Health Care Facilities
1	1100-2005	IEEE Recommended Practice for Powering and
		Grounding Electronic Equipment
12.1	International Code Co	puncil:
I	AC193 (2014)	Mechanical Anchors in Concrete Elements
13.1	International Organiz	zation for Standardization (ISO):
]	ISO/TR 21730 (2007)	Use of Mobile Wireless Communication and
		Computing Technology in Healthcare Facilities -
		Recommendations for Electromagnetic
		Compatibility (Management of Unintentional
		Electromagnetic Interference) with Medical
		Devices
14.1	National Electrical M	Manufacturers Association (NEMA):
1	NEMA 250 (2008)	Enclosures for Electrical Equipment (1,000V
		Maximum)
I	ANSI C62.61 (1993)	American National Standard for Gas Tube Surge
		Arresters on Wire Line Telephone Circuits
I	ANSI/NEMA FB 1 (2012)	Fittings, Cast Metal Boxes and Conduit Bodies
		for Conduit, Electrical Metallic Tubing EMT)
		and Cable
I	ANSI/NEMA OS 1 (2009)	Sheet-Steel Outlet Boxes, Device Boxes, Covers,
		and Box Supports
1	NEMA SB 19 (R2007)	NEMA Installation Guide for Nurse Call Systems
	FC 3 (2004)	Polyvinyl Chloride (PVC) Fittings for Use with
		Rigid PVC Conduit and Tubing
		-

	oject 595-668 ks Project VLEB-010	Lebanon VAMC New Entryway for Building 17 BID DOCUMENTS 09-01-19
	NEMA VE 2 (2006)	Cable Tray Installation Guidelines
15.	National Fire Prote	ction Association (NFPA):
	70E-2015	Standard for Electrical Safety in the Workplace
	70-2014	National Electrical Code (NEC)
	72-2013	National Fire Alarm Code
	75-2013	Standard for the Fire Protection of Information
		Technological Equipment
	76-2012	Recommended Practice for the Fire Protection of
		Telecommunications Facilities
	77-2014	Recommended Practice on Static Electricity
	90A-2015	Standard for the Installation of Air
		Conditioning and Ventilating Systems
	99-2015	Health Care Facilities Code
	101-2015	Life Safety Code
	241	Safeguarding construction, alternation and
		Demolition Operations
	255-2006	Standard Method of Test of Surface Burning
		Characteristics of Building Materials
	262 - 2011	Standard Method of Test for Flame Travel and
		Smoke of Wires and Cables for Use in Air-
		Handling Spaces
	780-2014	Standard for the Installation of Lightning
		Protection Systems
	1221-2013	Standard for the Installation, Maintenance, and
		Use of Emergency Services Communications
		Systems
	5000-2015	Building Construction and Safety Code
16.	Society for Protect	ive Coatings (SSPC):
	SSPC SP 6/NACE No.3	(2007) Commercial Blast Cleaning
17.	Society of Cable Te	lecommunications Engineers (SCTE):
	ANSI/SCTE 15 2006	Specification for Trunk, Feeder and
		Distribution Coaxial Cable

1.4 SINGULAR NUMBER

AE

A. Where any device or part of equipment is referred in singular number (such as " rack"), reference applies to as many such devices as are required to complete installation.

1.5 RELATED WORK

- A. Specification Order of Precedence: FAR Clause 52.236-21, VAAR Clause 852.236-71.
 - 1. Field Cutting and Patching: Section 09 91 00, PAINTING.
 - 2. Additional submittal requirements: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.
 - 3. Availability and source of references and standards specified in applicable publications: Section 01 42 19, REFERENCE STANDARDS.
 - 4. Control of environmental pollution and damage for air, water, and land resources: Section 01 57 19, TEMPORARY ENVIRONMENTAL CONTROLS.
 - 5. Requirements for non-hazardous building construction and demolition waste: Section 01 74 19, CONSTRUCTION WASTE MANAGEMENT.
 - General requirements and procedures to comply with various federal mandates and U.S. Department of Veterans Affairs (VA) policies for sustainable design: Section 01 81 13, SUSTAINABLE DESIGN REQUIREMENTS.
 - 7. Closures of openings in walls, floors, and roof decks against penetration of flame, heat, and smoke or gases in fire resistant rated construction: Section 07 84 00, FIRESTOPPING.
 - Sealant and caulking materials and their application: Section 07 92 00, JOINT SEALANTS.
 - General electrical requirements that are common to more than one section of Division 26: Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS.
 - 10. Electrical conductors and cables in electrical systems rated 600 V and below: Section 26 05 21, LOW VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW).
 - 11. Requirements for personnel safety and to provide a low impedance path to ground for possible ground fault currents: Section 26 05 26, GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS.
 - 12. Conduit and boxes: Section 26 05 33, RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS.
 - 13. Wiring devices: Section 26 27 26, WIRING DEVICES.
 - 14. Underground ducts, raceways, precast manholes and pull boxes: Section 26 05 41, UNDERGROUND ELECTRICAL CONSTRUCTION.
 - 15. Lightning protection: Section 26 41 00, FACILITY LIGHTNING PROTECTION.

- 16. General requirements common to more than one section in Division 28: Section 28 05 00, COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY.
- 17. Conductors and cables for electronic safety and security systems: Section 28 05 13, CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY.
- 18. Low impedance path to ground for electronic safety and security system ground fault currents: Section 28 05 26, GROUNDING AND BONDING FOR SECURITY SYSTEMS.
- 19. Conduits and partitioned telecommunications raceways for Electronic Safety and Security systems: Section 28 05 28.33, CONDUITS AND BACK BOXES FOR ELECTRONIC SAFETY AND SECURITY.
- 20. Physical Access Control System field-installed controllers connected by data transmission network: Section 28 13 00, PHYSICAL ACCESS DETECTION.
- 21. Detection and screening systems: Section 28 13 53, SECURITY ACCESS DETECTION.
- 22. Intrusion sensors and detection devices, and communication links to perform monitoring, alarm, and control functions: Section 28 16 11, INTRUSION DETECTION EQUIPMENT AND SYSTEMS.
- 23. Video surveillance system cameras, data transmission wiring, and control stations with associated equipment: Section 28 23 00, VIDEO SURVEILLANCE EQUIPMENT AND SYSTEMS.
- Duress-panic alarms, emergency phones or call boxes, intercom systems, data transmission wiring and associated equipment: Section 28 26 00, ELECTRONIC PERSONAL PROTECTION EQUIPMENT AND SYSTEMS.
- 25. Alarm initiating devices, alarm notification appliances, control units, fire safety control devices, annunciators, power supplies, and wiring: Section 28 31 00, FIRE DETECTION AND ALARM.
- 26. Emergency Call telephones, intercom systems, with blue strobe light and equipment: Section 28 52 31, SECURITY EMERGENCY CALL/DURESS ALARM/COMMUNICATIONS SYSTEM AND EQUIPMENT.

1.6 ADMINISTRATIVE REQUIREMENTS

- A. Assign a single communications project manager to serve as point of contact for Government, contractor, and design professional.
- B. Be proactive in scheduling work.
 - 1. Use of premises is restricted at times directed by COR.

- Movement of materials: Unload materials and equipment delivered to site. Pay costs for rigging, hoisting, lowering, and moving equipment on and around site, in building or on roof.
- Coordinate installation of required supporting devices and sleeves to be set in poured-in-place concrete and other structural components, as they are constructed.
- Sequence, coordinate, and integrate installations of materials and equipment for efficient flow of Work. Plan for large equipment requiring positioning prior to closing in building.
- 5. Coordinate connection of materials, equipment, and systems with exterior underground and overhead utilities and services. Comply with requirements of governing regulations, franchised service companies, and controlling agencies; provide required connection for each service.
- 6. Initiate and maintain discussion regarding schedule for ceiling construction and install cables to meet that schedule.
- C. Contact the Office of Telecommunications, Special Communications Team (0050P2H3) (202)461-5310 to have a Government-accepted Telecommunications COR assigned to project for telecommunications review, equipment and system approval and coordination with other VA personnel.
- D. Communications Project Manager Responsibilities:
 - Assume responsibility for overall telecommunications system integration and coordination of work among trades, subcontractors, and authorized system installers.
 - 2. Coordinate with related work indicated on drawings or specified.
 - Manage work related to telecommunications system installation in a manner approved by manufacturer.

1.7 SUBMITTALS

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Provide parts list including quantity of spare parts.
- C. Provide manufacturer product information. Government reserves the right to require a list of installations where products have been in operation.
- D. Provide Source Quality Control Submittal:

- Submit written certification from OEM indicating that proposed supervisor of installation and proposed provider of warranty maintenance are authorized representatives of OEM. Include individual's legal name, contact information and OEM credentials in certification.
- 2. Submit written certification from OEM that wiring and connection diagrams meet Government Life Safety Guidelines, NFPA, NEC, NRTL, these specifications, and Joint Commission requirements and instructions, requirements, recommendations, and guidance set forth by OEM for the proper performance of system.
- 3. Pre-acceptance Certification: Certification in accordance with procedure outlined in Section 01 00 00, GENERAL REQUIREMENTS and specific Division 27 qualification documentation.
- E. Installer Qualifications: Submit three installations of similar size and complexity furnished and installed by installer; include:
 - 1. Installation location and name.
 - Owner's name and contact information including, address, telephone and email.
 - 3. Date of project start and date of final acceptance.
 - 4. System project number.
 - 5. Three paragraph description of each system related to this project; include function, operation, and installation.
- F. Provide delegated design submittals (e.g. seismic support design).
- G. Submittals are required for all equipment anchors and supports. Include weights, dimensions, center of gravity, standard connections, manufacturer's recommendations and behavior problems (e.g., vibration, thermal expansion,) associated with equipment or conduit. Anchors and supports to resist seismic load based on seismic design categories per section 4.0 of VA seismic design requirements H-18-8 dated August, 2013.
- H. Test Equipment List:
 - Supply test equipment of accuracy better than parameters to be tested.
 - 2. Submit test equipment list including make and model number:
 - a. ANSI/TIA-1152 Level IV twisted pair cabling test instrument.
 - b. Fiber optic insertion loss power meter with light source.
 - c. Optical time domain reflectometer (OTDR).

- d. Volt-Ohm meter.
- e. Digital camera.
- f. Bit Error Test Set (BERT).
- g. Signal level meter.
- h. Time domain reflectometer (TDR) with strip chart recorder (Data and Optical Measuring).
- i. Spectrum analyzer.
- j. Color video monitor with audio capability.
- k. Video waveform monitor.
- 1. Video vector scope.
- m. 100 MHz oscilloscope with video adapters.
- Supply only test equipment with a calibration tag from Governmentaccepted calibration service dated not more than 12 months prior to test.
- 4. Provide sample test and evaluation reports.
- I. Submittal Drawings:
 - Telecommunications Space Plans/Elevations: Provide enlarged floor plans of telecommunication spaces indicating layout of equipment and devices, including receptacles and grounding provisions. Submit detailed plan views and elevations of telecommunication spaces showing racks, termination blocks, and cable paths. Include following rooms:
 - a. Telecommunications rooms.
 - b. Building Entrance Facility/Demarcation rooms.
 - c. Server rooms/Data Center.
 - d. Equipment rooms.
 - e. Antenna Head End rooms.
 - Logical Drawings: Provide logical riser or schematic drawings for all systems.
 - a. Provide riser diagrams systems and interconnection drawings for equipment assemblies; show termination points and identify wiring connections.
 - 3. Access Panel Schedule on Submittal Drawings: Coordinate and prepare a location, size, and function schedule of access panels required to fully service equipment.
- J. Provide sustainable design submittals.

K. Furnish electronic certified test reports to COR prior to final inspection and not more than 90 days after completion of tests.

1.8 CLOSEOUT SUBMITTALS

- A. Provide following closeout submittals prior to project closeout date:
 - 1. Warranty certificate.
 - Evidence of compliance with requirements such as low voltage certificate of inspection.
 - 3. Project record documents.
 - 4. Instruction manuals and software that are a part of system.
- B. Maintenance and Operation Manuals: Submit in accordance with Section 01 00 00, GENERAL REQUIREMENTS.
 - 1. Prepare a manual for each system and equipment specified.
 - 2. Furnish on portable storage drive in PDF format or equivalent accepted by COR.
 - 3. Furnish complete manual as specified in specification section, fifteen days prior to performance of systems or equipment test.
 - 4. Furnish remaining manuals prior to final completion.
 - 5. Identify storage drive "MAINTENANCE AND OPERATION MANUAL" and system name.
 - Include name, contact information and emergency service numbers of each subcontractor installing system or equipment and local representatives for system or equipment.
 - Provide a Table of Contents and assemble files to conform to Table of Contents.
 - 8. Operation and Maintenance Data includes:
 - a. Approved shop drawing for each item of equipment.
 - b. Internal and interconnecting wiring and control diagrams with data to explain detailed operation and control of equipment.
 - c. A control sequence describing start-up, operation, and shutdown.
 - d. Description of function of each principal item of equipment.
 - e. Installation and maintenance instructions.
 - f. Safety precautions.
 - g. Diagrams and illustrations.
 - h. Test Results and testing methods.
 - i. Performance data.
 - j. Pictorial "exploded" parts list with part numbers. Emphasis to be placed on use of special tools and instruments. Indicate sources

of supply, recommended spare parts, and name of servicing organization.

- k. Warranty documentation indicating end date and equipment protected under warranty.
- Appendix; list qualified permanent servicing organizations for support of equipment, including addresses and certified personnel qualifications.
- C. Record Wiring Diagrams:
 - Red Line Drawings: Keep one E size 91.44 cm x 121.92 cm (36 inches x 48 inches) set of floor plans, on site during work hours, showing installation progress marked and backbone cable labels noted. Make these drawings available for examination during construction meetings or field inspections.
 - 2. General Drawing Specifications: Detail and elevation drawings to be D size 61 cm x 91.44 cm (24 inches x 36 inches) with a minimum scale of 0.635 cm = 30.48 cm (1/4 inch = 12 inches). ER, TR and other enlarged detail floor plan drawings to be D size 61 cm x 91.44 cm (24" x 36") with a minimum scale of 0.635 cm = 30.48 cm (1/4 inch = 12 inches). Building composite floor plan drawings to be D size 61 cm x 91.44 cm (24 inches x 36 inches) with a minimum scale of 3.175 mm = 30.48 cm (1/8 inch = 1' 0 inch).
 - 3. Building Composite Floor Plans: Provide building floor plans showing work area outlet locations and configuration, types of jacks, distance for each cable, and cable routing locations.
 - 4. Floor plans to include:
 - a. Final room numbers and actual backbone cabling and pathway locations and labeling.
 - b. Inputs and outputs of equipment identified according to labels installed on cables and equipment
 - c. Device locations with labels.
 - d. Conduit.
 - e. Head-end equipment.
 - f. Wiring diagram.
 - g. Labeling and administration documentation.
 - 5. Submit Record Wiring Diagrams within five business days after final cable testing.

- Deliver Record Wiring Diagrams as CAD files in .dwg or .rvt formats as determined by COR.
- 7. Deliver four complete sets of electronic record wiring diagrams to COR on portable storage drive.
- D. Service Qualifications: Submit name and contact information of service organizations providing service to this installation within eight hours of receipt of notification service is needed.

1.9 MAINTENANCE MATERIAL SUBMITTALS

- A. After approval and prior to installation, furnish COR with the following:
 - 1. A 300 mm (12 inch) length of each type and size of wire and cable along with tag from coils of reels from which samples were taken.
 - One coupling, bushing and termination fitting for each type of conduit.
 - 3. Samples of each hanger, clamp and supports for conduit and pathways.
 - 4. Duct sealing compound.

1.10 QUALITY ASSURANCE

- A. Manufacturer's Qualifications: Manufacturer must produce, as a principal product, the equipment and material specified for this project, and have manufactured item for at least three years.
- B. Product and System Qualification:
 - OEM must have three installations of equipment submitted presently in operation of similar size and type as this project, that have continuously operated for a minimum of three years.
 - 2. Government reserves the right to require a list of installations where products have been in operation before approval.
 - 3. Authorized representative of OEM must be responsible for design, satisfactory operation of installed system, and certification.
- C. Trade Contractor Qualifications: Trade contractor must have completed three or more installations of similar systems of comparable size and complexity with regards to coordinating, engineering, testing, certifying, supervising, training, and documentation. Identify these installations as a part of submittal.
- D. System Supplier Qualifications: System supplier must be authorized by OEM to warranty installed equipment.

- E. Telecommunications technicians assigned to system must be trained, and certified by OEM on installation and testing of system; provide written evidence of current OEM certifications for installers.
- F. Manufactured Products:
 - 1. Comply with FAR clause 52.236-5 for material and workmanship.
 - 2. When more than one unit of same class of equipment is required, units must be product of a single manufacturer.
 - 3. Equipment Assemblies and Components:
 - a. Components of an assembled unit need not be products of same manufacturer.
 - b. Manufacturers of equipment assemblies, which include components made by others, to assume complete responsibility for final assembled unit.
 - c. Provide compatible components for assembly and intended service.
 - d. Constituent parts which are similar must be product of a single manufacturer.
 - Identify factory wiring on equipment being furnished and on wiring diagrams.
- G. Testing Agencies: Government reserves the option of witnessing factory tests. Notify COR minimum 15 working days prior to manufacturer performing the factory tests.
 - When equipment fails to meet factory test and re-inspection is required, contractor is liable for additional expenses, including expenses of Government.

1.11 DELIVERY, STORAGE, AND HANDLING

- A. Delivery and Acceptance Requirements:
 - 1. Government's approval of submittals must be obtained for equipment and material before delivery to job site.
 - Deliver and store materials to job site in OEM's original unopened containers, clearly labeled with OEM's name and equipment catalog numbers, model and serial identification numbers for COR to inventory cable, patch panels, and related equipment.
- B. Storage and Handling Requirements:
 - Equipment and materials must be protected during shipment and storage against physical damage, dirt, moisture, cold and rain:
 - a. Store and protect equipment in a manner that precludes damage or loss, including theft.

- b. Protect painted surfaces with factory installed removable heavy kraft paper, sheet vinyl or equivalent.
- c. Protect enclosures, equipment, controls, controllers, circuit protective devices, and other like items, against entry of foreign matter during installation; vacuum clean both inside and outside before testing and operating.
- C. Coordinate storage.

1.12 FIELD CONDITIONS

- A. Where variations from documents are requested in accordance with GENERAL CONDITIONS and Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, connecting work and related components must include additions or changes to branch circuits, circuit protective devices, conduits, wire, feeders, controls, panels and installation methods.
- B. A contract adjustment or additional time will not be granted because of field conditions pursuant to FAR 52.236-2 and FAR 52.236-3; a contract adjustment or additional time will not be granted for additional work required for complete and usable construction and systems pursuant to FAR 52.246-12.

1.13 WARRANTY

- A. Comply with FAR clause 52.246-21, except as follows:
 - Warranty material and equipment to be free from defects, workmanship, and remain so for a period of one year for Emergency Systems from date of final acceptance of system by Government; provide OEM's equipment warranty document to COR.
 - Government maintenance personnel must have ability to contact OEM for emergency maintenance and logistic assistance, remote diagnostic testing, and assistance in resolving technical problems at any time; contractor and OEM must provide this capability.

PART 2 - PRODUCTS

2.1 PERFORMANCE AND DESIGN CRITERIA

- A. Provide communications spaces and pathways conforming to TIA 569, at a minimum.
- B. In cases of renovations in historic or otherwise restrictive buildings, where it has been determined as impossible to follow above stated guidelines, exceptions must not modify maximum distances set forth in TIA 568 and 569; and exceptions must not in any way effect performance of entire TIP system.

C. Modification to administrative issues requires written approvals from COR with concurrence from SMCS 0050P2H3, OEM, contractor, and local authorities.

2.2 EQUIPMENT IDENTIFICATION

- A. Provide laminated black phenolic resin with a white core nameplates with minimum 6 mm (1/4 inch) high engraved lettering.
- B. Nameplates furnished by manufacturer as standard catalog items, unless other method of identification is indicated.

2.3 UNDERGROUND WARNING TAPE

A. Underground Warning: Standard 4-Mil polyethylene 76 mm (3 inch) wide tape detectable type; red with black letters imprinted with "CAUTION BURIED ELECTRIC LINE BELOW", orange with black letters imprinted with "CAUTION BURIED TELEPHONE LINE BELOW" or orange with black letters imprinted with "CAUTION BURIED FIBER OPTIC LINE BELOW", as applicable.

2.4 WIRE LUBRICATING COMPOUND

A. Provide non-hardening or forming adhesive coating cable lubricants suitable for cable jacket material and raceway.

2.5 FIREPROOFING TAPE

- A. Provide flexible, conformable fabric tape of organic composition and coated one side with flame-retardant elastomer.
- B. Tape must be self-extinguishing and cannot support combustion; arcproof and fireproof.
- C. Tape cannot deteriorate when subjected to water, gases, salt water, sewage, or fungus; and tape must be resistant to sunlight and ultraviolet light.
- D. Application must withstand a 200-ampere arc for minimum 30 seconds.
- E. Securing Tape: Glass cloth electrical tape minimum 0.18 mm (7 mils) thick and 19 mm (3/4 inch) wide.

2.6 UNDERGROUND CABLES

- A. Provide buried closure suitable for enclosing a straight, butt, and branch splice in a container into which can be poured an encapsulating compound.
- B. Provide closure of adequate strength to protect splice and maintain cable shield electrical continuity in buried environment.
- C. Provide re-enterable encapsulating compound maintaining chemical stability of closure.
- D. Provide filled splice cases in accordance with RUS Bull 345-72.

- E. Provide gel filled cable meeting requirements of ICEA S-99-689 and RUS 1755.890.
- F. Re-Enterable Encapsulating Compound: Product maintaining chemical stability of closure.
- G. Provide gel-filled splice cases in accordance with RUS Bull 345-72.

2.7 ACCESS PANELS

- A. Panels: 304 mm x 304 mm (12 inches by 12 inches), or size allowed by location to provide optimum access to equipment for maintenance and service.
- B. Provide access panels and doors as required to allow service of materials and equipment that require inspection, replacement, repair or service.
- C. Provide access panels where items installed require access and are concealed in floor, wall, furred space or above ceiling; ceilings consisting of lay-in or removable splined tiles do not require access panels.
- D. Provide access panels with same fire rating classification as surface penetrated.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Penetrations and Sleeves:
 - Lay out penetration and sleeve openings in advance, to permit provision in work.
 - 2. Set sleeves in forms before concrete is poured.
 - Set sleeves prior to installation of structure for passage of pipes, conduit, ducts, etc.
 - Provide sleeves and packing materials at penetrations of foundations, walls, slabs, partitions, and floors.
 - Make sleeves that penetrate outside walls, basement slabs, footings, and beams waterproof.
 - Fill slots, sleeves and other openings in floors or walls if not used.
 - a. Fill spaces in openings after installation of conduit or cable.
 - b. Provide fill for floor penetrations to prevent passage of water, smoke, fire, and fumes.
 - c. Provide fire resistant fill in rated floors and walls, to prevent passage of air, smoke and fumes.

- Install sleeves through floors watertight and extend minimum 50.8 mm (2 inches) above floor surface.
- Match and set sleeves flush with adjoining floor, ceiling, and wall finishes where raceways passing through openings are exposed in finished rooms.
- Annular space between conduit and sleeve must be minimum 6 mm (1/4 inch).
- Do not provide sleeves for slabs-on-grade, unless specified or indicated otherwise.
- 11. Comply with requirements for firestopping, for sleeves through rated fire walls and smoke partitions.
- 12. Do not support piping risers or conduit on sleeves.
- 13. Identify unused sleeves and slots for future installation.
- 14. Provide core drilling if walls are poured or otherwise constructed without sleeves and wall penetration is required; do not penetrate structural members.
- B. Core Drilling:
 - 1. Avoid core drilling whenever possible.
 - 2. Coordinate openings with other trades and utilities, and prevent damage to structural reinforcement.
 - Investigate existing conditions in vicinity of required opening prior to coring, including an x-ray of floor if determined necessary by competent person or COR.
 - 4. Protect areas from damage.
- C. Verification of In-Place Conditions:
 - Verify location, use and status of all material, equipment, and utilities that are specified, indicated, or determined necessary for removal.
 - a. Verify materials, equipment, and utilities to be removed are inactive, not required, or in use after completion of project.
 - b. Replace with equivalent any material, equipment and utilities that were removed by contractor that are required to be left in place.
 - 2. Existing Utilities: Do not interrupt utilities serving facilities occupied by Government or others unless permitted under following conditions and then only after arranging to provide temporary utility services, according to requirements indicated:

- a. Notify COR in writing at least 14 days in advance of proposed utility interruptions.
- b. Do not proceed with utility interruptions without Government's written permission.
- D. Provide suspended platforms, strap hangers, brackets, shelves, stands or legs for floor, wall and ceiling mounting of equipment as required.
- E. Provide steel supports and hardware for installation of hangers, anchors, guides, and other support hardware.
- F. Obtain and analyze catalog data, weights, and other pertinent data required for coordination of equipment support provisions and installation.
- G. Verify site conditions and dimensions of equipment to ensure access for proper installation of equipment without disassembly that would void warranty.

3.2 INSTALLATION - GENERAL

- A. Coordinate systems, equipment, and materials installation with other building components.
- B. Install systems, materials, and equipment to conform with approved submittal data, including coordination drawings.
- C. Conform to VAAR 852.236.91 arrangements indicated, recognizing that work may be shown in diagrammatic form or have been impracticable to detail all items because of variances in manufacturers' methods of achieving specified results.
- D. Install systems, materials, and equipment level and plumb, parallel and perpendicular to other building systems and components, where installed in both exposed and un-exposed spaces.
- E. Install equipment according to manufacturers' written instructions.
- F. Install wiring and cabling between equipment and related devices.
- G. Install cabling, wiring, and equipment to facilitate servicing, maintenance, and repair or replacement of equipment components. Connect equipment for ease of disconnecting, with minimum interference of adjacent other installations.
- H. Provide access panel or doors where units are concealed behind finished surfaces.
- I. Arrange for chases, slots, and openings in other building components during progress of construction, to allow for wiring, cabling, and equipment installations.

- J. Where mounting heights are not detailed or dimensioned, install systems, materials, and equipment to provide maximum headroom and access for service and maintenance as possible.
- K. Install systems, materials, and equipment giving priority to systems required to be installed at a specified slope.
- L. Avoid interference with structure and with work or other trades, preserving adequate headroom and clearing doors and passageways to satisfaction of COR and code requirements.
- M. Install equipment and cabling to distribute equipment loads on building structural members provided for equipment support under other sections; install and support roof-mounted equipment on structural steel or roof curbs as appropriate.
- N. Provide supplementary or miscellaneous items, appurtenances, devices and materials for a complete installation.

3.3 EQUIPMENT INSTALLATION

- A. Locate equipment as close as practical to locations shown on drawings.
- B. Note locations of equipment requiring access on record drawings.
- C. Access and Access Panels: Verify access panel locations and construction with COR.
- D. Inaccessible Equipment:
 - Where Government determines that contractor has installed equipment not conveniently accessible for operation and maintenance, equipment must be removed and reinstalled as directed and without additional cost to Government.
 - 2. Refer to Section 27 11 00, TELECOMMUNICATIONS ROOM FITTINGS for communication equipment cabinet assembly.
 - 3. Refer to Section 27 11 00, TELECOMMUNICATIONS ROOM FITTINGS for equipment labeling.

3.4 EQUIPMENT IDENTIFICATION

- A. Install an identification sign which clearly indicates information required for use and maintenance of equipment.
- B. Secure identification signs with screws.

3.5 CUTTING AND PATCHING

- A. Perform cutting and patching according to contract general requirements and as follows:
 - 1. Remove samples of installed work as specified for testing.

- Perform cutting, fitting, and patching of equipment and materials required to uncover existing infrastructure in order to provide access for correction of improperly installed existing or new work.
- 3. Remove and replace defective work.
- 4. Remove and replace non-conforming work.
- B. Cut, remove, and legally dispose of selected equipment, components, and materials, including removal of material, equipment, devices, and other items indicated to be removed and items made obsolete by new work.
- C. Provide and maintain temporary partitions or dust barriers adequate to prevent spread of dust and dirt to adjacent areas.
- D. Protect adjacent installations during cutting and patching operations.
- E. Protect structure, furnishings, finishes, and adjacent materials not indicated or scheduled to be removed.
- F. Patch finished surfaces and building components using new materials specified for original installation and experienced installers.

3.6 FIELD QUALITY CONTROL

- A. Provide work according to VAAR 852.236.91 and FAR clause 52.236-5.
- B. Provide minimum clearances and work required for compliance with NFPA 70, National Electrical Code (NEC), and manufacturers' instructions; comply with additional requirements indicated for access and clearances.
- C. Verify all field conditions and dimensions that affect selection and provision of materials and equipment, and provide any disassembly, reassembly, relocation, demolition, cutting and patching required to provide work specified or indicated, including relocation and reinstallation of existing wiring and equipment.
 - 1. Protect facility, equipment, and wiring from damage.
- D. Submit written notice that:
 - 1. Project has been inspected for compliance with documents.
 - 2. Work has been completed in accordance with documents.
- E. Non-Conforming Work: Conduct project acceptance inspections, final completion inspections, substantial completion inspections, and acceptance testing and demonstrations after verification of system operation and completeness by Contractor.
- F. For project acceptance inspections, final completion inspections, substantial completion inspections, and testing/demonstrations that require more than one site visit by COR or design professional to

verify project compliance for same material or equipment, Government reserves right to obtain compensation from contractor to defray cost of additional site visits that result from project construction or testing deficiencies and incompleteness, incorrect information, or noncompliance with project provisions.

- COR will notify contractor, of hourly rates and travel expenses for additional site visits, and will issue an invoice to Contractor for additional site visits.
- Contractor is not be eligible for extensions of project schedule or additional charges resulting from additional site visits that result from project construction or testing deficiencies/incompleteness, incorrect information, or non-compliance with Project provisions.
- G. Tests:
 - Interim inspection is required at approximately 50 percent of installation.
 - Request inspection ten working days prior to interim inspection start date by notifying COR in writing; this inspection must verify equipment and system being provided adheres to installation, mechanical and technical requirements of construction documents.
 - Inspection to be conducted by OEM and factory-certified contractor representative, and witnessed by COR, facility and SMCS 0050P2H3 representatives.
 - 4. Check each item of installed equipment to ensure appropriate NRTL listing labels and markings are fixed in place.
 - 5. Verify cabling terminations in DEMARC, MCR, TER, SCC, ECC, TRs and head end rooms, workstation locations and TCO adhere to color code for T568B pin assignments and cabling connections are in compliance with TIA standards.
 - Visually confirm minimum Category 6 cable marking at TCOs, CCSs locations, patch cords and origination locations.
 - Review entire communications circulating ground system, each TGB and grounding connection, grounding electrode and outside lightning protection system.
 - 8. Review cable tray, conduit and path/wire way installation practice.
 - 9. OEM and contractor to perform:

- a. Fiber optical cable field inspection tests via attenuation measurements on factory reels; provide results along with OEM certification for factory reel tests.
- b. Coaxial cable field inspection tests via attenuation measurements on factory reels; provide results along with OEM certification for factory reel tests.
- c. Baseband cable field inspection tests via attenuation measurements on factory reels and provide results along with OEM certification for factory reel tests.
- 10. Relocate failed cable reels to a secured location for inventory, as directed by COR, and then remove from project site within two working days; provide COR with written confirmation of defective cable reels removal from project site.
- 11. Provide results of interim inspections to COR.
- 12. If major or multiple deficiencies are discovered, additional interim inspections could be required until deficiencies are corrected, before permitting further system installation.
 - a. Additional inspections are scheduled at direction of COR.
 - Re-inspection of deficiencies noted during interim inspections, must be part of system's Final Acceptance Proof of Performance Test.
 - c. The interim inspection cannot affect the system's completion date unless directed by COR.
- Facility COR will ensure test documents become a part of system's official documentation package.
- H. Pretesting: Re-align, re-balance, sweep, re-adjust and clean entire system and leave system working for a "break-in" period, upon completing installation of system and prior to Final Acceptance Proof of Performance Test. System RF transmitting equipment must not be connected to keying or control lines during "break-in" period.
 - 1. Pretesting Procedure:
 - a. Verify systems are fully operational and meet performance requirements, utilizing accepted test equipment and spectrum analyzer.
 - b. Pretest and verify system functions and performance requirements conform to construction documents and, that no unwanted physical,

VA Project 595-668 Lebanon VAMC New Entryway for Building 17 AE Works Project VLEB-010 BID DOCUMENTS 09-01-19 aural and electronic effects, such as signal distortion, noise pulses, glitches, audio hum, poling noise are present. 2. Measure and record signal, aural and control carrier levels of each DAS RF, voice and data channel, at each of the following minimum points in system: SPEC WRITER NOTE: 1. Edit list to project. a. Utility provider entrance. b. Buried conduit duct locations. c. Maintenance Holes (Manholes) and hand holes. d. ENTR or DEMARC. e. PBX interconnections. f. MCR interconnections. g. MCOR interconnections. h. TER interconnections. i. TOR interconnections. j. Control room interconnections. k. TR interconnections. 1. System interfaces in locations listed herein. m. HE interconnections. n. Antenna (outside and inside) interconnections. o. System and lightning ground interconnections. p. Communications circulating ground system. q. UPS areas. r. Emergency generator interconnections. s. Each general floor areas. t. Others as required by AHJ (SMCS 0050P2H3). 3. Provide recorded system pretest measurements and certification that the system is ready for formal acceptance test to COR. I. Acceptance Test: 1. Schedule an acceptance test date after system has been pretested, and pretest results and certification submitted to COR. 2. Give COR fifteen working days written notice prior to date test is expected to begin; include expected duration of time for test in notification. 3. Test in the presence of the following: a. COR.

b. OEM representatives.

- c. VACO:
 - 1) CFM representative.
 - 2) AHJ-SMCS 0050P2H3, (202)461-5310.
- d. VISN-CIO, Network Officer and VISN representatives.
- e. Facility:
 - FMS Service Chief, Bio-Medical Engineering and facility representatives.
 - 2) OI&T Service Chief and OI&T representatives.
 - Safety Officer, Police Chief and facility safety representatives.
- f. Local Community Safety Personnel:
 - 1) Fire Marshal representative.
 - 2) Disaster Coordinator representative.
 - EMS Representatives: Police, Sherriff, City, County or State representatives.
- Test system utilizing accepted test equipment to certify proof of performance and Life and Public Safety compliance, FCC, NRTL, NFPA and OSHA compliance.
 - a. Rate system as acceptable or unacceptable at conclusion of test; make only minor adjustments and connections required to show proof of performance.
 - 1) Demonstrate and verify that system complies with performance requirements under operating conditions.
 - Failure of any part of system that precludes completion of system testing, and which cannot be repaired within four hours, terminates acceptance test of that portion of system.
 - Repeated failures that result in a cumulative time of eight hours to affect repairs is cause for entire system to be declared unacceptable.
 - If system is declared unacceptable, retesting must be rescheduled at convenience of Government and costs borne by the contractor.
- J. Acceptance Test Procedure:
 - Physical and Mechanical Inspection: The test team representatives must tour major areas to determine system and sub-systems are completely and properly installed and are ready for acceptance testing.

- A system inventory including available spare parts must be taken at this time.
- 3. Each item of installed equipment must be re-checked to ensure appropriate NRTL (i.e. UL) certification listing labels are affixed.
- 4. Confirm that deficiencies reported during Interim Inspections and Pretesting are corrected prior to start of Acceptance Test.
- Inventory system diagrams, record drawings, equipment manuals, pretest results.
- Failure of system to meet installation requirements of specifications is grounds for terminating testing and to schedule re-testing.
- K. Operational Test:
 - Individual Item Test: VACO AHJ representative (SMCS 0050P2H3) may select individual items of DAS equipment for detailed proof of performance testing until 100 percent of system has been tested and found to meet requirements of the construction documents.
 - 2. Government's Condition of Acceptance of System Language:
 - a. Without Acceptance: Until system fully meets conditions of construction documents, system's ownership, use, operation and warranty commences at Government's final acceptance date.
 - b. With Conditional Acceptance: Stating conditions that need to be addressed by contractor or OEM and stating system's use and operation to commence immediately while its warranty commences only at Government's agreed final extended acceptance date.
 - c. With Full Acceptance: Stating system's ownership, use, operation and warranty to immediately commence at Government's agreed to date of final acceptance.
- L. Acceptance Test Conclusion: Reschedule testing on deficiencies and shortages with COR, after COR and SMCS AHJ jointly agree to results of the test, using the generated punch list or discrepancy list. Perform retesting to comply with these specifications at contractor's expense.
- M. Proof of Performance Certification:
 - If system is declared acceptable, AHJ (SMCS 0050P2H3) provides COR notice stating system processes to required operating standards and functions and is Government accepted for use by facility.
 - Validate items with COR needing to be provided to complete project contract (i.e. charts & diagrams, manuals, spare parts, system

warranty documents executed, etc.). Once items have been provided, COR contacts FMS service chief to turn over system from CFM oversight for beneficial use by facility.

3. If system is declared unacceptable without conditions, rescheduled testing expenses are to be borne by contractor.

3.7 CLEANING

- A. Remove debris, rubbish, waste material, tools, construction equipment, machinery and surplus materials from project site and clean work area, prior to final inspection and acceptance of work.
- B. Put building and premises in neat and clean condition.
- C. Remove debris on a daily basis.
- D. Remove unused material, during progress of work.
- E. Perform cleaning and washing required to provide acceptable appearance and operation of equipment to satisfaction of COR.
- F. Clean exterior surface of all equipment, including concrete residue, dirt, and paint residue, after completion of project.
- G. Perform final cleaning prior to project acceptance by COR.
- H. Remove paint splatters and other spots, dirt, and debris; touch up scratches and mars of finish to match original finish.
- Clean devices internally using methods and materials recommended by manufacturer.
- J. Tighten wiring connectors, terminals, bus joints, and mountings, to include lugs, screws and bolts according to equipment manufacturer's published torque tightening values for equipment connectors. In absence of published connection or terminal torque values, comply with torque values specified in UL 486A-486B.

3.8 TRAINING

- A. Provide training in accordance with subsection, INSTRUCTIONS, of Section 01 00 00, GENERAL REQUIREMENTS.
- B. Provide training for equipment or system as required in each associated specification.
- C. Develop and submit training schedule for approval by COR, at least 30 days prior to planned training.

3.9 PROTECTION

A. Protection of Fireproofing:

- Install clips, hangers, clamps, supports and other attachments to surfaces to be fireproofed, if possible, prior to start of spray fireproofing work.
- Install conduits and other items that would interfere with proper application of fireproofing after completion of spray fire proofing work.
- Patch and repair fireproofing damaged due to cutting or course of work must be performed by installer of fireproofing and paid for by trade responsible for damage.
- B. Maintain equipment and systems until final acceptance.
- C. Ensure adequate protection of equipment and material during installation and shutdown and during delays pending final test of systems and equipment because of seasonal conditions.

- - - E N D - - -

SECTION 27 05 26 GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section identifies common and general grounding and bonding requirements of communication installations and applies to all sections of Divisions 27 and 28.

1.2 RELATED WORK

A. Low voltage wiring: Section 27 10 00, STRUCTURED CABLING.

1.3 SUBMITTALS

- A. Submit in accordance with Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- B. Provide plan indicating location of system grounding electrode connections and routing of aboveground and underground grounding electrode conductors.
- C. Closeout Submittals: In addition to Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS provide the following:
 - 1. Certified test reports of ground resistance.
 - Certifications: Two weeks prior to final inspection, submit following to COR:
 - a. Certification materials and installation is in accordance with construction documents.
 - b. Certification complete installation has been installed and tested.

PART 2 - PRODUCTS

2.1 COMPONENTS

- A. Grounding and Bonding Conductors:
 - Provide UL 83 insulated stranded copper equipment grounding conductors, with the exception of solid copper conductors for sizes 6 mm² (10 AWG) and smaller. Identify all grounding conductors with continuous green insulation color, except identify wire sizes 25 mm² (4 AWG) and larger per NEC.
 - 2. Provide ASTM B8 bare stranded copper bonding conductors, with the exception of ASTM B1 solid bare copper for wire sizes 6 mm² (10 AWG) and smaller.
- B. Ground Rods:

- Copper clad steel, 19 mm (3/4-inch) diameter by 3000 mm (10 feet) long, conforming to UL 467.
- 2. Provide quantity of rods required to obtain specified ground resistance.
- C. Splices and Termination Components: Provide components meeting or exceeding UL 467 and clearly marked with manufacturer's name, catalog number, and permitted conductor sizes.
- D. Telecommunication System Ground Busbars:
 - 1. Telecommunications Main Grounding Busbar (TMGB):
 - a. 6.4 mm (1/4 inch) thick solid copper bar.
 - b. Minimum 100 mm (4 inches) high and length sized in accordance application requirements and future growth of minimum 510 mm (20 inches) long.
 - c. Minimum thirty predrilled attachment points (two rows of fifteen each) for attaching standard sized two-hole grounding lugs.
 1) 27 lugs with 15.8 mm (5/8 inch) hole centers.
 2) 3 lugs with 25.4 mm (1 inch) hole centers.
 - d. Wall-mount stand-off brackets, assembly screws and insulators for 100 mm (4 inches) standoff from wall.
 - e. Listed as grounding and bonding equipment.
 - 2. Telecommunications Grounding Busbar (TGB):
 - a. 6.4 mm (1/4 inch) thick solid copper bar.
 - b. Minimum 50 mm (2 inches) high and length sized in accordance application requirements and future growth of minimum 300 mm long (12 inches) long.
 - c. Minimum nine predrilled attachment points (one row) for attaching standard sized two-hole grounding lugs.
 - 1) 6 lugs with 15.8 mm (5/8 inch) hole centers.
 - 2) 3 lugs with 25.4 mm (1 inch) hole centers.
 - d. Wall-mount stand-off brackets, assembly screws and insulators for 100 mm (4 inches) standoff from wall.
 - e. Listed as grounding and bonding equipment.
- E. Equipment Rack and Cabinet Ground Bars:
 - Solid copper ground bars designed for horizontal mounting to framework of open racks or enclosed equipment cabinets:
 - a. 4.7 mm (3/16 inch) thick by 19.1 mm (3/4 inch) high hard-drawn electrolytic tough pitch 110 alloy copper bar.

- b. 482 mm (19 inches) or 584 mm (23 inches) EIA/ECA-310-E rack mounting width (as required) for mounting on racks or cabinets.
- c. Eight 6-32 tapped ground mounting holes on 25.4 mm (1 inch) intervals.
- d. Four 7.1 mm (0.281 inch) holes for attachment of two-hole
 grounding lugs.
- e. Copper splice bar of same material to transition between adjoining racks.
- f. Two each 12-24 x 19.1 mm (3/4 inch) copper-plated steel screws and flat washers for attachment to rack or cabinet.
- g. Listed as grounding and bonding equipment.
- Solid copper ground bars designed for vertical mounting to framework of open racks or enclosed equipment cabinets:
 - a. 1.3 mm (0.05 inch) thick by 17 mm (0.68 inch) wide tinned copper strip.
 - b. 1997 mm (78 inches) high for mounting vertically on full height racks.
 - c. Holes punched on 15.875 mm-15.875 mm-12.7 mm (5/8"-5/8"-1/2") alternating vertical centers to match EIA/ECA-310-E Universal Hole Pattern for a 45 RMU rack.
 - d. Three #12-24 zinc-plated thread forming hex washer head installation screws, an abrasive pad and antioxidant joint compound.
 - e. NRTL listed as grounding and bonding equipment.
- F. Ground Terminal Blocks: Provide screw lug-type terminal blocks at equipment mounting location (e.g. backboards and hinged cover enclosures) where rack-type ground bars cannot be mounted.
 - 1. Electroplated tin aluminum extrusion.
 - 2. Accept conductors ranging from #14 AWG through 2/0.
 - 3. Hold conductors in place by two stainless steel set screws.
 - Two 6 mm (1/4 inch) holes spaced on 15.8 mm (5/8 inch) centers to allow secure two-bolt attachment.
 - 5. Listed as a wire connector.
- G. Splice Case Ground Accessories: Provide splice case grounding and bonding accessories manufactured by splice case manufacturer when available. Otherwise, use 16 mm² (6 AWG) insulated ground wire with shield bonding connectors.

- H. Irreversible Compression Lugs:
 - 1. Electroplated tinned copper.
 - 2. Two holes spaced on 15.8 mm (5/8 inch) or 25.4 mm (1 inch) centers.
 - 3. Sized to fit the specific size conductor.
 - 4. Listed as wire connectors.
- I. Antioxidant Joint Compound: Oxide inhibiting joint compound for copperto-copper, aluminum-to-aluminum or aluminum-to-copper connections.

PART 3 - EXECUTION

3.1 EQUIPMENT INSTALLATION AND REQUIREMENTS

- A. Conduit Systems:
 - 1. Bond ferrous metallic conduit to ground.
 - Bond grounding conductors installed in ferrous metallic conduit at both ends of conduit using grounding bushing with #6 AWG conductor.
- B. Boxes, Cabinets, and Enclosures:
 - Bond each pull box, splice box, equipment cabinet, and other enclosures through which conductors pass (except for special grounding systems for intensive care units and other critical units shown) to ground.
- C. Corrosion Inhibitors: Apply corrosion inhibitor for protecting connection between metals used to contact surfaces, when making ground and ground bonding connections.
- D. Telecommunications Grounding System:
 - Provide hardware as required to effectively bond metallic cable shields communications pathways, cable runway, and equipment chassis to ground.
 - 2. Install bonding conductors without splices using shortest length of conductor possible to maintain clearances required by NEC.
 - Provide paths to ground that are permanent and continuous with a resistance of 1 ohm or less from each raceway, cable tray, and equipment connection to telecommunications grounding busbar.
 - 4. Above-Grade Bolted or Screwed Grounding Connections:
 - a. Remove paint to expose entire contact surface by grinding.
 - b. Clean all connector, plate and contact surfaces.
 - c. Apply corrosion inhibitor to surfaces before joining.
 - 5. Bonding Jumpers:
 - Assemble bonding jumpers using insulated ground wire of size and type shown on drawings or use a minimum of 16 mm² (6 AWG)

insulated copper wire terminated with compression connectors of proper size for conductors.

- b. Use connector manufacturer's compression tool.
- 6. Bonding Jumper Fasteners:
 - a. Conduit: Connect bonding jumpers using lugs on grounding bushings or clamp pads on push-type conduit fasteners. Where appropriate, use zinc-plated external tooth lockwashers or Belleville Washers.
 - b. Wireway and Cable Tray: Fasten bonding jumpers using zinc-plated bolts, external tooth lockwashers or Belleville washers and nuts. Install protective cover, e.g., zinc-plated acorn nuts, on bolts extending into wireway or cable tray to prevent cable damage.
- E. Other Communication Room Ground Systems: Ground metallic conduit, wireways, and other metallic equipment located away from equipment racks or cabinets to cable tray or telecommunications ground busbar, whichever is closer, using insulated 16 mm² (6 AWG) ground wire bonding jumpers.
- F. Communications Cable Grounding:
 - Bond all metallic cable sheaths in multi-pair communications cables together at each splicing or terminating location to provide 100 percent metallic sheath continuity throughout communications distribution system.
 - Install a cable shield bonding connector with a screw stud connection for ground wire, at terminal points. Bond cable shield connector to ground.
 - 3. Bond all metallic cable shields together within splice closures using cable shield bonding connectors or splice case manufacturer's splice case grounding and bonding accessories. When an external ground connection is provided as part of splice closure, connect to an effective ground source and bond all other metallic components and equipment at that location.
- G. Communications Raceway Grounding:
 - Conduit: Use insulated 16 mm² (6 AWG) bonding jumpers to bond metallic conduit at both ends and intermediate metallic enclosures to ground.
 - 2. Cable Tray Systems: Use insulated 16 mm² (6 AWG) grounding jumpers to bond cable tray to column-mounted building ground plates (pads) at both ends and approximately 16 meters (50 feet) on centers.

3. .

3.2 FIELD QUALITY CONTROL

- A. Perform tests per BICSI's Information Technology Systems Installation Methods Manual (ITSIMM), Recommended Testing Procedures and Criteria.
- B. Perform two-point bond test using trained installers qualified to use test equipment.
- C. Visually inspect to verify that screened and shielded cables are bonded to TGB or TMGB.

- - - E N D - - -

SECTION 27 05 33

RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies conduit, fittings, and boxes to form complete, coordinated, raceway systems. Raceways are required for communications cabling unless shown or specified otherwise.

1.2 RELATED WORK

- Α.
- B. Sealing around penetrations to maintain integrity of fire rated construction: Section 07 84 00, FIRESTOPPING.
- C. Sealing around conduit penetrations through building envelope to prevent moisture migration into building: Section 07 92 00, JOINT SEALANTS.
- D. Identification and painting of conduit and other devices: Section 09 91 00, PAINTING.

1.3 SUBMITTALS

- A. In accordance with Section 27 50 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS, submit the following:
 - 1. Size and location of cabinets, splice boxes and pull boxes.
 - 2. Layout of required conduit penetrations through structural elements.
 - Catalog cuts marked with specific item proposed and area of application identified.
- B. Certification: Provide letter prior to final inspection, certifying material is in accordance with construction documents and properly installed.

PART 2 - PRODUCTS

2.1 MATERIAL

- A. Minimum Conduit Size: 19 mm (3/4 inch).
- B. Conduit:
 - 1. Rigid Galvanized Steel: Conform to UL 6, ANSI C80.1.
 - 2. Rigid Aluminum: Conform to UL 6A, ANSI C80.5.
 - Rigid Intermediate Steel Conduit (IMC): Conform to UL 1242, ANSI C80.6.
 - 4. Electrical Metallic Tubing (EMT):
 - a. Maximum Size: 105 mm (4 inches).
 - b. Install only for cable rated 600 volts or less.
 - c. Conform to UL 797, ANSI C80.3.

- 5. Flexible Galvanized Steel Conduit: Conform to UL 1.
- 6. Liquid-tight Flexible Metal Conduit: Conform to UL 360.
- 7. Direct Burial Plastic Conduit: Conform to UL 651 and UL 651A, heavy wall PVC, or high density polyethylene (HDPE).
- 8. Surface Metal Raceway: Conform to UL 5.
- 9. Wireway, Approved "Basket": Provide "Telecommunications Service" rated with approved length way partitions and cable straps to prevent wires and cables from changing from one partitioned pathway to another.
- C. Conduit Fittings:
 - Rigid Galvanized Steel and Rigid Intermediate Steel Conduit Fittings:
 - a. Provide fittings meeting requirements of UL 514B and ANSI/ NEMA FB 1.
 - b. Sealing: Provide threaded cast iron type. Use continuous drain type sealing fittings to prevent passage of water and vapor. In concealed work, install sealing fittings in flush steel boxes with blank cover plates having same finishes as other electrical plates in room.
 - c. Standard Threaded Couplings, Locknuts, Bushings, and Elbows: Only steel or malleable iron materials are acceptable. Integral retractable type IMC couplings are also acceptable.
 - d. Locknuts: Bonding type with sharp edges for digging into metal wall of an enclosure.
 - e. Bushings: Metallic insulating type, consisting of an insulating insert molded or locked into metallic body of fitting. Bushings made entirely of metal or nonmetallic material are not permitted.
 - f. Erickson (union-type) and Set Screw Type Couplings:
 - 1) Couplings listed for use in concrete are permitted for use to complete a conduit run where conduit is installed in concrete.
 - Use set screws of case hardened steel with hex head and cup point to seat in conduit wall for positive ground. Tightening of set screws with pliers is prohibited.
 - g. Provide OEM approved fittings.
 - 2. Rigid Aluminum Conduit Fittings:
 - a. Standard Threaded Couplings, Locknuts, Bushings, and Elbows:
 Malleable iron, steel or aluminum alloy materials; Zinc or

27 05 33 - 2

cadmium plate iron or steel fittings. Aluminum fittings containing more than 0.4 percent copper are not permitted.

- b. Locknuts and Bushings: As specified for rigid steel and IMC conduit.
- c. Set Screw Fittings: Not permitted for use with aluminum conduit.
- 3. Electrical Metallic Tubing Fittings:
 - a. Conform to UL 514B and ANSI/ NEMA FB1; only steel or malleable iron materials are acceptable.
 - b. Couplings and Connectors: Concrete tight and rain tight, with connectors having insulated throats.
 - Use set screw type couplings with four set screws each for conduit sizes over 50 mm (2 inches).
 - 2) Use set screws of case-hardened steel with hex head and cup point to seat in wall of conduit for positive grounding.
 - c. Indent type connectors or couplings are not permitted.
 - d. Die-cast or pressure-cast zinc-alloy fittings or fittings made of "pot metal" are not permitted.
 - e. Provide OEM approved fittings.
- 4. Flexible Steel Conduit Fittings:
 - a. Conform to UL 514B; only steel or malleable iron materials are acceptable.
 - b. Provide clamp type, with insulated throat.
 - c. Provide OEM approved fittings.
- 5. Liquid-tight Flexible Metal Conduit Fittings:
 - a. Conform to UL 514B and ANSI/ NEMA FB1; only steel or malleable iron materials are acceptable.
 - b. Fittings must incorporate a threaded grounding cone, a steel or plastic compression ring, and a gland for tightening.
 - c. Provide connectors with insulated throats to prevent damage to cable jacket.
 - d. Provide OEM approved fittings.
- Direct Burial Plastic Conduit Fittings: Provide fittings meeting requirements of UL 514C and NEMA TC3, and as recommended by conduit manufacturer.
- 7. Expansion and Deflection Couplings:
 - a. Conform to UL 467 and UL 514B.

- b. Accommodate 19 mm (3/4 inch) deflection, expansion, or contraction in any direction, and allow 30 degree angular deflections.
- c. Include internal flexible metal braid sized to ensure conduit ground continuity and fault currents in accordance with UL 467, and NEC code tables for ground conductors.
- d. Jacket: Flexible, corrosion-resistant, watertight, moisture and heat resistant molded rubber material with stainless steel jacket clamps.
- D. Conduit Supports:
 - 1. Parts and Hardware: Provide zinc-coat or equivalent corrosion protection.
 - Individual Conduit Hangers: Designed for the purpose, having a preassembled closure bolt and nut, and provisions for receiving a hanger rod.
 - 3. Multiple Conduit (Trapeze) Hangers: Minimum 38 mm by 38 mm (1-1/2 by 1-1/2 inch), 2.78 mm (12 gage) steel, cold formed, lipped channels; with minimum 9 mm (3/8 inch) diameter steel hanger rods.
 - Solid Masonry and Concrete Anchors: Self-drilling expansion shields, or machine bolt expansion.
- E. Outlet, Splice, and Pull Boxes:
 - 1. Conform to UL-50 and UL-514A.
 - 2. Cast metal where required by NEC or shown, and equipped with rustproof boxes.
 - 3. Sheet Metal Boxes: Galvanized steel, except where otherwise shown.
 - 4. Install flush mounted wall or ceiling boxes with raised covers so that front face of raised cover is flush with wall.
 - 5. Install surface mounted wall or ceiling boxes with surface style flat or raised covers.
- F. Wireways: Equip with hinged covers, except where removable covers are shown.
- G. Outlet Boxes:
 - Flush wall mounted minimum 11.9 cm (4-11/16 inches) square, 9.2 cm (3-5/8 inches) deep pressed galvanized steel.

PART 3 - EXECUTION

3.1 EQUIPMENT INSTALLATION AND REQUIREMENTS

A. Penetrations:

- 1. Cutting or Holes:
 - a. Locate holes in advance of installation. Where they are proposed in structural sections, obtain approval of structural engineer and COR prior to drilling through structural sections.
 - b. Make holes through concrete and masonry in new and existing structures with a diamond core drill or concrete saw. Pneumatic hammer, impact electric, hand or manual hammer type drills are not permitted; COR may grant limited permission by request, in condition of limited working space.
 - c. Fire Stop: Where conduits, wireways, and other communications raceways pass through fire partitions, fire walls, smoke partitions, or floors, install a fire stop that provides an effective barrier against spread of fire, smoke and gases as specified in Section 07 84 00, FIRESTOPPING.
 - Fill and seal clearances between raceways and openings with fire stop material.
 - Install only retrofittable, non-hardening, and reusable firestop material that can be removed and reinstalled to seal around cables inside conduits.
 - d. Waterproofing at Floor, Exterior Wall:
 - Seal clearances around conduit and make watertight as specified in Section 07 92 00, JOINT SEALANTS
- B. Conduit Installation:
 - Minimum conduit size of 19 mm (3/4 inch), but not less than size required for 40 percent fill.
 - 2. Install insulated bushings on all conduit ends.
 - Install pull boxes after every 180 degrees of bends (two 90 degree bends). Size boxes per TIA 569.
 - Extend vertical conduits/sleeves through floors minimum 75 mm (3 inches) above floor and minimum 75 mm (3 inches) below ceiling of floor below.
 - Terminate conduit runs to and from a backboard in a closet or interstitial space at top or bottom of backboard. Install conduits to enter telecommunication rooms next to wall and flush with backboard.
 - Where drilling is necessary for vertical conduits, locate holes so as not to affect structural sections.

Lebanon VAMC New Entryway for Building 17 BID DOCUMENTS

7. Seal empty conduits located in telecommunications rooms or on backboards with a standard non-hardening putty compound to prevent entrance of moisture and gases and to meet fire resistance requirements.

Sizes of Conduit Trade Size	Radius of Conduit Bends mm, Inches
3/4	150 (6)
1	230 (9)
1-1/4	350 (14)
1-1/2	430 (17)
2	525 (21)
2-1/2	635 (25)
3	775 (31)
3-1/2	900 (36)
4	1125 (45)

8. Minimum radius of communication conduit bends:

- 9. Provide pull wire in all empty conduits; sleeves through floor are exceptions.
- Complete each entire conduit run installation before pulling in cables.
- 11. Flattened, dented, or deformed conduit is not permitted.
- 12. Ensure conduit installation does not encroach into ceiling height head room, walkways, or doorways.
- Cut conduit square with a hacksaw, ream, remove burrs, and draw tight.
- 14. Install conduit mechanically continuous.
- 15. Independently support conduit at 2.44 m (8 feet) on center; do not use other supports (i.e., suspended ceilings, suspended ceiling supporting members, luminaires, conduits, mechanical piping, or mechanical ducts).
- 16. Support conduit within 300 mm (1 foot) of changes of direction, and within 300 mm (1 foot) of each enclosure to which connected.
- Close ends of empty conduit with plugs or caps to prevent entry of debris, until cables are pulled in.
- 18. Attach conduits to cabinets, splice cases, pull boxes and outlet boxes with bonding type locknuts. For rigid and IMC conduit

installations, provide a locknut on inside of enclosure, made up wrench tight. Do not make conduit connections to box covers.

- 19. Do not use aluminum conduits in wet locations.
- 20. Unless otherwise indicated on drawings or specified herein, conceal conduits within finished walls, floors and ceilings.
- 21. Conduit Bends:
 - a. Make bends with standard conduit bending machines; observe minimum bend radius for cable type and outside diameter.
 - b. Conduit hickey is permitted only for slight offsets, and for straightening stubbed conduits.
 - c. Bending of conduits with a pipe tee or vise is not permitted.
- 22. Layout and Homeruns Deviations: Make only where necessary to avoid interferences and only after drawings showing proposed deviations have been submitted and approved by COR.
- C. Concealed Work Installation:
 - 1. In Concrete:
 - a. Conduit: Rigid steel or IMC.
 - b. Align and run conduit in direct lines.
 - c. Install conduit through concrete beams only when the following occurs:
 - 1) Where shown on structural drawings.
 - As accepted by COR prior to construction, and after submittal of drawing showing location, size, and position of each penetration.
 - d. Installation of conduit in concrete that is less than 75 mm (3 inches) thick is prohibited.
 - Conduit outside diameter larger than 1/3 of slab thickness is prohibited.
 - Space between Conduits in Slabs: Approximately six conduit diameters apart, except one conduit diameter at conduit crossings.
 - Install conduits approximately in center of slab to ensure a minimum of 19 mm (3/4 inch) of concrete around conduits.
 - e. Make couplings and connections watertight. Use thread compounds that are NRTL listed conductive type to ensure low resistance ground continuity through conduits. Tightening set screws with pliers is not permitted.
- D. Furred or Suspended Ceilings and in Walls:

- EMT. Different type conduits mixed indiscriminately in same system is not permitted.
- 2. Align and run conduit parallel or perpendicular to building lines.
- 3. Tightening set screws with pliers is not permitted.
- E. Exposed Work Installation:
 - Unless otherwise indicated on drawings, exposed conduit is only permitted in telecommunications rooms.
 - a. Provide rigid steel, IMC or rigid aluminum.
 - b. Different type of conduits mixed indiscriminately in system is not permitted.
 - 2. Align and run conduit parallel or perpendicular to building lines.
 - 3. Install horizontal runs close to ceiling or beams and secure with conduit straps.
 - Support horizontal or vertical runs at not over 2400 mm (96 inches) intervals.
 - 5. Surface Metal Raceways: Use only where shown on drawings.
 - 6. Painting:
 - a. Paint exposed conduit as specified in Section 09 91 00, PAINTING.
 - b. Refer to Section 09 91 00, PAINTING for preparation, paint type, and exact color.
 - c. Provide labels where conduits pass through walls and floors and at maximum 6000 mm (20 foot) intervals in between.
- F. Expansion Joints:
 - Conduits 75 mm (3 inches) and larger, that are secured to building structure on opposite sides of a building expansion joint, require expansion and deflection couplings. Install couplings in accordance with manufacturer's recommendations.
 - Provide conduits smaller than 75 mm (3 inches) with pull boxes on both sides of expansion joint. Connect conduits to expansion and deflection couplings as specified.
 - 3. Install expansion and deflection couplings where shown.
- G. Conduit Supports, Installation:
 - Select AC193 code listed mechanical anchors or fastening devices with safe working load not to exceed 1/4 of proof test load.
 - Use pipe straps or individual conduit hangers for supporting individual conduits. Maximum distance between supports is 2.5 m (8 foot) on center.

- 3. Support multiple conduit runs with trapeze hangers. Use trapeze hangers designed to support a load equal or greater than sum of the weights of the conduits, wires, hanger itself, and 90 kg (200 pounds). Attach each conduit with U-bolts or other accepted fasteners.
- Support conduit independent of pull boxes, luminaires, suspended ceiling components, angle supports, duct work, and similar items.
- 5. Fastenings and Supports in Solid Masonry and Concrete:
 - a. New Construction: Use steel or malleable iron concrete inserts set in place prior to placing concrete.
 - b. Existing Construction:
 - Code AC193 listed wedge type steel expansion anchors minimum 6 mm (1/4 inch) bolt size and minimum 28 mm (1-1/8 inch) embedment.
 - 2) Power set fasteners minimum 6 mm (1/4 inch) diameter with depth of penetration minimum 75 mm (3 inches).
 - Use vibration and shock resistant anchors and fasteners for attaching to concrete ceilings.
- 6. Fastening to Hollow Masonry: Toggle bolts are permitted.
- 7. Fastening to Metal Structures: Use machine screw fasteners or other devices designed and accepted for application.
- Bolts supported only by plaster or gypsum wallboard are not acceptable.
- Attachment by wood plugs, rawl plug, plastic, lead or soft metal anchors, or wood blocking and bolts supported only by plaster is prohibited.
- 10. Do not support conduit from chain, wire, or perforated strap.
- 11. Spring steel type supports or fasteners are not permitted except horizontal and vertical supports/fasteners within walls.
- 12. Vertical Supports:
 - a. Install riser clamps and supports for vertical conduit runs in accordance with NEC.
 - b. Provide supports for cable and wire with fittings that include internal wedges and retaining collars.
- H. Box Installation:
 - 1. Boxes for Concealed Conduits:
 - a. Flush mounted.

- b. Provide raised covers for boxes to suit wall or ceiling, construction and finish.
- In addition to boxes shown, install additional boxes where needed to prevent damage to cables during pulling.
- Remove only knockouts as required and plug unused openings. Use threaded plugs for cast metal boxes and snap-in metal covers for sheet metal boxes.
- 4. Stencil or install phenolic nameplates on covers of boxes identified on riser diagrams; for example "SIG-FA JB No. 1".
- 5. Outlet boxes mounted back-to-back in same wall are not permitted. A minimum 600 mm (24 inches) center-to-center lateral spacing must be maintained between boxes.
- I. Flexible Nonmetallic Communications Raceway (Innerduct), Installation:
 - Install supports from building structure for horizontal runs at intervals not to exceed 900 mm (3 feet) and at each end.
 - Install supports from building structure for vertical runs at intervals not to exceed 1.2 m (4 feet) and at each side of joints.
 - 3. Install only in accessible spaces not subject to physical damage or corrosive influences.
 - Make bends manually to assure internal diameter of tubing is not effectively reduced.
 - 5. Extend each segment of innerduct minimum 300 mm (12 inches) beyond end of service conduit tie or cable tray. Restrain innerduct ends with wall mount clamps and seal when cable is installed.

3.2 TESTING

- A. Examine fittings and locknuts for secureness.
- B. Test RMC, IMC and EMT systems for electrical continuity.
- C. Perform simple continuity test after cable installation.

- - - E N D - - -

SECTION 27 08 00 COMMISSIONING OF COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section includes requirements for commissioning facility communications systems, related subsystems and related equipment. This Section supplements general requirements specified in Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.
- B. Complete list of equipment and systems to be commissioned is specified in Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS and Specification 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- C. Commissioned Systems:
 - Commissioning of systems specified in Division 27 and 28 is part of project's construction process including documentation and proof of performance testing of these systems, as well as training of VA's Operation and Maintenance personnel in accordance with requirements of Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS and Division 27, in cooperation with Government and Commissioning Agent.
 - The facility exterior closure systems commissioning includes communications systems listed in Section 01 91 00 GENERAL COMMISSIONING REQUIRMENTS and 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.

1.2 RELATED WORK

- A. System tests: Section 01 00 00, GENERAL REQUIREMENTS.
- B. Commissioning process requires review of selected submittals that pertain to systems to be commissioned: Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA AND SAMPLES.
- C. Construction phase commissioning process and procedures including roles and responsibilities of commissioning team members and user training: Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.

1.3 COORDINATION

- A. Commissioning Agent will provide a list of submittals that must be reviewed by Commissioning Agent simultaneously with engineering review; do not proceed with work of sections identified without engineering and Commissioning Agent's review completed.
- B. Commissioning of communications systems require inspection of individual elements of communications system construction throughout

construction period. Coordinate with Commissioning Agent in accordance with Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS and commissioning plan to schedule communications systems inspections as required to support the commissioning process.

1.4 CLOSEOUT SUBMITTALS

- A. Refer to Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS for submittal requirements for pre-functional checklists, equipment startup reports, and other commissioning documents.
- B. Pre-Functional Checklists:
 - Complete pre-functional checklists provided by commissioning agent to verify systems, subsystems, and equipment installation is complete and systems are ready for Systems Functional Performance Testing.
 - 2. Submit completed checklists to COR and to Commissioning Agent. Commissioning Agent can spot check a sample of completed checklists. If Commissioning Agent determines that information provided on the checklist is not accurate, Commissioning Agent then returns the marked-up checklist to Contractor for correction and resubmission.
 - 3. If Commissioning Agent determines that a significant number of completed checklists for similar equipment are not accurate, Commissioning Agent can select a broader sample of checklists for review.
 - 4. If Commissioning Agent determines that a significant number of broader sample of checklists is also inaccurate, all checklists for the type of equipment will be returned to Contractor for correction and resubmission.
- C. Submit training agendas and trainer resumes in accordance with requirements of Section 01 91 00, GENERAL COMMISSIONING REQUIREMENTS.

PART 2 - PRODUCTS - NOT USED

PART 3 - EXECUTION

3.1 FIELD QUALITY CONTROL

- A. Contractor's Tests:
 - Scheduled tests required by other sections of Division 27 must be documented in accordance with Section 01 00 00, GENERAL REQUIREMENTS.

- Incorporate all testing into project schedule. Provide minimum seven calendar days' notice of testing for Commissioning Agent to witness selected Contractor tests at sole discretion of Commissioning Agent.
- 3. Complete tests prior to scheduling Systems Functional Performance Testing.
- B. Systems Functional Performance Testing:
 - Commissioning process includes Systems Functional Performance Testing that is intended to test systems functional performance under steady state conditions, to test system reaction to changes in operating conditions, and system performance under emergency conditions.
 - Commissioning Agent prepares detailed Systems Functional Performance Test procedures for review and acceptance by COR.
 - 3. Provide required labor, materials, and test equipment identified in test procedure to perform tests.
 - 4. Commissioning Agent must witness and document the testing.
 - Provide test reports to Commissioning Agent. Commissioning Agent will sign test reports to verify tests were performed.

3.2 TRAINING

- A. Training of Government's operation and maintenance personnel is required in cooperation with COR and Commissioning Agent.
- B. Provide competent, factory authorized personnel to provide instruction to operation and maintenance personnel concerning location, operation, and troubleshooting of installed systems.
- C. Schedule instruction in coordination with COR after submission and approval of formal training plans.

- - - E N D - - -

SECTION 27 15 00 COMMUNICATIONS STRUCTURED CABLING

PART 1 - GENERAL

1.1 DESCRIPTION

A. This section specifies a complete and operating voice and digital structured cabling distribution system and associated equipment and hardware to be installed in VA Medical Center, here-in-after referred to as the "facility".

1.2 RELATED WORK

- A. Wiring devices: Section 26 27 26, WIRING DEVICES.
- B. General electrical requirements that are common to more than one section in Division 27: Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- C. Requirements for personnel safety and to provide a low impedance path for possible ground fault currents: Section 27 05 26, GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS.
- D. Conduits for cables and wiring: Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS.

1.3 SUBMITTALS

- A. In addition to requirements of Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS provide:
 - Pictorial layout drawing of each voice (telephone) equipment room, Demarc room, telecommunications room, showing termination cabinets, each distribution cabinet and rack, as each is expected to be installed and configured.
 - 2. List of test equipment as per 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS.
- B. Certifications:
 - Submit written certification from OEM indicating that proposed supervisor of installation and proposed provider of contract maintenance are authorized representatives of OEM. Include individual's legal name and address and OEM warranty credentials in the certification.
 - 2. Pre-acceptance Certification: Submit in accordance with test procedures.
 - Test system cables and certify to COR before proof of performance testing can be conducted. Identify each cable as labeled on asinstalled drawings.

- Provide current and qualified test equipment OEM training certificates and product OEM installation certification for contractor installation, maintenance, and supervisory personnel.
- C. Closeout Submittal: Provide document from OEM certifying that each item of equipment installed conforms to OEM published specifications.

1.4 WARRANTY

A. Work subject to terms of Article "Warranty of Construction," FAR clause 52.246-21.

PART 2 - PRODUCTS

2.1 PERFORMANCE AND DESIGN CRITERIA

- A. Provide complete system including "punch down" and cross-connector blocks voice and data distribution sub-systems, and associated hardware including telecommunications outlets (TCO); copper and fiber optic distribution cables, connectors, "patch" cables, "break out" devices and equipment cabinets, interface cabinets, and radio relay equipment rack.
- B. Industry Standards:
 - Cable distribution systems provided under this section are connected to systems identified as critical care performing life support functions.
 - Conform to National and Local Life Safety Codes (whichever are more stringent), NFPA, NEC, this section, Joint Commission Life Safety Accreditation requirements, and OEM recommendations, instructions, and guidelines.
 - Provide supplies and materials listed by a nationally recognized testing laboratory where such standards are established for supplies, materials or equipment.
 - Refer to industry standards and minimum requirements of Section 27 05 11, REQUIREMENTS FOR COMMUNICATIONS INSTALLATIONS and guidelines listed.
 - 5. Active and passive equipment required by system design and approved technical submittal; must conform to each UL standard in effect for equipment, when technical submittal was reviewed and approved by Government or date when COR accepted system equipment to be replaced. Where a UL standard is in existence for equipment to be used in completion of this contract, equipment must bear approved NRTL label.

VA 595-668

AE Works Project No. VLEB-010

- C. System Performance: Provide complete system to meet or exceed TIA Category 6 or on a case by case basis Category 6A for specialized powered systems'.
- D. Provide continuous inter- and/or intra-facility voice, data, and analog service.
 - Provide voice and data cable distribution system based on a physical "Star" topology.
 - 2. Provide separate cable distribution system for emergency, safety and protection systems (i.e. emergency bypass phones; police emergency voice communications from parking lots and stairwells personal protection, duress alarms and annunciation systems; etc.)
 - 3. Contact SMCS 0050P2H3 (202-462-5310) for specific technical assistance and approvals.
- E. Specific Subsystem Requirements: Provide products necessary for a complete and functional voice, data, analog and videotele communications cabling system, including backbone cabling system, patch panels and cross-connections, horizontal cabling systems, jacks, faceplates, and patch cords.
- F. Coordinate size and type of conduit, pathways and firestopping for maximum 40 percent cable fill with subcontractors.
- G. Terminate all interconnecting twisted pair, fiber-optic or coaxial cables on patch panels or punch blocks. Terminate unused or spare conductors and fiber strands. Do not leave unused or spare twisted pair wire, fiber-optic or coaxial cable unterminated, unconnected, loose or unsecured.
- H. Color code distribution wiring to conform to ANSI/TIA 606-B and construction documents, whichever is more stringent. Label all equipment, conduit, enclosures, jacks, and cables on record drawings, to facilitate installation and maintenance.
- I. In addition to requirements in Section 27 05 11, REQUIREMENTS FOR COMMUNICATION INSTALLATIONS, provide stainless steel faceplates with plastic covers over labels.

2.2 EQUIPMENT AND MATERIALS

- A. Cable Systems Twisted Pair, Fiber optic, Coaxial and Analog:
 - 1. General:
 - a. Provide cable (i.e. backbone, outside plant, and horizontal cabling) conforming to accepted industry standards with regards to size, color code, and insulation.

27 15 00 - 3

- b. Some areas can be considered "plenum". Comply with all codes pertaining to plenum environments. It is contractor's responsibility to review the VA's cable requirements with COR and OI&T Service prior to installation to confirm type of environment present at each location.
- c. Provide proper test equipment to confirm that cable pairs meet each OEM's standard transmission requirements, and ensure cable carries data transmissions at required speeds, frequencies, and fully loaded bandwidth.
- 2. Telecommunications Rooms (TR):
 - a. In TR's served with UTP, fiber optic, coaxial and analog backbone cables, terminate UTP cable on RJ-45, 8-pin connectors of separate 48-port modular patch panels.
 - b. Provide 24 port fiber optic modular patch panels with "LC" couplers dedicated for voice, data and FMS applications.
 - c. Provide connecting cables required to extend backbone cables (i.e. patch cords, twenty-five pair, etc.), to ensure complete and operational distribution systems.
 - d. In TR's, which are only served by a UTP backbone cable, terminate cable on separate modular connecting devices, Type 110A punch down blocks (or equivalent), dedicated to data applications.
- 3. Backbone Copper Cables:
 - a. Riser Cable:
 - Provide communication riser cables listed in NEC Table 800, 154(a) for the purpose and suited for electrical connection to a communication network.
 - 2) Provide STP or Unshielded Twisted Pair (UTP), minimum 24 American Wire Gauge (AWG) solid, thermoplastic insulated conductors for communication (analog RF coaxial cable is not to be provided in riser systems) riser cables with a thermoplastic outer jacket.
 - 3) Label and test complete riser cabling system.
- 4. Horizontal Cable: Installed from TCO jack to the TR patch panel.
 - a. Tested to ANSI/TIA-568-C.2 Category 6 requirements including NEXT, ELFEXT (Pair-to-Pair and Power Sum), Insertion Loss (attenuation), Return Loss, and Delay Skew.
 - b. Minimum Transmission Parameters: 250 MHz.
 - c. Provide four pair 0.205 mm2 (24 AWG) cable

- d. Terminate all four pairs on same port at patch panel in $\ensuremath{\mathsf{TR}}$.
- e. Terminate all four pairs on same jack, at work area Telecommunication Outlets (TCO):
 - Jacks: Minimum three eight-pin RJ-45 ANSI/TIA-568-C.2 Category
 Type jacks at TCO.
 - a) Top Port: RJ-45 jack compatible with RJ-11 plug for voice.
 - b) Bottom Two Ports: Unkeyed RJ-45 jacks for data.
- 5. Patient Bedside Prefabricated Units (PBPU):
 - a. Where PBPU's exist in facility, identify single gang "box" location on PBPU designated for installation of TCO; obtain written approval and specific instructions from PBPU OEM regarding disassembly and reassembly of each PBPU to extent necessary to install cable to PBPU box reserved for TCO.
 - b. Provide stainless steel face plate approved for use by PBPU OEM and COR.
- 6. Fiber Optics Backbone Cable:
 - a. Provide 50/125 (for Bell System Interconnection Compatibility micron OM4 multi-mode cable, containing at minimum 18 strands of fiber, unless otherwise specified.
 - b. Provide loose tube cable, which separates individual fibers from the environment, or indoor/outdoor cables, for outdoor runs or any area that includes an outdoor run.
 - c. Provide tight buffered fiber cable or indoor/outdoor cables for indoor runs.
 - d. Terminate multimode fibers at both ends with LC type female connectors installed in an appropriate patch or breakout panel and secured with a cable management system. Provide minimum 610 mm (2 ft.) cable loop at each end.
 - e. Provide single mode fiber optic cable 8.3 mm containing at minimum 12 strands of fiber, unless otherwise specified.
 Terminate single mode fibers at both ends with LC type female connectors installed in an appropriate patch or breakout panel and secured with a cable management system. Provide minimum 610 mm (2 feet) cable loop at each end to allow for future movement.
 - f. Install fiber optic cables in TR's, Voice (Telephone) Switch Room, and Main Computer Room, in rack mounted fiber optic patch panels. Provide female LC couplers in appropriate panel for termination of each strand.

- g. Test all fiber optic strands' cable transmission performance in accordance with TIA standards. Measure attenuation in accordance with fiber optic test procedures TIA-455-C ('-61', or -53). Provide written results to COR for review and approval.
- B. Cross-Connect Systems (CCS):
 - 1. Copper Cables: Provide copper CCS sized to connect cables at TR and allow for a minimum of 50 percent anticipated growth.
 - Maximum DC Resistance per Cable Pair: 28.6 Ohms per 305 m (1,000 feet).
 - 3. Fiber Optic Cables:
 - a. Provide fiber CCS sized to connect cables at TR and allow for a minimum of 50 percent anticipated growth.
 - b. Install fiber optic cable slack in protective enclosures.
- C. Telecommunication Room (TR):
 - Terminate backbone and horizontal, copper, fiber optic, coaxial and analog cables on appropriate cross-connection systems (CCS) containing patch panels, punch blocks, and breakout devices provided in enclosures and tested, regardless of installation method, mounting, termination, or cross-connecting used. Provide cable management system as a part of each CCS.
 - Coordinate location in TR with FMS equipment (i.e. fire alarm, nurse call, code blue, video, public address, radio entertainment, intercom, and radio paging equipment).
- D. Coaxial and Analog Cables: Bond equipment to ground per TIA standards, such that all grounding systems comply with all applicable National, Regional, and Local Building and Electrical codes.
 - Provide current arrester for each copper or coaxial cable that enters from outside of a building regardless if cable is installed underground or aerial.
 - 2. Provide a gas surge protector/module and bond to earth ground.
- E. Main Cross-connection Subsystem (MCCS): MCCS is common point of distribution for inter- and intra-building copper and fiber optic backbone system cables, and connections to the voice (telephone) and data cable systems.
- F. Voice (or Telephone) Cable Cross-Connection Subsystem:
 - 1. Provide Insulation Displacement Connection (IDC) hardware.
 - Provide the following for each Category 5E (or on a case by case basis Category 6 for specialized powered systems technically

accepted by SMCS 005OP2H3, (202) 461-5310, OI&T and FMS Services and COR) Cabling System termination RJ-45 patch cord connector to RJ-45 patch cord connector.

- a. Provide terminations to be accessible without need for disassembly of IDC wafer. Provide IDC wafers removable from their mounts to facilitate testing on either side of connector.
- b. Provide removable designation strips or labels to allow for inspection of terminations.
- c. Provide cable management system as a part of IDC.
- Provide IDC connectors capable of re-terminations, without damage, a minimum of 200 IDC insertions or withdrawals on either side of connector panel.
- 4. Install using only non-impact terminating tool having both a tactile and an audible feedback to indicate proper termination.
- 5. Provide inputs from FTS, Local Voice (Telephone) System, or diverse routed voice distribution systems on left side of IDC (110A blocks with RJ45 connections are acceptable alternates to IDC) of MCCS.
- Provide system outputs from MCCS to voice backbone cable distribution system on the right side of same IDC (or 110A blocks) of MCCS.
- Do not split pairs within cables between different jacks or connections.
- Provide UTP cross connect wire to connect each pair of terminals plus an additional 50 percent spare.
- G. Data Cross-Connection Subsystems:
 - Provide patch panels with modular RJ45 female to 110 connectors for cross-connection of copper data cable terminations with cable management system.
 - 2. Provide patch panels conforming to EIA/ECA 310-E dimensions and suitable for mounting in standard equipment racks, with 48 RJ45 jacks aligned in two horizontal rows per panel. Provide RJ45 jacks of modular design and capable of accepting and functioning with other modular (i.e. RJ11) plugs without damaging jack.
 - a. Provide system inputs from servers, data LAN, bridge, or interface distribution systems on top row of jacks of appropriate patch panel.
 - b. Provide backbone cable connections on bottom row of jacks of same patch panel.

- c. Provide patch cords for each system pair of connection jacks with modular RJ45 connectors provided on each end to match panel's modular RJ45 female jack's being provided.
- H. Fiber-Optic Cross-Connection Subsystems: Provide rack mounted patch or distribution panels installed inside a lockable cabinet or "breakout enclosure" that accommodate minimum 12 strands multimode fiber and 12 strand single mode fiber - these counts do not include 50 percent spare requirement. Provide cable management system for each panel.
 - Provide panels for minimum 24 female LC connectors, able to accommodate splices and field mountable connectors and have capacity for additional connectors to be added up to OEM's maximum standard panel size for this type of use. Protect patch panel sides, including front and back, by a cabinet or enclosure.
 - 2. Provide panels that conform to EIA/ECA 310-E dimensions suitable for installation in standard racks, cabinets, and enclosures.
 - 3. Provide patch panels with highest OEM approved density of fiber LC termination's (maximum of 72 each), while maintaining a high level of manageability. Provide proper LC couplers installed for each pair of fiber optic cable LC connectors.
 - a. Provide system inputs from interface equipment or distribution systems on top row of connectors of appropriate patch panel.
 - b. Provide backbone cable connections on bottom row of connectors of same patch panel.
 - c. Provide patch cords for each pair of fiber optic strands with connector to match couplers.
 - 4. Provide field installable connectors that are pre-polished.
 - a. Terminate every fiber cable with appropriate connector, and test to ensure compliance to specifications and industry standards for fiber optic LC female connector terminated with a fiber optic cable.
 - b. Install a terminating cap for each unused LC connector.
- I. Copper Outside Plant Cable: Minimum of STP, 22 AWG solid conductors, solid PVC insulation, and filled core (flex gel - waterproof Rural Electric Association (REA) listed PE 39 code) between outer armor or jacket and inner conductors protective lining.
 - 1. Provide copper cable system as a Star Topology.
- J. Horizontal Cabling (HC):

VA 595-668

- Horizontal cable length to farthest system outlet to be maximum of 90 m (295 ft).
- 2. Splitting of pairs within a cable between different jacks is not permitted.
- K. Air Blown Fiber: Alternative fiber optic cable installation method.
 - Air blown fiber installation process (also referred to as air blown cable, air assisted cable, high pressure air blowing, cable jetting, and referred to as air blown fiber herein) typically uses separate optical fiber cables along with separate flexible protective microducts installed where optical fiber cables can be blown in using specific equipment, trained installation personnel and practices.
 - 2. Indoor Microducts:
 - a. Provide empty bundled microducts comprising an inner layer of microducts optimized for air blown fiber system and an outer jacket layer of plenum rated material with product identification and sequential length marking on outer layer at minimum one-meter (three feet) intervals.
 - b. Provide microduct allowing multiple fibers to be installed simultaneously into each microduct using air blown fiber installation technique and fibers to also be removed from microduct using same technique.
 - c. Size each microduct for 50 percent unoccupied microducts after initial fiber bundle installation.
 - d. Furnish microducts that maintain minimum bend radius of 20 times cable diameter.
 - e. Provide quantity of plugs or end-caps so all unoccupied microducts are plugged on both ends per manufacturer's specifications. Provide plugs or end-caps that can be easily installed or removed from duct connectors as needed over the lifetime of the installation.
 - 3. Outside Microducts:
 - a. Provide outdoor-rated bundled microducts consisting of a number of empty microducts comprising an inner layer of microducts optimized for air blown fiber system and covered by a rated jacketing material with product identification and sequential length marking on outer layer at one-meter (three feet) minimum intervals.

- b. Provide microducts with rodent protection at direct buried applications.
- c. Protect outdoor-rated bundled microducts either by utilizing a moisture barrier and an outer jacket outerlayer of jacketed, galvanized steel armored (underground), direct buried, or outdoor tray or rack locations, or by utilizing an HDPE jacket (with optional steel-tape wrapped between outer jacket and inner microducts) that has been treated with rodent deterent.
- d. Water-blocking must be accomplished by utilizing a moisture barrier within the bundled microduct assembly or by utilizing water-blocked fiber cable.
- e. Provide microduct allowing multiple fibers to be installed simultaneously into each microduct using air blown fiber installation technique and fibers to also be removed from microduct using same technique.
- f. For future capacity, size each microduct provided for 50 percent unoccupied microducts after initial fiber bundle installation.
- g. Furnish microducts to maintain minimum bend radius twenty times cable diameter.
- h. Provide quantity of plugs or end-caps so unoccupied microducts are plugged on both ends per manufacturer's specifications, to prevent ingress of contaminants including water.
- 4. Microduct Couplers: Provide plastic-bodied pneumatic connector to join microducts of same size.
 - a. Provide straight connectors constructed of a transparent plastic material permitting a visual verification of fiber population.
 - b. Provide tee connectors with additional port allowing for gasblocking in internal/external situations, or provide gas-blocking couplers as needed to protect and isolate classified areas from non-classified areas or provide close-down connectors if needed for midspan assisted blows in long runs
- Microduct Distribution Units: Provide NEMA-rated enclosure, suited for site environmental conditions provided for microduct distribution, routing, and termination.
 - a. Provide unit capable of wall mounting to provide proper geometry for distribution wherever several microducts enter same location or where microduct type transitions take place.
 - b. Size based on number of microducts to enter unit.

- 6. Outdoor Enclosure/Splice Case: Provide outdoor NEMA-rated enclosure, or splice case suitable for site environmental conditions of outside plant microduct distribution and routing.
 - a. Splice Cases: Water-tight, and air-tight re-enterable splice cases that do not require re-entry kits.
 - b. Material: Stainless steel.
 - c. Select enclosure/splice case hardware to meet site conditions.
 - 1) Provide NEMA-4 and 4X enclosures or splice cases in areas where hosing and splashing environmental conditions exist.
 - Provide NEMA-6 and 6P enclosures splice cases in areas where temporary or long term flooded environmental conditions exist.
- 7. Fiber Termination Units: Provide at locations where fiber is to be terminated.
 - a. Provide for strain relief of incoming microducts.
 - b. Provide connector panels and connector couplings adequate to accommodate the number of fibers to be terminated.
 - c. Incorporate radius control mechanisms to limit bending of fibers to manufacturer's recommended minimum or 76 mm (3 inches), whichever is larger.
 - d. Where rack-mount fiber termination hardware is required, provide wall-mount microduct distribution unit near rack and provide individual microducts to route and connect fiber bundle passing through microduct distribution units to fiber termination hardware.
 - e. Provide LC connectors mounted on a coupler panel that snaps into patch panel housing assembly.
- 8. Fiber Bundles or Cables:
 - a. Provide fiber bundles or cables designed and manufactured to facilitate:
 - Rapid installation of fiber using air blown fiber installation process without risk or damage to fibers.
 - Re-installation without degradation of the optical specifications and performance of fiber.
 - Transition points from indoor to outdoor environments without splices.
 - b. Provide jacketed optical fibers manufactured so that the jacketed fiber strands meet GR409 and meet either UL 1666 for riser rated

cables or UL 910 for plenum rated cables and are specific to the purpose of being blown throughout the bundled microduct system.

- c. Provide fiber designed to be stripped and terminated with standard tools.
- d. Provide fiber designed to be terminated with standard fiber optic connectors.
- e. Provide maximum 72 strands of fiber to be blown within each microduct; if fiber counts higher than 72 strands are required, provide microcore fiber with counts to 432 strands in larger size microducts.

2.3 DISTRIBUTION EQUIPMENT AND SYSTEMS

- A. Telecommunication Outlet:
 - 1. TCO consists of minimum one voice (telephone) RJ45 jack and two data RJ45 jacks//, and one single mode fiber optic //, and one multimode fiber optic jacks // mounted in a separate steel outlet box 100 mm (4 inches) x 100 mm (4 inches) x 63 mm (2-1/2 inches) minimum with a labeled stainless steel faceplate. Where shown on drawings, provide a second steel outlet box minimum 100 mm (4 inches) x 100 mm (4 inches) x 63 mm (2-1/2 inches) minimum (4 inches) x 100 mm (4 inches) x 100 mm (4 inches) x 63 mm (2-1/2 inches), with a labeled faceplate, adjacent to first box to ensure system connections and expandability requirements are met.
 - Provide RJ-45/11 compatible female type voice (telephone) multi-pin connections. Provide RJ-45 female type data multi-pin connections. Provide LC ferrule female type fiber optic connectors.
 - 3. Provide wall outlet with a stainless steel face plate and sufficient ports to fit voice (telephone) multi-pin jack, data multi- pin jacks //, fiber optic jacks //, analog jacks // and plastic covers for labels when mounted on outlet box provided (minimum 100mm (4 inches) x 100mm (4 inches) for single and 100mm (4 inches) x 200mm (8 inches) for dual outlet box applications. Install stainless steel face plate, for prefabricated bedside patient unit installations.
 - 4. // Interface fiber optic LC jacks to appropriate patch panels in associated TR, but do not cross-connect fiber optic cables fiber optic equipment or install fiber optic equipment. //
- B. Backbone Distribution Cables:
 - Meet TIA transmission performance requirements of Voice Grade Category 6.
 - 2. Provide cable listed for environments where it is installed.

- 3. Technical Characteristics:
 - a. Length: As required, in minimum 1 kilometer (3,000 ft.) reels.
 - b. Size:
 - 1) Minimum 0.326 mm2 (22 AWG) outside plant installation.
 - 2) Minimum 0.205 mm2 (24 AWG) interior installations.
 - c. Color Coding: American Telephone and Telegraph Company Standard; Bell System Practices Outside Plant Construction and Maintenance Section G50.607.3, Issue 2 February, 1959.
 - d. Minimum Bend Radius: 10X cable outside diameter.
 - e. Impedance: 120 Ohms + 15 percent.
 - f. DC Resistance: Maximum 8.00 ohms/100 m
 - g. Shield Coverage: As required by drawing notes // single shield tape design // dual shield tape design // flat shield bonded to cable jacket //.
 - h. Maximum attenuation for 100m at 20° C:

Frequency (MHz)	//Category 6 (dB)//
.772	-
1	//2.0//
4	//3.8//
8	//5.3//
10	//6.0//
16	//7.6//
20	//8.5//
25	//9.5//
31.25	//10.7//
62.5	//15.4//
100	//19.8//
200	//29.0//
250	//32.8//
300	
400	

Frequency (MHz)	<pre>//Category 6 (dB)//</pre>	
500		

- 4. Data Multi-Conductor:
 - a. Unshielded // F/UTP // cable with solid conductors.
 - b. Able to handle the power and voltage used over the distance required.
 - c. Meets TIA transmission performance requirements of Category // 5E $_{\rm //~6A}$ //.
 - d. Technical Characteristics:
 - 1) 0.205 mm2 (24 AWG) 0.326 mm2 (22 AWG) cable
 - 2) // Working Shield: 350 V. //
 - 3) Bend Radius: 10 times cable outside diameter.
 - 4) Impedance: 100 Ohms + 15%, BAL.
 - 5) Bandwidth: // 250 MHz // 500 MHz //.
 - 6) DC Resistance: Maximum 9.38 Ohms/100m (328 ft.) at 20 degreesC.
 - 7) Maximum Mutual Capacitance: 5.6 nF per 100 m (328 ft.).
 - 8) Shield Coverage:
 - a) Overall Outside (if OEM specified): 100 percent.
 - b) Individual Pairs (if OEM specified): 100 percent.
 - 9) Maximum attenuation for 100m (328 ft.) at 20 $^{\circ}$ C:

Frequency	//Category 6	
(MHz)	(dB) / /	
()		
1	//2.0//	
4	//3.8//	
8	//5.3//	
0	// 5.5//	
10	//6.0//	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
16	//7.6//	
20	//8.5//	
25	//9.5//	
2.5	// 9.3//	
31.25	//10.7//	
01.20	// ±0•///	
62.5	//15.4//	
100	//19.8//	

Frequency	//Category 6	
(MHz)	(dB)//	
200	//29.0//	
250	//32.8//	
300		
400		
500		

- 5. Fiber Optic:
 - a. Multimode Fiber:
 - Provide OM4 // OM2 // Type general purpose multimode fiber optic cable installed in conduit for system locations with load-bearing support braid surrounding inner tube for strength during cable installation.
 - 2) Technical Characteristics:
 - a) Bend Radius: Minimum 152 mm (6 inches); outer jacket as required.
 - b) Fiber Diameter: 50 // 62.5 for Bell System Interconnection Standard requirements // microns.
 - c) Cladding: 125 microns.
 - d) Attenuation:
 - 1) 850 nanometer: Maximum 4.0 dB per kilometer.
 - 2) 1,300 nanometer: Maximum 2.0 dB per kilometer.
 - e) Bandwidth:
 - 1) 850 nanometer: Minimum 160 MHz.
 - 2) 1,300 nanometer: Minimum 500 MHz.
 - f) Connectors: Stainless steel.
 - b. Single mode Fiber:
 - Provide OS1 Type general purpose single mode fiber optic cable installed in conduit for all system locations with loadbearing support braid surrounding inner tube for strength during cable installation.
 - 2) Technical Characteristics:
 - a) Bend Radius: Minimum 100 mm (4 inches).
 - b) Outer Jacket: PVC.
 - c) Fiber Diameter: 8.7 microns.
 - d) Cladding: 125 microns.

- e) Attenuation at 850 nanometer: 1.0 dBm per kilometer.
- f) Connectors: Ceramic.
- C. Outlet Connection Cables:
 - 1. Voice (Telephone):
 - a. Provide a connection cable for each TCO voice (telephone) jack in system with 10 percent spares able to connect voice (telephone) connection cable from voice (telephone) instrument to TCO voice (telephone) jack. Do not provide voice (telephone) instruments or equipment.
 - b. Technical Characteristics:
 - 1) Length: Minimum 1.8 m (6 feet).
 - 2) Cable: Voice Grade.
 - 3) Connector: RJ-45 compatible male on each end.
 - 4) Size: Minimum 24 AWG.
 - 5) Color Coding: Required, telephone industry standard.
 - 2. Data:
 - a. Provide a connection cable for each TCO data jack in system with 10 percent spares to connect a data instrument to TCO data jack. Do not provide data terminals/equipment.
 - b. Technical Characteristics:
 - 1) Length: Minimum 1.8 m (6 feet).
 - Cable: Data grade Category 6 or on a case-by-case basis
 Category 6 for specialized powered systems accepted by SMCS
 0050P2H3 (202) 461-5310, IT and FMS Services and COR.
 - 3) Connector: RJ-45 male on each end.
 - 4) Color Coding: Required, data industry standard.
 - 5) Size: Minimum 24 AWG.
 - 3. Fiber Optic:
 - a. Provide a connection cable for each TCO fiber optic connector in system with 10 percent spares. Provide data connection cable to connect a fiber optic instrument to TCO fiber optic jack. Do not provide fiber optic instruments/equipment.
 - b. Technical Characteristics:
 - 1) Length: Minimum 1.8 m (6 feet).
 - 2) Cable: Flexible single conductor with jacket.
 - 3) Connector: LC // SC // male on each end.
 - 4) Size: To fit // OM1 single mode or // OM4 multimode cable.
- D. System Connectors:

- 1. Modular (RJ-45: Provide voice and high speed data transmission applications type modular plugs compatible with voice (telephone) instruments, computer terminals, and other type devices requiring linking through modular telecommunications outlet to the system compatible with UTP // F/UTP //cables.
 - a. Technical Characteristics:
 - 1) Number of Pins:
 - a) RJ-45: Eight.
 - b) RJ-11/45: Compatible with RJ-45.
 - 2) Dielectric: Surge.
 - 3) Voltage: Minimum 1,000V RMS, 60 Hz at one minute.
 - 4) Current: 2.2A RMS at 30 minutes or 7.0A RMS at 5.0 seconds.
 - 5) Leakage: Maximum 100 µA.
 - 6) Connections:
 - a) Initial contact resistance: Maximum 20 milli-Ohms.
 - b) Insulation displacement: Maximum 10 milli-Ohms.
 - c) Interface: Must interface with modular jacks from a variety of OEMs. RJ-11/45 plugs provide connection when used in RJ-45 jacks.
 - d) Durability: Minimum 200 insertions/withdrawals.
- E. Conduit and Signal Ducts:
 - 1. Conduit:
 - Provide conduit or sleeves for cables penetrating walls, ceilings, floors, interstitial space, fire barriers, etc.
 - b. Minimum Conduit Size: 19 mm (3/4 inch).
 - c. Provide separate conduit and signal ducts for each cable type installation.
 - d. When metal (plastic covered, flexible cable protective armor, etc.) systems are authorized to be provided for use in system, follow installation guidelines and standard specified in Section 27 05 33, RACEWAYS AND BOXES FOR COMMUNICATIONS SYSTEMS and NEC.
 - e. Maximum 40 percent conduit fill for cable installation.
 - Signal Duct, Cable Duct, or Cable Tray: Use existing signal duct, cable duct, and cable tray, when identified and accepted by COR.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install for ease of operation, maintenance, and testing.

Lebanon VAMC New Entryway for Building 17 BID DOCUMENTS

- B. Install system to comply with NFPA 70 National Electrical Code, NFPA 99 Health Care Facilities, NFPA 101 Life Safety Code, Joint Commission Manual for Health Care Facilities, and original equipment manufacturers' (OEM) installation instructions.
- C. Cable Systems Installation:
 - Install system cables in cable duct, cable tray, cable runway, conduit or when specifically approved, flexible NEC Article 800 communications raceway. Confirm drawings show sufficient quantity and size of cable pathways. If flexible communications raceway is used, install in same manner as conduit.
 - Coordinate outside plant and backbone cables to furnish number of cable pairs for system requirements and obtain approval of COR and IT Service prior to installation.
 - Bond to ground metallic cable sheaths, etc. (i.e. risers, underground, horizontal, etc.).
 - 4. Install temporary cable to not present a pedestrian safety hazard and be responsible for all work associated with removal. Temporary cable installations are not required to meet Industry Standards; but, must be reviewed and accepted by COR, IT Service, FMS and SMCS 0050P2H3 (202-461-5310) prior to installation.
- D. Patient Bedside Prefabricated Units (PBPU) Installation:
 - Under no circumstances, proceed with installing PBPU without written approval of PBPU OEM and specific instructions regarding attachment to or modifying of PBPU.
 - 2. Maintain UL integrity of each PBPU. If installation violates UL integrity, obtain on site UL re-certification of violated PBPU at the direction of COR.
- E. Labeling:
 - Industry Standard: Provide labeling in accordance with ANSI/TIA-606-B.
 - 2. Print lettering of labels with // laser printers // thermal ink transfer process // ____ //; handwritten labels are not acceptable.
 - 3. Label both ends of all cables in accordance with industry standard. Provide permanent Labels in contrasting colors and identify according to system "Record Wiring Diagrams".
 - Termination Hardware: Label workstation outlets and patch panel connections using color coded labels with identifiers in accordance with industry standard and record on "Record Wiring Diagrams".

3.2 FIELD QUALITY CONTROL

A. Interim Inspection:

- Verify that equipment provided adheres to installation requirements of this section. Interim inspection must be conducted by a factorycertified representative and witnessed by COR.
- 2. Check each item of installed equipment to ensure appropriate NRTL label.
- 3. Verify cabling terminations in telecommunications rooms and at workstations adhere to color code for // T568B // T568A // pin assignments and cabling connections comply with TIA standards.
- Visually confirm marking of cables, faceplates, patch panel connectors and patch cords.
- 5. Perform fiber optical field inspection tests via attenuation measurements on factory reels and provide results along with manufacturer certification for factory reel tests. Remove failed cable reels from project site upon attenuation test failure.
- 6. Notify COR of the estimated date the contractor expects to be ready for interim inspection, at least 20 working days before requested inspection date, so interim inspection does not affect systems' completion date.
- 7. Provide results of interim inspection to COR. If major or multiple deficiencies are discovered, COR can require a second interim inspection before permitting contractor to continue with system installation.
- 8. Do not proceed with installation until COR determines if an additional inspection is required. In either case, re-inspection of deficiencies noted during interim inspections must be part of the proof of performance test.
- B. Pretesting:
 - 1. Pretest entire system upon completion of system installation.
 - Verify during system pretest, utilizing the accepted equipment, that system is fully operational and meets system performance requirements of this section.
 - Provide COR four copies of recorded system pretest measurements and the written certification that system is ready for formal acceptance test.
- C. Microduct Tests:

- Furnish COR, obstruction and pressure test data for each microduct installed. Complete pressure and obstruction tests per manufacturer's recommended procedures prior to installing fiber, and ensure 100 percent of all microducts are compliant with manufacturer.
- 2. Complete microduct pressure testing before proceeding with end-toend microduct obstruction testing.
- Notify COR at least one week in advance of test date so that Government and design professional may be present to witness testing.
- Maintain close contact with chosen and technically-approved OEM and SMCS 0050P2H3 throughout installation, testing and certification process.
- D. Acceptance Test:
 - After system has been pretested and the contractor has submitted pretest results and certification to COR, then schedule an acceptance test date and give COR 30 days' written notice prior to date acceptance test is expected to begin.
 - 2. Test only in presence of a COR.
 - Test utilizing approved test equipment to certify proof of performance.
 - 4. Verify that total system meets the requirements of this section.
 - 5. Include expected duration oftest time, with notification of the acceptance test.
- E. Verification Tests:
 - Test // UTP // STP // copper cabling for DC loop resistance, shorts, opens, intermittent faults, and polarity between conductors, and between conductors and shield, if cable has an overall shield. Test cables after termination and prior to cross-connection.
 - 2. Multi-mode Fiber Optic Cable: Perform end-to-end attenuation tests in accordance with TIA-568-B.3 and TIA-526-14A using // Method A, Optical Power Meter and Light Source // and // Method B, OTDR //. Perform verification acceptance test.
 - 3. Single mode Fiber Optic Cable: Perform end-to-end attenuation tests in accordance with TIA-568-B.3 and TIA-526-7 using //Method A, Optical Power Meter and Light Source // and // Method B, OTDR //. Perform verification acceptance test.
- F. Performance Testing:

- Perform Category 5E (or on a case by case basis Category 6// 6A// for specialized powered systems accepted by SMCS 0050P2H3, (202) 461-5310, IT and FMS Services and COR) tests in accordance with TIA-568-B.1 and TIA-568-B.2. Include the following tests - wire map, length, insertion loss, return loss, NEXT, PSNEXT, ELFEXT, PSELFEXT, propagation delay and delay skew.
- 2. Fiber Optic Links: Perform end-to-end fiber optic cable link tests in accordance with TIA-568-B.3.
- G. Total System Acceptance Test: Perform verification tests for UTP // STP // copper cabling systems // and // multi-mode // and single mode // fiber optic cabling systems after complete telecommunication distribution system and workstation outlet are installed.

3.3 MAINTENANCE

- A. Accomplish the following minimum requirements during one year warranty period:
 - Respond and correct on-site trouble calls, during standard work week:
 - a. A routine trouble call within one working day of its report. A routine trouble is considered a trouble which causes a system outlet, station, or patch cord to be inoperable.
 - b. Standard work week is considered 8:00 A.M. to 5:00 P.M., Monday through Friday exclusive of Federal holidays.
 - Respond to an emergency trouble call within six hours of its report. An emergency trouble is considered a trouble which causes a subsystem or distribution point to be inoperable at any time.
 - Respond on-site to a catastrophic trouble call within four hours of its report. A catastrophic trouble call is considered total system failure.
 - a. If a system failure cannot be corrected within four hours (exclusive of standard work time limits), provide alternate equipment, or cables within four hours after four hour trouble shooting time.
 - b. Routine or emergency trouble calls in critical emergency health care facilities (i.e., cardiac arrest, intensive care units, etc.) are also be deemed as a catastrophic trouble.
 - 4. Provide COR written report itemizing each deficiency found and the corrective action performed during each official reported trouble

call. Provide COR with sample copies of reports for review and

approval at beginning of total system acceptance test.

- - - E N D - - -

SECTION 28 13 00 PHYSICAL ACCESS CONTROL SYSTEM

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section specifies the finishing, installation, connection, testing and certification of a complete and fully operating Physical Access Control System, hereinafter referred to as the PACS.
- B. This Section includes a Physical Access Control System consisting of a system server, one or more networked workstation computers, operating system and application software, and field-installed Controllers connected by a high-speed electronic data transmission network. The PACS shall have the following:
 - 1. Physical Access Control:
 - a. Regulating access through doors, gates, traffic-control bollards
 - b. Anti-passback
 - c. Visitor assignment
 - d. Surge and tamper protection
 - e. Secondary alarm annunciator
 - f. Credential cards and readers
 - h. Push-button switches
 - i. RS-232 ASCII interface
 - j. Credential creation and credential holder database and management
 - k. Monitoring of field-installed devices
 - 1. Interface with paging, HVAC, elevator control systems.
 - m. Reporting
 - 2. Security:
 - a. Real-time guard tour.
 - b. Time and attendance.
 - c. Key tracking.
 - d. Video and camera control.
- C. System Architecture:
 - Criticality, operational requirements, and/or limiting points of failure may dictate the development of an enterprise and regional server architecture as opposed to system capacity. Provide server and workstation configurations with all necessary connectors, interfaces and accessories as shown.

- D. PACS shall provide secure and reliable identification of Federal employees and contractors by utilizing credential authentication per FIPS-201.
- E. Physical Access Control System (PACS) shall consist of:
 - 1. Head-End equipment server,
 - 2. One or more networked PC-based workstations,
 - 3. Physical Access Control System and Database Management Software,
 - 4. Credential validation software/hardware,
 - 5. Field installed controllers,
 - 6. PIV Middelware,
 - 7. Card readers,
 - 10. Supportive information system,
 - 11. Door locks and sensors,
 - 12. Power supplies,
 - 13. Interfaces with:
 - a. Video Surveillance and Assessment System,
 - b. Gate, turnstile, and traffic arm controls,
 - c. Automatic door operators,
 - d. Intrusion Detection System,
 - e. Intercommunication System
 - f. Fire Protection System,
 - g. HVAC,
 - h. Building Management System,
 - i. Elevator Controls,
- F. Head-End equipment server, workstations and controllers shall be connected by a high-speed electronic data transmission network.
- G. Information system supporting PACS, Head-End equipment server, workstations, network switches, routers and controllers shall comply with FIPS 200 requirements (Minimum Security Requirements for Federal Information and Information Systems) and NIST Special Publication 800-53 (Recommended Security Controls for Federal Information Systems).
- H. PACS system shall support:
 - 1. Multiple credential authentication modes,
 - 2. Bidirectional communication with the reader,
 - 3. Incident response policy implementation capability; system shall have capability to automatically change access privileges for

certain user groups to high security areas in case of incident/emergency.

- 4. Visitor management,
- I. All security relevant decisions shall be made on "secure side of the door". Secure side processing shall include;
 - 1. Challenge/response management,
 - 2. PKI path discovery and validation,
 - 3. Credential identifier processing,
 - 4. Authorization decisions.
- J. For locations where secure side processing is not applicable the tamper switches and certified cryptographic processing shall be provided per FIPS-140-2.
- K. System Software: Based on exsiting central-station, workstation operating system, server operating system, and application software.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- B. Section 07 84 00 FIRESTOPPING. Requirements for firestopping application and use.
- C. Section 08 11 73 SLIDING METAL FIRE DOORS. Requirements for door installation.
- F. Section 08 71 00 DOOR HARDWARE. Requirements for door installation.
- G. Section 10 14 00 SIGNAGE. Requirements for labeling and signs.
- J. Section 26 05 11 REQUIREMENTS FOR ELECTRICAL INSTALLATIONS. Requirements for connection of high voltage.
- K. Section 26 05 21 LOW VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW). Requirements for power cables.
- L. Section 26 05 33 RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS. Requirements for infrastructure.
- O. Section 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY. For general requirements that are common to more than one section in Division 28.
- P. Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for conductors and cables.
- Q. Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY. Requirements for grounding of equipment.

- R. Section 28 05 28.33 CONDUITS AND BOXES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for infrastructure.
- S. Section 28 08 00 COMMISIONING OF ELECTRONIC SAFETY AND SECURITY. For requirements for commissioning, systems readiness checklists, and training.
- T. Section 28 13 16 ACCESS CONTROL SYSTEM AND DATABASE MANAGEMENT. Requirements for control and operation of all security systems.
- U. Section 28 13 53 SECURITY ACCESS DETECTION. Requirements for screening of personnel and shipments.
- V. Section 28 16 00 INTRUSION DETECTION SYSTEM (IDS). Requirements for alarm systems.
- W. Section 28 23 00 VIDEO SURVEILLANCE. Requirements for security camera systems.
- X. Section 28 26 00 ELECTRONIC PERSONAL PROTECTION SYSTEM (EPPS). Requirements for emergency and interior communications.
- Y. Section 28 31 00 FIRE DETECTION AND ALARM. Requirements for integration with fire detection and alarm system.

1.3 QUALITY ASSURANCE

- A. Refer to 25 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY, Part 1
 - A. The Contractor shall be responsible for providing, installing, and the operation of the PACS as shown. The Contractor shall also provide certification as required.
 - B. The security system will be installed and tested to ensure all components are fully compatible as a system and can be integrated with all associated security subsystems, whether the security system is stand-alone or a part of a complete Information Technology (IT) computer network.
 - C. Manufacturers Qualifications: The manufacturer shall regularly and presently produce, as one of the manufacturer's principal products, the equipment and material specified for this project, and shall have manufactured the item for at least three years.
 - D. Product Qualifications:
 - Manufacturer's product shall have been in satisfactory operation, on three installations of similar size and type as this project, for approximately three years.

- The Government reserves the right to require the Contractor to submit a list of installations where the products have been in operation before approval.
- E. Contractor Qualifications:
 - 1. The Contractor or security sub-contractor shall be a licensed security Contractor with a minimum of five (5) years experience installing and servicing systems of similar scope and complexity. The Contractor shall be an authorized regional representative of the Security Management System's (PACS) manufacturer. The Contractor shall provide four (4) current references from clients with systems of similar scope and complexity which became operational in the past three (3) years. At least three (3) of the references shall be utilizing the same system components, in a similar configuration as the proposed system. The references must include a current point of contact, company or agency name, address, telephone number, complete system description, date of completion, and approximate cost of the project. The owner reserves the option to visit the reference sites, with the site owner's permission and representative, to verify the quality of installation and the references' level of satisfaction with the system. The Contractor shall provide copies of system manufacturer certification for all technicians. The Contractor shall only utilize factory-trained technicians to install, program, and service the PACS. The Contractor shall only utilize factory-trained technicians to install, terminate and service controller/field panels and reader modules. The technicians shall have a minimum of five (5) continuous years of technical experience in electronic security systems. The Contractor shall have a local service facility. The facility shall be located within 60 miles of the project site. The local facility shall include sufficient spare parts inventory to support the service requirements associated with this contract. The facility shall also include appropriate diagnostic equipment to perform diagnostic procedures. The Resident Engineer reserves the option of surveying the company's facility to verify the service inventory and presence of a local service organization.

- a. The Contractor shall provide proof project superintendent with BICSI Certified Commercial Installer Level 1, Level 2, or Technician to provide oversight of the project.
- b. Cable installer must have on staff a Registered Communication Distribution Designer (RCDD) certified by Building Industry Consulting Service International. The staff member shall provide consistent oversight of the project cabling throughout design, layout, installation, termination and testing.
- F. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render satisfactory service to this installation within four hours of receipt of notification that service is needed. Submit name and address of service organizations.

1.4 SUBMITTALS

- A. Submit below items in conjunction with Master Specification Sections 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, Section 02 41 00, DEMOLITION, and Section 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY.
- B. Provide certificates of compliance with Section 1.3, Quality Assurance.
- C. Provide a complete and thorough pre-installation and as-built design package in both electronic format and on paper, minimum size 42 x 30 inches); drawing submittals shall be per the established project schedule.
- D. Shop drawing and as-built packages shall include, but not be limited to:
 - 1. Index Sheet that shall:
 - a. Define each page of the design package to include facility name, building name, floor, and sheet number.
 - b. Provide a complete list of all security abbreviations and symbols.
 - c. Reference all general notes that are utilized within the design package.
 - d. Specification and scope of work pages for all individual security systems that are applicable to the design package that will:
 - Outline all general and job specific work required within the design package.

- Provide a detailed device identification table outlining device Identification (ID) and use for all security systems equipment utilized in the design package.
- Drawing sheets that will be plotted on the individual floor plans or site plans shall:
 - a. Include a title block as defined above.
 - b. Clearly define the drawings scale in both standard and metric measurements.
 - c. Provide device identification and location.
 - d. Address all signal and power conduit runs and sizes that are associated with the design of the electronic security system and other security elements (e.g., barriers, etc.).
 - e. Identify all pull box and conduit locations, sizes, and fill capacities.
 - f. Address all general and drawing specific notes for a particular drawing sheet.
- 3. A detailed riser drawing for each applicable security subsystem shall:
 - a. Indicate the sequence of operation.
 - b. Relationship of integrated components on one diagram.
 - c. Include the number, size, identification, and maximum lengths of interconnecting wires.
 - d. Wire/cable types shall be defined by a wire and cable schedule. The schedule shall utilize a lettering system that will correspond to the wire/cable it represents (example: A = 18 AWG/1 Pair Twisted, Unshielded). This schedule shall also provide the manufacturer's name and part number for the wire/cable being installed.
- 4. A detailed system drawing for each applicable security system shall:
 - a. Clearly identify how all equipment within the system, from main panel to device, shall be laid out and connected.
 - b. Provide full detail of all system components wiring from pointto-point.
 - c. Identify wire types utilized for connection, interconnection with associate security subsystems.
 - d. Show device locations that correspond to the floor plans.

- e. All general and drawing specific notes shall be included with the system drawings.
- 5. A detailed schedule for all of the applicable security subsystems shall be included. All schedules shall provide the following information:
 - a. Device ID.
 - b. Device Location (e.g. site, building, floor, room number, location, and description).
 - c. Mounting type (e.g. flush, wall, surface, etc.).
 - d. Power supply or circuit breaker and power panel number.
 - e. In addition, for the PACS, provide the door ID, door type (e.g. wood or metal), locking mechanism (e.g. strike or electromagnetic lock) and control device (e.g. card reader or biometrics).
- 6. Detail and elevation drawings for all devices that define how they were installed and mounted.
- E. Pre-installation design packages shall go through a full review process conducted by the Contractor along with a VA representative to ensure all work has been clearly defined and completed. All reviews shall be conducted in accordance with the project schedule. There shall be four (4) stages to the review process:
 - 1. 35 percent
 - 2. 65 percent
 - 3. 90 percent
 - 4. 100 percent
- F. Provide manufacturer security system product cut-sheets. Submit for approval at least 30 days prior to commencement of formal testing, a Security System Operational Test Plan. Include procedures for operational testing of each component and security subsystem, to include performance of an integrated system test.
- G. Submit manufacture's certification of Underwriters Laboratories, Inc. (UL) listing as specified. Provide all maintenance and operating manuals per Section 01 00 00, GENERAL REQUIREMENTS, and Section 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY.
- H. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the

requirements of Section 28 08 00 COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS.

- I. General: Submittals shall be in full compliance of the Contract Documents. All submittals shall be provided in accordance with this section. Submittals lacking the breath or depth these requirements will be considered incomplete and rejected. Submissions are considered multidisciplinary and shall require coordination with applicable divisions to provide a complete and comprehensive submission package. Additional general provisions are as follows:
 - The Contractor shall schedule submittals in order to maintain the project schedule. For coordination drawings refer to Specification Section 01 33 10 - DESIGN SUBMITTAL PROCEDURES, which outline basic submittal requirements and coordination. Section 01 33 10 shall be used in conjunction with this section.
 - The Contractor shall identify variations from requirements of Contract Documents and state product and system limitations, which may be detrimental to successful performance of the completed work or system.
 - 3. Each package shall be submitted at one (1) time for each review and include components from applicable disciplines (e.g., electrical work, architectural finishes, door hardware, etc.) which are required to produce an accurate and detailed depiction of the project.
 - 4. Manufacturer's information used for submittal shall have pages with items for approval tagged, items on pages shall be identified, and capacities and performance parameters for review shall be clearly marked through use of an arrow or highlighting. Provide space for Resident Engineer and Contractor review stamps.
 - 5. Technical Data Drawings shall be in the latest version of AutoCAD®, drawn accurately, and in accordance with VA CAD Standards. FREEHAND SKETCHES OR COPIED VERSIONS OF THE CONSTRUCTION DOCUMENTS WILL NOT BE ACCEPTED. The Contractor shall not reproduce Contract Documents or copy standard information as the basis of the Technical Data Drawings. If departures from the technical data drawings are subsequently deemed necessary by the Contractor, details of such departures and the reasons thereof shall be submitted in writing to the Resident Engineer for approval before the initiation of work.

- 6. Packaging: The Contractor shall organize the submissions according to the following packaging requirements.
 - a. Binders: For each manual, provide heavy duty, commercial quality, durable three (3) ring vinyl covered loose leaf binders, sized to receive 8.5 x 11 in paper, and appropriate capacity to accommodate the contents. Provide a clear plastic sleeve on the spine to hold labels describing the contents. Provide pockets in the covers to receive folded sheets.
 - Where two (2) or more binders are necessary to accommodate data, correlate data in each binder into related groupings according to the Project Manual table of contents. Crossreferencing other binders where necessary to provide essential information for communication of proper operation and or maintenance of the component or system.
 - Identify each binder on the front and spine with printed binder title, Project title or name, and subject matter covered. Indicate the volume number if applicable.
 - b. Dividers: Provide heavy paper dividers with celluloid tabs for each Section. Mark each tab to indicate contents.
 - c. Protective Plastic Jackets: Provide protective transparent plastic jackets designed to enclose diagnostic software for computerized electronic equipment.
 - d. Text Material: Where written material is required as part of the manual use the manufacturer's standard printed material, or if not available, specially prepared data, neatly typewritten on 8.5 inches by 11 inches 20 pound white bond paper.
 - e. Drawings: Where drawings and/or diagrams are required as part of the manual, provide reinforced punched binder tabs on the drawings and bind them with the text.
 - Where oversized drawings are necessary, fold the drawings to the same size as the text pages and use as a foldout.
 - 2) If drawings are too large to be used practically as a foldout, place the drawing, neatly folded, in the front or rear pocket of the binder. Insert a type written page indicating the drawing title, description of contents and drawing location at the appropriate location of the manual.

- Drawings shall be sized to ensure details and text is of legible size. Text shall be no less than 1/16" tall.
- f. Manual Content: In each manual include information specified in the individual Specification section, and the following information for each major component of building equipment and controls:
 - 1) General system or equipment description.
 - 2) Design factors and assumptions.
 - 3) Copies of applicable Shop Drawings and Product Data.
 - 4) System or equipment identification including: manufacturer, model and serial numbers of each component, operating instructions, emergency instructions, wiring diagrams, inspection and test procedures, maintenance procedures and schedules, precautions against improper use and maintenance, repair instructions, sources of required maintenance materials and related services, and a manual index.
- g. Binder Organization: Organize each manual into separate sections for each piece of related equipment. At a minimum, each manual shall contain a title page, table of contents, copies of Product Data supplemented by drawings and written text, and copies of each warranty, bond, certifications, and service Contract issued. Refer to Group I through V Technical Data Package Submittal requirements for required section content.
- h. Title Page: Provide a title page as the first sheet of each manual to include the following information; project name and address, subject matter covered by the manual, name and address of the Project, date of the submittal, name, address, and telephone number of the Contractor, and cross references to related systems in other operating and/or maintenance manuals.
- i. Table of Contents: After the title page, include a type written table of contents for each volume, arranged systematically according to the Project Manual format. Provide a list of each product included, identified by product name or other appropriate identifying symbols and indexed to the content of the volume. Where more than one (1) volume is required to hold data for a particular system, provide a comprehensive table of contents for all volumes in each volume of the set.

- j. General Information Section: Provide a general information section immediately following the table of contents, listing each product included in the manual, identified by product name. Under each product, list the name, address, and telephone number of the installer and maintenance Contractor. In addition, list a local source for replacement parts and equipment.
- k. Drawings: Provide specially prepared drawings where necessary to supplement the manufacturers printed data to illustrate the relationship between components of equipment or systems, or provide control or flow diagrams. Coordinate these drawings with information contained in Project Record Drawings to assure correct illustration of the completed installation.
- 1. Manufacturer's Data: Where manufacturer's standard printed data is included in the manuals, include only those sheets that are pertinent to the part or product installed. Mark each sheet to identify each part or product included in the installation. Where more than one (1) item in tabular format is included, identify each item, using appropriate references from the Contract Documents. Identify data that is applicable to the installation and delete references to information which is not applicable.
- m. Where manufacturer's standard printed data is not available and the information is necessary for proper operation and maintenance of equipment or systems, or it is necessary to provide additional information to supplement the data included in the manual, prepare written text to provide the necessary information. Organize the text in a consistent format under a separate heading for different procedures. Where necessary, provide a logical sequence of instruction for each operating or maintenance procedure. Where similar or more than one product is listed on the submittal the Contractor shall differentiate by highlighting the specific product to be utilized.
- n. Calculations: Provide a section for circuit and panel calculations.
- o. Loading Sheets: Provide a section for DGP Loading Sheets.
- p. Certifications: Provide section for Contractor's manufacturer certifications.

- 7. Contractor Review: Review submittals prior to transmittal. Determine and verify field measurements and field construction criteria. Verify manufacturer's catalog numbers and conformance of submittal with requirements of contract documents. Return nonconforming or incomplete submittals with requirements of the work and contract documents. Apply Contractor's stamp with signature certifying the review and verification of products occurred, and the field dimensions, adjacent construction, and coordination of information is in accordance with the requirements of the contract documents.
- Resubmission: Revise and resubmit submittals as required within 15 calendar days of return of submittal. Make resubmissions under procedures specified for initial submittals. Identify all changes made since previous submittal.
- 9. Product Data: Within 15 calendar days after execution of the contract, the Contractor shall submit for approval a complete list of all of major products proposed for use. The data shall include name of manufacturer, trade name, model number, the associated contract document section number, paragraph number, and the referenced standards for each listed product.
- J. Group 1 Technical Data Package: Group I Technical Data Package shall be one submittal consisting of the following content and organization. Refer to VA Special Conditions Document for drawing format and content requirements. The data package shall include the following:
 - 1. Section I Drawings:
 - a. General Drawings shall conform to VA Special Conditions and CAD Standards Documents. All text associated with security details shall be 1/8" tall and meet VA text standard for AutoCAD™ drawings.
 - b. Cover Sheet Cover sheet shall consist of Project Title and Address, Project Number, Area and Vicinity Maps.
 - c. General Information Sheets General Information Sheets shall consist of General Notes, Abbreviations, Symbols, Wire and Cable Schedule, Project Phasing, and Sheet Index.
 - d. Floor Plans Floor plans shall be produced from the Architectural backgrounds issued in the Construction Documents. The contractor shall receive floor plans from the prime A/E to

develop these drawing sets. Security devices shall be placed on drawings in scale. All text associated with security details shall be 1/8" tall and meet VA text standard for AutoCAD™ drawings. Floor plans shall identify the following:

- 1) security devices by symbol,
- the associated device point number (derived from the loading sheets),
- 3) wire & cable types and counts
- 4) conduit sizing and routing
- 5) conduit riser systems
- 6) device and area detail call outs
- e. Architectural details Architectural details shall be produced for each device mounting type (door details for doors with physical access control, reader pedestals and mounts, security panel and power supply details).
- f. Riser Diagrams Contractor shall provide a riser diagram indicating riser architecture and distribution of the physical access control system throughout the facility (or area in scope).
- g. Block Diagrams Contractor shall provide a block diagram for the entire system architecture and interconnections with SMS subsystems. Block diagram shall identify SMS subsystem (e.g., physical access control, intrusion detection, closed circuit television, intercom, and other associated subsystems) integration; and data transmission and media conversion methodologies.
- h. Interconnection Diagrams Contractor shall provide interconnection diagram for each sensor, and device component. Interconnection diagram shall identify termination locations, standard wire detail to include termination schedule. Diagram shall also identify interfaces to other systems such as elevator control, fire alarm systems, and security management systems.
- i. Security Details:
 - Panel Assembly Detail For each panel assembly, a panel assembly details shall be provided identifying individual panel component size and content.
 - Panel Details Provide security panel details identify general arrangement of the security system components,

backboard size, wire through size and location, and power circuit requirements.

- 3) Device Mounting Details Provide mounting detailed drawing for each security device (physical access control system, intrusion detection, video surveillance and assessment, and intercom systems) for each type of wall and ceiling configuration in project. Device details shall include device, mounting detail, wiring and conduit routing.
- 4) Details of connections to power supplies and grounding
- 5) Details of surge protection device installation
- Sensor detection patterns Each system sensor shall have associated detection patterns.
- 7) Equipment Rack Detail For each equipment rack, provide a scaled detail of the equipment rack location and rack space utilization. Use of BISCI wire management standards shall be employed to identify wire management methodology. Transitions between equipment racks shall be shown to include use vertical and horizontal latter rack system.
- Security Control Room The contractor shall provide a layout plan for the Security Control Room. The layout plan shall identify all equipment and details associated with the installation.
- 9) Operator Console The contractor shall provide a layout plan for the Operator Console. The layout plan shall identify all equipment and details associated with the installation. Equipment room - the contractor shall provide a layout plan for the equipment room. The layout plan shall identify all equipment and details associated with the installation.
- 10) Equipment Room Equipment room details shall provide architectural, electrical, mechanical, plumbing, IT/Data and associated equipment and device placements both vertical and horizontally.
- j. Electrical Panel Schedule Electrical Panel Details shall be provided for all SMS systems electrical power circuits. Panel details shall be provided identifying panel type (Standard, Emergency Power, Emergency/Uninterrupted Power Source, and

Uninterrupted Power Source Only), panel location, circuit number, and circuit amperage rating.

- k. Door Schedule A door schedule shall be developed for each door equipped with electronic security components. At a minimum, the door schedule shall be coordinated with Division 08 work and include the following information:
 - 1) Item Number
 - 2) Door Number (Derived from A/E Drawings)
 - 3) Floor Plan Sheet Number
 - 4) Standard Detail Number
 - 5) Door Description (Derived from Loading Sheets)
 - 6) Data Gathering Panel Input Number
 - 7) Door Position or Monitoring Device Type & Model Number
 - 8) Lock Type, Model Number & Power Input/Draw (standby/active)
 - 9) Card Reader Type & Model Number
 - 10) Shunting Device Type & Model Number
 - 11) Sounder Type & Model Number
 - 12) Manufacturer
 - 13) Misc. devices as required
 - a) Delayed Egress Type & Model Number
 - b) Intercom
 - c) Camera
 - d) Electric Transfer Hinge
 - e) Electric Pass-through device

14) Remarks column indicating special notes or door configurations

- 2. Camera Schedule A camera schedule shall be developed for each camera. Contractors shall coordinate with the Resident Engineer to determine camera starting numbers and naming conventions. All drawings shall identify wire and cable standardization methodology. Color coding of all wiring conductors and jackets is required and shall be communicated consistently throughout the drawings package submittal. At a minimum, the camera schedule shall include the following information:
 - a. Item Number
 - b. Camera Number
 - c. Naming Conventions
 - d. Description of Camera Coverage

- e. Camera Location
- f. Floor Plan Sheet Number
- g. Camera Type
- h. Mounting Type
- i. Standard Detail Reference
- j. Power Input & Draw
- k. Power Panel Location
- 1. Remarks Column for Camera
- 3. Section II Data Gathering Panel Documentation Package
 - a. Contractor shall provide Data Gathering Panel (DGP) input and output documentation packages for review at the Shop Drawing submittal stage and also with the as-built documentation package. The documentation packages shall be provided in both printed and magnetic form at both review stages.
 - b. The Contractor shall provide loading sheet documentation package for the associated DGP, including input and output boards for all field panels associated with the project. Documentation shall be provided in current version Microsoft Excel spreadsheets following the format currently utilized by VA. A separate spreadsheet file shall be generated for each DGP and associated field panels.
 - c. The spreadsheet names shall follow a sequence that shall display the spreadsheets in numerical order according to the DGP system number. The spreadsheet shall include the prefix in the file name that uniquely identifies the project site. The spreadsheet shall detail all connected items such as card readers, alarm inputs, and relay output connections. The spreadsheet shall include an individual section (row) for each panel input, output and card reader. The spreadsheet shall automatically calculate the system numbers for card readers, inputs, and outputs based upon data entered in initialization fields.
 - d. All entries must be verified against the field devices. Copies of the floor plans shall be forwarded under separate cover.
 - e. The DGP spreadsheet shall include an entry section for the following information:
 - 1) DGP number
 - 2) First Reader Number

- 3) First Monitor Point Number
- 4) First Relay Number
- 5) DGP, input or output Location
- 6) DGP Chain Number
- 7) DGP Cabinet Tamper Input Number
- 8) DGP Power Fail Input Number
- 9) Number of Monitor Points Reserved For Expansion Boards
- Number of Control Points (Relays) Reserved For Expansion Boards
- f. The DGP, input module and output module spreadsheets shall automatically calculate the following information based upon the associated entries in the above fields:
 - 1) System Numbers for Card Readers
 - 2) System Numbers for Monitor Point Inputs
 - 3) System Numbers for Control Points (Relays)
 - 4) Next DGP or input module First Monitor Point Number
 - 5) Next DGP or output module First Control Point Number
- g. The DGP spreadsheet shall provide the following information for each card reader:
 - 1) DGP Reader Number
 - 2) System Reader Number
 - 3) Cable ID Number
 - 4) Description Field (Room Number)
 - 5) Description Field (Device Type i.e.: In Reader, Out Reader, etc.)
 - 6) Description Field
 - 7) DGP Input Location
 - 8) Date Test
 - 9) Date Passed
 - 10) Cable Type
 - 11) Camera Numbers (of cameras viewing the reader location)
- h. The DGP and input module spreadsheet shall provide the following information for each monitor point (alarm input).
 - 1) DGP Monitor Point Input Number
 - 2) System Monitor Point Number
 - 3) Cable ID Number
 - 4) Description Field (Room Number)

- 5) Description Field (Device Type i.e.: Door Contact, Motion Detector, etc.)
- 6) DGP or input module Input Location
- 7) Date Test
- 8) Date Passed
- 9) Cable Type
- 10) Camera Numbers (of associated alarm event preset call-ups)
- i. The DGP and output module spreadsheet shall provide the following information for each control point (output relay).
 - 1) DGP Control Point (Relay) Number
 - 2) System (Control Point) Number
 - 3) Cable ID Number
 - 4) Description Field (Room Number)
 - 5) Description Field (Device: Lock Control, Local Sounder, etc.)
 - 6) Description Field
 - 7) DGP or OUTPUT MODULE Output Location
 - 8) Date Test
 - 9) Date Passed Cable Type
 - 10) Camera Number (of associated alarm event preset call-ups)
- j. The DGP, input module and output module spreadsheet shall include the following information or directions in the header and footer:
 - 1) Header
 - a) DGP Input and Output Worksheet
 - b) Enter Beginning Reader, Input, and Output Starting Numbers and Sheet Will Automatically Calculate the Remaining System Numbers.
 - 2) Footer
 - a) File Name
 - b) Date Printed
 - c) Page Number
- 4. Section III Construction Mock-up: In areas with exposed EMT/Conduit Raceways, contractor shall conceal raceway as much as practical and unobtrusively. In addition, historic significance must be considered to determine installation means and methods for approval by the owner.
- 5. Section IV Manufacturers' Data: The data package shall include manufacturers' data for all materials and equipment, including

sensors, local processors and console equipment provided under this specification.

- 6. Section V System Description and Analysis: The data package shall include system descriptions, analysis, and calculations used in sizing equipment required by these specifications. Descriptions and calculations shall show how the equipment will operate as a system to meet the performance requirements of this specification. The data package shall include the following:
 - a. Central processor memory size; communication speed and protocol description; rigid disk system size and configuration; flexible disk system size and configuration; back-up media size and configuration; alarm response time calculations; command response time calculations; start-up operations; expansion capability and method of implementation; sample copy of each report specified; and color photographs representative of typical graphics.
 - b. Software Data: The data package shall consist of descriptions of the operation and capability of the system, and application software as specified.
 - c. Overall System Reliability Calculations: The data package shall include all manufacturers' reliability data and calculations required to show compliance with the specified reliability.
- 7. Section VI Certifications & References: All specified manufacturer's certifications shall be included with the data package. Contractor shall provide Project references as outlined in Paragraph 1.4 "Quality Assurance".
- K. Group II Technical Data Package
 - 1. The Contractor shall prepare a report of "Current Site Conditions" and submit a report to the Resident Engineer documenting changes to the site, particularly those conditions that affect performance of the system to be installed. The Contractor shall provide specification sheets, or written functional requirements to support the findings, and a cost estimate to correct those site changes or conditions which affect the installation of the system or its performance. The Contractor shall not correct any deficiency without written permission from the COTR.

- System Configuration and Functionality: The contractor shall provide the results of the meeting with VA to develop system requirements and functionality including but not limited to:
 a. Baseline configuration
 - b. Access levels
 - c. Schedules (intrusion detection, physical access control, holidays, etc.)
 - d. Badge database
 - e. System monitoring and reporting (unit level and central control)
 - f. Naming conventions and descriptors
- L. Group III Technical Data Package
 - Development of Test Procedures: The Contractor will prepare performance test procedures for the system testing. The test procedures shall follow the format of the VA Testing procedures and be customized to the contract requirements. The Contractor will deliver the test procedures to the Resident Engineer for approval at least 60 calendar days prior to the requested test date.
- M. Group IV Technical Data Package
 - 1. Performance Verification Test
 - a. Based on the successful completion of the pre-delivery test, the Contractor shall finalize the test procedures and report forms for the performance verification test (PVT) and the endurance test. The PVT shall follow the format, layout and content of the pre-delivery test. The Contractor shall deliver the PVT and endurance test procedures to the Resident Engineer for approval. The Contractor may schedule the PVT after receiving written approval of the test procedures. The Contractor shall deliver the final PVT and endurance test reports within 14 calendar days from completion of the tests. Refer to Part 3 of this section for System Testing and Acceptance requirements.
 - 2. Training Documentation
 - a. New Facilities and Major Renovations: Familiarization training shall be provided for new equipment or systems. Training can include site familiarization training for VA technicians and administrative personnel. Training shall include general information on new system layout including closet locations, turnover of the completed system including all documentation,

including manuals, software, key systems, and full system administration rights. Lesson plans and training manuals training shall be oriented to type of training to be provided.

- b. New Unit Control Room:
 - Provide the security personnel with training in the use, operation, and maintenance of the entire control room system (Unit Control and Equipment Rooms). The training documentation must include the operation and maintenance. The first of the training sessions shall take place prior to system turnover and the second immediately after turnover. Coordinate the training sessions with the Owner. Completed classroom sessions will be witnessed and documented by the Architect/Engineer, and approved by the Resident Engineer. Instruction is not to begin until the system is operational as designed.
 - 2) The training documents will cover the operation and the maintenance manuals and the control console operators' manuals and service manuals in detail, stressing all important operational and service diagnostic information necessary for the maintenance and operations personnel to efficiently use and maintain all systems.
 - 3) Provide an illustrated control console operator's manual and service manual. The operator's manual shall be written in laymen's language and printed so as to become a permanent reference document for the operators, describing all control panel switch operations, graphic symbol definitions and all indicating functions and a complete explanation of all software.
 - 4) The service manual shall be written in laymen's language and printed so as to become a permanent reference document for maintenance personnel, describing how to run internal self diagnostic software programs, troubleshoot head end hardware and field devices with a complete scenario simulation of all possible system malfunctions and the appropriate corrective measures.
 - 5) Provide a professional color DVD instructional recording of all the operational procedures described in the operator's

manual. All charts used in the training session shall be clearly presented on the video. Any DVD found to be inferior in recording or material content shall be reproduced at no cost until an acceptable DVD is submitted. Provide four copies of the training DVD, one to the architect/engineer and three to the owner.

- 3. System Configuration and Data Entry:
 - a. The contractor is responsible for providing all system configuration and data entry for the SMS and subsystems (e.g., video matrix switch, intercom, digital video recorders, network video recorders). All data entry shall be performed per VA standards & guidelines. The Contractor is responsible for participating in all meetings with the client to compile the information needed for data entry. These meetings shall be established at the beginning of the project and incorporated in to the project schedule as a milestone task. The contractor shall be responsible for all data collection, data entry, and system configuration. The contractor shall collect, enter, & program and/or configure the following components:
 - 1) Physical Access control system components,
 - 2) All intrusion detection system components,
 - 3) Video surveillance, control and recording systems,
 - 4) Intercom systems components,
 - 5) All other security subsystems shown in the contract documents.
 - b. The Contractor is responsible for compiling the card access database for the VA employees, including programming reader configurations, access shifts, schedules, exceptions, card classes and card enrollment databases.
 - c. Refer to Part 3 for system programming requirements and planning guidelines.
- 4. Graphics: Based on CAD as-built drawings developed for the construction project, create all map sets showing locations of all alarms and field devices. Graphical maps of all alarm points installed under this contract including perimeter and exterior alarm points shall be delivered with the system. The Contractor shall create and install all graphics needed to make the system operational. The Contractor shall utilize data from the contract

documents, Contractor's field surveys, and all other pertinent information in the Contractor's possession to complete the graphics. The Contractor shall identify and request from the COTR, any additional data needed to provide a complete graphics package. Graphics shall have sufficient level of detail for the system operator to assess the alarm. The Contractor shall supply hard copy, color examples at least 203.2 x 254 mm (8 x 10 in) of each type of graphic to be used for the completed Security system. The graphics examples shall be delivered to the Resident Engineer for review and approval at least 90 calendar days prior to the scheduled date the Contractor requires them.

- O. FIPS 201 Compliance Certificates
 - Provide Certificates for all software components and device types utilizing credential verification. Provide certificates for:
 - a. Fingerprint Capture Station
 - b. Card Readers
 - c. Facial Image Capturing Camera
 - d. PIV Middelware
 - e. Template Matcher
 - f. Electromagnetically Opaque Sleeve
 - g. Certificate Management
 - 1) CAK Authentication System
 - 2) PIV Authentication System
 - 3) Certificate Validator
 - 4) Cryptographic Module
 - h. <list devices and software>
- P. Approvals will be based on complete submission of manuals together with shop drawings.
- Q. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 28 08 00 COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS.

1.5 APPLICABLE PUBLICATIONS

A. The publications listed below (including amendments, addenda, revisions, supplement, and errata) form a part of this specification to

the extent referenced. The publications are referenced in the text by the basic designation only. B. American National Standards Institute (ANSI) / Security Industry Association (SIA): AC-03Access Control: Access Control Guideline Dye Sublimation Printing Practices for PVC Access Control Cards TVAC-01CCTV to Access Control Standard - Message Set for System Integration C. American National Standards Institute (ANSI) / International Code Council (ICC): A117.1Standard on Accessible and Usable Buildings and Facilities D. Department of Justice American Disability Act (ADA) 28 CFR Part 36ADA Standards for Accessible Design 2010 E. Department of Veterans Affairs (VA): PACS-R: Physical Access Control System (PACS) Requirements VA Handbook 0730 Security and Law Enforcement F. Government Accountability Office (GAO): GAO-03-8-02 Security Responsibilities for Federally Owned and Leased Facilities G. National Electrical Contractors Association 303-2005 Installing Closed Circuit Television (CCTV) Systems H. National Electrical Manufactures Association (NEMA): Maximum) I. National Fire Protection Association (NFPA): 70-11 National Electrical Code J. Underwriters Laboratories, Inc. (UL): 294-99The Standard of Safety for Access Control System Units 305-08 Standard for Panic Hardware 639-97Standard for Intrusion-Detection Units 752-05Standard for Bullet-Resisting Equipment 827-08Central Station Alarm Services

1076-95 Standards for Proprietary Burglar Alarm Units and Systems 1981-03Central Station Automation System 2058-05 High Security Electronic Locks K. Homeland Security Presidential Directive (HSPD): HSPD-12Policy for a Common Identification Standard for Federal Employees and Contractors L. Federal Communications Commission (FCC): (47 CFR 15) Part 15 Limitations on the Use of Wireless Equipment/Systems M. Federal Information Processing Standards (FIPS): FIPS-201-1 Personal Identity Verification (PIV) of Federal Employees and Contractors N. National Institute of Standards and Technology (NIST): IR 6887 V2.1Government Smart Card Interoperability Specification (GSC-IS) Special Pub 800-63Electronic Authentication Guideline Special Pub 800-96PIV Card Reader Interoperability Guidelines Special Pub 800-73-3 ... Interfaces for Personal Identity Verification (4 Parts)Pt. 1- End Point PIV Card Application Namespace, Data Model & RepresentationPt. 2- PIV Card Application Card Command InterfacePt. 3- PIV Client Application Programming InterfacePt. 4- The PIV Transitional Interfaces & Data Model Specification Special Pub 800-76-1 ... Biometric Data Specification for Personal Identity Verification Special Pub 800-78-2 ... Cryptographic Algorithms and Key Sizes for Personal Identity Verification Special Pub 800-79-1 ... Guidelines for the Accreditation of Personal Identity Verification Card Issuers Special Pub 800-85B-1 .. DRAFTPIV Data Model Test Guidelines Special Pub 800-85A-2 .. PIV Card Application and Middleware Interface Test Guidelines (SP 800-73-3 compliance) Special Pub 800-96PIV Card Reader Interoperability Guidelines

Special Pub 800-37Guide for Applying the Risk Management Framework to Federal Information Systems Special Pub 800-96 PIV Card Reader Interoperability Guidelines Special Pub 800-96 PIV Card Reader Interoperability Guidelines Special Pub 800-104A ... Scheme for PIV Visual Card Topography Special Pub 800-116 Recommendation for the Use of PIV Credentials in Physical Access Control Systems (PACS) O. Institute of Electrical and Electronics Engineers (IEEE): C62.41IEEE Recommended Practice on Surge Voltages in Low-Voltage AC Power Circuits P. International Organization for Standardization (ISO): 7810 Identification cards - Physical characteristics 7811Physical Characteristics for Magnetic Stripe Cards 7816-1Identification cards - Integrated circuit(s) cards with contacts - Part 1: Physical characteristics 7816-2Identification cards - Integrated circuit cards - Part 2: Cards with contacts -Dimensions and location of the contacts 7816-3Identification cards - Integrated circuit cards - Part 3: Cards with contacts - Electrical interface and transmission protocols 7816-4Identification cards - Integrated circuit cards - Part 11: Personal verification through biometric methods 7816-10Identification cards - Integrated circuit cards - Part 4: Organization, security and commands for interchange 14443Identification cards - Contactless integrated circuit cards; Contactless Proximity Cards Operating at 13.56 MHz in up to 5 inches distance 15693Identification cards -- Contactless integrated circuit cards - Vicinity cards; Contactless Vicinity Cards Operating at 13.56 MHz in up to 50 inches distance

19794Information technology - Biometric data interchange formats

- Q. Uniform Federal Accessibility Standards (UFAS) 1984
- R. ADA Standards for Accessible Design 2010
- S. Section 508 of the Rehabilitation Act of 1973

1.6 DEFINITIONS

- A. ABA Track: Magnetic stripe that is encoded on track 2, at 75-bpi density in binary-coded decimal format; for example, 5-bit, 16character set.
- B. Access Control List: A list of (identifier, permissions) pairs associated with a resource or an asset. As an expression of security policy, a person may perform an operation on a resource or asset if and only if the person's identifier is present in the access control list (explicitly or implicitly), and the permissions in the (identifier, permissions) pair include the permission to perform the requested operation.
- C. Access Control: A function or a system that restricts access to authorized persons only.
- D. API Application Programming Interface
- E. Assurance Level (or E-Authentication Assurance Level): A measure of trust or confidence in an authentication mechanism defined in OMB Memorandum M-04-04 and NIST Special Publication (SP) 800-63, in terms of four levels: [M-04-04]
 - 1. Level 1: LITTLE OR NO confidence
 - 2. Level 2: SOME confidence
 - 3. Level 3: HIGH confidence
 - 4. Level 4: VERY HIGH confidence
- F. Authentication: A process that establishes the origin of information, or determines an entity's identity. In this publication, authentication often means the performance of a PIV authentication mechanism.
- G. Authenticator: A memory, possession, or quality of a person that can serve as proof of identity, when presented to a verifier of the appropriate kind. For example, passwords, cryptographic keys, and fingerprints are authenticators.
- H. Authorization: A process that associates permission to access a resource or asset with a person and the person's identifier(s).

- I. BIO or BIO-A: A FIPS 201 authentication mechanism that is implemented by using a Fingerprint data object sent from the PIV Card to the PACS. Note that the short-hand "BIO (-A)" is used throughout the document to represent both BIO and BIO-A authentication mechanisms.
- J. Biometric: An authenticator produced from measurable qualities of a living person.
- K. CAC EP CAC End Point with end point PIV applet
- L. CAC NG CAC Next Generation with transitional PIV applet
- M. Card Authentication Key (CAK): A PIV authentication mechanism (or the PIV Card key of the same name) that is implemented by an asymmetric or symmetric key challenge/response protocol. The CAK is an optional mechanism defined in NIST SP 800-73. [SP800-73] NIST strongly recommends that every PIV Card contain an asymmetric CAK and corresponding certificate, and that agencies use the asymmetric CAK protocol, rather than a symmetric CAK protocol, whenever the CAK authentication mechanism is used with PACS.
- N. CCTV: Closed-circuit television.
- O. Central Station: A PC with software designated as the main controlling PC of the PACS. Where this term is presented with initial capital letters, this definition applies.
- P. Controller: An intelligent peripheral control unit that uses a computer for controlling its operation. Where this term is presented with an initial capital letter, this definition applies.
- Q. CPU: Central processing unit.
- R. Credential: Data assigned to an entity and used to identify that entity.
- S. File Server: A PC in a network that stores the programs and data files shared by users.
- T. FIPS Federal Information Processing Standards
- U. FRAC First Responder Authentication Credential
- V. HSPD Homeland Security Presidential Directive
- W. I/O: Input/Output.
- X. Identifier: A credential card, keypad personal identification number or code, biometric characteristic, or other unique identification entered as data into the entry-control database for the purpose of identifying an individual. Where this term is presented with an initial capital letter, this definition applies.

- Y. IEC International Electrotechnical Commission
- Z. ISO International Organization for Standardization
- AA. KB Kilobyte
- BB. kbit/s Kilobits / second
- CC. LAN: Local area network.
- DD. LED: Light-emitting diode.
- EE. Legacy CAC Contact only Common Access Card with v1 and v2 applets
- FF. Location: A Location on the network having a PC-to-Controller communications link, with additional Controllers at the Location connected to the PC-to-Controller link with RS-485 communications loop. Where this term is presented with an initial capital letter, this definition applies.
- GG. NIST: National Institute of Standards and Technology
- HH. PACS: Physical Access Control System
- II. PC/SC: Personal Computer / Smart Card
- JJ. PC: Personal computer. This acronym applies to the Central Station, workstations, and file servers.
- KK. PCI Bus: Peripheral component interconnect; a peripheral bus providing a high-speed data path between the CPU and peripheral devices (such as monitor, disk drive, or network).
- LL. PDF: (Portable Document Format.) The file format used by the Acrobat document exchange system software from Adobe.
- MM. PIV: Personal Identification Verification
- NN. PIV-I PIV Interoperable credential
- OO. PPS: Protocol and Parameters Selection
- PP. RF: Radio frequency.
- QQ. ROM: Read-only memory. ROM data are maintained through losses of power.
- RR. RS-232: An TIA/EIA standard for asynchronous serial data communications between terminal devices. This standard defines a 25pin connector and certain signal characteristics for interfacing computer equipment.
- SS. RS-485: An TIA/EIA standard for multipoint communications.
- TT. TCP/IP: Transport control protocol/Internet protocol incorporated into Microsoft Windows.
- UU. TPDU: Transport Protocol Data Unit
- VV. TWIC Transportation Worker Identification Credential

- WW. UPS: Uninterruptible power supply.
- XX. Vcc: Voltage at the Common Collector
- YY. WAN: Wide area network.
- ZZ. WAV: The digital audio format used in Microsoft Windows.

1.7 COORDINATION

- A. Coordinate arrangement, mounting, and support of electronic safety and security equipment:
 - 1. To allow maximum possible headroom unless specific mounting heights that reduce headroom are indicated.
 - 2. To provide for ease of disconnecting the equipment with minimum interference to other installations.
 - 3. To allow right of way for piping and conduit installed at required slope.
 - So connecting raceways, cables, wireways, cable trays, and busways will be clear of obstructions and of the working and access space of other equipment.
- B. Coordinate installation of required supporting devices and set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.
- C. Coordinate location of access panels and doors for electronic safety and security items that are behind finished surfaces or otherwise concealed.

1.8 PERFORMANCE REQUIREMENTS

- A. PACS shall provide support for multiple authentication modes and bidirectional communication with the reader. PACS shall provide implementation capability for enterprise security policy and incident response.
- B. All processing of authentication information must occur on the "safe side" of a doorC. Physical Access Control System shall provide access to following Security Areas:
 - 1. Controlled
 - 2. Limited
 - 3. Exclusion
- D. PACS shall provide:
 - 1. One authentication factor for access to Controlled security areas
 - 2. Two authentication factors for access to Limited security areas
 - 3. Three authentication factors for access to Exclusion security areas

- E. PACS shall provide Credential Validation and Path Validation per NIST 800-116.
- F. The PACS System shall have an Enterprise Path Validation Module (PVM) component that processes X.509 certification paths composed of X.509 v3 certificates and X.509 v2 CRLs. The PVM component MUST support the following features:
 - 1. Name chaining;
 - 2. Signature chaining;
 - 3. Certificate validity;
 - Key usage, basic constraints, and certificate policies certificate extensions;
 - 5. Full CRLs; and
 - 6. CRLs segmented on names.

1.9 EQUIPMENT AND MATERIALS

- A. Materials and equipment furnished shall be of current production by manufacturers regularly engaged in the manufacture of such items, for which replacement parts shall be available.
- B. When more than one unit of the same class of equipment is required, such units shall be the product of a single manufacturer.
- C. Equipment Assemblies and Components:
 - Components of an assembled unit need not be products of the same manufacturer.
 - Manufacturers of equipment assemblies, which include components made by others, shall assume complete responsibility for the final assembled unit.
 - 3. Components shall be compatible with each other and with the total assembly for the intended service.
 - Constituent parts which are similar shall be the product of a single manufacturer.
- D. Factory wiring shall be identified on the equipment being furnished and on all wiring diagrams.
- E. When Factory Testing Is Specified:
 - The Government shall have the option of witnessing factory tests. The contractor shall notify the VA through the Resident Engineer a minimum of 15 working days prior to the manufacturers making the factory tests.

- Four copies of certified test reports containing all test data shall be furnished to the Resident Engineer prior to final inspection and not more than 90 days after completion of the tests.
- 3. When equipment fails to meet factory test and re-inspection is required, the contractor shall be liable for all additional expenses, including expenses of the Government.

1.11 WARRANTY OF CONSTRUCTION.

- A. Warrant PACS work subject to the Article "Warranty of Construction" of FAR clause 52.246-21.
- B. Demonstration and training shall be performed prior to system acceptance.

1.12 GENERAL REQUIREMENTS

- A. For general requirements that are common to more than one section in Division 28 refer to Section 28 05 00, REQUIREMENTS FOR ELECTRONIC SAFETY AND SECURITY INSTALLATIONS.
- B. General requirements applicable to this section include:
 - 1. General Arrangement Of Contract Documents,
 - 2. Delivery, Handling and Storage,
 - 3. Project Conditions,
 - 4. Electrical Power,
 - 5. Lightning, Power Surge Suppression, and Grounding,
 - 6. Electronic Components,
 - 7. Substitute Materials and Equipment, and
 - 8. Like Items.

PART 2 - PRODUCTS

2.1 GENERAL

- A. All equipment and materials for the system will be compatible to ensure correct operation as outlined in FIPS 201, March 2006 and HSPD-12.
- B. The security system characteristics listed in this section will serve as a guide in selection of equipment and materials for the PACS. If updated or more suitable versions are available then the Contracting Officer will approve the acceptance of prior to an installation.
- C. PACS equipment shall meet or exceed all requirements listed below.
- D. A PACS shall be comprised of, but not limited to, the following components:

VA 595-668 AE Works Project No. VLEB-010

- 1. Physical Access Control System
- 2. Application Software
- 3. System Database
- 4. Surge and Tamper Protection
- 5. Standard Workstation Hardware
- 6. Communications Workstation
- 7. Controllers (Data Gathering Panel)
- 8. Secondary Alarm Annunciator
- 9. Keypads
- 10. Card Readers
- 11. Credential Cards
- 12. Biometric Identity Verification Equipment
- 13. Enrolment Center (To be provided in accordance with the VA PIV enrollment and issuance system.)
- 14. System Sensors and Related Equipment
- 15. Push Button Switches
- 16. Interfaces
- 17. Door and Gate Hardware interface
- 18. RS-232 ASCII Interface
- 19. Floor Select Elevator Control
- 20. After-Hours HVAC Control
- 21. Real Time Guard Tour
- 22. Video and Camera Control
- 23. Cables
- 24. Transformers

2.2 SECURITY MANAGEMENT SYSTEM (SMS)

- A. Shall allow the configuration of an enrollment and badging, alarm monitoring, administrative, asset management, digital video management, intrusion detection, visitor enrollment, remote access level management, and integrated client workstations or any combination of all or some.
- B. Shall be expandable to support an unlimited number of individual module or integrated client workstations. All access control field hardware, including Data Gathering Panels(DGP), shall be connected to all physical access control system workstation on the network.

- C. Shall have the ability to compose, file, maintain, update, and print reports for either individuals or the system as follows.
 - Individual reports that consist of an employee's name, office location, phone number or direct extension, and normal hours of operation. The report shall provide a detail listing of the employee's daily events in relation to accessing points within a facility.
 - System reports shall be able to produce information on a daily/weekly/monthly basis for all events, alarms, and any other activity associated with a system user.
- D. All reports shall be in a date/time format and all information shall be clearly presented. Shall be designed to allow it to work with any industry standard network protocol and topology listed below:
 - 1. Transmission Control Protocol (TCP)/IP
 - 2. Novell Netware (IPX/SPX)
 - 3. Banyan VINES
 - 4. IBM LAN Server (NetBEUI)
 - 5. Microsoft LAN Manager (NetBEUI)
 - 6. Network File System (NFS) Networks
 - 7. Remote Access Service (RAS) via ISDN, x.25, and standard phone lines.
- E. Shall provide full interface and control of the PACS to include the following subsystems within the PACS:
 - 1. Public Key Infrastructure
 - 2. Card Management
 - 3. Identity and Access Management
 - 4. Personal Identity Verification
- F. Shall have the following features or compatibilities:
 - The ability to be operated locally or remotely via a LAN, WAN, internet, or intranet.
 - 2. Event and Alarm Monitoring
 - 3. Database Partitioning
 - 4. Ability to fully integrate with all other security subsystems
 - 5. Enhanced Monitoring Station with Split Screen Views
 - 6. Alternate and Extended Shunt by Door
 - 7. Escort Management
 - 8. Enhanced IT-based Password Protection

- 10. N-man Rule and Occupancy Restrictions
- 11. Open Journal Data Format for Enhanced Reporting
- 12. Automated Personnel Import
- 13. ODBC Support
- 14. Windows 2000 Professional, Windows Server 2003, Windows XP Professionals for Servers, Windows 7
- 15. Field-Level Audit Trail
- 16. Cardholder Access Events

2.3 KEYPADS

- A. Designed for use with unique combinations of alphanumeric and other symbols as an Identifier. Keys of keypads shall contain an integral alphanumeric/special symbol keyboard with symbols arranged in [ascending ASCII-code ordinal sequence] [random scrambled order]. Communications protocol shall be compatible with Controller.
 - Keypad display or enclosure shall limit viewing angles of the keypad as follows:
 - a. Maximum Horizontal Viewing Angle: 5 degrees or less off in either direction of a vertical plane perpendicular to the plane of the face of the keypad display.
 - b. Maximum Vertical Viewing Angle: 15 degrees or less off in either direction of a horizontal plane perpendicular to the plane of the face of the keypad display.
 - Duress Codes: Provide duress situation indication by entering a special code.

2.13 SYSTEM SENSORS AND RELATED EQUIPMENT

- A. The PACS (Physical Access Control System) and related Equipment provided by the Contractor shall meet or exceed the following performer specifications:
- B. Request to Exit Detectors:
 - Passive Infrared Request to Exit Motion Detector (REX PIR) (1) The Contractor shall provide a surface mounted motion detector to signal the physical access control system request to exit input. The motion detector shall be a passive infrared sensor designed for wall or ceiling mounting 2134 to 4572 mm (7 to 15 ft) height. The detector shall provide two (2) form "C" (SPDT) relays rated one (1)

Amp. @ 30 VDC for DC resistive loads. The detectors relays shall be user adjustable with a latch time from 1-60 seconds. The detector shall also include a selectable relay reset mode to follow the timer or absence of motion. The detection pattern shall be adjustable plus or minus fourteen (\pm 14) degrees. The detector shall operate on 12 VDC with approximately 26 mA continuous current draw. The detector shall have an externally visible activation LED. The motion detector shall measure approximately 38 mm H x 158 mm W x 38 mm D (1.5 x 6.25 x 1.5 in). The detector shall be immune to radio frequency interference. The detector shall not activate or set-up on critical frequencies in the range 26 to 950 Megahertz using a 50 watt transmitter located 30.5 cm (1 ft) from the unit or attached wiring. The detector shall be available on gray or black enclosures. The color of the housing shall be coordinated with the surrounding surface.

- C. Guard tour stations:
 - The guard tour station shall be single gang brushed steel plate flush mounted in a single gang box. The switch shall be a normally open momentary keyed switch.
- D. Delayed Egress (DE)
 - 1. General:
 - a. The delay egress locking hardware shall provide a method to secure emergency exits and provide an approved delayed emergency exit method. The package shall be Underwriters Laboratories listed as a delay egress-locking device. The delay egress device shall be available to support configurations with both rated and non-rated fire doors. The delay egress device shall comply with Life Safety Codes (NFPA-101, BOCA) as it applies to special locking arrangements for delay egress locks. Unless specifically identified as a non-fire rated opening, all doors shall be equipped with fire rated door hardware. The Contractor shall be responsible for providing all equipment and installation to provide a fully functioning system. Need to amend to use crashbars type mechanical release switches.
 - The delay-locking device shall include all of the following features:
 - a. Delay Egress Mode

- 1) The delayed egress device shall be a SDC 101V Series Exit Check with wall mounted control module. Upon activation of an approved panic bar the delay locking device shall begin a delay sequence of 30 seconds; a flush mounted wall LED panel adjacent to the door will indicate initiation of the countdown time. During the 30 second delay period, a local sounding device shall annunciate a tone activation of the delay cycle and verbal exit instructions. At the end of the delay cycle the locking device shall unlock and allow free egress. The reset of the local sounding device shall be user definable and include options to select either local sound until silenced by reset or local sounder silenced upon opening of the door. Unless otherwise indicated the local delay sounder shall be silenced upon opening of the door. The SDC's device trigger output shall be connected to the SMS DGP alarm panel for preactivation warning. The contractor shall specify the bond sensor option when ordering the delayed egress hardware; this output shall be wired to the SMS DGP to activate an alarm if the door does not lock. Use of reset panel not top mounted device.
- 2) Delayed egress doors will have bond sensors.
- 3) Delayed egress activation shall also trigger CCTV call -up.
- b. Fire Alarm Mode
 - Upon activation of the facility's fire evacuation and water flow alarm signal the delay locking devices shall immediately unlock and provide free egress. The Contractor shall provide any required fire alarm relays or interface devices.
- c. Reset Mode
 - The delay egress device shall be manually reset by the Delayed Egress controller located at the door via key switch.
 - The delay egress device shall automatically reset upon fire alarm system reset.
 - 3) The delayed egress shall be resettable through the SMS.
- d. The Contractor shall provide a Master Open Switch for all the facility's delayed egress hardware, with protective cover and permanent labeling in the Unit Control Room. The switch shall be wired into the fire alarm system to activate the evacuation

alarms. When the switch is pressed all delayed egress or evacuation doors shall unlock and generate an alarm at the security console monitor showing and recording time and date of when the switch was pressed. The contractor is responsible for coordinating the wiring and connection with the fire alarm contactor. The Master Open Switch shall be linked to the fire alarm panel for the release of doors locks.

- e. Each individual delayed egress door shall have the ability to unlock through a manual action on the SMS.
- f. Unless otherwise indicated the Contractor shall provide all of the above reset methods for each door. All signs will meet the latest ADA requirements.
- g. Signs
 - The delay egress package shall be provided with a warning sign complying with local code requirements. The warning sign shall be attached to the interior side of the controlled door. The sign shall be located on the interior side of the door above and within 304 mm (12 in) of the panic bar. The sign shall read: EMERGENCY EXIT. PUSH UNTIL ALARM SOUNDS DOOR CAN BE OPENED,

IN 30 SECONDS.

- Signs shall be coordinated and comply with the building's existing sign specifications. Signs shall include grade 2 Braille.
- 3) Signs shall meet the current ADA requirements.
- In instances of code and specification conflicts, the life safety code requirement shall prevail.
- 5) The Division 10 Contractor shall provide samples for approval with their submittal package.
- 3. Physical Access Control Interface
 - a. The delay egress device shall be capable of interface with card access control systems.
 - b. The system shall include a bypass feature that is activated via a dry contact relay output from the physical access control system.

This bypass shall allow authorized personnel to pass through the controlled portal without creating an alarm condition or activating the delay egress cycle. The bypass shall include internal electronic shunts or door switches to prevent activation (re-arming) until the door returns to the closed position. An unused access event shall not cause a false alarm and shall automatically rearm the delay egress lock upon expiration of the programmed shunt time. The delay egress physical access control interface shall support extended periods of automated and/or manual lock and unlock cycles.

E. Crash Bar:

- 1. Emergency Exit with Alarm (Panic):
 - Entry control portals shall include panic bar emergency exit hardware as designed.
 - b. Panic bar emergency exit hardware shall provide an alarm shunt signal to the PACS and SMS.
 - c. The panic bar shall include a conspicuous warning sign with one(1) inch (2.5 cm) high, red lettering notifying personnel that an alarm will be annunciated if the panic bar is operated.
 - d. Operation of the panic bar hardware shall generate an intrusion alarm that reports to both the SMS and Intrusion Detection System. The use of a micro switch installed within the panic bar shall be utilized for this.
 - e. The panic bar shall utilize a fully mechanical connection only and shall not depend upon electric power for operation.
 - f. The panic bar shall be compatible with mortise or rim mount door hardware and shall operate by retracting the bolt manually by either pressing the panic bar or with a key by-pass. Refer to Section 2.2.I.9 for key-bypass specifications.
 - g. Normal Exit:
 - Entry control portals shall include panic bar non-emergency exit hardware as designed.
 - Panic bar non-emergency exit hardware shall be monitored by and report to the SMS.
 - Operation of the panic bar hardware shall not generate a locally audible or an intrusion alarm within the IDS.

- 4) When exiting, the panic bar shall depend upon a mechanical connection only. The exterior, non-secure side of the door shall be provided with an electrified thumb latch or lever to provide access after the credential I.D. authentication by the SMS.
- 5) The panic bar shall be compatible with mortise or rim mount door hardware and shall operate by retracting the bolt manually by either pressing the panic bar or with a key bypass. Refer to Section 2.2.I.9 for key-bypass specifications. The strikes/bolts shall include a micro switch to indicate to the system when the bolt is not engaged or the strike mechanism is unlocked. The signal switches shall report a forced entry to the system in the event the door is left open or accessed without the identification credentials.
- F. Key Bypass:
 - Shall be utilized for all doors that have a mortise or rim mounted door hardware.
 - Each door shall be individually keyed with one master key per secured area.
 - 3. Cylinders shall be six (6)-pin and made of brass or equivalent. Keys for the cylinders shall be constructed of solid material and produced and cut by the same distributor. Keys shall not be purchased, cut, and supplied by multiple dealers.
 - 4. All keys shall have a serial number cut into the key. No two serial numbers shall be the same.
 - 5. All keys and cylinders shall be stored in a secure area that is monitored by the Intrusion Detection System.
- G. Automatic Door Opener and Closer:
 - 1. Shall be low energy operators.
 - Door closing force shall be adjustable to ensure adequate closing control.
 - Shall have an adjustable back-check feature to cushion the door opening speed if opened violently.
 - Motor assist shall be adjustable from 0 to 30 seconds in five (5) second increments. Motor assist shall restart the time cycle with each new activation of the initiating device.

- 5. Unit shall have a three-position selector mode switch that shall permit unit to be switched "ON" to monitor for function activation, switched to "H/O" for indefinite hold open function or switched to "OFF," which shall deactivate all control functions but will allow standard door operation by means of the internal mechanical closer.
- Door control shall be adjustable to provide compliance with the requirements of the Americans with Disabilities Act (ADA) and ANSI standards A117.1.
- 7. All automatic door openers and closers shall:
 - a. Meet UL standards.
 - b. Be fire rated.
 - c. Have push and go function to activate power operator or power assist function.
 - d. Have push button controls for setting door close and door open positions.
 - e. Have open obstruction detection and close obstruction detection built into the unit.
 - f. Have door closer assembly with adjustable spring size, back-check valve, sweep valve, latch valve, speed control valve and pressure adjustment valve to control door closing.
 - g. Have motor start-up delay, vestibule interface delay; electric lock delay and door hold open delay up to 30 seconds. All operators shall close door under full spring power when power is removed.
 - h. Are to be hard wired with power input of 120 VAC, 60Hz and connected to a dedicated circuit breaker located on a power panel reserved for security equipment.
- H. Door Status Indicators:
 - 1. Shall monitor and report door status to the SMS.
 - 2. Door Position Sensor:
 - a. Shall provide an open or closed indication for all doors operated on the PACS and report directly to the SMS.
 - b. Shall also provide alarm input to the Intrusion Detection System for all doors operated by the PACS and all other doors that require monitoring by the intrusion detection system.
 - c. Switches for doors operated by the PACS shall be double pole double throw (DPDT). One side of the switch shall monitor door

position and the other side if the switch shall report to the intrusion detection system. For doors with electromagnetic locks a magnetic bonding sensor (MBS) can be used in place of one side of a DPDT switch, in turn allowing for the use of a single pole double throw (SPDT) switch in it place of a DPDT switch.

- d. Switches for doors not operated by the PACS shall be SPDT and report directly to the IDS.
- e. Shall be surface or flush mounted and wide gap with the ability to operate at a maximum distance of up to 2" (5 cm).

2.14 PUSH BUTTON SWITCHES

- A. Push-Button Switches: Momentary-contact back-lighted push buttons, with stainless-steel switch enclosures.
 - 1. Electrical Ratings:
 - a. Minimum continuous current rating of [10] <Insert number> A at 120 V ac or [5] <Insert number> A at 240-V ac.
 - b. Contacts that will make 720 VA at [60] <Insert number> A and that will break at 720 VA at [10] <Insert number> A.
 - 2. Enclosures: Flush or surface mounting. Push buttons shall be suitable for flush mounting in the switch enclosures.
 - 3. Enclosures shall additionally be suitable for installation in the following locations:
 - a. Indoors, controlled environment.
 - b. Indoors, uncontrolled environment.
 - c. Outdoors.
 - 4. Power: Push-button switches shall be powered from their associated Controller, using dc control.

2.15 PORTAL CONTROL DEVICES

- A. Shall be used to assist the PACS.
- B. Such devices shall:
 - 1. Provide a means of monitoring the doors status.
 - 2. Allow for exiting a space via either a push button, request to exit, or panic/crash bar.
 - 3. Provide a means of override to the PACS via a keypad or key bypass.
 - 4. Assist door operations utilizing automatic openers and closures.
 - 5. Provide a secondary means of access to a space via a keypad.
- C. Shall be connected to and monitored by the main PACS panel.
- D. Shall be installed in a manner that they comply with:

- 1. The Uniform Federal Accessibility Standards (UFAS)
- 2. The Americans with Disabilities Act (ADA)
- 3. The ADA Standards for Accessible Design
- E. Shall provide a secondary means of physical access control within a secure area.
- F. Push-Button Switches:
 - Shall be momentary contact, back lighted push buttons, and stainless steel switch enclosures for each push button as shown. Buttons are to be utilized for secondary means of releasing a locking mechanism.
 - a. In an area where a push button is being utilized for remote access of the locking device then no more than two (2) buttons shall operate one door from within one secure space. Buttons will not be wired in series with one other.
 - b. In an area where locally stationed guards control entry to multiple secure points via remote switches. An interface board shall be designed and constructed for only the amount of buttons it shall house. These buttons shall be flush mounted and clearly labeled for ease of use. All buttons shall be connected to the PACS and SMS system for monitoring purposes.
 - c. Shall have double-break silver contacts that will make 720 VA at60 amperes and break 720 VA at 10 amperes.
- G. Entry Control Devices:
 - Shall be hardwired to the PACS main control panel and operated by either a card reader or a biometric device via a relay on the main control panel.
 - 2. Shall be fail-safe in the event of power failure to the PACS system.
 - 3. Shall operate at 24 VCD, with the exception of turnstiles and be powered by a separate power supply dedicated to the door control system. Each power supply shall be rated to operate a minimum of two doors simultaneously without error to the system or overload the power supply unit.
 - Shall have a diode or metal-oxide veristor (MOV) to protect the controller and power supply from reverse current surges or backcheck.
 - 5. Electric Strikes/Bolts: Shall be:
 - a. Made of heavy-duty construction and tamper resistant design.
 - b. Tested to over one million cycles.

- c. Rated for a minimum of 1000 lbs. holding strength.
- d. Utilize an actuating solenoid for the strike/bolt. The solenoid shall move from fully open to fully closed position and back in not more than 500 milliseconds and be rated for continuous duty.
- e. Utilize a signal switch that will indicate to the system if the strike/bolt is not engaged or is unlocked when it should be secured.
- f. Flush mounted within the door frame.
- 6. Electric Mortise Locks: Shall be installed within the door and an electric transfer hinge shall be utilized to allow the wires to be transferred from the door frame to the lock. If utilized with a double door then the lock shall be installed inside the active leaf. Electric Mortise Locks shall:
 - a. These locks shall be provided and installed by the Division 8 "DOOR HARDWARE" Contractor.
 - b. Have integrated Request to Exit switch for new doors receiving physical access control devices.
 - b. Provide integration of the Electric Mortise Locks with the PACS for:
 - 1) Lock Power
 - 2) Request to Exit switch.
- 7. Electromagnetic Locks:
 - a. These locks shall be without mechanical linkage utilizing no moving parts, and securing the door to its frame solely on electromagnetic force.
 - b. Shall be comprised of two pieces, the mag-lock and the door plate. The electromagnetic locks shall be surface mounted to the door frame and the door plate shall be surface mounted to the door.
 - c. Ensure a diode is installed in line with the DC voltage supplying power to the unit in order to prevent back-check on the system when the electromagnetic lock is powered.
 - d. Shall utilize a magnetic bonding sensor (MBS) to monitor the door status and report that status to the SMS.
 - e. Electromagnetic locks shall meet the following minimum technical characteristics:

Operating Voltage	24 VDC
-------------------	--------

Current Draw		.5A
Holding Force	Swing Doors	675 kg (1500 lbs)
	Sliding Doors	225 kg (500 lbs)

- 8. Turnstiles:
 - a. Shall operate at 110 VAC, 60 Hz or 220 VAC, 50 Hz supplied from a dedicated circuit breaker on a security power panel. This device does not require a back-up power source.
 - b. Shall be utilized as a means of monitoring and controlling access in a lobby.
 - c. Shall meet the following minimum requirements:
 - 1) Be UFAS compliant.
 - 2) Provide either an audible or visual confirmation that access has been granted to a cleared individual.
 - Provide an audible alarm in the event a non-cleared individual is attempting to gain access.
 - Interface with the SMS and utilize a card reader for accessing and exiting a facility, and provide a recorded event of personnel accessing these points.
 - 5) Have a built-in step-down transformer to provide power to a card reader unit.
 - Have built-in signal wiring chassis to allow for plug and play capabilities with the PACS.

7) HAVE THE ABILITY TO DETECT TAILGATING WITHIN ONE QUARTER ON AN INCH TO PREVENT UNAUTHORIZED ACCESS TO A FACILITY. 2.17 INTERFACES

- A. CCTV System Interface
 - 1. An RS232 [Ethernet] interface associated driver, and controller shall be provided for connection of the SMS Central Computer to the CCTV Alarm interface and switcher. The interface shall provide alarm data to the CCTV Alarm interface for automatic camera call-up. If required the Security Contractor shall be responsible for programming the command strings into the SMS Server.
- B. Intercom System Interface
 - The CCTV call-up from intercom stations shall be through the intercom unit via RS232 [Ethernet] communications interface to the SMS system, then through the matrix switcher.
 a. Application Software

- Provides the interface between the Alarm Annunciation System and Operator; all sensors, local processors and data links, drive displays, report alarms, and report generation.
- 2) Software is categorized as System Software and Application Software. System Software must consist of software to support set-up, operation, hard drive back-ups and maintenance processor. Application Software must consist of software to provide the completion of Physical Access Control System.
- C. Power Supplies:
 - 1. Shall be UL rated and able to adequately power (enter number) entry control devices on a continuous base without failure.

INPUT POWER	110 VAC 60 HZ (enter amperage)A
OUTPUT VOLTAGE	12 VDC Nominal (13.8 VDC)
	24 VDC Nominal (27.6 VDC)
	Filtered and Regulated
BATTERY	Dependant on Output Voltage shall provide up to <> Ah
OUTPUT CURRENT	[10] amp max. [@ 13.8] VDC
	[5] amp max. [@ 27.6] VDC
PRIMARY FUSE SIZE	6.3 amp (non-removable)
BATTERY FUSE SIZE	12 amp, 3AG
CHARGING CIRCUIT	Built-in standard

2. Shall meet the following minimum technical characteristics:

2.18 FLOOR SELECT ELEVATOR CONTROL

- A. Elevator access control shall be integral to security access.
 - System shall be capable of providing full elevator security and control through dedicated Controllers without relying on the control-station host PC for elevator control decisions.
 - Access-control system shall enable and disable car calls on each floor and floor select buttons in each elevator car, restricting passengers' access to the floors where they have been given access.
 - 3. System setup shall, through programming, automatically secure and unsecure each floor select button of a car individually by time and day. Each floor select button within a car shall be separately controlled so that some floors may be secure while others remain unsecure.

- 4. When a floor select button is secure, it shall require the passenger to use his/her access code and have access to that floor before the floor select button will operate. The passenger's credential shall determine which car call and floor select buttons are to be enabled, restricting access to floors unless authorized by system's access code database. Floor select button shall be enabled only in the car where the credential holder is the passenger.
- B. PACS shall record which call button is pressed, along with credential and time information.
 - 1. System Controller shall record elevator access data.
 - 2. The Controller shall reset all additional call buttons that may have been enabled by the user's credential.
 - The floor select elevator control shall allow for manual override either individually by floor or by cab as a group from a workstation PC.

2.19 AFTER-HOURS HVAC CONTROL

- A. After-Hours HVAC Control: Provide for any credential read to activate or control individual HVAC zones based on access level. This control module shall control and record the after-hours use of the heating and cooling system in zones or tenant space.
 - This control shall give the administrator the ability to determine how much extra energy consumption each tenant is responsible for. This information can be used in billing tenants for the extra afterhour usage.
 - 2. At the specified time every day, the HVAC shall automatically go into its after-hours mode. It shall then revert into its normal business hours mode by a tenant using an access code or card at a designated keypad or reader.
 - 3. Once enabled, the tenant's HVAC zone shall be under thermostat control for a preset amount of time. When the preset amount of time elapses, the HVAC for that zone shall revert back to after-hours mode unless a tenant uses his/her code or card again. This shall continue until the unit automatically returns to its normal business hours operation.
- B. Control module activates the HVAC system after a valid access by any of three methods; however, the HVAC control shall always allow for manual override from the PC.

- By time expiration after access of an adjustable period from 1 second to 546 minutes (9.1 hours).
- 2. By use of the card or code again at the same or different reader or keypad.
- 3. By system returning to its normal business hours operation.
- C. After-hours HVAC control shall operate with all other features running simultaneously and use the central-station PC that controls access for the building but shall not rely on the host PC for any HVAC control decisions.

2.20 REAL TIME GUARD TOUR

- A. Guard tour module shall provide the ability to plan, track, and route tours. Module shall input an alarm during tour if guard fails to make a station. Tours can be programmed for sequential or random tourstation order.
 - Guard tour setup shall define specific routes or tours for the guard to take, with time restrictions in which to reach every predefined tour station.
 - 2. Guard tour activity shall be automatically logged to the centralstation PC's hard drive.
 - If the guard is early or late to a tour station, a unique alarm per station shall appear at the Central Station to indicate the time and station.
 - 4. Guard tour setup shall allow the tours to be executed sequentially or in a random order with an overall time limit set for the entire tour instead of individual times for each tour station.
 - 5. Setup shall allow recording of predefined responses that will display for the operator at the control station should a "Failed to Check-in" alarm occur.
- B. A tour station is a physical location a guard shall reach and perform an action indicating that the guard has arrived. This action, performed at the tour station, shall be 1 of 13 different events with any combination of station types within the same tour. A tour station shall be one of the following event types:
 - 1. Access Granted.
 - 2. Access Denied Code.
 - 3. Access Denied Card plus PIN.
 - 4. Access Denied Time Zone.

- 5. Access Denied Level.
- 6. Access Denied Facility.
- 7. Access Denied Code Timer.
- 8. Access Denied Anti-Passback.
- 9. Access Granted Passback Violation.
- 10. Alarm.
- 11. Restored.
- 12. Input Normal.
- 13. Input Abnormal.
- C. Guard tour and other system features shall operate simultaneously with no interference.
- D. Guard Tour Module Capacity: 999 possible guard tour definitions with each tour having up to 99 tour stations. System shall allow all 999 tours to be running at same time.

2.21 VIDEO AND CAMERA CONTROL

- A. Control station or designated workstation displays live video from a CCTV source.
 - Control Buttons: On the display window, with separate control buttons to represent Left, Right, Up, Down, Zoom In, Zoom Out, Scan, and a minimum of two custom command auxiliary controls.
 - Provide at least seven icons to represent different types of cameras, with ability to import custom icons. Provide option for display of icons on graphic maps to represent their physical location.
 - 3. Provide the alarm-handling window with a command button that will display the camera associated with the alarm point.
- B. Display mouse-selectable icons representing each camera source, to select source to be displayed. For CCTV sources that are connected to a video switcher, control station shall automatically send control commands through a COM port to display the requested camera when the camera icon is selected.
- C. Allow cameras with preset positioning to be defined by displaying a different icon for each of the presets. Provide control with Next and Previous buttons to allow operator to cycle quickly through the preset positions.

2.22 WIRES AND CABLES

- A. Comply with Division 28 Section "CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY."
- B. PVC-Jacketed, RS-232 Cable: Paired, 2 pairs, No. 22 AWG, stranded (7x30) tinned copper conductors, polypropylene insulation, and individual aluminum foil-polyester tape shielded pairs with 100 percent shield coverage; PVC jacket. Pairs are cabled on common axis with No. 24 AWG, stranded (7x32) tinned copper drain wire.
 - 1. NFPA 70, Type CM.
 - 2. Flame Resistance: UL 1581 Vertical Tray.
- C. Plenum-Type, RS-232 Cable: Paired, 2 pairs, No. 22 AWG, stranded (7x30) tinned copper conductors, plastic insulation, and individual aluminum foil-polyester tape shielded pairs with 100 percent shield coverage; plastic jacket. Pairs are cabled on common axis with No. 24 AWG, stranded (7x32) tinned copper drain wire.
 - 1. NFPA 70, Type CMP.
 - 2. Flame Resistance: NFPA 262 Flame Test.
- D. RS-485 communications require 2 twisted pairs, with a distance limitation of 4000 feet (1220 m).
- E. PVC-Jacketed, RS-485 Cable: Paired, 2 pairs, twisted, No. 22 AWG, stranded (7x30) tinned copper conductors, PVC insulation, unshielded, PVC jacket, and NFPA 70, Type CMG.
- F. Plenum-Type, RS-485 Cable: Paired, 2 pairs, No. 22 AWG, stranded (7x30) tinned copper conductors, fluorinated-ethylene-propylene insulation, unshielded, and fluorinated-ethylene-propylene jacket.
 - 1. NFPA 70, Type CMP.
 - 2. Flame Resistance: NFPA 262 Flame Test.
- G. Multiconductor, Readers and Wiegand Keypads Cables: No. 22 AWG, paired and twisted multiple conductors, stranded (7x30) tinned copper conductors, semirigid PVC insulation, overall aluminum foil-polyester tape shield with 100 percent shield coverage, plus tinned copper braid shield with 65 percent shield coverage, and PVC jacket.
 - 1. NFPA 70, Type CMG.
 - 2. Flame Resistance: UL 1581 Vertical Tray.
 - 3. For TIA/EIA-RS-232 applications.
- H. Paired Readers and Wiegand Keypads Cables: Paired, 3 pairs, twisted,No. 22 AWG, stranded (7x30) tinned copper conductors, polypropylene

insulation, individual aluminum foil-polyester tape shielded pairs each with No. 22 AWG, stranded tinned copper drain wire, 100 percent shield coverage, and PVC jacket.

- 1. NFPA 70, Type CM.
- 2. Flame Resistance: UL 1581 Vertical Tray.
- I. Paired Readers and Wiegand Keypads Cable: Paired, 3 pairs, twisted, No. 20 AWG, stranded (7x28) tinned copper conductors, polyethylene (polyolefin) insulation, individual aluminum foil-polyester tape shielded pairs each with No. 22 AWG, stranded (19x34) tinned copper drain wire, 100 percent shield coverage, and PVC jacket.
 - 1. NFPA 70, Type CM.

2. Flame Resistance: UL 1581 Vertical Tray.

- J. Plenum-Type, Paired, Readers and Wiegand Keypads Cable: Paired, 3 pairs, No. 22 AWG, stranded (7x30) tinned copper conductors, plastic insulation, individual aluminum foil-polypropylene tape shielded pairs each with No. 22 AWG, stranded tinned copper drain wire, 100 percent shield coverage, and fluorinated-ethylene-propylene jacket.
 - 1. NFPA 70, Type CMP.
 - 2. Flame Resistance: NFPA 262 Flame Test.
- K. Plenum-Type, Multiconductor, Readers and Keypads Cable: 6 conductors, No. 20 AWG, stranded (7x28) tinned copper conductors, fluorinatedethylene-propylene insulation, overall aluminum foil-polyester tape shield with 100 percent shield coverage plus tinned copper braid shield with 85 percent shield coverage, and fluorinated-ethylene-propylene jacket.
 - 1. NFPA 70, Type CMP.
 - 2. Flame Resistance: NFPA 262 Flame Test.
- L. Paired Lock Cable: 1 pair, twisted, No. 16 AWG, stranded (19x29) tinned copper conductors, PVC insulation, unshielded, and PVC jacket. 1. NFPA 70, Type CMG.
 - 2. Flame Resistance: UL 1581 Vertical Tray.
- M. Plenum-Type, Paired Lock Cable: 1 pair, twisted, No. 16 AWG, stranded (19x29) tinned copper conductors, PVC insulation, unshielded, and PVC jacket.
 - 1. NFPA 70, Type CMP.
 - 2. Flame Resistance: NFPA 262 Flame Test.

- N. Paired Lock Cable: 1 pair, twisted, No. 18 AWG, stranded (19x30) tinned copper conductors, PVC insulation, unshielded, and PVC jacket. 1. NFPA 70, Type CMG.
 - 2. Flame Resistance: UL 1581 Vertical Tray.
- O. Plenum-Type, Paired Lock Cable: 1 pair, twisted, No. 18 AWG, stranded (19x30) tinned copper conductors, fluorinated-ethylene-propylene insulation, unshielded, and plastic jacket.
 1. NFPA 70, Type CMP.
 - 2. Flame Resistance: NFPA 262 Flame Test.
- P. Paired Input Cable: 1 pair, twisted, No. 22 AWG, stranded (7x30) tinned copper conductors, polypropylene insulation, overall aluminum foil-polyester tape shield with No. 22 AWG, stranded (7x30) tinned copper drain wire, 100 percent shield coverage, and PVC jacket. 1. NFPA 70, Type CMR.
 - 2. Flame Resistance: UL 1666 Riser Flame Test.
- Q. Plenum-Type, Paired Input Cable: 1 pair, twisted, No. 22 AWG, stranded (7x30) tinned copper conductors, fluorinated-ethylene-propylene insulation, aluminum foil-polyester tape shield (foil side out), with No. 22 AWG drain wire, 100 percent shield coverage, and plastic jacket. 1. NFPA 70, Type CMP.

2. Flame Resistance: NFPA 262 Flame Test.

- R. Paired AC Transformer Cable: 1 pair, twisted, No. 18 AWG, stranded (7x26) tinned copper conductors, PVC insulation, unshielded, and PVC jacket.
 - 1. NFPA 70, Type CMG.
- S. Plenum-Type, Paired AC Transformer Cable: 1 pair, twisted, No. 18 AWG, stranded (19x30) tinned copper conductors, fluorinated-ethylenepropylene insulation, unshielded, and plastic jacket.
 - 1. NFPA 70, Type CMP.
 - 2. Flame Resistance: NFPA 262 Flame Test.
- Т
- U. LAN (Ethernet) Cabling: Comply with Division 28 Section "Conductors and Cables for Electronic Safety and Security."

PART 3 - EXECUTION

3.1 GENERAL

- A. The Contractor shall install all system components and appurtenances in accordance with the manufacturers' instructions, ANSI C2, and shall furnish all necessary interconnections, services, and adjustments required for a complete and operable system as specified. Control signals, communications, and data transmission lines grounding shall be installed as necessary to preclude ground loops, noise, and surges from affecting system operation. Equipment, materials, installation, workmanship, inspection, and testing shall be in accordance with manufacturers' recommendations and as modified herein.
- B. Consult the manufacturers' installation manuals for all wiring diagrams, schematics, physical equipment sizes, etc., before beginning system installation. Refer to the Riser/Connection diagram for all schematic system installation/termination/wiring data.
- C. All equipment shall be attached to walls and ceiling/floor assemblies and shall be held firmly in place (e.g., sensors shall not be supported solely by suspended ceilings). Fasteners and supports shall be adequate to support the required load.

3.2 CURRENT SITE CONDITIONS

A. The Contractor shall visit the site and verify that site conditions are in agreement with the design package. The Contractor shall report all changes to the site or conditions which will affect performance of the system to the Owner in a report as defined in paragraph Group II Technical Data Package. The Contractor shall not take any corrective action without written permission from the Owner.

3.3 EXAMINATION

- A. Examine pathway elements intended for cables. Check raceways, cable trays, and other elements for compliance with space allocations, installation tolerances, hazards to cable installation, and other conditions affecting installation.
- B. Examine roughing-in for LAN and control cable conduit systems to PCs, Controllers, card readers, and other cable-connected devices to verify actual locations of conduit and back boxes before device installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.4 PREPARATION

- A. Comply with recommendations in SIA CP-01.
- B. Comply with EIA/TIA-606, "Administration Standard for the Telecommunications Infrastructure of Commercial Buildings."
- C. Obtain detailed Project planning forms from manufacturer of accesscontrol system; develop custom forms to suit Project. Fill in all data available from Project plans and specifications and publish as Project planning documents for review and approval.
 - 1. Record setup data for control station and workstations.
 - 2. For each Location, record setup of Controller features and access requirements.
 - 3. Propose start and stop times for time zones and holidays, and match up access levels for doors.
 - Set up groups, linking, and list inputs and outputs for each Controller.
 - 5. Assign action message names and compose messages.
 - 6. Set up alarms. Establish interlocks between alarms, intruder detection, and video surveillance features.
 - 7. Prepare and install alarm graphic maps.
 - 8. Develop user-defined fields.
 - 9. Develop screen layout formats.
 - 10. Propose setups for guard tours and key control.
 - 11. Discuss badge layout options; design badges.
 - 12. Complete system diagnostics and operation verification.
 - 13. Prepare a specific plan for system testing, startup, and demonstration.
 - 14. Develop acceptance test concept and, on approval, develop specifics of the test.
 - 15. Develop cable and asset management system details; input data from construction documents. Include system schematics and Technical Drawings.
- D. In meetings with Architect and Owner, present Project planning documents and review, adjust, and prepare final setup documents. Use final documents to set up system software.

3.5 CABLING

A. Comply with NECA 1, "Good Workmanship in Electrical Contracting."

- B. Install cables and wiring according to requirements in Division 28 Section "Conductors and Cables for Electronic Safety and Security."
- C. Wiring Method: Install wiring in raceway and cable tray except within consoles, cabinets, desks, and counters. Conceal raceway and wiring except in unfinished spaces.
- E. Install LAN cables using techniques, practices, and methods that are consistent with Category 5E rating of components and that ensure Category 5E performance of completed and linked signal paths, end to end.
- F. Install cables without damaging conductors, shield, or jacket.
- G. Boxes and enclosures containing security system components or cabling, and which are easily accessible to employees or to the public, shall be provided with a lock. Boxes above ceiling level in occupied areas of the building shall not be considered to be accessible. Junction boxes and small device enclosures below ceiling level and easily accessible to employees or the public shall be covered with a suitable cover plate and secured with tamperproof screws.
- H. Install end-of-line resistors at the field device location and not at the Controller or panel location.

3.6 CABLE APPLICATION

- A. Comply with EIA/TIA-569, "Commercial Building Standard for Telecommunications Pathways and Spaces."
- B. Cable application requirements are minimum requirements and shall be exceeded if recommended or required by manufacturer of system hardware.
- C. RS-232 Cabling: Install at a maximum distance of 50 feet (15 m).
- D. RS-485 Cabling: Install at a maximum distance of 4000 feet (1220 m).
- E. Card Readers and Keypads:
 - Install number of conductor pairs recommended by manufacturer for the functions specified.
 - Unless manufacturer recommends larger conductors, install No. 22 AWG wire if maximum distance from Controller to the reader is 250 feet (75 m), and install No. 20 AWG wire if maximum distance is 500 feet (150 m).
 - 3. For greater distances, install "extender" or "repeater" modules recommended by manufacturer of the Controller.
 - Install minimum No. 18 AWG shielded cable to readers and keypads that draw 50 mA or more.

- F. Install minimum No. 16 AWG cable from Controller to electrically powered locks. Do not exceed [250 feet (75 m)].
- G. Install minimum No. 18 AWG ac power wire from transformer to Controller, with a maximum distance of [25 feet (8 m)] <Insert distance>.

3.7 GROUNDING

- A. Comply with Division 26 Section "Grounding and Bonding for Electrical Systems."
- B. Comply with IEEE 1100, "Power and Grounding Sensitive Electronic Equipment."
- C. Ground cable shields, drain conductors, and equipment to eliminate shock hazard and to minimize ground loops, common-mode returns, noise pickup, cross talk, and other impairments.
- D. Signal Ground:
 - Terminal: Locate in each equipment room and wiring closet; isolate from power system and equipment grounding.
 - 2. Bus: Mount on wall of main equipment room with standoff insulators.
 - 3. Backbone Cable: Extend from signal ground bus to signal ground terminal in each equipment room and wiring closet.

3.8 INSTALLATION

- A. System installation shall be in accordance with UL 294, manufacturer and related documents and references, for each type of security subsystem designed, engineered and installed.
- B. Components shall be configured with appropriate "service points" to pinpoint system trouble in less than 30 minutes.
- C. The Contractor shall install all system components including Government furnished equipment, and appurtenances in accordance with the manufacturer's instructions, documentation listed in Sections 1.4 and 1.5 of this document, and shall furnish all necessary connectors, terminators, interconnections, services, and adjustments required for a operable system.
- D. The PACS will be designed, engineered, installed, and tested to ensure all components are fully compatible as a system and can be integrated with all associated security subsystems, whether the system is a stand alone or a network.

- E. For integration purposes, the PACS shall be integrated where appropriate with the following associated security subsystems:
 - 1. CCTV:
 - a. Provide 24 hour coverage of all entry points to the perimeter and agency buildings. As well as all emergency exits utilizing a fixed color camera.
 - b. Be able to monitor, control and record cameras on a 24 hours basis.
 - c. Be programmed automatically call up a camera when an access point is but into an alarm state.
 - d. For additional PACS system requirements as they relate to the CCTV, refer to Section 28 23 00, VIDEO SURVEILLANCE.
 - 2. IDS:
 - a. Be able monitor door control sensors.
 - b. Be able to monitor and control the IDS on a 24 hours basis.
 - c. Be programmed to go into an alarm state when an IDS device is put into an alarm state, and notify the operator via an audible alarm.
 - d. For additional PACS system requirements as they relate to the IDS, refer to Section 28 16 11, INTRUSION DETECTION SYSTEM.
 - 3. Security Access Detection:
 - a. Be able to monitor all objects that have been screened with an xray machine and be able to monitor all data acquired by the bomb detection unit.
 - b. For additional PACS system requirements as they relate to the Security Access Detection, refer to Section 28 13 53, SECURITY ACCESS DETECTION.
 - 4. EPPS:
 - a. Be programmed to go into an alarm state when an emergency call box or duress alarm/panic device is activated, and notify the Physical Access Control System and Database Management of an alarm event.
 - b. For additional PACS requirements as they relate to the EPPS, refer to Section 28 26 00, ELECTRONIC PERSONAL PROTECTION SYSTEM.
- F. Integration with these security subsystems shall be achieved by computer programming or the direct hardwiring of the systems.

- G. For programming purposes refer to the manufacturers requirements for correct system operations. Ensure computers being utilized for system integration meet or exceed the minimum system requirements outlined on the systems software packages.
- H. The Contractor shall visit the site and verify that site conditions are in agreement with the design package. The Contractor shall report all changes to the site or conditions that will affect performance of the system. The Contractor shall not take any corrective action without written permission from the Government.
- I. The Contractor shall visit the site and verify that site conditions are in agreement/compliance with the design package. The Contractor shall report all changes to the site or conditions that will affect performance of the system to the Contracting Officer in the form of a report. The Contractor shall not take any corrective action without written permission received from the Contracting Officer.
- J. Existing Equipment:
 - The Contractor shall connect to and utilize existing door equipment, control signal transmission lines, and devices as outlined in the design package. Door equipment and signal lines that are usable in their original configuration without modification may be reused with Contracting Officer approval.
 - 2. The Contractor shall perform a field survey, including testing and inspection of all existing door equipment and signal lines intended to be incorporated into the PACS, and furnish a report to the Contracting Officer as part of the site survey report. For those items considered nonfunctioning, provide (with the report) specification sheets, or written functional requirements to support the findings and the estimated cost to correct the deficiency. As part of the report, the Contractor shall include a schedule for connection to all existing equipment.
 - 3. The Contractor shall make written requests and obtain approval prior to disconnecting any signal lines and equipment, and creating equipment downtime. Such work shall proceed only after receiving Contracting Officer approval of these requests. If any device fails after the Contractor has commenced work on that device, signal or control line, the Contractor shall diagnose the failure and perform any necessary corrections to the equipment.

- 4. The Contractor shall be held responsible for repair costs due to Contractor negligence, abuse, or improper installation of equipment.
- 5. The Contracting Officer shall be provided a full list of all equipment that is to be removed or replaced by the Contractor, to include description and serial/manufacturer numbers where possible. The Contractor shall dispose of all equipment that has been removed or replaced based upon approval of the Contracting Officer after reviewing the equipment removal list. In all areas where equipment is removed or replaced the Contractor shall repair those areas to match the current existing conditions.
- K. Enclosure Penetrations: All enclosure penetrations shall be from the bottom of the enclosure unless the system design requires penetrations from other directions. Penetrations of interior enclosures involving transitions of conduit from interior to exterior, and all penetrations on exterior enclosures shall be sealed with rubber silicone sealant to preclude the entry of water and will comply with VA Master Specification 07 84 00, Firestopping. The conduit riser shall terminate in a hot-dipped galvanized metal cable terminator. The terminator shall be filled with an approved sealant as recommended by the cable manufacturer and in such a manner that the cable is not damaged.
- L. Cold Galvanizing: All field welds and brazing on factory galvanized boxes, enclosures, and conduits shall be coated with a cold galvanized paint containing at least 95 percent zinc by weight.
- M. Control Panels:
 - 1. Connect power and signal lines to the controller.
 - Program the panel as outlined by the design and per the manufacturer's programming guidelines.
- N. SMS:
 - Coordinate with the VA agency's IT personnel to place the computer on the local LAN or Intranet and provide the security system protection levels required to insure only authorized VA personnel have access to the system.
 - 2. Program and set-up the SMS to ensure it is in fully operation.
- O. Card Readers:
 - 1. Connect all signal inputs and outputs as shown and specified.
 - 2. Terminate input signals as required.
 - 3. Program and address the reader as per the design package.

- Readers shall be surface or flushed mounted and all appropriate hardware shall be provided to ensure the unit is installed in an enclosed conduit system.
- P. Biometrics:
 - Connect all signal input and output cables along with all power cables.
 - 2. Program and ensure the device is in operating order.
- Q. Portal Control Devices:
 - Install all signal input and output cables as well as all power cables.
 - 2. Devices shall be surface or flush mounted as per the design package.
 - 3. Program all devices and ensure they are working.
- R. Door Status Indicators:
 - Install all signal input and output cables as well as all power cables.
 - 2. RTE's shall be surface mounted and angled in a manner that they cannot be compromised from the non-secure side of a windowed door, or allow for easy release of the locking device from a distance no greater than 6 feet from the base of the door.
 - Door position sensors shall be surface or flush mounted and wide gap with the ability to operate at a maximum distance of up to 2" (5 cm).
- S. Entry Control Devices:
 - 1. Install all signal input and power cables.
 - 2. Strikes and bolts shall be mounted within the door frame.
 - 3. Mortise locks shall be mounted within the door and an electric transfer hinge shall be utilized to transfer the wire from within the door frame to the mortise lock inside the door.
 - 4. Electromagnetic locks shall be installed with the mag-lock mounted to the door frame and the metal plate mounted to the door.
- T. System Start-Up:
 - The Contractor shall not apply power to the PACS until the following items have been completed:
 - a. PACS equipment items and have been set up in accordance with manufacturer's instructions.

- b. A visual inspection of the PACS has been conducted to ensure that defective equipment items have not been installed and that there are no loose connections.
- c. System wiring has been tested and verified as correctly connected as indicated.
- d. All system grounding and transient protection systems have been verified as installed and connected as indicated.
- e. Power supplies to be connected to the PACS have been verified as the correct voltage, phasing, and frequency as indicated.
- Satisfaction of the above requirements shall not relieve the Contractor of responsibility for incorrect installation, defective equipment items, or collateral damage as a result of Contractor work efforts.
- 3. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the Resident Engineer and Commissioning Agent. Provide a minimum of 7 days prior notice.
- U. Supplemental Contractor Quality Control:
 - The Contractor shall provide the services of technical representatives who are familiar with all components and installation procedures of the installed PACS; and are approved by the Contracting Officer.
 - The Contractor will be present on the job site during the preparatory and initial phases of quality control to provide technical assistance.
 - 3. The Contractor shall also be available on an as needed basis to provide assistance with follow-up phases of quality control.
 - 4. The Contractor shall participate in the testing and validation of the system and shall provide certification that the system installed is fully operational as all construction document requirements have been fulfilled.

3.9 SYSTEM SOFTWARE

A. Install, configure, and test software and databases for the complete and proper operation of systems involved. Assign software license to Owner.

3.10 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect[, test, and adjust] field-assembled components and equipment installation, including connections[, and to assist in field testing]. Report results in writing.
- B. Testing Agency: [Owner will engage] [Engage] a qualified testing and inspecting agency to perform field tests and inspections and prepare test reports:
- C. Perform the following field tests and inspections and prepare test reports:
 - LAN Cable Procedures: Inspect for physical damage and test each conductor signal path for continuity and shorts. Use Class 2, bidirectional, Category 5 tester. Test for faulty connectors, splices, and terminations. Test according to TIA/EIA-568-1, "Commercial Building Telecommunications Cabling Standards - Part 1 General Requirements." Link performance for UTP cables must comply with minimum criteria in TIA/EIA-568-B.
 - 2. Test each circuit and component of each system. Tests shall include, but are not limited to, measurements of power supply output under maximum load, signal loop resistance, and leakage to ground where applicable. System components with battery backup shall be operated on battery power for a period of not less than 10 percent of the calculated battery operating time. Provide special equipment and software if testing requires special or dedicated equipment.
 - 3. Operational Test: After installation of cables and connectors, demonstrate product capability and compliance with requirements. Test each signal path for end-to-end performance from each end of all pairs installed. Remove temporary connections when tests have been satisfactorily completed.

3.11 PROTECTION

A. Maintain strict security during the installation of equipment and software. Rooms housing the control station, and workstations that have been powered up shall be locked and secured, with an activated burglar alarm and access-control system reporting to a Central Station complying with UL 1610, "Central-Station Burglar-Alarm Units," during periods when a qualified operator in the employ of Contractor is not present.

3.12 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 28 08 00 - COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 28 08 00 -COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.13 DEMONSTRATION AND TRAINING

- A. Provide services of manufacturer's technical representative for four hours to instruct VA personnel in operation and maintenance of units.
- B. Submit training plans and instructor qualifications in accordance with the requirements of Section 28 08 00 - COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS.
- C. Develop separate training modules for the following:
 - 1. Computer system administration personnel to manage and repair the LAN and databases and to update and maintain software.
 - 2. Operators who prepare and input credentials to man the control station and workstations and to enroll personnel.
 - 3. Security personnel.
 - 4. Hardware maintenance personnel.
 - 5. Corporate management.
- D. All testing and training shall be compliant with the VA General Requirements, Section 01 00 00, GENERAL REQUIREMENTS.

----END----

SECTION 28 16 00 INTRUSION DETECTION SYSTEM

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Provide and install a complete Intrusion Detection System, hereinafter referred to as IDS, as specified in this section.
- B. This Section includes the following:
 - Intrusion detection with [hard-wired] [multiplexed], modular, microprocessor-based controls, intrusion sensors and detection devices, and communication links to perform monitoring, alarm, and control functions.
 - Responsibility for integrating electronic and electrical systems and equipment is specified in the following Sections, with Work specified in this Section:
 - a. Division 08 Section "DOOR HARDWARE".
 - c. Division 27 Section "INTERCOMMUNICATIONS AND PROGRAM SYSTEMS".
 - d. Division 28 Section "PHYSICAL ACCESS CONTROL".
 - e. Division 28 Section "FIRE DETECTION AND ALARM".
 - f. Division 28 Section "VIDEO SURVEILLANCE".
- C. Related Sections include the following:
 - 1. Division 28 Section "VIDEO SURVEILLANCE" for closed-circuit television cameras that are used as devices for video motion detection.
 - Division 28 Section "CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY" for cabling between central-station control units and fieldmounted devices and controllers.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- B. Section 07 84 00 FIRESTOPPING. Requirements for firestopping application and use.
- C. Section 14 21 00 ELECTRIC TRACTION ELEVATORS. Requirements for elevators.
- D. Section 14 24 00 HYDRAULIC ELEVATORS. Requirements for elevators.
- E. Section 10 14 00 SIGNAGE. Requirements for labeling and signs.
- F. Section 26 05 11 REQUIREMENTS FOR ELECTRICAL INSTALLATIONS. Requirements for connection of high voltage.

- M. Section 28 13 00 PHYSICAL ACCESS CONTROL SYSTEMS (PACS). Requirements for physical access control integration.
- O. Section 28 23 00 VIDEO SURVEILLANCE. Requirements for security camera systems.
- P. Section 28 26 00 ELECTRONIC PERSONAL PROTECTION SYSTEM (EPPS). Requirements for emergency and interior communications.

1.3 QUALITY ASSURANCE

- A. The Contractor shall be responsible for providing, installing, and the operation of the IDS as shown. The Contractor shall also provide certification as required.
- B. The security system shall be installed and tested to ensure all components are fully compatible as a system and can be integrated with all associated security subsystems, whether the security system is standalone or a part of a complete Information Technology (IT) computer network.
- C. The Contractor or security sub-contractor shall be a licensed security Contractor as required within the state or jurisdiction of where the installation work is being conducted.

1.4 DEFINITIONS

- A. Controller: An intelligent peripheral control unit that uses a computer for controlling its operation. Where this term is presented with an initial capital letter, this definition applies.
- B. I/O: Input/Output.
- C. Intrusion Zone: A space or area for which an intrusion must be detected and uniquely identified, the sensor or group of sensors assigned to perform the detection, and any interface equipment between sensors and communication link to central-station control unit.
- D. LED: Light-emitting diode.
- E. NEC: National Electric Code
- F. NEMA: National Electrical Manufacturers Association
- G. NFPA: National Fire Protection Association
- H. NRTL: Nationally Recognized Testing Laboratory.
- I. SMS: Security Management System A SMS is software that incorporates multiple security subsystems (e.g., physical access control, intrusion detection, closed circuit television, intercom) into a single platform and graphical user interface.
- J. PIR: Passive infrared.

- K. RF: Radio frequency.
- L. Standard Intruder: A person who weighs 45 kg (100 lb.) or less and whose height is 1525 mm (60 in) or less; dressed in a long-sleeved shirt, slacks, and shoes.
- M. Standard-Intruder Movement: Any movement, such as walking, running, crawling, rolling, or jumping, of a "standard intruder" in a protected zone.
- N. TCP/IP: Transport control protocol/Internet protocol incorporated into Microsoft Windows.
- O. UPS: Uninterruptible Power Supply
- P. UTP: Unshielded Twisted Pair

1.5 SUBMITTALS

- A. Submit below items in conjunction with Master Specification Sections 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, and Section 02 41 00, DEMOLITION.
- B. Provide certificates of compliance with Section 1.3, Quality Assurance.
- C. Provide a shop drawing and as-built design package in both electronic format and on paper, minimum size 1220 x 1220 millimeters (48 x 48 inches); drawing submittals shall be per the established project schedule.
- D. Shop drawing and as-built packages shall include, but not be limited to:
 - 1. Index Sheet that shall:
 - a. Define each page of the design package to include facility name, building name, floor, and sheet number.
 - b. Provide a list of all security abbreviations and symbols.
 - c. Reference all general notes that are utilized within the design package.
 - d. Specification and scope of work pages for all security systems that are applicable to the design package that will:
 - Outline all general and job specific work required within the design package.
 - Provide a device identification table outlining device Identification (ID) and use for all security systems equipment utilized in the design package.
 - Drawing sheets that will be plotted on the individual floor plans or site plans shall:

- a. Include a title block as defined above.
- b. Define the drawings scale in both standard and metric measurements.
- c. Provide device identification and location.
- d. Address all signal and power conduit runs and sizes that are associated with the design of the electronic security system and other security elements (e.g., barriers, etc.).
- e. Identify all pull box and conduit locations, sizes, and fill capacities.
- f. Address all general and drawing specific notes for a particular drawing sheet.
- 3. A riser drawing for each applicable security subsystem shall:
 - a. Indicate the sequence of operation.
 - b. Relationship of integrated components on one diagram.
 - c. Include the number, size, identification, and maximum lengths of interconnecting wires.
 - d. Wire/cable types shall be defined by a wire and cable schedule. The schedule shall utilize a lettering system that will correspond to the wire/cable it represents (example: A = 18 AWG/1 Pair Twisted, Unshielded). This schedule shall also provide the manufacturer's name and part number for the wire/cable being installed.
- 4. A system drawing for each applicable security system shall:
 - a. Identify how all equipment within the system, from main panel to device, shall be laid out and connected.
 - b. Provide full detail of all system components wiring from point-topoint.
 - c. Identify wire types utilized for connection, interconnection with associate security subsystems.
 - d. Show device locations that correspond to the floor plans.
 - e. All general and drawing specific notes shall be included with the system drawings.
- A schedule for all of the applicable security subsystems shall be included. All schedules shall provide the following information:
 a. Device ID.
 - b. Device Location (e.g. site, building, floor, room number, location, and description).

- c. Mounting type (e.g. flush, wall, surface, etc.).
- d. Power supply or circuit breaker and power panel number.
- e. In addition, for the IDS, provide the sensor ID, sensor type and housing model number.
- Detail and elevation drawings for all devices that define how they were installed and mounted.
- E. Shop drawing packages shall be reviewed by the Contractor along with a VA representative to ensure all work has been clearly defined and completed. All reviews shall be conducted in accordance with the project schedule. There shall be four (4) stages to the review process:
 - 1. 35 percent
 - 2. 65 percent
 - 3. 90 percent
 - 4. 100 percent
- F. Provide manufacturer security system product cut-sheets. Submit for approval at least 30 days prior to commencement of formal testing, a Security System Operational Test Plan. Include procedures for operational testing of each component and security subsystem, to include performance of an integrated system test.
- G. Submit manufacture's certification of Underwriters Laboratories, Inc.(UL) listing as specified. Provide all maintenance and operating manuals per the VA General Requirements, Section 01 00 00, GENERAL REQUIREMENTS.
- H. Completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 28 08 00 COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below (including amendments, addenda, revisions, supplement, and errata) form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American National Standards Institute (ANSI)/Security Industry Association (SIA): PIR-01-00Passive Infrared Motion Detector Standard -Features for Enhancing False Alarm Immunity

CP-01-00Control Panel Standard-Features for False Alarm Reduction C. Department of Justice American Disability Act (ADA) 28 CFR Part 362010 ADA Standards for Accessible Design D. Federal Communications Commission (FCC): (47 CFR 15) Part 15Limitations on the Use of Wireless Equipment/Systems E. National Electrical Manufactures Association (NEMA): 250-08 Enclosures for Electrical Equipment (1000 Volts Maximum) F. National Fire Protection Association (NFPA): 70-11National Electrical Code 731-08 Standards for the Installation of Electric Premises Security Systems G. Underwriters Laboratories, Inc. (UL): 464-09 Audible Signal Appliances 609-96 Local Burglar Alarm Units and Systems 634-07 Standards for Connectors with Burglar-Alarm Systems 639-07 Standards for Intrusion Detection Units 1037-09 Standard for Anti-theft Alarms and Devices 1635-10Digital Alarm Communicator System Units H. Uniform Federal Accessibility Standards (UFAS), 19841.

1.7 COORDINATION

- A. Coordinate arrangement, mounting, and support of intrusion detection system equipment:
 - To allow maximum possible headroom unless specific mounting heights that reduce headroom are indicated.
 - 2. To provide for ease of disconnecting the equipment with minimum interference to other installations.
 - To allow right of way for piping and conduit installed at required slope.
 - So connecting raceways, cables, wireways, cable trays, and busways will be clear of obstructions and of the working and access space of other equipment.

- B. Coordinate installation of required supporting devices and set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.
- C. Coordinate location of access panels and doors for electronic safety and security items that are behind finished surfaces or otherwise concealed.

1.8 EQUIPMENT AND MATERIALS

- A. General
 - All equipment associated within the IDS shall be rated for continuous operation. Environmental conditions (i.e. temperature, humidity, wind, and seismic activity) shall be taken under consideration at each facility and site location prior to installation of the equipment.
 - 2. All equipment shall operate on a 120 or 240 volts alternating current (VAC); 50 Hz or 60 Hz AC power system unless documented otherwise in subsequent sections listed within this specification. All equipment shall have a back-up source of power that will provide a minimum of 96 hours of run time in the event of a loss of primary power to the facility.
 - 3. The system shall be designed, installed, and programmed in a manner that will allow for ease of operation, programming, servicing, maintenance, testing, and upgrading of the system.
 - 4. All IDS components located in designated "HAZARDOUS ENVIRONMENT" areas where fire or explosion could occur due to the presence of natural gases or vapors, flammable liquids, combustible residue, or ignitable fibers or debris, shall be rated Class II, Division I, Group F, and installed in accordance with National Fire Protection Association (NFPA) 70 National Electric Code, Chapter 5.
 - 5. All equipment and materials for the system will be compatible to ensure functional operation in accordance with requirements.

1.9 WARRANTY OF CONSTRUCTION.

- A. Warrant IDS work subject to the Article "Warranty of Construction" of FAR 52.246-21.
- B. Demonstration and training shall be performed prior to system acceptance.

PART 2 - PRODUCTS

2.1 FUNCTIONAL DESCRIPTION OF SYSTEM

- A. Supervision: System components shall be continuously monitored for normal, alarm, supervisory, and trouble conditions. Indicate deviations from normal conditions at any location in system. Indication includes identification of device or circuit in which deviation has occurred and whether deviation is an alarm or malfunction.
 - 1. Alarm Signal: Display at central-station control unit and actuate audible and visual alarm devices.
 - Trouble Condition Signal: Distinct from other signals, indicating that system is not fully functional. Trouble signal shall indicate system problems such as battery failure, open or shorted transmission line conductors, or controller failure.
 - Supervisory Condition Signal: Distinct from other signals, indicating an abnormal condition as specified for the particular device or controller.
- B. System Control: Central-station control unit shall directly monitor intrusion detection units and connecting wiring.
- C. System shall automatically reboot program without error or loss of status or alarm data after any system disturbance.
- D. Operator Commands:
 - Help with System Operation: Display all commands available to operator. Help command, followed by a specific command, shall produce a short explanation of the purpose, use, and system reaction to that command.
 - Acknowledge Alarm: To indicate that alarm message has been observed by operator.
 - Place Protected Zone in Access: Disable all intrusion-alarm circuits of a specific protected zone. Tamper circuits may not be disabled by operator.
 - 4. Place Protected Zone in Secure: Activate all intrusion-alarm circuits of a protected zone.
 - Protected Zone Test: Initiate operational test of a specific protected zone.
 - 6. System Test: Initiate system-wide operational test.
 - 7. Print Reports.

- E. Timed Control at Central-Station Control Unit: Allow automatically timed "secure" and "access" functions of selected protected zones.
- F. Automatic Control of Related Systems: Alarm or supervisory signals from certain intrusion detection devices control the following functions in related systems:
 - 1. Switch selected lights.
 - 2. Shift elevator control to a different mode.
 - 3. Open a signal path between certain intercommunication stations.
 - 4. Shift sound system to "listening mode" and open a signal path to certain system speakers.
 - 5. Switch signal to selected monitor from closed-circuit television camera in vicinity of sensor signaling an alarm.
- G. Printed Record of Events: Print a record of alarm, supervisory, and trouble events on system printer. Sort and report by protected zone, device, and function. When central-station control unit receives a signal, print a report of alarm, supervisory, or trouble condition. Report type of signal (alarm, supervisory, or trouble), protected zone description, date, and time of occurrence. Differentiate alarm signals from other indications. When system is reset, report reset event with the same information concerning device, location, date, and time. Commands shall initiate the reporting of a list of current alarm, supervisory, and trouble conditions in system or a log of past events.
- H. Response Time: 2 seconds between actuation of any alarm and its indication at central-station control unit.
- I. Circuit Supervision: Supervise all signal and data transmission lines, links with other systems, and sensors from central-station control unit. Indicate circuit and detection device faults with both protected zone and trouble signals, sound a distinctive audible tone, and illuminate an LED. Maximum permissible elapsed time between occurrence of a trouble condition and indication at central-station control unit is 20 seconds. Initiate an alarm in response to opening, closing, shorting, or grounding of a signal or data transmission line.
- J. Programmed Secure-Access Control: System shall be programmable to automatically change status of various combinations of protected zones between secure and access conditions at scheduled times. Status changes may be preset for repetitive, daily, and weekly; specially

scheduled operations may be preset up to a year in advance. Manual secure-access control stations shall override programmed settings.

K. Manual Secure-Access Control: Coded entries at manual stations shall change status of associated protected zone between secure and access conditions.

2.2 SYSTEM COMPONENT REQUIREMENTS

- A. Compatibility: Detection devices and their communication features, connecting wiring, and central-station control unit shall be selected and configured with accessories for full compatibility with the following equipment:
 - Data Gathering Panel, Output Module, Input Module, 28 13 00 PHYSICAL ACCESS CONTROL SYSTEM.
- B. Surge Protection: Protect components from voltage surges originating external to equipment housing and entering through power, communication, signal, control, or sensing leads. Include surge protection for external wiring of each conductor entry connection to components.
 - Minimum Protection for Power Lines 120 V and More: Auxiliary panel suppressors complying with requirements in Division 26 Section TRANSIENT-VOLTAGE SUPPRESSION FOR LOW-VOLTAGE ELECTRICAL POWER CIRCUITS.
 - 2. Minimum Protection for Communication, Signal, Control, and Low-Voltage Power Lines: Comply with requirements in Division 26 Section TRANSIENT-VOLTAGE SUPPRESSION FOR LOW-VOLTAGE ELECTRICAL POWER CIRCUITS as recommended by manufacturer for type of line being protected.
- C. Interference Protection: Components shall be unaffected by radiated RFI and electrical induction of 15 V/m over a frequency range of 10 to 10,000 MHz and conducted interference signals up to 0.25-V RMS injected into power supply lines at 10 to 10,000 MHz.
- D. Tamper Protection: Tamper switches on detection devices, controllers, annunciators, pull boxes, junction boxes, cabinets, and other system components shall initiate a tamper-alarm signal when unit is opened or partially disassembled and when entering conductors are cut or disconnected. Central-station control-unit alarm display shall identify tamper alarms and indicate locations.

- E. Self-Testing Devices: Automatically test themselves periodically, but not less than once per hour, to verify normal device functioning and alarm initiation capability. Devices transmit test failure to centralstation control unit.
- F. Antimasking Devices: Automatically check operation continuously or at intervals of a minute or less, and use signal-processing logic to detect blocking, masking, jamming, tampering, or other operational dysfunction. Devices transmit detection of operational dysfunction to central-station control unit as an alarm signal.
- G. Addressable Devices: Transmitter and receivers shall communicate unique device identification and status reports to central-station control unit.
- H. Remote-Controlled Devices: Individually and remotely adjustable for sensitivity and individually monitored at central-station control unit for calibration, sensitivity, and alarm condition.

2.3 ENCLOSURES

- A. Interior Sensors: Enclosures that protect against dust, falling dirt, and dripping noncorrosive liquids.
- B. Interior Electronics: NEMA 250, Type 12.
- C. Exterior Electronics: NEMA 250, Type 4X stainless steel.
- D. Corrosion Resistant: NEMA 250, Type 4X stainless steel.
- E. Screw Covers: Where enclosures are accessible to inmates, secure with security fasteners of type appropriate for enclosure.

2.5 EQUIPMENT ITEMS

- A. General:
 - All requirements listed below are the minimum specifications that need to be met in order to comply with the IDS.
 - 2. All IDS sensors shall conform to UL 639, Intrusion Detection Standard.
 - 3. Ensure that IDS is fully integrated with other security subsystems as required to include, but not limited to, the CCTV, PACS, EPPS, and Physical Access Control System and Database Management. The IDS provided shall not limit the expansion and growth capability to a single manufacturer and shall allow modular expansion with minimal equipment modifications.
- B. IDS Components: The IDS shall consist of, but not be limited to, the following components:

- 1. Control Panel
- 2. Exterior Detection Devices (Sensors)
- 3. Interior Detection Devices (Sensors)
- 4. Power Supply
- 5. Enclosures

2.6 CONTROL PANEL

- A. The Control panel shall be the main point of programming, monitoring, accessing, securing, and troubleshooting the IDS. Refer to American National Standards Institute (ANSI) CP-01 Control Panel Standard-Features for False Alarm Reduction.
- B. The Control Panel shall provide a means of reporting alarms to an Physical Access Control System and Database Management via a computer interface or direct connection to an alarm control monitoring panel.
- C. The Control panel shall utilize a Multifunctional Keypad, Input and Output Modules for expansion of alarm zones, interfacing with additional security subsystems, programming, monitoring and controlling the IDS.
- D. The Control panel shall meet or exceed the following minimum functional requirements for programming outputs, system response, and user interface:
 - 1. Programming Outputs:
 - a. 2 Amps alarm power at 12 VDC
 - b. 1.4 Amps auxiliary power at 12 VDC
 - c. Four alarm output patterns
 - d. Programmable bell test
 - e. Programmable bell shut-off timer
 - 2. System Response:
 - a. Selectable point response time
 - b. Cross point capability
 - c. Alarm verification
 - d. Watch mode
 - e. Scheduled events arm, disarm, bypass and un-bypass points, control relays, and control authority levels
 - 3. User Interface:
 - a. Supervises up to eight command points (e.g. Up to 16 unsupervised keypads can be used)
 - b. Provides custom keypad text

- c. Addresses full function command menu including custom functions
- d. Allows user authority by defined area and 16-character name
- e. Provides for 14 custom authority control levels allowing user's authority to change, add, delete pass codes, disarm, bypass points, and start system tests.
- The Control panel shall meet or exceed the following technical characteristics:

Input Voltage via 110 VAC or 220 VAC Step-down Transformer	16 or 18 VAC
Operating Voltage	12 VDC
Output Voltage	12 VDC @ 2 A max
Direct Hardwire Zones	7
Partitions	8
Multifunctional Keypads	16 (2 per partition)
Communications Port	RJ-11

- E. A multifunctional keypad shall be utilized as a user interface for arming, disarming, monitoring, troubleshooting, and programming the alarm control panel.
- F. Keypads shall have the following features:
 - Multiple function keypads suitable for remote mounting, no greater than 1333 m (4000 ft), shall be provided from the control panel and have a light emitting diode (LED) readout of alarm and trouble conditions by zone.
 - 2. An alphanumeric English language display, with keypad programmability, and EE-PROM memory, shall also be provided.
 - Trouble alarm indicators shall be distinguishable from intrusion alarms.
 - 4. A minimum of four (4) zones selectable as entry and exit with programmable time delay.
 - 5. Complete system test activated capability at the keypad.
 - 6. Capability for opening and closing reports to a remote monitoring location.
 - 7. Adjustable entry and exit delay times.
 - 8. Capability for a minimum of two (2) multiple function keypads.
 - 9. Capability to shunt or bypass selected interior zones while arming perimeter protection and remaining interior zones.

- Capability for a minimum of seven assignable pass-codes that are keypad programmable from a suppressed master code.
- 11. The control panel shall have a communications port that will allow for communications with a computer for programming, monitoring, and troubleshooting purposes. The communications port will be, at a minimum, and RJ-11 or better.
- 12. The control panel will have a systems success probability of 95% or better, and shall include the following success considerations:
 - a. False Alarm: Shall not exceed one (1) false alarm per 30 days per sensor zone.
 - b. Nuisance Alarm: Shall not exceed a rate of one (1) alarm per seven (7) days per zone within the first 60 days after installation and acceptance. Sensor adjustments will be made and then shall not exceed one (1) alarm per 30 days.
- 13. The Control Panel will be able to detect either a line fault or power loss for all supervised data cables.
 - a. Line Fault Detection: Communication links of the IDS shall have an active mode for line fault detection. Fault isolation at the systems level shall have the same geographic resolutions as provided for intrusion detection. The line fault alarm shall be clearly distinguishable from other alarms.
 - b. Power Loss Detection: Provide the capability to detect when critical components experience temporary or permanent loss of power and annunciate to clearly identify the component experiencing power loss.

2.7 KEYPADS

A. Keypads shall meet or exceed the following technical characteristics:

Connections	4-wire flying lead for data and power
Operating Temperature	0°C to +50°C (+32°F to +122°F)
Display Window	8-point LED
Indicators: Illuminated keys	Armed Status-LED
	Point Status-LED
	Command Mode-LED
	Power-LED
Voltage	Nominal 12 VDC

2.8 INPUT MODULE

A. An input module shall be utilized to connect additional detection devices to the control panel. This module will meet or exceed the following technical characteristics:

Operating Voltage	8.5 to 14.5 VDC Nominal
Zone Inputs	Style A (Class B) Supervised
Operating Temperature	0 to 40 degrees C (32 to 140 degrees F)

2.9 OUTPUT MODULE

A. An output module shall be utilized to interface the control panel with other security subsystems. The output module shall meet or exceed the following technical characteristics:

Operating Voltage	8.5 to 14.5 VDC Nominal
Output Relays	"Form C" Dry Relay Contracts
Relay Contact Rating	4A @ 24 VDC
	4A @ 24 VAC
	1A @ 70 VAC
Operating Temperature	0 to 40 degrees C F (32 to 140 degrees)

2.11 INTERIOR DETECTION DEVICES (SENSORS)

- A. The IDS shall consist of interior, exterior, and other detection devices that are capable of:
 - Locating intrusions at individually protected asset areas or at an individual portal;
 - 2. Locating intrusions within a specific area of coverage;
 - 3. Locating failures or tampering of individual sensors or components.
- B. Provide and adjust for devices so that coverage is maximized in the space or area it is installed in. For large rooms where multiple devices are required, ensure device coverage is overlapping.
- C. Detection sensitivity shall be set up to ensure maximum coverage of the secure area is obtained while at the same time limiting excessive false alarms due to the environment and impact of small animals. All detection devices shall be anti-masking with exception of video motion detection.
- D. Dual sensor technology shall be used when possible. Sensor technology shall not be of the same type that is easily defeated by a single method. This will reduce the amount of false alarms.

- E. Interior Environmental Conditions: Systems shall be able to operate in environmentally protected interior areas and shall meet operational performance requirements for the following ambient conditions:
 - 1. If components are installed in unheated areas they shall be able to operate in temperatures as low as -17 C (0 F);
 - Temperatures0 to 50 C (32F to 120 F)PressureSea Level to 4573m (15,000 ft.) above
sea levelHumidity5% 95%FungusComponents of non-fungus nutrient
materialsAcoustical NoiseSuitable for high noise environments
above 100db
 - 2. Interior Sensor Environmental Characteristics:

- F. Balanced Magnetic Switches (BMS)
 - BMS switches shall be surface or recessed mounted according to manufacturer's instructions. Recessed mounted is the preferred method to reduce tampering or defeating of the system. Switches shall activate when a disturbance in the balanced magnetic field occurs.
 - 2. Switches shall have a minimum of two (2) encapsulated reed switches.
 - 3. Contractor shall provide each BMS with a current protective device, rated to limit current to 80% of the switch capacity.
 - 4. Surface Mounted BMS: For exterior application, components shall be housed in weatherproof enclosures.
 - 5. BMS field adjustments in the fixed space between magnet and switch housing shall not be possible. Attempts to adjust or disturb the magnetic field shall cause a tamper alarm.
 - 6. BMS Technical Characteristics:

Maximum current	.25 amperes
Maximum voltage	30 VDC
Maximum power	3.0 W (without internal terminating resistors). 1.0 W (with internal terminating resistors).
Components	Three (3) pre-adjusted reed switches Three (3) pre-adjusted magnets
Output contacts	Transfer type SPDT

Contact rating	0.5 amperes, 28 VDC
Switch mechanism	Internally adjustable ¼ - ½ in. (6-13 mm)
Wiring	Two (2) wires #22 American Wire Gauge (AWG), three (3) or 11 foot attached cable
Activation lifetime	1,000,000 activations
Enclosure	Nonferrous materials
Tamper alarm activation	Cover opened 3 mm (1/8 in.) and inaccessible until actuated

- G. Window Intrusion Detection
 - These IDS devices shall detect intrusions thru inertia (shock) or by sound, and shall utilize either a Breakwire Sensor or Acoustic and Seismic Sensor.
 - 2. Break wire Sensors (wire trap):
 - a. Detect intrusion thru shock or breakage of window glazing. Also used for the protection of utility openings.
 - b. Sensors shall consist of fine wire embedded in or affixed to interior of glazing. Breakage of protected glazing shall result in wire breakage.
 - c. Wire shall be hard-drawn copper up to #26 AWG diameter.
 - d. If sensors are affixed to glazing the sensor shall be protected by a clear coating which shall not affect sensor functioning.
 - e. Sensor shall be terminated in insulated connectors which are concealed and tamper resistant.
 - f. Protection of inlet openings:
 - Shall consist of up to 26 AWG hard-drawn copper wire with a tensile strength of 17.8 N 4 pounds maximum.
 - Wire shall be interlaced throughout the opening such that no opening between wires shall be larger than 100 mm (4 in.. on center.
 - 3) Sensors shall be terminated so that attempts to cut the wire or otherwise enlarge openings between wires shall cause an alarm.
 - Sensors shall be terminated in insulated connectors which are concealed and tamper resistant.
- H. Acoustic and Seismic Glass Break Detectors

- Detects intrusion thru the use of audible sound and vibration emitted from the breaking of glass using a tuned frequency range and sound pattern recognition. This initiates an alarm when glass they protect is broken or cracked.
- Detectors shall be installed in strict conformance with manufacture's installation instructions.
- 3. The detector's power circuit shall be switched via an output relay on the control panel to provide latching alarm LED reset capability.
- Sensors shall be contained in a fire-resistant ABS plastic housing and must be mounted in contact with a window.
- 5. Sensing shall be accomplished through the use of a mechanical filtered piezoelectric element.
- Sensors shall have a sensitivity adjustment controlling output voltage from the piezoelectric element which triggers a solid-state latching device.
- Sensors shall selectively filter input to minimize false alarms and not initiate alarm in response to ambient seismic vibrations or other ambient stimuli.
- A manufacture's test unit will be used to validate the sensor by simulating glass breakage.
- 9. The Contractor shall provide sensors for adjusting sensitivity and two-sided polyurethane tape with acrylic adhesive for window attachment.
- Sensor shall include exterior label to protect adhesive tape from direct sunlight.
- 11. Window Intrusion Detection Sensor Technical Specifications:

Power	Auxiliary power supply 12 VDC @ 25 mA (+/-) 10%
Power Input	10 - 15 VDC at 16mA protected against reverse polarity, 20 mA during relay closure
Relay Output Rating	Minimum of 25 VDC mA
Coverage Audio	6,000 Square ft.
Coverage Glass Break	7.5 m (25 ft.) wide by 7.5 m wide (25 ft.)
	Minimum: 7.62 m (25 feet) from the detector to the furthest point on protected glass.

28 16 00-18

Audio Output	300 - 12,000 HZ
Alarm Output	Relay NO or NC selectable
Interconnection	12 pin Panduit connector, 22 AWG
Radio Frequency Interface	No alarm or setup on between frequencies 26 - 100 MHz 50 v/m
	Immunity to mobile RF interference 100 watts 3 m @ (9.8 Ft.) in 27-100 MHz range
Alarm period	Two (2) to three (3)
Mounting	Ceiling, same wall, adjacent wall, opposite wall
Features	Test and alarm LEDs for acoustic seismic and alarm condition latching, Alarm LED and tamper switch on cover.
Alarm verification	Digital signal processing or dual acoustic processing technologies
Detection ability	Single and multi-pane glass, wired glass, tempered and laminated glass to 6 mm (¼ inch) or thickness

I. Screening

- This material shall be used on windows to protect and detect intrusion as follows.
 - a. Security screens shall be constructed from a maximum of 26 AWG insulated hard-drawn copper.
 - b. Screens shall be connected to an alarm circuitry by means of flexible armored cords. Security screen circuitry shall provide end-of-line resistors in series or equivalent methods ensuring alarm activation if short-circuiting of the screen is attempted.
 - c. If unable to install a break wire sensor (wire traps), then tamper switches will be provided.
 - d. Contractor shall provide tamper switches in the frames as required with not less than one (1) switch on each side if dimensions are 610 mm two ((2) ft. square) or less, and two (2) switches if dimensions exceed 610 mm (2 ft. square). Tamper switches shall be corrosion-resistant, spring-operated, and shall initiate an alarm with a movement of 50 mm (two (2) in.) or less before access to the switch is possible.

- e. Electrical characteristics of the switch shall match the alarm system requirements.
- J. Vibration Sensors
 - These sensors shall initiate alarms upon detecting drilling, cutting, or blasting through walls, or other methods of forced entry through a structure as follows.
 - 2. Sensors shall detect and selectively amplify signals generated by forced penetration of a protective structure.
 - Sensors shall be designed to give peak response to structurally conveyed vibrations associated with forcible attack on the protected surface.
 - 4. Sensors will initiate an alarm if attempts are made to remove them from the surface of the wall.
 - 5. Sensors shall be enclosed in protective mountings.
 - Sensors shall include an adjustable alarm discriminator to prevent incidental vibrations which may occur from triggering the alarm circuit.
 - 7. Sensors shall be provided with a tamper switch.
 - 8. Sensor sensitivity shall be individually adjustable unless a sensor is designed to accommodate vibration ranges of specific surface type on which it will be mounted. Sensitivity adjustments shall not be accessible without removing the sensor cover. Also, a sensor shall not be responsive to airborne sound.
 - 9. Vibration Sensor Technical Characteristics:

Power requirements	External DC power source Eight (8)- 14.5 VDC, two (2) volt max peak to peak ripple
Alarm output	Form C (NO/C/NC) solid state alarm relay, rated 100 mA, 28 VDC
Tamper Connection	Tamper switch and external magnetic
Current rating and alarm output	No alarm state 20mA SPDT relay contact rating (Form C)
Sensor range	Concrete (poured) 4 m (13.2 ft.) Concrete block 2 m (6.6 ft.) Brick block 1 m (3.3 ft.)
Frequency range	3kHz-20kHz (-15db) 7kHz-10kHz (-10db)

Adjustable	Sensitivity eight (8) steps
	Alarm response 0-30 sec

- K. Passive Infrared Motion Sensors (PIR)
 - These sensors shall detect an intruder presence by monitoring the level of infrared energy emitted by objects within a protected zone and meet ANSI PIR-01 Passive Infrared Motion Detector Standards Features for Enhancing False Alarm Immunity. An alarm shall be initiated when motion and temperature changes within set patterns are detected as follows.
 - 2. The detector shall provide multiple detection zones distributed at a variety of angles and distance.
 - 3. Sensors shall be passive in nature; no transmitted energy shall be required for detection.
 - 4. Sensors shall be sensitive to infrared energy emitted at wavelengths corresponding to human body and other objects at ambient temperatures.
 - 5. Sensors shall not alarm in response to general area thermal variations and shall be immune to radio frequency interference.
 - 6. Sensors shall not be susceptible to changes in temperature due to an air conditioner being turned on or off.
 - 7. Sensors shall be housed in a tamper-alarmed enclosure.
 - Sensor detectors shall include motion analyzer processing, adjustable lens, and walk test LED's visible from any angle.
 - 9. Sensors shall provide some means of indicating an alarm condition during installation and calibration. A means of disabling the indication shall be provided within the sensor enclosure.
 - 10. Sensor detectors shall include a motion monitoring verification circuit that will signal trouble or alarm if the detector fails to detect motion for an extended period.
 - 11. PIR Technical Characteristics:

Power	Six (6) - 12 VDC
	25 mA continuous current draw
	38 mA peaks
Alarm Velocity	1500 mm (Five (5) ft.) at a velocity of 30 mm (0.1 ft.) per second, and one (1) step per second, assuming 150 mm (6 in.) per step.
	Also, faster than 30 mm (1 foot) per second, up to 3000 mm (10 feet) per

28 16 00-21

	second
Maximum detection range	10.6 m (35 ft.)
Frequency range- non activation or setup use	26 to 950 MHz using a 50 watt transmitter located 1 ft. from the unit or attached wiring
Infrared detection	1 1/2°C (3°F) different from the background temperature
Detection Pattern	180 degrees for volumetric units, non PIR 360
PIR 360°Detection Pattern	Programmable 60 detection zones including one directly below
Mounting	Ceiling and walls
Ceiling heights	2.4 m (Eight (8) ft.) - 5.4 m (18 ft)
Sensitivity adjustments	Three (3) levels

- L. Microwave-Passive Infrared Detector
 - This sensor shall be designed to detect the motion of a human body within a protected area by means of a combination of microwave sensing technology and passive infrared (MPIR) sensing technology as follows.
 - The sensor shall require both technologies to sense intrusion before an alarm may occur.
 - 3. The sensor shall be designed for wall mounting on swivel bracket. A high-security gimbaled bracket shall be provided.
 - 4. The PIR fields of view shall be focused on the pyroelectric element by means of an internal multi-faceted mirror.
 - 5. The sensor shall incorporate a look-down lens system that detects the passing of an intruder directly beneath the sensor.
 - 6. The sensor shall incorporate a microwave supervision system which shall activate the trouble output if the device technology fails.
 - The sensor shall incorporate self-diagnostics which shall monitor the sensor systems and report a trouble to the control panel if any system device fails.
 - The sensor shall have compensation against loss of sensitivity as the ambient temperature nears human body temperature.
 - 9. MPIR Technical Characteristics:

Technology	Microwave and Passive Infrared

Power	Nine (9) - 15 VDC max current consumption 22 mA at 12 VDC
Operating Temperature	0° C (32°F) - 49° C (120° F)
Detection Area	30 m (98 ft.) long by 3 m (9.8 ft.) wide or 21 m (69 ft.) long by 21m (69 ft.) wide
Electronics	Microcontroller based
Alarm Contact	Form-C rated 125 mA, 28 VDC
Tamper Contact	125 mA, 28 VDC
Trouble Contact	Form-B rated 25 mA, 30 VDC
Microwave Operating Frequency	10.525 GHz
Microwave Sensitivity	Adjustable on circuit board
Detection pattern adjustment	Changing of internal lens
Sensing element	Pyro-electric
LED Indicators	PIR, microwave, alarm
Bug and Dust protection	zero-clearance, gasket bug guard
Lens	Interchangeable: standard 18x24 m (60x80 ft.), corner mounting, ultra- wide, pet alley, long range, room and corridor combo, room and ceiling combo, creep zone

- M. Photoelectric Sensors
 - The sensor devices shall be able to detect an intruder presence by sending out a series of infrared or ultraviolet beams. Intrusion is based on disruption of the signal beams as follows.
 - a. Sensors shall consist of a modulating transmitter, focusing lenses, mirrors, demodulating receiver, power supply, and interconnecting lines.
 - Beam transmitters shall be designed to emit light. Beams may be reflected by one (1) or more mirrors before being received and amplified.
 - c. The photoelectric sensor shall initiate an alarm when the beam is interrupted with monitoring controls set at midrange.
 - d. Transmitted beams shall be uniquely modulated to prohibit defeat of the IDS system by shining another light source into the receiver.

- e. Sensors shall provide a means of local alarm indication on the detector for use at the protected zone during installation and calibration.
- f. Sensors shall include an indicator-disabling device within the sensor enclosure.
- g. Sensors shall utilize automatic gain control or be provided with sensitivity adjustments to allow for various beam lengths.
- h. Sensor controls shall be inaccessible to operating personnel.
- i. Sensors that use multiple beams shall be tested by attempting to crawl under and jump through and over beams. Each system sensor shall provide cutoffs of at least 90% to handle a high percentage of light cutoffs prior to initiating an alarm.
- j. Sensor components shall be housed in tamper-alarmed enclosure.
- 2. Photoelectric Sensor Technical Characteristics:

Power requirements	Nine (9)-16 VDC, protected against reverse polarity
Relay output	Normally closed. 18 ohm resister in series with contacts. 0.5 amperes resistance/24 VDC
Current	Transmitter 15 mA, Receiver 15 mA
LED	Alignment, walk-test alarm, off
Range	Indoor: 39 m (130 ft.) Outdoor19.5 m: (65 ft.)
Alarm relay contacts	Two (2) amperes at 120 VAC minimum
Enclosure	High impact acrylic
Туре	Dual beam
Mounting	Wall, corner, flush
Beam width	Six (6) degrees
Receiver field of view	Six (6) degrees horizontal and vertical
Adjustments	Vertical +10 - 20 degrees Horizontal 30 degrees
Alarm period	Two (2) - three (3) sec
Infrared source	Long-life Gallium Arsenide LED
Infrared sensor	PIN photodiode
Transmitter Frequency	One (1) kHz 10 microsecond pulse width
IR Wavelength	950 nm

N. CCTV Video Motion Detection Sensors: Refer to Section 28 23 00 VIDEO SURVEILLANCE that outlines related video motion detection requirements.

2.12 TAMPER ALARM SWITCHES

- A. The following IDS sensors shall be used to monitor and detect potential tampering of sensors, control panels and enclosures.
 - Tamper Switches: All enclosures including cabinets, housings, boxes, raceways, and fittings with hinged doors or removable covers containing circuits and power supplies related to the IDS shall include corrosion-resistant tamper switches.
 - Tamper alarms shall be annunciated to be clearly distinguishable from IDS alarms.
 - 3. Tamper switches will not be in a viewable from a direct line of sight perspective. The minimum amount of time the tamper switch becomes active and sends a signal after an enclosure is opened or panel removable is attempted, shall be one (1) second.
 - 4. Tamper switches will initiate when enclosure doors or covers is removed as little as 6.35 mm (1/4 inch) from the closed position unless otherwise indicated. Tamper switches shall be:
 - a. Push/pull automatic reset type;
 - b. Inaccessible until switch is activated;
 - c. Spring-loaded and held in closed position by door or cover; and
 - d. Wired to break a circuit when door or cover is removed with each sensor annunciated individually at a central reporting processor.
 - 5. Fail-Safe Mode: Shall provide the capability to detect and annunciate diminished functional capabilities and perform self-tests. Fail-safe alarms shall be annunciated to be clearly distinguishable from other types of alarms.

2.13 POWER SUPPLY

- A. A power supply shall only be utilized if the control panel is unable to support the load requirements of the IDS system.
- B. All power supplies shall be UL rated and able to adequately power two entry control devices on a continuous base without failure.
- C. Power supplies shall meet the following minimum technical characteristics:

INPUT POWER 110 VAC 60 HZ 2 amp

OUTPUT VOLTAGE	12 VDC Nominal (13.8 VDC) 24 VDC Nominal (27.6 VDC) Filtered and Regulated
BATTERY	Dependant on Output Voltage shall provide up to [insert number]Ah, rechargeable
OUTPUT CURRENT	4 amp max. @ 13.8 VDC 3 amp max. @ 27.6 VDC
BATTERY FUSE SIZE	3.5 A @ 250 VAC
CHARGING CIRCUIT	Built-in standard

2.14 AUDIBLE AND VISUAL ALARM DEVICES

- A. Bell: Central-station control unit 10 inches (254 mm) in diameter, rated to produce a minimum sound output of 84 dB at 10 feet (3 m) from central-station control unit.
 - Enclosure: Weather-resistant steel box equipped with tamper switches on cover and on back of box.
- B. Weatherproof Motor-Driven Hooter: UL listed, rated to produce a minimum sound output of 120 dB at 3 feet (1 m), plus or minus 3 dB, at a frequency of 470 Hz. Rated for intermittent use: two minutes on and five minutes off.
 - Designed for use in industrial areas and in high noise, severe weather marine environments.
- C. Siren: 30-W speaker with siren driver, rated to produce a minimum sound output of 103 dB at 10 feet (3 m) from central-station control unit.
 - Enclosure: Weather-resistant steel box with tamper switches on cover and on back of box.
- D. Strobe: Xenon light complying with UL 1638, with a clear polycarbonate lens.
 - 1. Light Output: 115 cd, minimum.
 - 2. Flash Rate: 60 per minute.

2.15 SECURITY FASTENERS

- A. Security fasteners shall be operable only by tools produced for use on specific type of fastener by fastener manufacturer or other licensed fabricator. Drive system type, head style, material, and protective coating as required for assembly, installation, and strength.
- B. Drive System Types: Pinned Torx or pinned hex (Allen).

VA 595-668 AE Works Project No. VLEB-010

- C. Socket Flat Countersunk Head Fasteners:
 - 1. Heat-treated alloy steel, ASTM F 835 (ASTM F 835M).
 - 2. Stainless steel, ASTM F 879 (ASTM F 879M), Group 1 CW.
- D. Socket Button Head Fasteners:
 - 1. Heat-treated alloy steel, ASTM F 835 (ASTM F 835M).
 - 2. Stainless steel, ASTM F 879 (ASTM F 879M), Group 1 CW.
- E. Socket Head Cap Fasteners:
 - 1. Heat-treated alloy steel, ASTM A 574 (ASTM A 574M).
 - 2. Stainless steel, ASTM F 837 (ASTM F 837M), Group 1 CW.
- F. Protective Coatings for Heat-Treated Alloy Steel:
 - 1. Zinc chromate, ASTM F 1135, Grade 3 or 4; for exterior applications and interior applications where indicated.
 - 2. Zinc phosphate with oil, ASTM F 1137, Grade I, or black oxide.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. IDS installation shall be in accordance with Underwriters Laboratories (UL) 639 Standards for Intrusion Detection Units and UL 634 Standards for Connectors with Burglar Alarm Systems, and appropriate manufacture's installation manuals for each type of IDS.
- B. Components shall be configured with appropriate "service points" to pinpoint system trouble in less than 30 minutes.
- C. The Contractor shall install all system components including VA furnished equipment, and appurtenances in accordance with the manufacturer's instructions and shall furnish all necessary connectors, terminators, interconnections, services, and adjustments required for a complete and operable system.
- D. The IDS will be designed, engineered, installed, and tested to ensure all components are fully compatible as a system and can be integrated with all associated security subsystems, whether the system is a stand alone or designed as a computer network.
- E. The IDS shall be able to be integrated with other security subsystems. Integration with these security subsystems shall be achieved by computer programming and the direct hardwiring of the systems. Determination for methodology shall be outlined when the system(s) is/are being designed and engineered. For installation purposes, the IDS shall utilize an output module for integration with other security

subsystems. The Contractor will ensure all connections are per the OEM and that any and all software upgrades required to integrate the systems are installed prior to system start-up.

- F. For programming purposes, the Contractor shall refer to the manufacturer's requirements and Contracting Officer instructions for correct system operations. This includes ensuring computers being utilized for system integration meet or exceeds the minimum system requirements outlined in the IDS software packages.
- G. Lightening and power surges to the central alarm reporting and display unit shall be protected at both ends against excessive voltages. This requirement shall apply for circuits that are routed both in underground conduits and overhead runs.
- H. At a minimum, the Contractor shall install primary detection devices, such as three electrode gas-type surge arresters, and secondary protectors to reduce dangerous voltages to levels that will cause no damage. Fuses shall not be permitted as protection devices.
- I. The Contractor shall provide fail-safe gas tube type surge arresters on exposed IDS data circuits. In addition, transient protection shall protect against spikes up to 1000 volts peak voltage with a onemicrosecond rise time and 100-microsecond decay time, without causing false alarms. The protective device shall be automatic and selfrestoring. Also, circuits shall be designed or selected assuming a maximum of 25 ohms to ground.
- J. Product Delivery, Storage and Handling:
 - Delivery: Deliver materials to the job site in OEM's original unopened containers, clearly labeled with the OEM's name, equipment model and serial identification numbers, and UL logo. The Contracting Officer may inventory the IDS equipment at the time of delivery and reject items that do not conform to this requirement.
 - Storage and Handling: Store and protect equipment in a manner that will preclude damage as directed by the Contracting Officer.
- K. Cleaning and Adjustments:
 - Cleaning: Subsequent to installation, clean each system component of dust, dirt, grease, or oil incurred during installation in accordance to manufacture instructions.
 - Prepare for system activation by following manufacturer's recommended procedures for adjustment, alignment, or

synchronization. Prepare each component in accordance with appropriate provisions of the component's installation, operations, and maintenance instructions.

- L. Tamper Switches
 - Install tamper switches to initiate an alarm signal when a panel, box, or component housing door or cover is moved as little as 6.35 mm (1/4 inch) from the normally closed position unless otherwise specified.
 - Locate tamper switches within enclosures, cabinets, housings, boxes, raceways, and fittings to prevent direct line of sight to any internal components and to prevent tampering with switch or circuitry.
 - 3. Conceal tamper switch mounting hardware so that the location of the switch within the enclosure cannot be determined from the exterior.
- M. Unique IDS Installation Components:
 - 1. BMS Surface Mounted:
 - a. Surface mounted BMS housing for the switch element shall have the capability to receive threaded conduit. Housing covers for surface mounted BMS, if made of cast aluminum, shall be secured by stainless steel screws. Magnet housing cover shall not be readily removable and BMS housings shall be protected from unauthorized access by a cover operated, corrosion-resistant tamper device.
 - b. Conductors running from a door to alarm circuits shall be contained within a flexible armored cord constructed from corrosion-resistant metal. Each end of the armored cord shall terminate in a junction box or other enclosure. Armored cord ends shall be mechanically secured to the junction boxes by clamps or bushings. Conductors within the armored cord shall be provided with lug terminals at each end. Conductors and the armored cord shall experience no mechanical strain as the door is removed from fully open to closed position. Switch circuits shall initiate an alarm if a short circuit is applied to the door cord.
 - c. For exterior application on double gates, both BMS elements must be mounted on the gate. Flexible armored cord constructed from corrosion-resistant metal shall be used to provide electrical connection.

- 2. BMS Recessed Mounted:
 - a. Ball bearing door trips shall be mounted within vault door headers such that when the locking mechanism is secured, the door bolt engages an actuator, mechanically closing the switch.
 - b. Door bolt locking mechanisms shall be fully engaged before the ball bearing door trip is activated. Also, circuit jumpers from the door shall be provided.
- 3. Vibration Sensors:
 - Mount vibration sensors directly contacting the surface to be protected.
 - b. Provide at least one (1) sensor on each monolithic slab or wall section, even though spacing closer than that required for midrange sensitivity may result.
 - c. House sensors in protective mountings and fasten to surface with concealed mounting screws or an epoxy.
 - d. Adjust discriminator on the job to precise needs of application. Connect sensors to an electronic control unit by means of wiring or fiber optics cable run in rigid steel conduit or electrical metallic tubing (EMT).
- 4. Passive Infrared Detectors: (PIR)
 - a. The protective beam shall be focused in a straight line.
 - b. Installed beam distance from transmitter to receiver shall not exceed 80% of the manufacturer's maximum recommended rating.
 - c. Mirrors may be used to extend the beam or to establish a network of beams. Each mirror used shall not lower the rated maximum system range by more than 50%.
 - d. Mirrors and photoelectric sources used in outdoor applications shall have self-heating capability to eliminate condensation and shall be housed in weatherproof enclosures.

3.2 WIRING INSTALLATION

- A. Wiring Method: Install wiring in metal raceways according to Section 28 05 28.33 "CONDUITS AND BOXES FOR ELECTRONIC SAFETY AND SECURITY." Conceal raceway except in unfinished spaces and as indicated. Minimum conduit size shall be 3/4 inch (20 mm). Control and data transmission wiring shall not share conduit with other building wiring systems.
- B. Wiring Method: Install wiring in raceways except in accessible indoor ceiling spaces and in interior hollow gypsum board partitions where

cable may be used. Conceal raceways and wiring except in unfinished spaces and as indicated. Minimum conduit size shall be 3/4 inch (20 mm). Control and data transmission wiring shall not share conduit with other building wiring systems.

- C. Wiring Method: Cable, concealed in accessible ceilings, walls, and floors when possible.
- D. Wiring within Enclosures: Bundle, lace, and train conductors to terminal points. Use lacing bars and distribution spools. Separate power-limited and non-power-limited conductors as recommended in writing by manufacturer. Install conductors parallel with or at right angles to sides and back of enclosure. Connect conductors that are terminated, spliced, or interrupted in any enclosure associated with intrusion system to terminal blocks. Mark each terminal according to system's wiring diagrams. Make all connections with approved crimp-on terminal spade lugs, pressure-type terminal blocks, or plug connectors.
- E. Wires and Cables:
 - Conductors: Size as recommended in writing by system manufacturer, unless otherwise indicated.
 - 120-V Power Wiring: Install according to Division 26 Section "LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES," unless otherwise indicated.
 - 3. Control and Signal Transmission Conductors: Install unshielded, twisted-pair cable, unless otherwise indicated or if manufacturer recommends shielded cable, according to Division 28 Section "CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY."
 - 4. Computer and Data-Processing Cables: Install according to Division 28 Section "CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY."
 - Television Signal Transmission Cables: Install according to Division
 28 Section "CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY."
- F. Splices, Taps, and Terminations: Make connections only on numbered terminal strips in junction, pull, and outlet boxes; terminal cabinets; and equipment enclosures.
- G. Install power supplies and other auxiliary components for detection devices at controllers, unless otherwise indicated or required by manufacturer. Do not install such items near devices they serve.

H. Identify components with engraved, laminated-plastic or metal nameplate for central-station control unit and each terminal cabinet, mounted with corrosion-resistant screws.

3.3 GROUNDING

- A. Ground system components and conductor and cable shields to eliminate shock hazard and to minimize ground loops, common-mode returns, noise pickup, cross talk, and other impairments.
- B. Signal Ground Terminal: Locate at main equipment rack or cabinet. Isolate from power system and equipment grounding. Provide [5] <Insert selected maximum value>-ohm ground. Measure, record, and report ground resistance.
- C. Install grounding electrodes of type, size, location, and quantity indicated. Comply with installation requirements in Division 28 Section "GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY SYSTEMS."

3.4 STARTUP AND TESTING

A. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the Resident Engineer and Commissioning Agent. Provide a minimum of 7 days prior notice.

3.5 COMMISIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 28 08 00 - COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 28 08 00 -COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.6 TESTS AND TRAINING

- A. All testing and training shall be compliant with the VA General Requirements, Section 01 00 00, GENERAL REQUIREMENTS.
- B. Provide services of manufacturer's technical representative for [insert number] hours to instruct VA personnel in operation and maintenance of units.

C. Submit training plans and instructor qualifications in accordance with the requirements of Section 28 08 00 - COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS.

----END----

SECTION 28 23 00 VIDEO SURVEILLANCE

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Provide and install a complete Video Surveillance System, which is identified as the Video Assessment and Surveillance System hereinafter referred to as the VASS System as specified in this section.
- B. This Section includes video surveillance system consisting of cameras, data transmission wiring, and a control station with its associated equipment.
- C. Video surveillance system Video assessment & surveillance system shall be integrated with monitoring and control system specified in Division 28 Section [INTRUSION DETECTION] [PHYSICAL ACCESS CONTROL] [SECURITY ACCESS DETECTION] [ELECTRONIC PERSONAL PROTECTION SYSTEM] that specifies systems integration.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- B. Section 07 84 00 FIRESTOPPING. Requirements for firestopping application and use.
- C. Section 10 14 00 SIGNAGE. Requirements for labeling and signs.
- D. Section 14 21 00 ELECTRIC TRACTION ELEVATORS. Requirements for elevators.
- I. Section 26 56 00 EXTERIOR LIGHTING. Requirements for perimeter lighting.
- O. Section 28 13 00 PHYSICAL ACCESS CONTROL SYSTEM. Requirements for physical access control system integration.
- R. Section 28 16 00 INTRUSION DETECTION SYSTEM (IDS). Requirements for alarm systems.
- S. Section 28 26 00 ELECTRONIC PERSONAL PROTECTION SYSTEM (EPPS). Requirements for emergency and interior communications.

1.3 DEFINITIONS

- A. AGC: Automatic gain control.
- B. B/W: Black and white.
- C. CCD: Charge-coupled device.
- D. CIF: Common Intermediate Format CIF images are 352 pixels wide and 88/240 (PAL/NTSC) pixels tall (352 x 288/240).

- E. 4CIF: resolution is 704 pixels wide and 576/480 (PAL/NTSC) pixels tall (704 x 576/480).
- F. H.264 (also known as MPEG4 Part 10): a encoding format that compresses video much more effectively than older (MPEG4) standards.
- G. ips: Images per second.
- H. MPEG: Moving picture experts group.
- I. MPEG4: a video encoding and compression standard that uses inter-frame encoding to significantly reduce the size of the video stream being transmitted.
- J. NTSC: National Television System Committee.
- K. UPS: Uninterruptible power supply.
- L. PTZ: refers to a movable camera that has the ability to pan left and right, tilt up and down, and zoom or magnify a scene.

1.4 QUALITY ASSURANCE

- A. The Contractor shall be responsible for providing, installing, and the operation of the VASS System as shown. The Contractor shall also provide certification as required.
- B. The security system shall be installed and tested to ensure all components are fully compatible as a system and can be integrated with all associated security subsystems, whether the security system is stand-alone or a part of a complete Information Technology (IT) computer network.
- C. The Contractor or security sub-contractor shall be a licensed security Contractor as required within the state or jurisdiction of where the installation work is being conducted.
- D. Manufacturers Qualifications: The manufacturer shall regularly and presently produce, as one of the manufacturer's principal products, the equipment and material specified for this project, and shall have manufactured the item for at least three years.
- E. Product Qualification:
 - Manufacturer's product shall have been in satisfactory operation, on three installations of similar size and type as this project, for approximately three years.
 - The Government reserves the right to require the Contractor to submit a list of installations where the products have been in operation before approval.
- F. Contractor Qualification:

VA Project 595-668 AE Works Project VLEB-010

Lebanon VAMC New Entryway for Building 17 BID DOCUMENTS 09-11

- 1. The Contractor or security sub-contractor shall be a licensed security Contractor with a minimum of five (5) years experience installing and servicing systems of similar scope and complexity. The Contractor shall be an authorized regional representative of the Video Assessment and Surveillance System's (VASS) manufacturer. The Contractor shall provide four (4) current references from clients with systems of similar scope and complexity which became operational in the past three (3) years. At least three (3) of the references shall be utilizing the same system components, in a similar configuration as the proposed system. The references must include a current point of contact, company or agency name, address, telephone number, complete system description, date of completion, and approximate cost of the project. The owner reserves the option to visit the reference sites, with the site owner's permission and representative, to verify the quality of installation and the references' level of satisfaction with the system. The Contractor shall provide copies of system manufacturer certification for all technicians. The Contractor shall only utilize factory-trained technicians to install, program, and service the VASS. The Contractor shall only utilize factory-trained technicians to install, terminate and service cameras, control, and recording equipment. The technicians shall have a minimum of five (5) continuous years of technical experience in electronic security systems. The Contractor shall have a local service facility. The facility shall be located within 60 miles of the project site. The local facility shall include sufficient spare parts inventory to support the service requirements associated with this contract. The facility shall also include appropriate diagnostic equipment to perform diagnostic procedures. The COTR reserves the option of surveying the company's facility to verify the service inventory and presence of a local service organization.
- The Contractor shall provide proof project superintendent with BICSI Certified Commercial Installer Level 1, Level 2, or Technician to provide oversight of the project.
- 3. Cable installer must have on staff a Registered Communication Distribution Designer (RCDD) certified by Building Industry Consulting Service International. The staff member shall provide

consistent oversight of the project cabling throughout design, layout, installation, termination and testing.

G. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render satisfactory service to this installation within four hours of receipt of notification that service is needed. Submit name and address of service organizations.

1.5 SUBMITTALS

- A. Submit below items in conjunction with Master Specification Sections 01 33 23, Shop Drawings, Product Data, and Samples, and Section 02 41 00, Demolition Drawings.
- B. Provide certificates of compliance with Section 1.4, Quality Assurance.
- C. Provide a pre-installation and as-built design package in both electronic format and on paper, minimum size 1220 x 1220 millimeters (48 x 48 inches); drawing submittals shall be per the established project schedule.
- D. Pre-installation design and as-built packages shall include, but not be limited to:
 - 1. Index Sheet that shall:
 - a. Define each page of the design package to include facility name, building name, floor, and sheet number.
 - b. Provide a list of all security abbreviations and symbols.
 - c. Reference all general notes that are utilized within the design package.
 - d. Specification and scope of work pages for all security systems that are applicable to the design package that will:
 - Outline all general and job specific work required within the design package.
 - Provide a device identification table outlining device Identification (ID) and use for all security systems equipment utilized in the design package.
 - 2. Floor plans, site plans, and enlarged plans shall:
 - a. Include a title block as defined above.
 - b. Define the drawings scale in both standard and metric measurements.
 - c. Provide device identification and location.

- d. Address all signal and power conduit runs and sizes that are associated with the design of the electronic security system and other security elements (e.g., barriers, etc.).
- e. Identify all pull box and conduit locations, sizes, and fill capacities.
- f. Address all general and drawing specific notes for a particular drawing sheet.
- 3. A riser drawing for each applicable security subsystem shall:
 - a. Indicate the sequence of operation.
 - b. Relationship of integrated components on one diagram.
 - c. Include the number, size, identification, and maximum lengths of interconnecting wires.
 - d. Wire/cable types shall be defined by a wire and cable schedule. The schedule shall utilize a lettering system that will correspond to the wire/cable it represents (example: A = 18 AWG/1 Pair Twisted, Unshielded). This schedule shall also provide the manufacturer's name and part number for the wire/cable being installed.
- 4. A system drawing for each applicable security system shall:
 - a. Identify how all equipment within the system, from main panel to device, shall be laid out and connected.
 - b. Provide full detail of all system components wiring from pointto-point.
 - c. Identify wire types utilized for connection, interconnection with associate security subsystems.
 - d. Show device locations that correspond to the floor plans.
 - e. All general and drawing specific notes shall be included with the system drawings.
- 5. A schedule for all of the applicable security subsystems shall be included. All schedules shall provide the following information:
 - a. Device ID.
 - b. Device Location (e.g. site, building, floor, room number, location, and description).
 - c. Mounting type (e.g. flush, wall, surface, etc.).
 - d. Power supply or circuit breaker and power panel number.

- e. In addition, for the VASS Systems, provide the camera ID, camera type (e.g. fixed or pan/tilt/zoom (P/T/Z), lens type (e.g. for fixed cameras only) and housing model number.
- 6. Detail and elevation drawings for all devices that define how they were installed and mounted.
- E. Pre-installation design packages shall be reviewed by the Contractor along with a VA representative to ensure all work has been clearly defined and completed. All reviews shall be conducted in accordance with the project schedule. There shall be four (4) stages to the review process:
 - 1. 35 percent
 - 2. 65 percent
 - 3. 90 percent
 - 4. 100 percent
- F. Provide manufacturer security system product cut-sheets. Submit for approval at least 30 days prior to commencement of formal testing, a Security System Operational Test Plan. Include procedures for operational testing of each component and security subsystem, to include performance of an integrated system test.
- G. Submit manufacture's certification of Underwriters Laboratories, Inc. (UL) listing as specified. Provide all maintenance and operating manuals per the VA General Requirements, Section 01 00 00, GENERAL REQUIREMENTS.
- H. Submit completed System Readiness Checklists provided by the Commissioning Agent and completed by the contractor, signed by a qualified technician and dated on the date of completion, in accordance with the requirements of Section 28 08 00 COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below (including amendments, addenda, revisions, supplement, and errata) form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American National Standards Institute (ANSI)/Electronic Industries Alliance (EIA):

330-09Electrical Performance Standards for CCTV Cameras

VA Project 595-668 Lebanon VAMC AE Works Project VLEB-010 New Entryway for Building 17 BID DOCUMENTS 09-11 375A-76Electrical Performance Standards for CCTV Monitors C. Institute of Electrical and Electronics Engineers (IEEE): C62.41-02IEEE Recommended Practice on Surge Voltages in Low-Voltage AC Power Circuits 802.3af-08Power over Ethernet Standard D. Federal Communications Commision (FCC): (47 CFR 15) Part 15 Limitations on the Use of Wireless Equipment/Systems E. National Electrical Contractors Association (NECA): 303-2005Installing Closed Circuit Television (CCTV) Systems F. National Fire Protection Association (NFPA): 70-08Article 780-National Electrical Code G. Federal Information Processing Standard (FIPS): 140-2-02Security Requirements for Cryptographic Modules H. Underwriters Laboratories, Inc. (UL): 983-06Standard for Surveillance Camera Units 3044-01Standard for Surveillance Closed Circuit Television Equipment 1.7 COORDINATION

- A. Coordinate arrangement, mounting, and support of video surveillance equipment:
 - 1. To allow maximum possible headroom unless specific mounting heights that reduce headroom are indicated.
 - 2. To provide for ease of disconnecting the equipment with minimum interference to other installations.
 - 3. To allow right of way for piping and conduit installed at required slope.
 - 4. So connecting raceways, cables, wireways, cable trays, and busways will be clear of obstructions and of the working and access space of other equipment.
- B. Coordinate installation of required supporting devices and set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.
- C. Coordinate location of access panels and doors for video surveillance items that are behind finished surfaces or otherwise concealed.

1.8 WARRANTY OF CONSTRUCTION

- A. Warrant VASS System work subject to the Article "Warranty of Construction" of FAR clause 52.246-21.
- B. Demonstration and training shall be performed prior to system acceptance.

PART 2 - PRODUCTS

2.1 GENERAL

- A. Surge Protection: Protect components from voltage surges originating external to equipment housing and entering through power, communication, signal, control, or sensing leads. Include surge protection for external wiring of each conductor entry connection to components.
- B. Power Connections: Comply with requirements in Section 28 05 00 COMMON WORK REQUIREMENTS FOR ELECTRONIC SAFETY AND SECURITY, Part 2, as recommended by manufacturer for type of line being protected.
- C. Tamper Protection: Tamper switches on enclosures, control units, pull boxes, junction boxes, cabinets, and other system components shall initiate a tamper-alarm signal when unit is opened or partially disassembled. Control-station, control-unit alarm display shall identify tamper alarms and indicate locations.

2.2 CAMERAS

- A. All Cameras will be EIA 330 and UL 1.Minimum Protection for Power Connections 120 V and more: Auxiliary panel suppressors shall comply with requirements in Section 28 05 00 COMMON WORK REQUIREMENTS FOR ELECTRONIC SAFETY AND SECURITY, Part 2.
- B. Minimum Protection for Communication, Signal, Control, and Low-Voltage 983 compliant as well as:
 - 1. Will be charge coupled device (CCD cameras and shall conform to National Television System Committee (NTSC) formatting.
 - 2. Fixed cameras shall be color and the primary choice for monitoring following the activities described below. Pan/Tilt/Zoom (P/T/Z) cameras shall be color and are to be utilized to complement the fixed cameras.
 - 3. Shall be powered over Ethernet. Network switches supporting PoE cameras shall have a back-up power source to ensure cameras are still operational in the event of loss of primary power to the VASS System.

- Shall be rated for continuous operation under the environmental conditions listed in Part 1, Project Conditions.
- Each function and activity shall be addressed within the system by a unique user defined name, with minimum of twenty (20) characters. The use of codes or mnemonics identifying the VASS action shall not be accepted.
- 6. Shall come with built-in video motion detection that shall automatically monitor and process information from each camera. The camera motion detection shall detect motion within the camera's field of view and provide automatic visual, remote alarms as a result of detected motion.
- 7. Shall be programmed to digitally flip from color to black and white at dusk and vice versa at low light conditions.
- Will be fitted with AI/DC lenses to ensure the image quality under different light conditions.
- P/T/Z cameras shall be utilized in a manner that they complement fixed cameras and shall not be used as a primary means of monitoring activity.
- 10. Dummy or fake cameras will not be utilized at any time.
- 11. Appropriate signage shall be designed, provided, and posted that notifies people that an area is under camera surveillance.

2.3 VIDEO MANAGEMENT SYSTEM (ANALOG)

- A. The Video Management System (VMS) shall provide features and functions as specified below:
 - 1. Supports minimum of 20 client connections.
 - The Video Management System shall be capable of recording more than 32 days on 1.6 TB of internal hard drive storage using the following parameters:
 - a. Resolution 4CIF
 - b. Video Mode NTSC
 - c. Quality Normal
 - d. Sensitivity Normal
 - e. Number of Cameras 16
 - f. Record Audio On
 - g. Motion 50%

- The Digital Video Management System shall, at a minimum, combine multiplexing, alarm detection, video motion detection, video, audio, and text recording.
- B. System Chassis
 - The Video Management System must utilize a chassis no larger than [three] <insert number> rack units in height, and be suitable for either desktop or rack mount installations. The unit must fit within a standard video rack as well as a server rack.
 - The Video Management System's chassis shall include three indicator lights easily viewed from the front panel. These indicator lights must be colored red, yellow, and green to signify system status.
 - 3. The Video Management System's chassis shall incorporate a minimum of four front accessible, swappable drive bays. The bays must be behind a locking front cover that restricts access not only to the drives, but also to the power switch and reset switch.
- C. Operating System
 - The Video Management System's operating system and application must be installed on a separate solid-state system drive (flash memory card), with no moving parts to wear out or fail, to reduce the risk of system failure. Units with the operating system and/or application installed on a hard drive are not acceptable.
- D. Recording
 - 1. The Digital Video Management System shall use record mode settings as continuous or event activated.
 - 2. The Digital Video Management System shall provide for simultaneous recording, playback, transmitting, database searching and archiving.
 - 3. One channel of audio and up to sixteen text inputs shall be supported with required hardware properly installed and set up according to manufacturer's instructions. Live audio shall be available for listening while viewing live video. Up to 15 cameras shall be configurable as visible or covert by the authorized user.
 - 4. The unit must simultaneously record, play back and archive video, text and audio while using sophisticated search functions to define and find only those important events that meet certain criteria. The system must also have the ability to host multiple remote users, archive data, and search for data, all while recording multiple video and text streams.

- 5. The Video Management System shall offer recording rates of up to 480 ips at 1CIF, 480 ips at 2CIF, and 480 ips at 4CIF. The unit shall be able to mix record speeds and quality settings on a "per camera" basis.
- 6. The Video Management System shall have the ability to capture critical information with higher frame rates for certain cameras, and assign the remainder of the available images per second (ips) to non-critical cameras.
- 7. The Video Management System shall be available with up to 4 insert number TB of internal hard drive storage. A RAID 5 version shall be available with up to 3 TB of internal hard drive storage.
- 8. The Video Management System's recording format must give each image a unique identification "stamp" to ensure even though the file structure is PC compatible, the original video images cannot be altered or modified, enabling a solid chain of evidence.
- 9. The Video Management System shall be able to store recorded video on the RAID Storage System (RSS) via an iSCSI interface.
- 10. The Video Management System shall be able to manage storage of video, audio and text by exporting to Network Attached Storage (NAS), Storage Area Network (SAN) and Direct Attached Storage (DAS) devices using optional software.
- 11. The system shall provide option to set up the Video Management System in advanced security mode to enable both IT and security managers to collectively integrate the unit into existing IT network without compromising the security protocols in place.
- E. Network Access
 - 1. The Video Management System shall provide network access through two internal network connections that support 1/10 GB network operation.
- F. User Interface
 - The Video Management System's user interface must be easy to use, allowing the user to access all operations using one-click buttons, pull-down menus, adjustable sliders, and tabbed screens.
 - 2. The Video Management System shall include the ability to accept text through a network connection, as well as through a serial input with an RS-232 connection. The unit shall be able to mix serial inputs and TCP/IP inputs in any combination up to 16 channels of text.

- 3. The system shall provide ability for user to specify text criteria, such as a specific ASCII text stream, to schedule recording and search for video, allowing for recording only the video associated with the specified text.
- G. Live Video Display
 - The Digital Video Management System's live video display must provide real-time motion in any screen format (full, 2x2, 3x3, and 4x4). The operator shall have the ability to expand any view to full screen with a single click of the mouse.
- H. Self-Monitoring Analysis
 - The Digital Video Management System must incorporate Self-Monitoring Analysis and Reporting Technology (S.M.A.R.T.), incorporating a suite of advanced diagnostics that monitor the internal operation of a drive and provide early warning for many types of potential problems. This shall allow for the drive to be repaired or replaced before any data is lost or damaged.
- I. External Storage
 - 1. Using the integrated CD/DVD writer (CD-RW or DVD-RW), the Digital Video Management System shall allow users to save video, audio, and text to a standard recordable CD or DVD. The option to include the player software on the CD or DVD shall be available so that no additional software needs to be purchased. The unit must include the ability to export the latest video, audio, and text to a CD or DVD until the CD or DVD is full.
- J. Alarm Recording Settings:
 - The Digital Video Management System shall allow for the following Alarm Recording settings:
 - a. Image Rate
 - b. Quality
 - c. Sensitivity
- K. Adjustable Alarm Duration
 - The Digital Video Management System shall incorporate an adjustable alarm duration with the pre-alarm and minimum alarm duration programmable from five seconds to five minutes. The units must also allow programmable recording times (alarm schedules) for each day of the week, in thirty minute increments.
- L. Supported Dome Camera handlers

- The Digital Video Management System shall work with the following dome camera handlers: AD168, MP48, AD1024 matrix, VM96RTT, RS422 Dome Control, VM16/ADTT16, VM16E/ADTT16E, Pelco Matrix Switch (models 6700, 6800, 8500, 9500, 9750 or 9760 Pelco P, Pelco D, Bosh, Autodome, BBV Starcard and USB-CCTV.
- M. Alarm-Triggered Dome Events
 - 1. The Digital Video Management System must include alarm-triggered dome events, allowing the operator to configure domes to respond to alarm conditions via Network Client™ or Intellex GUI (using supported dome control handlers). The event can be a motion filter (motion detection, perimeter protection, light change and motion exception), a wired alarm, video loss, or a manually generated alarm. The unit must have the ability to move a single dome, or multiple domes, to preset positions or patterns. This feature must be supported by the dome.
- N. Email Support
 - The Digital Video Management System must include the ability to send an email via an email server to anyone, or any group, based upon an event. The events must include, but not necessarily limited to, the following:
 - a. System Event
 - b. Video Loss
 - c. Generated Alarm
 - d. Any Filter Alarm
 - e. Any Input Alarm
 - f. Individual Camera Alarm
- O. API Support
 - The Digital Video Management System shall easily integrate with third party software application using an Application Programmers Interface (API). The manufacturer of the unit shall offer a Software Developers Kit (SDK) to select third party manufactures, in addition to sample modular programs with their source codes in both Visual Basic and Visual C++, allowing programmers to develop their own software to control the unit's functions.
 - The Digital Video Management System's API must be backwards compatible with previous versions of the software equal to or greater than v3.2

- P. Recorded Event Search
 - In order to instantly retrieve recorded video of any event, the Digital Video Management System shall use a patented search feature to filter through hours of video to find only the essential events. The operator must have the ability to isolate video containing motion, and find video where perimeters were crossed, lights were turned on or off, alarms were triggered, and numerous additional scenarios.
 - 2. In addition to the standard motion based mode, using advanced video analysis tools, the Digital Video Management System shall enable the user to schedule recording and search for video if the movement of an object meets specified size, speed, direction and Motion Exception criteria.
- Q. Covert Camera Operation:
 - The Digital Video Management System shall include the ability to configure up to 15 cameras for "covert" operation, restricting their use to only those who are authorized.
- R. Activity Log:
 - To provide for more effective security management, the Digital Video Management System must also allow for audits of the activity log to monitor changes to the settings and configurations. The activity log shall include, but not necessarily be limited to, the following information:
 - a. User Name Login name of the user
 - b. Date/Time Date and Time the action was performed
 - c. Access Loc Whether the action was local to the unit or done through remote software
 - d. Category The actions category
 - e. Activity The action performed within the category
 - f. Data Description of the action
 - 2. The operator shall have the ability to export the entire log file, export the displayed log file, print the log file, or print the displayed log file locally and remotely through Network Client v4.3 software.
- S. Antivirus Protection

- The Digital Video Management System shall be compatible with the leading brands of anti-virus software in order to detect and deactivate malicious software that may attempt to attack the system.
- T. Remote Configuration and Management software:
 - The Digital Video Management System must include support for Remote Configuration and Management software to allow a user to remotely configure the unit, view live video, or select video segments by time, date, alarm, or search results. The operator must have the ability to save, annotate, and organize copied video into "incident folders" to aid with investigations.
 - The remote management software must allow for up to 64 live video sessions, allowing the operator to view up to sixty four different cameras, from up to 64 different remote sites, simultaneously.
 - 3. The remote management software shall also allow the exporting of video clips to an .avi file to play on any Microsoft Windows based PC. The software shall have the ability to enhance, print, or convert the individual images to standard formats.
 - 4. The remote management software shall allow an operator to select units, cameras, and timeframes for automatic retrieval of video clips to an operators PC. This allows for downloads to be scheduled during times that network traffic restrictions are not an issue.
- U. Playback and Multi-screen Playback
 - The Digital Video Management System shall incorporate playback and multi-screen playback functionality to allow the user to locate and select a single stored image to be enhanced using tools. The tools shall include, but not necessarily be limited to, the following:
 - a. Brightness
 - b. Contrast
 - c. Hue
 - d. Saturation
 - e. Lightness
 - f. Balance Light
 - g. Edge Detect
 - h. Enhance Light
 - i. Noise Reduction
 - j. Sharpen
 - k. Sharpen More

- 1. Smooth
- m. Smooth More
- n. Brightness Chart
- V. Browser Client
 - A browser-based viewer (Browser Client) must also be available free of charge, enabling users to host and customize their own website to provide live viewing of the Digital Video Management System through a standard browser interface. Multiple viewers shall have the ability to access video and control domes remotely.
- W. Minimum Performance Specifications

Power Supply	100-240 VAC, 50/60 Hz, 3.0/1.5A
Physical Characteristics:	Rack Mount Chassis Version
	Unit Dimensions (HxWxD) 130 mm (5.125") High , 429 mm (16.895") Wide, 546 mm (21.5") Deep
	Rack Height Three (3) units
	Desktop Chassis Version(HxWxD) 130 mm (5.125") High429 mm (16.895") Wide546 mm (21.5") Deep
Environmental Requirements	Operating Temperature 5° to 35° C (41° to 95° F)
	Humidity 5%-95% RH non- condensing
Regulatory	Immunity EN50130-4 (1996) (An Uninterruptable Power Supply must be used to fully comply with
	EN50130-4)

X. MATRIX SWITCHER

- 1. The matrix switcher shall meet the following minimum requirements:
 - a. Take multiple camera inputs and route them to multiple monitoring stations.
 - b. Allow for centralized user management controlling configurations.
 - c. Provide live viewing of all cameras.
 - d. Provide P/T/Z, focus, and iris control of all unitized cameras.
 - e. Be expandable to allow for the addition of multiple cameras and monitoring stations over the life of the system visual

identification system by utilizing input and output video and controller cards.

- f. Input cards shall allow for the addition of a minimum of four(4) camera inputs per card.
- g. Output cards shall allow for the addition of a minimum of eight (8) outputs per card.
- h. Have the ability to be programmed either locally or remotely.
- i. Remotely operate multiple cameras from multiple stations.
- j. Be able to fully interface with a digital video recorder (DVR) for recording of all events.
- k. Utilize RS-232 or fiber optic connections for integration with the SMS computer station via a remote port on a network hub.
- Shall have an alarm interface that is compatible with all associated security subsystems. Alarm inputs shall be via either a relay or an EIA ANSI/EIA/TIA-232-F interface. The interface shall allow for a minimum of 24 alarm inputs and 12 alarm outputs.
- m. The switcher response time to an alarm input shall not be less than 200 milliseconds from the time an alarm is sensed until a picture is displayed on a monitor.
- n. The switcher shall have a built in buffer to allow for backlog of alarms. These alarms shall be viewable by an operator.
- o. Be addressable in the event multiple matrix switchers are connected to the SMS.
- p. Be configured, i.e. camera names, monitor names, sequences, alarms and alarm actions, etc. utilizing the configuration program and tools provided by the matrix manufacturer.
- The matrix switcher shall meet the following minimum input/output requirements:

Camera inputs	16
Video outputs	4
Keyboard/Controller Outputs	4
Alarm inputs	323

- 3. The matrix switcher will have the following components and technical characteristics:
 - a. Main Unit:

Functions	Monitor control Camera selection, tour sequence, group sequence, group preset, OSD display, Camera/Receiver control via coaxial or RS-485 cable communication, Recorder control	
Alarm control	Alarm event, Alarm Acknowledge, Alarm reset, Alarm suspension, Alarm History Display, Timer event, and Camera event	
RS-485 (Camera)Port	6-conductor modular jack x 12 (2- wire or 4- wire communication, With termination switches (MODE 1 to 4))	
Extension Port	6-conductor modular jack x 2(With a (EXTENSION 1 IN, OUT) termination switch (TERM: ON, OFF))	
Extension Port	37-pin D-sub connector x 2(EXTENSION IN 2 or 3)	
Extension Port	37-pin D-sub connector x 2(EXTENSION OUT 2 or 3)	

b. Input Board:

Camera Input	<pre>1 V [P-P]/75 Ohm (BNC), composite video signal 0.5 V [P- P]/75 Ohm data signal and 2.5 V [P- P]/75 Ohm (25 pin D sub connector x 4)</pre>
Alarm Input	N.O. (Normally Open contact) or N.C. (Normally Close contact) selectable x 32 (37 pin D sub connector)

c. Output Board:

Monitor Output	1 V [P-P]/75 Ohm (BNC)	
Alarm Output	Open collector output x 32, Max. 24 VDC, 100 mA	
Extension Port	6-conductor modular jack x 2	
Serial Port	9-pin D-sub connector x 2	

Y. IP Network Encoder

- The units shall be used for video monitoring and surveillance over IP networks. IP Network Encoder shall encode analog video to MPEG-4 digital video.
- 2. The encoder shall use MPEG-4 compression for distribution of images over a network.
- 3. The encoder shall be [rack][surface] <erase one> mounted unit.
- 4. The encoder shall include, but not be limited to the following:
 - a. The encoder shall use "hybrid" technology in providing both analog and network connections with the purpose of allowing users to integrate existing equipment and digital IP products.

 The encoder shall provide [one] <insert number of video inputs> composite video input(s).

2) The encoder shall provide one Ethernet connection.

- b. The encoder shall have the following digital resolution:
 - a) D1: 720x576 (NTSC); 720x480 (PAL)
 - b) CIF: 352 x 288 (NTSC); 352 x 240 (PAL)
 - c) QCIF: 160 x 144 (NTSC); 160 x 112 (PAL)
- c. The encoder shall have a digital frame rate of up to 30 frames per second (NTSC) at 720x480 resolution or 25 fps (PAL) at 720x586 resolution.
- d. The encoder/decoder shall use the following protocols:
 - 1) TCP/IP
 - 2) UDP/IP
 - 3) DHCP
 - 4) Multicast
 - 5) Data Throttle
 - 6) Heart beat
- e. The encoder shall have the following connectors:
 - Power connector: 3-pin male for connecting the external power supply
 - I/O connector: 16-pin male for connecting alarm, audio, RS-232, RS-485 input and output
 - Video I/O connector: SVHS style for input and output connection of two composite monitors
 - 4) Ethernet port: RJ-45 for connecting to a network
- f. The encoder/decoder shall have the following indicators:
 - 1) Power LED
 - 2) Link indicates activity on the Ethernet port
 - 3) Tx activity
 - 4) Rx activity
- g. The encoder shall have the following additional specifications:
 - 1) Video
 - a) Video signal input: 1 V p-p ±10% 75 ohms, autosensing
 - b) Input termination: 75 ohm
 - c) Video compression standard: MPEG-4
 - d) Audio compression standard: MPEG-1 Layer 2
 - 2) Audio

- b) Audio output: 315 mV, 600 ohms, unbalanced
- 3) Electrical
 - a) External power supply: 100 to 240 VAC
 - b) Output voltage: 13.5 V, 1.33 A
 - c) Power consumption: 0.5 W maximum

2.6 VIDEO CAMERAS

- A. The cameras shall be high-resolution color video cameras with wide dynamic range capturing capability.
- B. The camera shall meet or exceed the following specifications:
 - The image capturing device shall be a 1/4-inch image sensor designed for capturing wide dynamic images.
 - a. The image capturing device shall have a separate analog-todigital converter for every pixel.
 - b. The image capturing device shall sample each pixel multiple times per second.
 - c. The dynamic range shall be 95 dB typical and 120 dB maximum.
 - 3. The camera shall optimize each pixel independently.
 - The camera shall have onscreen display menus for programming of the camera's settings.
 - 5. The signal system shall be NTSC.
- C. The camera shall have composite video output.
- D. The camera shall come with a manual varifocal lens.
- E. The video output shall be composite: 1.0 volts peak-to-peak at 75-ohm load.
- H. Fixed Color Camera
 - 1. The camera shall be a high-resolution color video camera with wide dynamic range capturing capability.
 - 2. Comply with UL 639.
 - 3. Pickup Device: 1/4 CCD interline transfer.
 - 4. Signal-to-Noise Ratio: Not less than 50 dB, with the camera AGC off.
 - 5. With AGC, manually selectable on or off.
 - Manually selectable modes for backlight compensation or normal lighting.

- Scanning Synchronization: Determined by external synch over the coaxial cable. Camera shall revert to internally generated synchronization on loss of external synch signal.
- 8. White Balance: Auto-tracing white balance, with manually selectable fixed balance option.

Pickup device	1/3" interline transfer CCD
Total pixels	NTSC: 811(H) x 508(V)
Effective pixels	NTSC: 768(H) x 494(V)
Resolution	500 TV lines
Sync. System	Internal Sync
Scanning system	NTSC: 525 Lines/60 Fields
S/N ratio	More than 48 dB
Electronic shutter	Auto 1/60 (1/50) ~1/100,000 sec.
Min. illumination	0.2 lux F2.0
Video output	Composite 1.0 Vp-p/75 ohm
White balance	Auto
Automatic gain control	ON
Frequency horizontal	NTSC: 15.734 KHz
Frequency vertical	NTSC: 59.94Hz
Lens type	Board lens/[DC]/[AI] varifocal lens
Focal length	[3-12mm] <insert values=""></insert>
Power source	DC12V/500mA or AC24/500mA
Power consumption	< 3W (Max)
	I and the demonstrate because and mean terms

9. Fixed Color Cameras Technical Characteristics:

- 10. Fixed color camera shall be enclosed in dome and have board mounted varifocal lens.
- 11. Camera accessories shall include:
 - a. Surface mount adapter
 - b. Wall mount adapter
 - c. Flush mount adapter

2.7 AUTOMATIC COLOR DOME CAMERA - ANALOG

- A. The camera shall be a high-resolution color video camera with wide dynamic range capturing capability.
- B. Comply with UL 639.
- C. Pickup Device: 1/4 CCD interline transfer.
- D. Horizontal Resolution: 480 lines.
- E. Signal-to-Noise Ratio: Not less than 50 dB, with the camera AGC off.

- F. With AGC, manually selectable on or off.
- G. Sensitivity: Camera shall provide usable images in low-light conditions, delivering an image at a scene illumination of <Insert light level> lux at <Insert f-stop of lens>[, with the camera AGC off].
- H. Sensitivity: Camera shall deliver 1-V peak-to-peak video signal at the minimum specified light level. The illumination for the test shall be with lamps rated at approximately 2200-K color temperature, and with the camera AGC off.
- Manually selectable modes for backlight compensation or normal lighting.
- J. Pan and Tilt: Direct-drive motor, 360-degree rotation angle, and 180degree tilt angle. Pan-and-tilt speed shall be variable controlled by operator. Movement from preset positions shall be not less than 300 degrees per second.
- K. Preset positioning: 64 user-definable scenes. Controls shall include the following:
 - In "sequence mode," camera shall continuously sequence through preset positions, with dwell time and sequencing under operator control.
 - 2. Motion detection shall be available at each camera position.
- L. Scanning Synchronization: Determined by external synch over the coaxial cable. Camera shall revert to internally generated synchronization on loss of external synch signal.
- M. White Balance: Auto-tracing white balance, with manually settable fixed balance option.
- N. Motion Detector: Built-in digital.
- O. Dome shall support multiplexed control communications using coaxial cable recommended by manufacturer.
- P. Automatic Color Dome Camera Technical Characteristics:

Effective Pixels	768 (H) x 494 (V)
Scanning Area	1/4-type CCD
Synchronization	Internal/Line-lock/Multiplexed Vertical Drive (VD2)
Video Output	1.0 v[p-p] NTSC composite/75 ohm
H. Resolution	570-line at B/W, or 480-line at color imaging
Signal-to-noise Ratio	50dB (AGC off, weight on)

	09-11
Super Dynamic II	64 times (36dB) (selectable on/off)
Minimum Illumination	0.06 lx (0.006 fc) at B/W, 1 lx(0.1 fc)
Zoom Speed	Approx. 2.1s (TELE/WIDE) in sequence mode
Focus Speed	Approx. 2s (FAR/NEAR) in sequence mode
Iris	Automatic (Open/Close is possible)/manual
Maximum Aperture Ratio	1:1.6 (Wide) ~ 3.0 (Tele)
Focal Length	3.79 ~ 83.4 mm
Angular Field of View	H 2.6° ~ 51.7° V 2.0° ~ 39.9°
Electronic Shutter	1/60 (off), 1/100, 1/250, 1/500, 1/1,000, 1/2,000, 1/4,000, 1/10,000 s
Zoom Ratio	Optical 22x w/10x electronic zoom
Iris Range	F1.6 ~ 64, Close
Panning Range	360° endless
Panning Speed	Manual: Approx. 0.1°/s ~ 120°/s 16 steps
Tilting Range	0 ~ 90° (Digital Flip off), 0 ~180° (Digital Flip on)
Tilting Speed	Manual: Approx. 0.1°/s ~ 120°/s. 16 steps
Pan/Tilt	Manual/Sequential position/Auto Pan
Controls	Pan/Tilt, Lens, 64 Preset Positions, Home Position
Video Connector	BNC
Controller I/F	Multiplex-coaxial

- Q. Camera accessories shall include:
 - 1. Surface mount adapter
 - 2. Wall mount adapter
 - 3. Flush mount adapter
- R. Indoor/Outdoor Fixed Mini Dome System (IP)
 - The indoor/outdoor fixed mini dome system shall include a built-in 100Base-TX network interface for live streaming to a standard Web browser.
 - 2. The network mini dome shall be integrated into the back box design to accept multiple camera options without modification. The network

mini dome shall operate in open architecture connectivity for thirdparty software recording solutions.

3. The indoor/outdoor fixed mini dome system shall meet or exceed the following design and performance specifications.

Tura ni na Dani na	
Imaging Device	1/3-inch imager
Picture Elements	NTSC/PAL 720 (H) x 540 (V) 720 (H) x 540 (V)
Dynamic Range	102 dB typical/120 dB maximum (DW/CW models only)
Scanning System	2:1 interlace (progressive option on CW/DW models only
Synchronization	Internal
Electronic Shutter Range	Auto (1/15-1/22,000)
Lens Type	Varifocal with auto iris
Format Size	1/3-inch
Focal Length	3.0 mm-9.5 mm 9.0 mm-22.0 mm <list></list>
Operation	Iris Auto (DC-drive) Focus Manual Zoom Manual
Minimum Illumination	Color (day): 0.8 lux, SENS 8X: 0.2 lux, B-W (night): 0.08 lux, SENS 8X: 0.02 lux (F1.0, 40 IRE, AGC on, 75% scene reflectance) Color (day): 0.15 lux, B-W (night): 0.015 lux (F1.0, 40 IRE, AGC on, 75% scene reflectance) Color (day): 0.8 lux, SENS 8X: 0.2 lux (F1.0, 40 IRE, AGC on, 75% scene reflectance) 0.2 lux (F1.0, 40 IRE, AGC on, 75% scene reflectance)
Compression	MPEG-4, MJPEG in Web viewing mode
Video Streams	3, simultaneous
Video Resolutions	NTSC PAL 4CIF 704 x 480 704 x 576 2CIF 704 x 240 704 x 288 CIF 352 x 240 352 x 288 QCIF 176 x 120 176 x 144
Bit Rate	Configurable, 20 kbps to 2 Mpbs per stream

Web User Interface	
Environment	Low temperature, indoor/outdoor
Connectors	RJ-45 for 100BASE-TX, Auto MDI/MDI-X
Cabling	CAT5 cable or better for 100BASE-TX
Input Voltage	24 VAC (18-36) or PoE input voltage
Power Consumption	<7.5 Watts,<13 Watts with heaters 24VAC: <0.5 Amps, <0.9 Amps with heaters
Alarm Input	10 VDC maximum, 5 mA maximum
Alarm Output	0 to 15 VDC maximum, 75 mA maximum
Service Connector	Internal to housing for 2.5 mm connector for NTSC/PAL video outputs
Service Connector	3-conductor, 2.5 mm connector for video output to optional (IS-SC cable)
Pan/Tilt Adjustment	Pan 360°, tilt 80° (20° to 100° range), and rotation 360°
Light Attenuation	<pre>smoked bubble, f/1.5 light loss; clear bubble, zero light loss</pre>
CERTIFICATIONS	CE, Class B UL Listed Meets NEMA Type 4X and IP66 standards

3. Accessories

- a. Pendant mount
- b. Wall mount for pendant
- c. Corner adapter for wall mount
- d. Pole adapter for wall mount
- S. Megapixel High Definition Integrated Digital Network Camera
 - The network camera shall offer dual video streams with up to 3.1 megapixel resolution (2048 x 1536) in progressive scan format.
 - 2. An alarm input and relay output shall be built in for integration with hard wired external sensors.
 - 3. The network camera shall be capable of firmware upgrades through a network using a software-based device utility.
 - 4. The network camera shall offer auto back focus (ABF) functionality through a push button on the camera. ABF parameters shall also be configurable through a standard Web browser interface.

- 5. The network camera shall offer a video output port providing an NTSC/PAL analog video output signal for adjusting field of view and focus at the camera.
- The network camera shall provide advanced low-light capabilities for color and day/night models with sensitivity down to 0.12 lux in color and 0.03 lux in black-white (B-W).
- 7. The network camera shall have removable IR cut filter mechanism for increased sensitivity in low-light installations. The sensitivity of IR cut filter removal shall be configurable through a Web browser.
- 8. The network camera shall support two simultaneous, configurable video streams. H.264 and MJPEG compression formats shall be available for primary and secondary streams with selectable unicast and multicast protocols. The streams shall be configurable in a variety of frame rates and bit rates.
- 9. The network camera shall support industry standard Power over Ethernet (PoE)
- IEEE 802.3af to supply power to the camera over the network. The network camera shall also offer a 24 VAC power input for optional use.
- 11. The network camera shall use a standard Web browser interface for remote administration and configuration of camera parameters.
- 12. The network camera shall have a window blanking feature to conceal user-defined privacy areas that cannot be viewed by an operator. The network camera shall support up to four blanked windows. A blanked area shall appear on the screen as a solid gray window.
- 13. The network camera shall support standard IT protocols.
- 14. The network camera shall support open architecture best practices with a published API available to third-party network video recording and management systems.
- 15. Megapixel High Definition Integrated Digital Network Camera Technical Specifications:

Imaging Device	1/3-inch, effective
Imager Type	CMOS, Progressive scan
Maximum Resolution	2048 x 1536
Signal-to-Noise Ratio	50 dB
Auto Iris Lens Type	DC drive

Electronic Shutter Range	1~1/100,000 sec
Wide Dynamic Range	60 dB
White Balance Range	2,000° to 10,000°K
Sensitivity	<pre>f/1.2; 2,850K; SNR >24dB Color (1x/33ms) 0.50 lux Color SENS (15x/500 ms) 0.12 lux Mono SENS (15x/500 ms) Mono (1x/33ms)0.25 lux 0.03 lux</pre>
Dome Attenuation	Clear Zero light loss Smoke f/1.0 light loss
Compression	H.264 in base profile and MJPEG
Video Streams	Up to 2 simultaneous streams, the second Stream variable based on the setup of the primary stream
Frame Rate	Up to 30, 25, 24, 15, 12.5, 12, 10, 8, 7.5, 6.5, 4, 3, 2, and 1 (depending upon coding, resolution, and stream configuration
Available Resolutions	<pre>3.1 MPx2048 x 1536; 4:3 aspect ratio; 2.0 ips max., 10.0 Mbps bit rate for MJPEG; 3.0 ips max., 2.6 Mbps bit rate H.264 2.1 MPx1920 x 1080; 16:9 aspect ratio: 15.0 ips max.,10.0 Mbps bit rate for MJPEG; 5.0 ips max., 2.7 Mbps bit rate H.264 3.1.9 MPx1600 x 1200; 4:3 aspect ratio; 15.0 ips max.,10.0 Mbps bit rate for MJPEG; 6.0 ips max., 2.6 Mbps bit rate H.264 1.3 MPx1280 x 1024; 5:4 aspect ratio; 15.0 ips max.,10.0 Mbps bit rate for MJPEG; 8.0 ips max., 2.5 Mbps bit rate H.264 1.2 MPx1280 x 960; 4:3 aspect ratio; 15.0 ips max., 9.8 Mbps bit rate for MJPEG; 9.8 ips max., 8.5 Mbps bit rate H.264 6.0.9 MPx1280 x 720; 16:9 aspect ratio; 30.0 ips max.,10.0 Mbps bit rate for MJPEG; 12.5 ips max., 2.5 Mbps bit rate H.264 0.5 MPx800 x 600; 4:3 aspect ratio; 30.0 ips max., 5.8 Mbps bit rate for MJPEG; 25.0 ips max., 2.0 Mbps bit rate H.264 8.0.3 MPx640 x 480; 4:3 aspect ratio; 30.0 ips max., 3.7 Mbps bit rate for MJPEG; 30.0 ips max.,1.6 Mbps bit rate H.264</pre>

	0.1 MPx320 x 240; 4:3 aspect ratio; 30.0 ips max., 0.9 Mbps bit rate for MJPEG; 30.0 ips max., 0.4 Mbps bit rate H.264 Additional640 x 512, 640 x 352, 480 x 368, 480 x 272, 320 x 256, 320 x 176
Supported Protocols	TCP/IP, UDP/IP (Unicast, Multicast IGMP), UPnP, DNS, DHCP, RTP, RTSP, NTP,IPv4, SNMP, QoS, HTTP, HTTPS, LDAP(client), SSH, SSL, STMP, FTP, MDNS(Bonjour), and 802.1x (EAP)
Security Access	Password protected
Software Interface	Web browser view and setup, up to 16 cameras
Connectors	RJ-45 for 100Base-TX, Auto MDI/MDI- X
Cable	Cat5 cable or better for 100Base-TX
Input Voltage	24 VAC or PoE (IEEE802.3af class 3)
Power Consumption	6 W
Current Consumption	PoE <200 mA maximum 24 VAC <295 mA nominal; <390 mA maximum
Alarm Input	10 VDC maximum, 5 mA maximum
Alarm Output	0 to 15 VDC maximum, 75 mA maximum

CS mount, adjustable

Tilt 160° (10° to 170°)

Pan 368°

Rotate 355°

16. Accessories

Lens Mount

a. Pendant mount

Pan/Tilt Adjustment

- b. Wall mount for pendant
- c. Corner adapter for wall mount
- d. Pole adapter for wall mount

17. Recommended Lenses

- a. Megapixel lens, varifocal, 2.2~6.0 mm, f/1.3~2.0
- b. Megapixel lens, varifocal, 2.8~8.0 mm, f/1.1~1.9
- c. Megapixel lens, varifocal, 2.8~12.0 mm, f/1.4~2.7
- d. Megapixel lens, varifocal, 15.0~50.0 mm, f/1.5~2.1
- T. Indoor/Outdoor Camera Dome System

09-11

- The indoor/outdoor camera dome system shall include a built-in 100Base-TX network interface for live streaming to a standard Web browser.
- The indoor/outdoor camera dome system shall operate in openv architecture connectivity for third-party software recording solutions.
- 3. The indoor/outdoor VASS camera dome system shall be a discreet camera dome system consisting of a dome drive with a variable speed/high speed pan/tilt drive unit with continuous 360° rotation; 1/4-inch high resolution color, or color/black-white CCD camera; motorized zoom lens with optical and digital zoom; auto focus; and an enclosure consisting of a back box, lower dome, and a quickinstall mounting.

Imaging Device	1/4-inch CCD
Picture Elements	NTSC/PAL 768 x 494/752 x 582
Dynamic Range	102 dB typical/120 dB maximum (DW/CW models only)
Scanning System	2:1 interlace
Synchronization	Internal
Electronic Shutter Range	Auto (1/15-1/22,000)
Lens Type	Lens f/1.4 (focal length, 3.4~119 mm; 35X optical zoom, 12X digital zoom)
Focus	Automatic with manual override
Pan Speed	Variable between 400 per second continuous pan to 0.1° per second
Vertical Tilt	Unobstructed tilt of +2 \square to -92 \square
Manual Control Speed	Pan speed of 0.1 to 80 per second, and pan at 150 per second in turbo mode. Tilt operation shall range from 0.1 to 40 per second
Automatic Preset Speed	Pan speed of 400 and a tilt speed of 200 per second
Presets	256 positions with a 20-character label available for each position; programmable camera settings, including selectable auto focus modes, iris level, LowLight™ limit, and backlight compensation for each preset; command to copy camera

4. Indoor/Outdoor fixed dome system technical specifications:

	<pre>settings from one preset to another; and preset programming through control keyboard or through dome system on-screen menu 128 positions with a 20-character label available for each position; programmable camera settings, including selectable auto focus modes, iris level, LowLight limit, and backlight compensation for each preset; command to copy camera settings from one preset to another; and preset programming through control keyboard or through dome system on-screen menu</pre>
Preset Accuracy	± 0.10
Zones	8 zones with up to 20-character labeling for each, with the ability to blank the video in the zone
Limit Stops	Programmable for manual panning, auto/random scanning, and frame scanning
Alarm Inputs	7
Alarm Output Programming	Auxiliary outputs can be alternately programmed to operate on alarm
Alarm Action	Individually programmed for 3 priority levels, initiating a stored pattern or going to a preassigned preset position
Resume after Alarm	After completion of alarm, dome returns to previously programmed state or its previous position
Window Blanking	<pre>8, four-sided user-defined shapes, each side with different lengths; window blanking setting to turn off at user-defined zoom ratio; window blanking set to opaque gray or translucent smear; blank all video above user-defined tilt angle; blank all video below user-defined tilt angle</pre>
Patterns	8 user-defined programmable patterns including pan/tilt/zoom and preset functions, and pattern programming through control keyboard or through dome system on- screen menu
Scheduler	Internal scheduling system for programming presets, patterns,

Lebanon VAMC New Entryway for Building 17 BID DOCUMENTS

	window blanks, alarms, and auxiliary functions based on internal clock settings
Auto Flip	Rotates dome 180° at bottom of tilt travel
Password Protection	Programmable settings with optional password protection
Compass Display	On-screen display of compass heading and user-definable compass setup
Camera Title Overlay	20 user-definable characters on the screen camera title display
Video Output Level	User-selectable for normal or high output levels to compensate for long video wire runs
Motion Detection	User-definable motion detection settings for each preset scene, can activate auxiliary outputs, and contains three sensitivity levels per zone
Electronic Image Stabilization	Electronic compensation for external vibration sources that cause image blurring; user selectable for 2 frequency ranges, 5 Hz (3-7 Hz) and 10 Hz (8-12 Hz)
Wide Dynamic Range	128X
Video Output	1 Vp-p, 75 ohms
Minimum Illumination	<pre>NTSC/EIA 0.55 lux at 1/60 sec shutter speed (color), 0.063 lux at 1/4 sec shutter speed (color), 0.00018 lux at 1/2 sec shutter speed (B-W) PAL/CCIR 0.55 lux at 1/50 sec shutter speed (color), 0.063 lux at 1/3 sec shutter speed (color), 0.00018 lux at 1/1.5 sec shutter speed (B-W)</pre>
Compression	MPEG-4, MJPEG
Video Streams	3, simultaneous
Video Resolutions	NTSC PAL 4CIF 704 x 480 704 x 576 2CIF 704 x 240 704 x 288 CIF 352 x 240 352 x 288 QCIF 176 x 120 176 x 144
Bit Rate	Configurable, MPEG-4 30 ips, 2 Mbps for primary stream, MJPEG 15

	ips, 3 Mbps, MJPEG
Web User Interface	
Environment	Low temperature, indoor/outdoor
Connectors	RJ-45 for 100BASE-TX, Auto MDI/MDI- X
Cabling	CAT5 cable or better for 100BASE-TX
Input Voltage	18 to 32 VAC; 24 VAC nominal
	22 to 27 VDC; 24 VDC nominal
Power Consumption	24 VAC 23 VA nominal (without
	heater);73 VA nominal (with heater)
	24 VDC 0.7 A nominal (without heater);3 A nominal (with heater)
Alarm Input	7
Alarm Output	1
CERTIFICATIONS	CE, Class B
	UL Listed
	Meets NEMA Type 4X and IP66 standards

- 5. Accessories
 - a. Pendant mount
 - b. Wall mount for pendant
 - c. Corner adapter for wall mount
 - d. Pole adapter for wall mount
- U. Reinforced Fixed Dome Camera
 - 1. The dome camera shall be a high-resolution color video camera with wide dynamic range capturing capability.
 - 2. The camera shall meet or exceed the following specifications:
 - a. The camera shall have the form factor as typical of a traditional VASS dome video camera.
 - b. The image capturing device shall be a 1/3-inch image sensor designed for capturing wide dynamic images.
 - 3. The camera shall optimize each pixel independently.
 - The camera shall have onscreen display menus for programming of the camera's settings.
 - 5. The signal system shall be NTSC or PAL selectable.
 - 6. The resolution that the camera provides shall be [470] <insert number> television lines horizontal and [460] <insert number> television lines vertical.

- 7. The camera shall have [720] <insert number> horizontal and 540 vertical picture elements.
- 8. The scanning system shall be 525/60 lines NTSC or 625/50 lines PAL.
- 9. The synchronizing system shall be internal/AC line-lock.
- 10. The sensitivity shall be 0.6 lux at f1.2, 30 IRE.
- 11. The signal-to-noise ratio shall be 50 dB.
- 12. The electronic shutter shall have automatic adjustment, and operate from 1/60 NTSC to 1/100,000 second, automatic.
- 13. The camera shall have an automatic white balance range of 2800 to 11000 K.
- 14. The camera shall have automatic gain control.
- 15. The camera shall include a shroud to conceal the camera's position inside the dome.
- 16. The camera shall have composite video output.
- 17. The housing shall have the following specifications:
 - a. Construction: Aluminum
 - b. The housing shall be heavy duty and tamper resistant.
 - c. Dome housing construction: 0.13-in polycarbonate.
 - d. Finish: Powder coat
- 18. The camera shall come with a manual varifocal [4 to 9]<insert range> mm lens.
- 19. The electrical specifications for the camera shall be as follows:
 - a. Input voltage shall be 24 VAC or 12 VDC.
 - b. Power consumption shall be 12 VDC, 455 mA; or 24 VAC, 160 mA.
 - c. Power source shall be universal 18 to 30 VAC or 10 to 30 VDC.
 - d. Video output shall be composite: 1.0 volts peak-to-peak at 75-ohm load.
- 20. The environmental specifications for the camera shall be as follows: Operating temperature shall be -10 to 45 degrees Celsius or 14 to 113 degrees Fahrenheit.
- 21. Accessories shall include:
 - a. Surface mount adapter
 - b. Wall mount adapter
 - c. Flush mount adapter
- V. Indoor/Outdoor Fixed Mini Dome System

- The indoor/outdoor fixed mini dome system shall include a built-in 100Base-TX network interface for live streaming to a standard Web browser.
- 2. The network mini dome shall be integrated into the back box design to accept multiple camera options without modification. The network mini dome shall operate in open architecture connectivity for thirdparty software recording solutions.
- 3. The indoor/outdoor fixed mini dome system shall meet or exceed the following design and performance specifications.

	-
Imaging Device	1/3-inch imager
Picture Elements	NTSC/PAL 720 (H) x 540 (V) 720 (H) x 540 (V)
Dynamic Range	102 dB typical/120 dB maximum (DW/CW models only)
Scanning System	2:1 interlace (progressive option on CW/DW models only
Synchronization	Internal
Electronic Shutter Range	Auto (1/15-1/22,000)
Lens Type	Varifocal with auto iris
Format Size	1/3-inch
Focal Length	3.0 mm-9.5 mm 9.0 mm-22.0 mm
Operation	Iris Auto (DC-drive) Focus Manual Zoom Manual
Minimum Illumination	Color (day): 0.8 lux, SENS 8X: 0.2 lux, B-W (night): 0.08 lux, SENS 8X: 0.02 lux (F1.0, 40 IRE, AGC on, 75% scene reflectance) Color (day): 0.15 lux, B-W (night): 0.015 lux (F1.0, 40 IRE, AGC on, 75% scene reflectance) Color (day): 0.8 lux, SENS 8X: 0.2 lux (F1.0, 40 IRE, AGC on, 75% scene reflectance) 0.2 lux (F1.0, 40 IRE, AGC on, 75% scene reflectance)
Compression	MPEG-4, MJPEG in Web viewing mode
Video Streams	3, simultaneous
Video Resolutions	NTSC PAL 4CIF 704 x 480 704 x 576

	2CIF 704 x 240 704 x 288
	CIF 352 x 240 352 x 288
	QCIF 176 x 120 176 x 144
Bit Rate	Configurable, 20 kbps to 2 Mpbs per stream
Web User Interface	
Environment	Low temperature, indoor/outdoor
Connectors	RJ-45 for 100BASE-TX, Auto MDI/MDI- X
Cabling	CAT5 cable or better for 100BASE-TX
Input Voltage	24 VAC (18-36) or PoE input voltage
Power Consumption	<7.5 Watts,<13 Watts with heaters 24VAC: <0.5 Amps, <0.9 Amps with heaters
Alarm Input	10 VDC maximum, 5 mA maximum
Alarm Output	0 to 15 VDC maximum, 75 mA maximum
Service Connector	Internal to housing for 2.5 mm connector for NTSC/PAL video outputs
Service Connector	3-conductor, 2.5 mm connector for video output to optional (IS-SC cable)
Pan/Tilt Adjustment	Pan 360°, tilt 80° (20° to 100° range), and rotation 360°
Light Attenuation	<pre>smoked bubble, f/1.5 light loss; clear bubble, zero light loss</pre>
CERTIFICATIONS	CE, Class B
	UL Listed
	Meets NEMA Type 4X and IP66 standards

- 4. Accessories
 - a. Pendant mount
 - b. Wall mount for pendant
 - c. Corner adapter for wall mount
 - d. Pole adapter for wall mount
- W. Megapixel High Definition Integrated Digital Network Camera
 - 1. The network camera shall offer dual video streams with up to 3.1 megapixel resolution (2048 x 1536) in progressive scan format.
 - 2. An alarm input and relay output shall be built in for integration with hard wired external sensors.

- The network camera shall be capable of firmware upgrades through a network using a software-based device utility.
- 4. The network camera shall offer auto back focus (ABF) functionality through a push button on the camera. ABF parameters shall also be configurable through a standard Web browser interface.
- The network camera shall offer a video output port providing an NTSC/PAL analog video output signal for adjusting field of view and focus at the camera.
- 6. The network camera shall provide advanced low-light capabilities for color and day/night models with sensitivity down to 0.12 lux in color and 0.03 lux in black-white (B-W).
- 7. The network camera shall have removable IR cut filter mechanism for increased sensitivity in low-light installations. The sensitivity of IR cut filter removal shall be configurable through a Web browser.
- 8. The network camera shall support two simultaneous, configurable video streams. H.264 and MJPEG compression formats shall be available for primary and secondary streams with selectable unicast and multicast protocols. The streams shall be configurable in a variety of frame rates and bit rates.
- 9. The network camera shall support industry standard Power over Ethernet (PoE)
- IEEE 802.3af to supply power to the camera over the network. The network camera shall also offer a 24 VAC power input for optional use.
- 11. The network camera shall use a standard Web browser interface for remote administration and configuration of camera parameters.
- 12. The network camera shall have a window blanking feature to conceal user-defined privacy areas that cannot be viewed by an operator. The network camera shall support up to four blanked windows. A blanked area shall appear on the screen as a solid gray window.
- 13. The network camera shall support standard IT protocols.
- 14. The network camera shall support open architecture best practices with a published API available to third-party network video recording and management systems.
- X. Megapixel High Definition Integrated Digital Network Camera Technical Specifications:

09-11

Imaging Device	1/3-inch, effective
Imager Type	CMOS, Progressive scan
Maximum Resolution	2048 x 1536
Signal-to-Noise Ratio	50 dB
	DC drive
Auto Iris Lens Type	
Electronic Shutter Range	1~1/100,000 sec
Wide Dynamic Range	60 dB
White Balance Range	2,000° to 10,000°K
Sensitivity	<pre>f/1.2; 2,850K; SNR >24dB Color (1x/33ms) 0.50 lux Color SENS (15x/500 ms) 0.12 lux Mono SENS (15x/500 ms) Mono (1x/33ms)0.25 lux 0.03 lux</pre>
Dome Attenuation	Clear Zero light loss Smoke f/1.0 light loss
Compression	H.264 in base profile and MJPEG
Video Streams	Up to 2 simultaneous streams, the second Stream variable based on the setup of the primary stream
Frame Rate	Up to 30, 25, 24, 15, 12.5, 12, 10, 8, 7.5, 6.5, 4, 3, 2, and 1 (depending upon coding, resolution, and stream configuration
Available Resolutions	<pre>3.1 MPx2048 x 1536; 4:3 aspect ratio; 2.0 ips max., 10.0 Mbps bit rate for MJPEG; 3.0 ips max., 2.6 Mbps bit rate H.264 2.1 MPx1920 x 1080; 16:9 aspect ratio: 15.0 ips max.,10.0 Mbps bit rate for MJPEG; 5.0 ips max., 2.7 Mbps bit rate H.264 3.1.9 MPx1600 x 1200; 4:3 aspect ratio; 15.0 ips max.,10.0 Mbps bit rate for MJPEG; 6.0 ips max., 2.6 Mbps bit rate H.264 1.3 MPx1280 x 1024; 5:4 aspect ratio; 15.0 ips max.,10.0 Mbps bit rate for MJPEG; 8.0 ips max., 2.5 Mbps bit rate H.264 1.2 MPx1280 x 960; 4:3 aspect ratio; 15.0 ips max., 9.8 Mbps bit rate for MJPEG; 9.8 ips max., 8.5 Mbps bit rate H.264 6.0.9 MPx1280 x 720; 16:9 aspect ratio; 30.0 ips max.,10.0 Mbps bit rate for MJPEG;</pre>

Lebanon VAMC New Entryway for Building 17 BID DOCUMENTS 09-11

	H.264
	<pre>0.5 MPx800 x 600; 4:3 aspect ratio; 30.0 ips max., 5.8 Mbps bit rate for MJPEG; 25.0 ips max., 2.0 Mbps bit rate H.264 8.0.3 MPx640 x 480; 4:3 aspect ratio; 30.0 ips max., 3.7 Mbps bit rate for MJPEG; 30.0 ips max.,1.6 Mbps bit rate H.264 0.1 MPx320 x 240; 4:3 aspect ratio; 30.0 ips max., 0.9 Mbps bit rate for MJPEG; 30.0 ips max., 0.4 Mbps bit rate H.264</pre>
	Additional640 x 512, 640 x 352, 480 x 368, 480 x 272, 320 x 256, 320 x 176
Supported Protocols	TCP/IP, UDP/IP (Unicast, Multicast IGMP), UPnP, DNS, DHCP, RTP, RTSP, NTP,IPv4, SNMP, QoS, HTTP, HTTPS, LDAP(client), SSH, SSL, STMP, FTP, MDNS(Bonjour), and 802.1x (EAP)
Security Access	Password protected
Software Interface	Web browser view and setup, up to 16 cameras
Connectors	RJ-45 for 100Base-TX, Auto MDI/MDI-X
Cable	Cat5 cable or better for 100Base-TX
Input Voltage	24 VAC or PoE (IEEE802.3af class 3)
Power Consumption	6 W
Current Consumption	PoE <200 mA maximum 24 VAC <295 mA nominal; <390 mA maximum

10 VDC maximum, 5 mA maximum

CS mount, adjustable

Tilt 160° (10° to 170°)

Pan 368°

Rotate 355°

0 to 15 VDC maximum, 75 mA maximum

1. Accessories

Pan/Tilt Adjustment

Alarm Input

Alarm Output Lens Mount

- a. Pendant mount
- b. Wall mount for pendant
- c. Corner adapter for wall mount
- d. Pole adapter for wall mount
- 2. Recommended Lenses

VA Project 595-668 Lebanon VAMC AE Works Project VLEB-010 New Entryway for Building 17 BID DOCUMENTS

```
09-11
```

- a. Megapixel lens, varifocal, 2.2~6.0 mm, f/1.3~2.0 $\,$
- b. Megapixel lens, varifocal, 2.8~8.0 mm, f/1.1~1.9
- c. Megapixel lens, varifocal, 2.8~12.0 mm, f/1.4~2.7
- d. Megapixel lens, varifocal, 15.0~50.0 mm, f/1.5~2.1
- Y. NETWORK CAMERAS
 - 1. Shall be IEEE 802.3af compliant.
 - a. Shall be utilized for interior and exterior purposes.
 - b. A Category 6 cable will be the primary source for carrying signals up to 100 m(300 ft.) from a switch hub or network server. If any camera is installed greater than 100 m (300 ft.) from the controlling device then the following will be required:
 - 1) A local or remote 12 VDC or 24 VAC power source will be required from a Class 2, UL compliant power supply.
 - 2) A signal converter will be required to convert from a CAT6 cable over to a fiber optic or standard signal cable. The signal will need to be converted back to a CAT6 cable at the controlling device using a signal converter card.
 - c. Shall be routed to a controlling device via a network switch.
 - d. Shall be of hybrid design with both an Internet Protocol (IP) output and a monitor video output which produces a picture equivalent to an analog camera, and allows simultaneous output of both.
 - e. Shall be a programmable IP address that allows for installation of multiple units in the same Local Area Network (LAN) environment.
 - d. Incorporate a minimum of Transmission Control Protocol (TCP)/IP, User Datagram Protocol (UDP), Hypertext Transfer Protocol (HTTP), File Transfer Protocol (FTP), Internet Control Message Protocol (ICMPO, Address Resolution Protocol (ARP), Real-Time Transport Protocol (RTP), Dynamic Host Configuration Protocol (DHCP), Network Time Protocol (NTP), Simple Mail Transfer Protocol (SMTP), Internet Group Management Protocol (IGMP), and Differentiated Service Code Point (DSCP) protocols for various network applications.
- Z. Fixed Network Camera
 - The fixed network camera shall have following technical characteristics:

Video Standards	MPEG-4; M-JPEG
Video Data Rate	9.6 Kbps - 6 Mbps Constant & variable
Image Resolution	768x494 (NTSC)
Video Resolution	704 x 576/480 (4CIF: 25/30 IPS) 704 x 288/240 (2CIF: 25/30 IPS) 352 x 288/240 (CIF: 25/30 IPS) 176 x 144/120 (QCIF: 25/30 IPS)
Select Frame Rate	1-25/30 IPS (PAL/NTSC);Field/frame based coding
Network Protocols	RTP, Telnet, UDP, TCP, IP, HTTP, IGMP, ICMP
Software Update	Flash ROM, remote programmable
Configuration	Via web browser, built-in web server interfaces
//Video Out	1x Analog composite: NTSC or PAL; BNC connector 75 Ohm//
Sensitivity	1 0.65 lux (color) 0.26 lux (NightSense)
Minimum Illumination	0.30 lux (color)0.12 lux (NightSense)
Video Signal-to-Noise Ratio	50 dB
Video Signal Gain	21 dB, (max) Electronic Shutter Automatic, up to 1/150000 sec. (NTSC)
Alarm In	Automatic sensing (2500 - 9000 K)
Input Voltage	+5 V nominal, +40 VDC max VDC: 11-36 V (700 mA) VAC: 12-28 V (700 mA) PoE: IEEE 802.3af compliant

- 2. Camera accessories shall include:
 - a. Surface mount adapter
 - b. Wall mount adapter
 - c. Flush mount adapter
- AA. Wireless Cameras
 - Prior to installation of any wireless camera, ensure operating frequency is given full approval by the VA controlling authority. Wireless cameras shall be utilized as either part of a VASS network or a standard analog system.

- 2. Power for a wireless camera will be 110 VAC tied into a dedicated circuit breaker on a power panel that is dedicated to the security system and is fed from a power source with back-up in the event primary power to the VASS System is lost. Power will be run to the camera and connected at both ends in accordance with Division 26 of the VA Master Specification FOR NCA Projects, and the VA Electrical Manual. In addition, wireless systems are line of sight dependant and all considerations for environmental layout must be taken into consideration prior to design, engineering, and installation of this type of camera system. Proximity to transmitting and receiving devices, cell phone towers, and any and all electrical devices can also cause interference with the camera signal and must be considered in advance.
- 3. Shall be located within a minimum of one quarter of a mile from the receiving unit. Repeaters shall be used as required to ensure the strongest possible signal between transmitters and receivers.
- 4. Shall be Federal Communication Commission (FCC) approved and compliant.
- 5. If using wireless cameras, the following equipment shall be utilized to ensure operation of the system:
 - a. Receiver
 - b. Receiver antenna as required
 - c. Repeater as required
 - d. Mounting Hardware
- 6. Receivers shall only handle up to four (4) cameras per unit.
- 7. Technical Characteristics
 - a. Wireless Cameras:

Imaging Device	1/3-inch interline transfer CCD
Picture Elements	NTSC 510 (H) x 492 (V)
Sensing Area	6 mm diagonal
Scanning System	NTSC 525 lines, 21 interlace
Synchronization System	AC line lock/internal
Horizontal Resolution	330 TV lines
Iris Control	Selectable on/off
Electronic Shutter Range NTSC	1/60-1/100,000 second
Frequency range	2.41-2.47GHz

Modulation	FM
Video signal/noise ratio	48dB
Audio signal/noise ratio	45db
Minimum Illumination	0.6 lux
Signal to Noise Ratio	>50 dB
Automatic Gain Control	On/off switchable
Backlight Compensation	On/off switchable
Auto White Balance	On/off switchable
Video Output	1 Vp-p, 75 ohms
Lens Mount	C/CS mount (adjustable)

b. Receivers

Frequency range	2.4-2.49GHz
Video output	1Vp-p
Signal/noise ratio	38dB

BB. LENSES

- Camera Field of View shall be set by the Contractor to produce full view of door or window opening and anyone entering or leaving through it. Follow the project construction drawings for design intent.
- 2. Camera Lenses shall be of the type supplied with the camera from the manufacture. All cameras which are not supplied with lenses from the factory are specified in this specification. The lens shall be equipped with an auto-iris mechanism unless otherwise specified. Lenses having auto-iris, DC iris, or motor zoom functions shall be supplied with connectors, wiring, receiver/drivers, and controls as needed to operate the lens functions. Lenses shall have sufficient circle of illumination to cover the image sensor evenly. Lenses shall not be used on a camera with an image format larger than the lens is designed to cover. Lenses shall be provided with pre-set capability.
- 3. Lenses shall have optical-quality coated optics, designed specifically for video surveillance applications, and matched to specified camera. Provide color-corrected lenses with color cameras, megapixel lenses for megapixel cameras, and lenses with day/night for color/b&w cameras.

- 4. Auto-Iris Lens: Electrically controlled iris with circuit set to maintain a constant video level in varying lighting conditions.
- 5. Zoom Lenses: Motorized, remote-controlled units, rated as "quiet operating." Features include the following:
 - a. Electrical Leads: Filtered to minimize video signal interference.
 - b. Motor Speed: Variable.
 - c. Lens shall be available with preset positioning capability to recall the position of specific scenes.
- 6. Lenses: Shall be utilized in a manner that provides maximum coverage of the area being monitored by the camera. The lenses shall:
 - a. Be $1/3^{\prime\prime}$ to fit CCD fixed camera.
 - b. Be all glass with coated optics.
 - c. Have mounts that are compatible with the camera selected.
 - d. Be packaged and supplied with the camera.
 - e. Have a maximum f-stop of f/1.3 for fixed lenses, and a maximum fstop of f/1.6 for variable focus lenses.
 - f. Be equipped with an auto-iris mechanism.
 - g. Have sufficient circle of illumination to cover the image sensor evenly.
 - h. Not be used on a camera with an image format larger than the lens is designed to cover.
 - i. Be provided with pre-set capability.
- Two types of lenses shall be utilized for both interior and exterior fixed cameras:
 - a. Manual Variable Focus
 - b. Auto Iris Fixed
- 8. Manual Variable Focus:
 - a. Shall be utilized in large areas that are being monitored by the camera. Examples of this are perimeter fence lines, vehicle entry points, parking areas, etc.
 - b. Shall allow for setting virtually any angle of field, which maximizes surveillance effects.
 - c. Technical Characteristics:

Image format	1/3 inch
Focal length	5-50mm
Iris range	F1.4 to close

Focus range	1m (3.3 ft)
Back focus distance	10.05 mm (0.4 in)
Angle view Wide (1/3 in)	53.4 x 40.1
Angle view Tele (1/3 in)	5.3 x 4.1
Iris control	manual
Focus ctrl	manual
Zoom ctrl	manual

- CC. CAMERA HOUSINGS AND MOUNTS
 - This section pertains to all interior and exterior housings, domes, and applicable wall, ceiling, corner, pole, and rooftop mounts associated with the housing. Housings and mounts shall be specified in accordance to the type of cameras used.
 - All cameras and lenses shall be enclosed in a tamper resistant housing. Any additional mounting hardware required to install the camera housing at its specified location shall be provided along with the housing.
 - 3. The camera and lens contained inside the housing shall be installed on a camera mount. All additional mounting hardware required to install the camera housing at its specified location shall be provided along with the housing.
 - 4. Shall be manufactured in a manner that are capable of supporting a maximum of three (3) cameras with housings, and meet environmental requirements for the geographical area the camera support equipment is being installed on or within.
 - 5. Environmentally Sealed
 - a. Shall be designed in manner that it provides a condensation free environment for correct camera operation.
 - b. Shall be operated in a 100 percent condensing humidity atmosphere.
 - c. Shall be constructed in a manner that:
 - Has a fill valve to allow for the introduction of nitrogen into the housing to eliminate existing atmospheric air and pressurize the housing to create moisture free conditions.
 - Has an overpressure valve to prevent damage to the housing in the event of over pressurization.

- 3) Is equipped with a humidity indicator that is visible to the eye to ensure correct atmospheric conditions at all times.
- 4) The leak rate of the housing is not to be greater than 13.8kPa or 2 pounds per square inch at sea level within a 90 day period.
- 5) It shall contain camera mounts or supports as needed to allow for correct positioning of the camera and lens.
- 6) The housing and sunshield are to be white in color.
- All electrical and signal cables required for correct operations shall be supplied in a hardened carrier system from the controller to the camera.
- 7. The mounting bracket shall be adjustable to allow for the housing weight of the camera and the housing unit it is placed in.
- 8. Accessibility to the camera and mounts shall be taken into consideration for maintenance and service purposes.
- DD. Indoor Mounts
 - 1. Ceiling Mounts:
 - a. This enclosure and mount shall be installed in a finished or suspended ceiling.
 - b. The enclosure and mount shall be fastened to the finished ceiling, and shall not depend on the ceiling tile grid for complete support.
 - c. Suspended ceiling mounts shall be low profile, and shall be suitable for replacement of 610mm x 610mm (2 foot by 2 foot) ceiling tiles.
 - 2. Wall Mounts:
 - a. The enclosure shall be installed in manner that it matches the existing décor and placed at a height that it will be unobtrusive, unable to cause personal harm, and prevents tampering and vandalism.
 - b. The mount shall contain a manual pan/tilt head that will provide 360 degrees of horizontal and vertical positioning from a horizontal position, and has a locking bar or screw to maintain its fixed position once it has been adjusted.
- EE. Interior Domes
 - The interior dome shall be a pendant mount, pole mount, ceiling mount, surface mount, or corner mounted equipment.

- The lower portion of the dome that provides camera viewing shall be made of black opaque acrylic and shall have a light attenuation factor of no more that 1 f-stop.
- 3. The housing shall be equipped with integral pan/tilt capabilities complete with wiring, wiring harness, connectors, receiver/driver, pan/tilt control system, pre-position cards, or any other hardware and equipment as needed to fully provide a fully functional pan/tilt dome.
- 4. The pan/tilt mechanism shall be:
 - a. Constructed of heavy duty bearings and hardened steel gears.
 - b. Permanently lubricated to ensure smooth and consistent movement of all parts throughout the life of the product.
 - c. Equipped with motors that are thermally or impedance protected against overload damage.
 - d. Pan movements shall be 360 degrees and tilt movement shall no be less than +/- 90 degrees.
 - e. Pan speed shall be a minimum of 10 degrees per second.
- FF. Exterior Domes
 - 1. The exterior dome shall meet all requirements outlined in the interior dome paragraph above.
 - The housing shall be constructed to be dust and water tight, and fully operational in 100 percent condensing humidity.

GG. Exterior Wall Mounts

- 1. Shall have an adjustable head for mounting the camera.
- 2. Shall be constructed of aluminum, stainless steel, or steel with a corrosion-resistant finish.
- 3. The head shall be adjustable for not less than plus and minus 90 degrees of pan, and not less than plus and minus 45 degrees of tilt. If the bracket is to be used in conjunction with a pan/tilt, the bracket shall be supplied without the adjustable mounting head, and shall have a bolt-hole pattern to match the pan/tilt base.
- 4. Shall be installed at a height that allows for maximum coverage of the area being monitored.

HH. Explosion Proof Housing

 This housing shall meet or exceed all requirements of NEMA four (4) standards for hazardous locations. 2. It shall be supplied with the mounting brackets for the specified camera and lens.

2.8 POWER SUPPLIES

- A. Power supplies shall be a low-voltage power supplies matched for voltage and current requirements of cameras and accessories, type as recommended by camera[, infrared illuminator,] and lens manufacturer.
- B. Technical specifications:
 - 1. Input: 115VAC, 50/60Hz, 2.7 amps
 - 2. Outputs:
 - a. Number of outputs, 16
 - b. PTC protected, power limited
 - c. Output voltage & power:
 - 1) 24VAC @ 12.5 amps (300VA) or 28VAC @ 10 amp (280VA) supply current
 - 3. Illuminated power disconnect circuit breaker with manual reset
 - 4. Surge suppression
 - 5. Camera synchronization
 - 6. Rackmount.
 - 7. Enclosure: NEMA 250, Type 4X.

2.12 WIRES AND CABLES

- A. Shall meet or exceed the manufactures recommendation for power and signal.
- B. Will be carried in an enclosed conduit system, utilizing electromagnetic tubing (EMT) to include the equivalent in flexible metal, rigid galvanized steel (RGS) to include the equivalent of liquid tight, polyvinylchloride (PVC) schedule 40 or 80.
- C. All conduits will be sized and installed per the NEC. All security system signal and power cables that traverse or originate in a high security office space will contained in either EMT or RGS conduit.
- D. All conduit, pull boxes, and junction boxes shall be clearly marked with colored permanent tape or paint that will allow it to be distinguished from all other conduit and infrastructure.
- E. Conduit fills shall not exceed 50 percent unless otherwise documented.
- F. A pull string shall be pulled along and provided with signal and power cables to assist in future installations.

- G. At all locations where there is a wall penetration or core drilling is conducted to allow for conduit to be installed, fire stopping materials shall be applied to that area
- H. High voltage and signal cables shall not share the same conduit and shall be kept separate up to the point of connection. High voltage for the security system shall be defined as any cable or sets of cables carrying 30 VDC/VAC or higher.
- I. For all equipment that is carrying digital data between the Physical Access Control System and Database Management or at a remote monitoring station, shall not be less that 20 AWG and stranded copper wire for each conductor. The cable or each individual conductor within the cable shall have a shield that provides 100% coverage. Cables with a single overall shield shall have a tinned copper shield drain wire.
- J. All cables and conductors, except fiber optic cables, that act as a control, communication, or signal lines shall include surge protection. Surge protection shall be furnished at the equipment end and additional triple electrode gas surge protectors rated for the application on each wire line circuit shall be installed within 1 m. (3 ft.) of the building cable entrance. The inputs and outputs shall be tested in both normal and common mode using the following wave forms:
 - 1. A 10 microsecond rise time by 1000 microsecond pulse width waveform with a peak voltage of 1500 watts and peak current of 60 amperes.
 - 2. An 8 microsecond rise time by 20 microsecond pulse width wave form with a peak voltage of 1000 volts and peak current of 500 amperes.
- K. The surge suppression device shall not attenuate or reduce the video or sync signal under normal conditions. Fuses and relays shall not be used as a means of surge protection.

Number of Pairs	4
Total Number of Conductors	8
AWG	24
Stranding	Solid
Conductor Material	BC - Bare Copper
Insulation Material	PO - Polyolefin
Overall Nominal Diameter	.230 in.
IEC Specification	11801 Category 5
TIA/EIA Specification	568-B.2 Category 5e

e. CAT-5 Technical Characteristics:

VA Project 595-668 AE Works Project VLEB-010

Max. Capacitance Unbalance	(pF/100 m) 150 pF/100 m
Nom. Velocity of Propagation	70 %
Max. Delay	(ns/100 m) 538 @ 100MHz
Max. Delay Skew	(ns/100m) 45 ns/100 m
Max. Conductor DC Resistance	9.38 Ohms/100

3 %

UL 300 V RMS

10. Fiber Optic Cables Technical Characteristics:

Max. DCR Unbalance@ 20°C

Max. Operating Voltage

Fiber Type	62.5 Micron
Number of Fibers	4
Core Diameter 6	2.5 +/- 2.5 microns
Core Non-Circularity	5% Maximum
Clad Diameter	125 +/- 2 microns
Clad Non-Circularity	1% Maximum
Core-clad Offset	1.5 Microns Maximum
Primary Coating Material	Acrylate
Primary Coating Diameter	245 +/- 10 microns
Secondary Coating Material	Engineering Thermoplastic
Secondary Coating Diameter	900 +/- 50 microns
Strength Member Material	Aramid Yarn
Outer Jacket Material	PVC
Outer Jacket Color	Orange
Overall Diameter	.200 in.
Numerical Aperture	.275
Maximum Gigabit Ethernet	300 meters
Maximum Gigabit Ethernet	550 meters

11. Power Cables

- a. Will be sized accordingly and shall comply with the NEC. High voltage power cables will be a minimum of three conductors, 14
 AWG, stranded, and coated with a non-conductive polyvinylchloride (PVC) jacket. Low voltage cables will be a minimum of 18 AWG, stranded and non-conductive polyvinylchloride (PVC) jacket.
- b. Will be utilized for all components of the VASS System that require either a 110 VAC 60 Hz or 220 VAC 50 Hz input. Each feed

will be connected to a dedicated circuit breaker at a power panel that is primarily for the security system.

- c. All equipment connected to AC power shall be protected from surges. Equipment protection shall withstand surge test waveforms described in IEEE C62.41. Fuses shall not be used as a means of surge protection.
- d. Shall be rated for either 110 or 220 VAC, 50 or 60 Hz, and shall comply with VA Master Spec 26 05 21 Low Voltage Electrical Power Conductors and Cables (600 Volts and Below).
- e. Low Voltage Power Cables
 - Shall be a minimum of 18 AWG, Stranded and have a polyvinylchloride outer jacket.
 - Cable size shall determined using a basic voltage over distance calculation and shall comply with the NEC's requirements for low voltage cables.

PART 3 - EXECUTION

3.1. GENERAL

- A. Installation: The Contractor shall install all system components including Owner furnished equipment, and appurtenances in accordance with the manufacturer's instructions, ANSI C2 and as shown, and shall furnish all necessary connectors, terminators, interconnections, services, and adjustments required for a complete and operable data transmission system.
- B. Identification and Labeling: The Contractor shall supply permanent identification labels for each cable at each end that will appear on the as-built drawings. The labeling format shall be identified and a complete record shall be provided to the Owner with the final documentation. Each cable shall be identified by type or signal being carried and termination points. The labels shall be printed on letter size label sheets that are self laminated vinyl that can be printed from a computer data base or spread sheet. The labels shall be E-Z code WES12112 or equivalent.
 - The Contractor shall provide all personnel, equipment, instrumentation, and supplies necessary to perform all testing.
- C. Transient Voltage Surge Suppressors (TVSS): The Contractor shall mount TVSS within 3 m (118 in) of equipment to be protected inside terminal

cabinets or suitable NEMA 1 enclosures. Terminate off-premise conductors on input side of device. Connect the output side of the device to the equipment to be protected. Connect ground lug to a low impedance earth ground (less than 10 ohms) via Number 12 AWG insulated, stranded copper conductor.

- D. Contractor's Field Test: The Contractor shall verify the complete operation of the data transmission system during the Contractor's Field Testing. Field test shall include a bit error rate test. The Contractor shall perform the test by sending a minimum of 1,000,000 bits of data on each DTM circuit and measuring the bit error rate. The bit error rate shall not be greater than one (1) bit out of each 100,000 bits sent for each dial-up DTM circuit, and one (1) bit out of 1,000,000 bits sent for each leased or private DTM circuit. The Contractor shall submit a report containing results of the field test.
- E. Acceptance Test and Endurance Test: The wire line data transmission system shall be tested as a part of the completed IDS and EECS during the Acceptance test and Endurance Test as specified.
- F. Identification and Labeling: The Contractor shall supply identification tags or labels for each cable. Cable shall be labeled at both end points and at intermediate hand holes, manholes, and junction boxes. The labeling format shall be identified and a complete record shall be provided to the Owner with the final documentation. Each cable shall be identified with type of signal being carried and termination points.

3.2 INSTALLATION

- A. System installation shall be in accordance with NECA 303, manufacturer and related documents and references, for each type of security subsystem designed, engineered and installed.
- B. Components shall be configured with appropriate "service points" to pinpoint system trouble in less than 30 minutes.
- C. The Contractor shall install all system components including Government furnished equipment, and appurtenances in accordance with the manufacturer's instructions, documentation listed in Sections 1.5 of this document, and shall furnish all necessary connectors, terminators, interconnections, services, and adjustments required for a complete and operable system.

- D. The VASS System will be designed, engineered, installed, and tested to ensure all components are fully compatible as a system and can be integrated with all associated security subsystems, whether the system is a stand alone or a complete network.
- E. For integration purposes, the VASS System shall be integrated where appropriate with the following associated security subsystems:
 - 1. PACS:
 - a. Provide 24 hour coverage of all entry points to the perimeter and agency buildings, as well as all emergency exits utilizing a fixed color camera.
 - b. Record cameras on a 24 hours basis.
 - c. Be programmed go into an alarm state when an emergency exit is opened, and notify the Physical Access Control System and Database Management of an alarm event.
 - 2. IDS:
 - a. Provide a recorded alarm event via a color camera that is connected to the IDS system by either direct hardwire or a security system computer network.
 - b. Record cameras on a 24 hours basis.
 - c. Be programmed to go into an alarm state when an IDS device is put into an alarm state, and notify the PACS.
 - d. For additional VASS System requirements as they relate to the IDS, refer to Section 28 16 00 "INTRUSION DETECTION".
 - 3. Security Access Detection:
 - a. Provide full coverage of all vehicle and lobby entrance screening areas utilizing a fixed color camera.
 - b. Record cameras on a 24 hours basis.
 - 4. EPPS:
 - a. Provide a recorded alarm event via a color camera that is connected to the EPPS system by either direct hardwire or a security system computer network.
 - b. Record cameras on a 24 hours basis.
 - c. Be programmed to go into an alarm state when an emergency call box or duress alarm/panic device is activated, and notify the Physical Access Control System and Database Management of an alarm event.

- F. Integration with these security subsystems shall be achieved by computer programming or the direct hardwiring of the systems.
- G. For programming purposes refer to the manufacturers requirements for correct system operations. Ensure computers being utilized for system integration meet or exceed the minimum system requirements outlined on the systems software packages.
- H. A complete VASS System shall be comprised of, but not limited to, the following components:
 - 1. Cameras
 - 2. Lenses
 - 3. Video Display Equipment
 - 4. Camera Housings and Mounts
 - 5. Controlling Equipment
 - 6. Recording Devices
 - 7. Wiring and Cables
- I. The Contractor shall visit the site and verify that site conditions are in agreement/compliance with the design package. The Contractor shall report all changes to the site or conditions that will affect performance of the system to the Contracting Officer in the form of a report. The Contractor shall not take any corrective action without written permission received from the Contracting Officer.
- J. Existing Equipment
 - The Contractor shall connect to and utilize existing video equipment, video and control signal transmission lines, and devices as outlined in the design package. Video equipment and signal lines that are usable in their original configuration without modification may be reused with Contracting Officer approval.
 - 2. The Contractor shall perform a field survey, including testing and inspection of all existing video equipment and signal lines intended to be incorporated into the VASS System, and furnish a report to the Contracting Officer as part of the site survey report. For those items considered nonfunctioning, provide (with the report) specification sheets, or written functional requirements to support the findings and the estimated cost to correct the deficiency. As part of the report, the Contractor shall include a schedule for connection to all existing equipment.

- 3. The Contractor shall make written requests and obtain approval prior to disconnecting any signal lines and equipment, and creating equipment downtime. Such work shall proceed only after receiving Contracting Officer approval of these requests. If any device fails after the Contractor has commenced work on that device, signal or control line, the Contractor shall diagnose the failure and perform any necessary corrections to the equipment.
- The Contractor shall be held responsible for repair costs due to Contractor negligence, abuse, or incorrect installation of equipment.
- 5. The Contracting Officer shall be provided a full list of all equipment that is to be removed or replaced by the Contractor, to include description and serial/manufacturer numbers where possible. The Contractor shall dispose of all equipment that has been removed or replaced based upon approval of the Contracting Officer after reviewing the equipment removal list. In all areas where equipment is removed or replaced the Contractor shall repair those areas to match the current existing conditions.
- K. Enclosure Penetrations: All enclosure penetrations shall be from the bottom of the enclosure unless the system design requires penetrations from other directions. Penetrations of interior enclosures involving transitions of conduit from interior to exterior, and all penetrations on exterior enclosures shall be sealed with rubber silicone sealant to preclude the entry of water and will comply with VA Master Specification 07 84 00, Firestopping. The conduit riser shall terminate in a hot-dipped galvanized metal cable terminator. The terminator shall be filled with an approved sealant as recommended by the cable manufacturer and in such a manner that the cable is not damaged.
- L. Cold Galvanizing: All field welds and brazing on factory galvanized boxes, enclosures, and conduits shall be coated with a cold galvanized paint containing at least 95 percent zinc by weight.
- M. Interconnection of Console Video Equipment: The Contractor shall connect signal paths between video equipment as specified by the OEM. Cables shall be as short as practicable for each signal path without causing strain at the connectors. Rack mounted equipment on slide mounts shall have cables of sufficient length to allow full extension of the slide rails from the rack.

- N. Cameras:
 - 1. Install the cameras with the focal length lens as indicated for each zone.
 - 2. Connect power and signal lines to the camera.
 - 3. Aim camera to give field of view as needed to cover the alarm zone.
 - 4. Aim fixed mounted cameras installed outdoors facing the rising or setting sun sufficiently below the horizon to preclude the camera looking directly at the sun.
 - 5. Focus the lens to give a sharp picture (to include checking for day and night focus and image quality) over the entire field of view
 - 6. Synchronize all cameras so the picture does not roll on the monitor when cameras are selected.
 - 7. PTZ cameras shall have all preset positions and privacy areas defined and programmed.

3.3 SYSTEM START-UP

- A. The Contractor shall not apply power to the VASS System until the following items have been completed:
 - 1. VASS System equipment items and have been set up in accordance with manufacturer's instructions.
 - A visual inspection of the VASS System has been conducted to ensure that defective equipment items have not been installed and that there are no loose connections.
 - System wiring has been tested and verified as correctly connected as indicated.
 - 4. All system grounding and transient protection systems have been verified as installed and connected as indicated.
 - Power supplies to be connected to the VASS System have been verified as the correct voltage, phasing, and frequency as indicated.
- B. The Commissioning Agent will observe startup and contractor testing of selected equipment. Coordinate the startup and contractor testing schedules with the Resident Engineer and Commissioning Agent. Provide a minimum of 7 days prior notice.
- C. Satisfaction of the above requirements shall not relieve the Contractor of responsibility for incorrect installation, defective equipment items, or collateral damage as a result of Contractor work efforts.

3.4 SUPLEMENTAL CONTRACTOR QUIALITY CONTROL

- A. The Contractor shall provide the services of technical representatives who are familiar with all components and installation procedures of the installed VASS System; and are approved by the Contracting Officer.
- B. The Contractor will be present on the job site during the preparatory and initial phases of quality control to provide technical assistance.
- C. The Contractor shall also be available on an as needed basis to provide assistance with follow-up phases of quality control.
- D. The Contractor shall participate in the testing and validation of the system and shall provide certification that the system installed is fully operational as all construction document requirements have been fulfilled.

3.5 COMMISSIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 28 08 00 - COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 28 08 00 -"COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS" and related sections for contractor responsibilities for system commissioning.

3.6 DEMONSTRATION AND TRAINING

- A. All testing and training shall be compliant with the VA General Requirements, Section 01 00 00, "GENERAL REQUIREMENTS".
- C. Submit training plans and instructor qualifications in accordance with the requirements of Section 28 08 00 - "COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS".

----END----

SECTION 28 26 00 ELECTRONIC PERSONAL PROTECTION SYSTEM

PART 1 - GENERAL

1.1 DESCRIPTION

A. Provide and install complete Duress-Panic Alarms, data transmission wiring and a control station with its associated equipment, hereafter referred to as EPPS System.

1.2 RELATED WORK

- A. Section 01 00 00 GENERAL REQUIREMENTS. For General Requirements.
- B. Section 07 84 00 FIRESTOPPING. Requirements for firestopping application and use.
- C. Section 10 14 00 SIGNAGE. Requirements for labeling and signs.
- D. Section 14 24 00 HYDRAULIC ELEVATORS. Requirements for elevators.
- E. Section 26 05 11 REQUIREMENTS FOR ELECTRICAL INSTALLATIONS. Requirements for connection of high voltage.
- F. Section 26 05 21 LOW VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES (600 VOLTS AND BELOW). Requirements for power cables.
- G. Section 26 05 33 RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS. Requirements for infrastructure.
- H. Section 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY. Requirements for general requirements that are common to more than one section in Division 28.
- I. Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for conductors and cables.
- J. Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY. Requirements for grounding of equipment.
- K. Section 28 05 28.33 CONDUITS AND BACK BOXES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for infrastructure.
- L. Section 28 08 00 COMMISIONING OF ELECTRONIC SAFETY AND SECURITY. Requirements for requirements for commissioning - systems readiness checklists, and training.
- M. Section 28 13 00 PHYSICAL ACCESS CONTROL SYSTEMS (PACS). Requirements for physical access control integration.
- O. Section 28 16 00 INTRUSION DETECTION SYSTEM. Requirements for integration with intrusion detection system.
- P. Section 28 23 00 VIDEO SURVEILLANCE. Requirements for security camera systems.

1.3 QUALITY ASSURANCE

- A. The Contractor shall be responsible for providing, installing, and the operation of the EPPS System as shown. The Contractor shall also provide certification as required.
- B. The security system shall be installed and tested to ensure all components are fully compatible as a system and can be integrated with all associated security subsystems, whether the security system is standalone or a part of a complete Information Technology (IT) computer network.
- C. The Contractor or security sub-contractor shall be a licensed security Contractor as required within the state or jurisdiction of where the installation work is being conducted.
- D. Manufacturers Qualifications: The manufacturer shall regularly and presently produce, as one of the manufacturer's principal products, the equipment and material specified for this project, and shall have manufactured the item for at least three years.
- E. Product Qualification:
 - Manufacturer's product shall have been in satisfactory operation, on three installations of similar size and type as this project, for approximately three years.
 - The Government reserves the right to require the Contractor to submit a list of installations where the products have been in operation before approval.
- F. Contractor Qualification:
 - The Contractor or security sub-contractor shall be a licensed security Contractor with a minimum of five (5) years experience installing and servicing systems of similar scope and complexity. The Contractor shall be an authorized regional representative of the Security Management System's (PACS) manufacturer. The Contractor shall provide four (4) current references from clients with systems of similar scope and complexity which became operational in the past three (3) years. At least three (3) of the references shall be utilizing the same system components, in a similar configuration as the proposed system. The references must include a current point of contact, company or agency name, address, telephone number, complete system description, date of completion, and approximate cost of the project. The owner reserves the option to visit the reference

sites, with the site owner's permission and representative, to verify the quality of installation and the references' level of satisfaction with the system. The Contractor shall provide copies of system manufacturer certification for all technicians. The Contractor shall only utilize factory-trained technicians to install, program, and service the PACS. The Contractor shall only utilize factory-trained technicians to install, terminate and service controller/field panels and reader modules. The technicians shall have a minimum of five (5) continuous years of technical experience in electronic security systems. The Contractor shall have a local service facility. The facility shall be located within 60 miles of the project site. The local facility shall include sufficient spare parts inventory to support the service requirements associated with this contract. The facility shall also include appropriate diagnostic equipment to perform diagnostic procedures. The COTR reserves the option of surveying the company's facility to verify the service inventory and presence of a local service organization.

- The Contractor shall provide proof project superintendent with BICSI Certified Commercial Installer Level 1, Level 2, or Technician to provide oversight of the project.
- 3. Cable installer must have on staff a Registered Communication Distribution Designer (RCDD) certified by Building Industry Consulting Service International. The staff member shall provide consistent oversight of the project cabling throughout design, layout, installation, termination and testing.
- G. Service Qualifications: There shall be a permanent service organization maintained or trained by the manufacturer which will render satisfactory service to this installation within four eight hours of receipt of notification that service is needed. Submit name and address of service organizations.

1.4 SUBMITALS

A. Submit below items in accordance with Section 28 05 00, COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY and Master Specification Sections 01 33 23, SHOP DRAWING, PRODUCT DATA, AND SAMPLES, and Section 02 41 00, DEMOLITION.

VA 595-668 AE Works Project No. VLEB-010

- B. Provide certificates of compliance with Section 1.3, Quality Assurance.
- C. Provide a pre-installation and as-built design package in both electronic format and on paper, minimum size 48 x 48 inches (1220 x 1220 millimeters); drawing submittals shall be per the established project schedule.
- D. Shop drawings and as-built packages shall include, but not be limited to:
 - 1. Index Sheet that shall:
 - a. Define each page of the design package to include facility name, building name, floor, and sheet number.
 - b. Provide a list of all security abbreviations and symbols.
 - c. Reference all general notes that are utilized within the design package.
 - d. Specification and scope of work pages for all security systems that are applicable to the design package that will:
 - Outline all general and job specific work required within the design package.
 - Provide a device identification table outlining device Identification (ID) and use for all security systems equipment utilized in the design package.
 - Drawing sheets that will be plotted on the individual floor plans or site plans shall:
 - a. Include a title block as defined above.
 - b. Define the drawings scale in both standard and metric measurements.
 - c. Provide device identification and location.
 - d. Address all signal and power conduit runs and sizes that are associated with the design of the electronic security system and other security elements (e.g., barriers, etc.).
 - e. Identify all pull box and conduit locations, sizes, and fill capacities.
 - f. Address all general and drawing specific notes for a particular drawing sheet.
 - 3. A riser drawing for each applicable security subsystem shall:
 - a. Indicate the sequence of operation.
 - b. Relationship of integrated components on one diagram.

- c. Include the number, size, identification, and maximum lengths of interconnecting wires.
- d. Wire/cable types shall be defined by a wire and cable schedule. The schedule shall utilize a lettering system that will correspond to the wire/cable it represents (example: A = 18 AWG/1 Pair Twisted, Unshielded). This schedule shall also provide the manufacturer's name and part number for the wire/cable being installed.
- 4. A system drawing for each applicable security system shall:
 - a. Identify how all equipment within the system, from main panel to device, shall be laid out and connected.
 - b. Provide full detail of all system components wiring from point-topoint.
 - c. Identify wire types utilized for connection, interconnection with associate security subsystems.
 - d. Show device locations that correspond to the floor plans.
 - e. All general and drawing specific notes shall be included with the system drawings.
- A schedule for all of the applicable security subsystems shall be included. All schedules shall provide the following information:
 a. Device ID.
 - b. Device Location (e.g. site, building, floor, room number, location, and description).
 - c. Mounting type (e.g. flush, wall, surface, etc.).
 - d. Power supply or circuit breaker and power panel number.
- 6. Detail and elevation drawings for all devices that define how they were installed and mounted.
- E. Pre-installation design packages shall be reviewed by the Contractor along with a VA representative to ensure all work has been clearly defined and completed. All reviews shall be conducted in accordance with the project schedule. There shall be four (4) stages to the review process:
 - 1. 35 percent
 - 2. 65 percent
 - 3. 90 percent
 - 4. 100 percent

- F. Provide manufacturer security system product cut-sheets. Submit for approval at least 30 days prior to commencement of formal testing, a Security System Operational Test Plan. Include procedures for operational testing of each component and security subsystem, to include performance of an integrated system test.
- G. Submit manufacture's certification of Underwriters Laboratories, Inc.(UL) listing as specified. Provide all maintenance and operating manuals per the VA General Requirements, Section 01 00 00, GENERAL REQUIREMENTS.

1.5 APPLICABLE PUBLICATIONS

- A. The publications listed below (including amendments, addenda, revisions, supplement, and errata) form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. American National Standards Institute (ANSI): ANSI S3.2-09Method for measuring the Intelligibility of Speech over Communications Systems
- C. Department of Justice American Disability Act (ADA) 28 CFR Part 362010 ADA Standards for Accessible Design
- E. National Fire Protection Association (NFPA): 70-11....National Electrical Code
- F. National Electrical Manufactures Association (NEMA) 250-08 Enclosures for Electrical Equipment (1000 Volts

Maximum)

- G. Underwriters Laboratories, Inc. (UL): 305-08Standard for Panic Hardware 444-08Safety Communications Cables 636-01Standard for Holdup Alarm Units and Systems
- H. Uniform Federal Accessibility Standards (UFAS), 1984

1.6 COORDINATION

- A. Coordinate arrangement, mounting, and support of electronic safety and security equipment:
 - To allow maximum possible headroom unless specific mounting heights that reduce headroom are indicated.

- 2. To provide for ease of disconnecting the equipment with minimum interference to other installations.
- 3. To allow right of way for piping and conduit installed at required slope.
- So connecting raceways, cables, wireways, cable trays, and busways will be clear of obstructions and of the working and access space of other equipment.
- B. Coordinate installation of required supporting devices and set sleeves in cast-in-place concrete, masonry walls, and other structural components as they are constructed.
- C. Coordinate location of access panels and doors for electronic safety and security items that are behind finished surfaces or otherwise concealed.

1.7 MAINTENANCE & SERVICE

- A. General Requirements
 - 1. The Contractor shall provide all services required and equipment necessary to maintain the entire integrated electronic security system in an operational state as specified for a period of one (1) year after formal written acceptance of the system. The Contractor shall provide all necessary material required for performing scheduled adjustments or other non-scheduled work. Impacts on facility operations shall be minimized when performing scheduled adjustments or other non-scheduled work. See also General Project Requirements.
- B. Description of Work
 - The adjustment and repair of the security system includes all software updates, panel firmware, and the following new items computers equipment, communications transmission equipment and data transmission media (DTM), local processors, security system sensors, facility interface, and signal transmission equipment.
- C. Personnel
 - Service personnel shall be certified in the maintenance and repair of the selected type of equipment and qualified to accomplish all work promptly and satisfactorily. The COTR shall be advised in writing of the name of the designated service representative, and of any change in personnel. The COTR shall be provided copies of

system manufacturer certification for the designated service representative.

- D. Schedule of Work
 - The work shall be performed during regular working ours, Monday through Friday, excluding federal holidays. These inspections shall include:
 - a. The Contractor shall perform two (2) minor inspections at six (6) month intervals or more if required by the manufacturer, and two
 (2) major inspections offset equally between the minor inspections to effect quarterly inspection of alternating magnitude.
 - Minor Inspections shall include visual checks and operational tests of all console equipment, peripheral equipment, local processors, sensors, electrical and mechanical controls, and adjustments on printers.
 - 2) Major Inspections shall include all work described for Minor Inspections and the following: clean all system equipment and local processors including interior and exterior surfaces; perform diagnostics on all equipment; operational tests of the CPU, switcher, peripheral equipment, check and calibrate each sensor; run all system software diagnostics and correct all problems; and resolve any previous outstanding problems.
- E. Emergency Service
 - The owner shall initiate service calls whenever the system is not functioning properly. The Contractor shall provide the Owner with an emergency service center telephone number. The emergency service center shall be staffed 24 hours a day 365 days a year. The Owner shall have sole authority for determining catastrophic and noncatastrophic system failures within parameters stated in General Project Requirements.
 - a. For catastrophic system failures, the Contractor shall provide same day four (4) hour service response with a defect correction time not to exceed eight (8) hours from [notification] [arrival on site]. Catastrophic system failures are defined as any system failure that the Owner determines will place the facility(s) at increased risk.

- b. For non-catastrophic failures, the Contractor within eight (8) hours with a defect correction time not to exceed 24 hours from notification.
- F. Operation
 - Performance of scheduled adjustments and repair shall verify operation of the system as demonstrated by the applicable portions of the performance verification test.
- G. Records & Logs
 - The Contractor shall maintain records and logs of each task and organize cumulative records for each component and for the complete system chronologically. A continuous log shall be submitted for all devices. The log shall contain all initial settings, calibration, repair, and programming data. Complete logs shall be maintained and available for inspection on site, demonstrating planned and systematic adjustments and repairs have been accomplished for the system.
- H. Work Request
 - 1. The Contractor shall separately record each service call request, as received. The record shall include the serial number identifying the component involved, its location, date and time the call was received, specific nature of trouble, names of service personnel assigned to the task, instructions describing the action taken, the amount and nature of the materials used, and the date and time of commencement and completion. The Contractor shall deliver a record of the work performed within five (5) working days after the work was completed.
- I. System Modifications
 - The Contractor shall make any recommendations for system modification in writing to the COTR. No system modifications, including operating parameters and control settings, shall be made without prior written approval from the COTR. Any modifications made to the system shall be incorporated into the operation and maintenance manuals and other documentation affected.
- J. Software
 - The Contractor shall provide all software updates when approved by the Owner from the manufacturer during the installation and 12-month warranty period and verify operation of the system. These updates

shall be accomplished in a timely manner, fully coordinated with the system operators, and incorporated into the operations and maintenance manuals and software documentation. There shall be at least one (1) scheduled update near the end of the first year's warranty period, at which time the Contractor shall install and validate the latest released version of the Manufacturer's software. All software changes shall be recorded in a log maintained in the unit control room. An electronic copy of the software update shall be maintained within the log. At a minimum, the contractor shall provide a description of the modification, when the modification occurred, and name and contact information of the individual performing the modification. The log shall be maintained in a white 3 ring binder and the cover marked "SOFTWARE CHANGE LOG".

1.8 WARRANTY OF CONSTRUCTION.

- A. Warrant EPPS System work subject to the Article "Warranty of Construction" of FAR clause 52.246-21.
- B. Demonstration and training shall be performed prior to system acceptance.

1.9 GENERAL REQUIREMENTS

- A. For general requirements that are common to more than one section in Division 28 refer to Section 28 05 00, COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY.
- B. General requirements applicable to this section include:
 - 1. Performance Requirements,
 - 2. Delivery, Handling and Storage,
 - 3. Project Conditions,
 - 4. Equipment and Materials,
 - 5. Electrical Power,
 - 6. Lightning, Power Surge Suppression, and Grounding,
 - 7. Electronic Components,
 - 8. Substitute Materials and Equipment, and
 - 9. Like Items.

PART 2 - PRODUCTS

2.1 EQUIPMENT AND MATERIALS

A. General:

- All equipment shall be rated for continuous operation. Environmental conditions (i.e. temperature, humidity, wind, and seismic activity) shall be taken under consideration at each facility and site location prior to installation of the equipment.
- 2. All equipment shall operate on a 120 or 240 volts alternating current (VAC); 50 hertz (Hz) or 60 Hz Alternating Current (AC) power system unless documented otherwise in subsequent sections listed within this spec. All equipment shall have a battery back-up source of power that will provide 12 hours (hrs.) of run time in the event of a loss of primary power to the security systems until a backup generator comes on-line.
- 3. The EPPS systems shall be designed, installed, and programmed in a manner that will allow for easy of operation, programming, servicing, maintenance, testing, and upgrading of the system.
- 4. All EPPS components located in designated "HAZARDOUS ENVIRONMENT" areas where fire or explosion could occur due to the presence of natural gases or vapors, flammable liquids, combustible residue, or ignitable fibers or debris, shall be rated Class II, Division I, Group F, and installed in accordance with National Fire Protection Association (NFPA) 70, National Electrical Code Chapter 5.
- 5. The Contractor shall provide the Contracting Officer with written verification, that the type of wire/cable being provided is recommended and approved by the OEM. Cabling shall meet the interconnecting wiring requirements of NFPA 70, National Electrical Code. The Contractor is responsible for providing the correct protection cable duct and/or conduit and wiring.
- 6. When interfacing with other communications or security subsystems the Contractor shall utilize interfacing methods that are approved by the Contracting Officer. At a minimum, an acceptable interfacing method requires not only a physical and mechanical connection; but also a matching of signal, voltage, and processing levels with regard to signal quality and impedance. The interface point must adhere to all standards described herein.
- Systems shall be scaleable, not vendor specific, and allow expansion as required.
- 8. Wireless systems shall use ultrasonic, infrared and radio frequency waves to link distributed transmitters and receivers. Specific

characteristics of particular facility will determine best application. Contractor is responsible for determining best system using prediction program to determine where readable signals can be obtained and identify "dead spots".

- 9. All hardwired alarms, switches, and junction boxes shall be protected from tampering and include line supervision.
- 10. The installation and placement of intercom units and emergency-call boxes in strategic locations shall also require that signage be posted near these devices. The signage, in accordance with Section 10 14 00, SIGNAGE shall communicate the location of the device and its unique identification number, and brief instruction on how to access/use the device. The signage may appear on the device, on a pole or wall near the device location and shall be printed in a manner that is easily read during daylight and hours of darkness.

2.2 EQUIPMENT ITEMS

- A. All systems shall be designed to provide continuous electrical supervision of the complete and entire system.
- B. Noise filters and surge protectors shall be provided for all intercommunications equipment to ensure protection from primary AC power surges and to ensure noise interference is not induced into low voltage data circuits.
- C. All alarm and initiating and signaling circuits shall be supervised for open circuits, short circuits, and system grounds. Main and Uninterrupted Power Supply (UPS) power circuits shall be supervised for any change in operating conditions (e.g. low battery, primary to back up battery, and UPS online). When an open, short or ground occurs in any system circuit, an audible and visual fault alarm signal shall be initiated at the master control station and all remote locations.
- D. Control Unit: Shall consist of the components to constantly monitor and verify alarm activation; identify zone of activation and location of activation.
- E. Audible Signal Device for Duress-Panic: Provides alarm activation and audible sound for alarms, as well as supervisory and trouble signals that shall be distinctive.
- F. Assessment: This capability shall consist of electronic devices required to visually and audibly verify the validity of alarms.

Assessment also includes providing indication of tampering, fail-safe, low battery, and power losses.

- G. Alarm Monitoring and Reporting: Shall annunciate information to at least two (2) separate locations. The alarms shall maintain the capability to respond with local and remote visible and audible signals upon activation of an alarm. The alarms shall have the capability of operating in a silent mode, alerting personnel monitoring the system that the device has been activated.
- H. The intercom and emergency call-box systems shall be provided with normally acceptable speech intelligibility, defined as a score of at least 70% in accordance with ANSI S3.2
- I. Master Stations for Emergency Call Box and Security Intercoms:
 - All master stations shall have a "call-in" switch to provide an audible and visual indication of incoming calls from remote stations. Individual visual indication shall identify the calling station and status, and remain actuated until a call is answered by a master station.
 - Master stations shall be equipped with a handset with a switch for private conversations.
 - Intercom master stations shall also have an all-call feature, and have the ability to receive video from a video intercom unit.
 - Master stations shall have the capability to selectively communicate with any remote station by actuating assigned station number on a keypad or select button for that station.
 - 5. Master stations may be standalone or can be integrated with the Physical Access Control System and Database Management. The Contractor will be responsible for the integration of the Master station with the Physical Access Control System and Database Management in accordance with OEM instructions and Section 28 13 16, PHYSICAL ACCESS CONTROL SYSTEM AND DATABASE MANAGEMENT.
- J. Duress-Panic Alarms:
 - Housing shall be a rugged corrosion-resistant housing of stainless steel or Acrylonitrile Butadiene Styrene (ABS) molded plastic or similar material that is weather and dust proof.
 - Actuating device shall include a minimum of a plunger button whose head is recessed from the face/front edge of the housing and be designed to avoid accidental activation using switch guard or

multiple buttons (i.e., requires pressing two (2) buttons simultaneously)

- Wireless stationary devices will meet the same specifications as Personal Duress/Panic Alarms.
- 4. Alarm switch/button shall lock-in upon activation until manually reset with key or manufacture provided device.
- 5. The switch shall be a positive-acting, double-pole, and double-throw switch.
- Duress/Panic alarms shall meet UL 305 Standard for Panic Alarms. To reduce the possibility of false alarms and ensure installation functionality UL 636 Standard for Holdup Alarms standards shall be met.
- 7. Alarms used for concealed application requires silent alarm notification to a monitoring station. They shall annunciate at the Physical Access Control System and Database Management, monitored by a central station or direct connect to local police, depending on local ordinance requirements.
- 8. Shall be capable of being mounted for hand or foot use in a manner that is unable to be viewed by the public. Larger systems use a computer that intercepts and processes alarms and displays them on a monitor. The central computer can make an announcement over facility hand held radios, pagers or telephones, or at the Physical Access Control System and Database Management so that the other security personnel can be immediately notified. These systems shall be hardwired.
- 9. Components:
 - a. Transmitter
 - b. Locator subsystem
 - c. Receiver
 - d. Software
- 10. Wiring will be four (4) conductor #18 American Wire Gauge (AWG).
- 11. Duress-Panic Alarm Technical Characteristics:

Temperature Range	0° to 110°F (-17.8°C to 43.3°C)
Nominal Voltage	12 V DC @ 6 mA
Current	Max 8 mA
Operational Voltage	7 V DC to 15 V DC
Operational life	Rated for 0,000 activations

Battery Activations	500
Actuator	Dual button plunger with activation lock
LED	Bi-color - on and activated

- K. Personal Duress-Panic Alarm:
 - These systems are wireless only and can be worn as a belt clip, with a neck lanyard or with a wrist band. These alarms can be either active (manually operated) or passive mode (if detached from body, or body position changes to a prone position) alarm activates. They also provide identification of individual and location.
 - 2. Components:
 - a. Transmitter
 - b. Repeaters (for wireless and increase distance)
 - c. Locator subsystem
 - d. Receiver
 - e. Software
 - 3. Wireless transmitters shall send a periodic check in signal to the main computer or processor. If the signal is not received according to a definable time window, a supervisory alert will be generated. Wireless devices shall report a low battery condition well in advance to the failure of the battery.
 - 4. Shall consist of a compact lightweight transmitter enclosed in a durable fire-retardant ABS plastic case that can be easily worn.
 - 5. Transmitters may use ultrasonic, radio frequency (RF), or infrared (IR) to transmit signals. Each has advantages and disadvantages. Selection of system shall be dependent on defined usage and range of communications required.
 - Sensors shall be adjustable to activate automatically when mounted on a belt and the user is in a horizontal position for longer than one (1) to fifteen (15) minutes. Adjustment capability shall not be accessible to personnel wearing the panic alarm device.
 - Radio frequencies for transmitter will comply with Federal Communication Commission (FCC) regulations.
 - Radio frequency transmitters will use frequency modulation signal hopping.
 - 9. Personal Duress-Panic Alarm Technical Characteristics:

Temperature Range	0° to 110°F (-17.8°C to 43.3°C)
Nominal Voltage	12 V DC @ 6 mA
Current	Max 8 mA
Operational Voltage	7 V DC to 15 V DC
Battery Life	Regular battery 60 hour duration or Nickel-Metal Hydride (NiMH) rechargeable 12 hrs. 20 hr. per charge
Battery Lifespan	500 activations
Actuator	Plunger with activation lock
LED	Bi-color - on and activated
Passive Activation	Adjustable
	Prone position 1-15 minutes

- L. Emergency Call Box Enclosures:
 - Consist of remote call stations, master station and a telephone Private Branch Exchange (PBX). They shall have two-way voice communications. Calls are directed to a pre-programmed extension. These systems are effective for a multi-facility environment or standalone facility with a parking structure or large parking lot. In addition, they may contain built-in CCTV system capabilities or can be integrated to work with standalone CCTV systems.
 - 2. Emergency Call Boxes will be housed in an National Electric Manufactures Association (NEMA) 250 Enclosures for Electrical Equipment compliant enclosures. Call-box enclosure shall include blue light/or similar strobe mounted behind or on top of the call box: A blue light or color lit strobe shall be activated (e.g. to inform others visually that assistance is required) when the emergency switch/button/phone is pressed/taken off-hook and shall flash for the duration of a call.
 - 3. The faceplate shall be constantly lit by ultra bright LEDs.
 - Enclosure and bracket system shall be designed to resist extreme weather conditions and constructed of weather resistant stainless steel.
 - 5. Emergency Call Box Enclosure Technical Characteristics:

Construction	Minimum 11 gauge stainless steel
	Impact resistant polycarbonate window for lights
Mounting	Wall, pole or kiosk
Power	120 VAC: 44 Watts Maximum or 24 VDC: 18 Watts Maximum
Lighting	Strobe: 1.5 million candlepower
	70 flashes per minute. Blue Light: 7 watt high efficiency 10,000 hour compact fluorescent.
	Faceplate Light: Ultra bright LEDs 100,000 hour lifetime.

M. Emergency Call Boxes:

- Emergency Call Box shall be indoor/outdoor-rated, Uniform Federal Accessibility Standards (UFAS) and Americans with Disability Act (ADA) compliant, and provide hands-free usage. Phone shall also include cast metal raised letter and Braille signage for UFAS/ADA compliance.
- Emergency Call Box shall include built-in auto-dialer that dials two
 (2) numbers: if first number doesn't answer, automatically dials a second number.
- 3. The System shall include auto-answer to allow for monitoring and initiating calls with an Emergency Phone.
- 4. Emergency Call Box shall use flush mount enclosure (FME,) shall include two (2) piece housing construction with full front lip to allow tight gasket seal between the speakerphone and enclosure. Screws shall be tamper free.
- 5. When activated the Emergency Call Box shall automatically place a call to the pre-programmed number(s). If the number is busy it should automatically call a second number.
- 6. The electronics enclosure shall be capable of using interchangeable faceplates: a single-button faceplate, a two-button faceplate, or a two-button faceplate with keypad.
- 7. The system shall use a "plain old telephone service" (POTS) line or analog PBX and shall be capable of integration with existing CCTV and Physical Access Control System and Database Management via software at the SMS head-end.
- 8. Depending on distance and existing phone line capabilities, RF or use of wireless phone connections may be considered. The Contractor

and Contracting Officer shall select appropriate system based on facility telecommunication system capabilities and desired system requirements.

- 9. Monitoring/Diagnostic capability at control and monitoring stations shall include the capability to automatically poll each Emergency Call Box, report incoming calls, identify location, and keep permanent records of all events with the use of a Windows based compatible software package and shall also meet the requirements of the Security Management System (SMS).
- 10. If speaker/handset stations are used, lifting the handset shall automatically cut out the loudspeaker in the station and all conversation shall be carried through the handset. Where noise does not exceed 55 dB, hands-free operations may be performed from distances up to 20 feet (ft.) (6.096 m). In higher noise environments only a talk-listen switch shall be utilized.
- 11. If system is a hardware type master station it shall be capable of:
 - a. LED display of identification code for emergency phones;
 - b. Indicate whether call was initiated by pushing button or by an auxiliary device;
 - c. Include RJ11 ports for connection to telephone line and standard telephone; and
 - d. Powered by 9 VDC, 500mA power supply that connects to 120 volt alternating current (VAC).
- 12. System shall include auto-answer to allow security to monitor and initiate calls with Emergency Call Box.
- 13. Contractor shall provide the capability to connect up to 8 phones on one (1) phone line while retaining ability to call each phone individually and without affecting performance. System shall also be able to create a closed system without need for any phone lines.
- 14. The System shall include the capability to record a message identifying the location of the caller.
- 15. It shall remotely be able to adjust speakerphone & microphone sensitivity.
- 16. Emergency Call Box Technical Characteristics:

Construction	12 gauge (2.8mm) #4 brushed stainless steel face plate
Operating Temperature	-4°F to +149°F (-20°C to +65°C)

Communication	2-way hands-free communication
Digital Capacity	Up to 18 digits, including pauses, for each of two (2) phone numbers
Dialing Speed	Minimum 10 tones per second
Power Source	Phone line powered (requires 20mA at 24 v off-hook)
Connection	Parallel tip and ring connected to RJ11 connector for quick installation
Memory	Erasable Programmable Read-only Memory (EPROM)
Circuit Protection	Lightening suppressed and full wave polarity guarded
Programming	Non-volatile EEPROM programming can be done from any telephone.
	No battery back-up needed
Wiring Requirements	1 twisted-shielded pair (gauge depends on distance)
Camera	Option for pin-hole color camera or
	Integration with existing CCTV
LED	Call confirmation
Activation	Sound or 1.5 in. minimum piezoelectric button
Labeling	"Push for Help" or "Emergency"

N. Strobes and Beacon:

- Used for visual recognition of device activation once an emergency phone or intercom is activated. They provide unit identification and quick location of the caller.
- 2. Strobes and Beacons Technical Characteristics:

STROBE	
Input Voltage	10.5 - 28 VDC or VAC
Input Current	Average 1 amp
Input Current	Peak 3 amp
Intensity	1,000,000 candlepower
Control Circuit Output	2 mA max
Flash Rate	60 - 75 times per minute
BEACON	
Input Voltage	10.5 - 28 VAC or VDC

Input Current

@24.0 : 427 MA

- O. Security Intercoms:
 - Shall be utilized to assist in controlling entry to a site, parking lot, facility, main and alternate entries, loading dock areas. They are also used for emergencies. These systems shall have both two-way voice communications and video (CCTV) capabilities built in. Intercoms may also have key-pads that allow for specific call connections or may provide a directory. These systems consist of both remote and master stations. Intercom shall be externally powered for distances over 1,500 feet (457.2 meters) (m) from the master control unit.
 - The Intercom shall be programmable from a remote location and have a three number dialing capability per activation button, or include a keypad for dialing authorized and published extensions.
 - The Intercom shall have an internally mounted electronics enclosure and auxiliary power.
 - The Contractor shall be responsible for integration of intercom with auxiliary output to electronic or magnetic door releases, as well as CCTV, as required.

[
Construction	12 gauge (2.8mm) #4 brushed stainless steel face plate
Operating Temperature	-4°F to +149°F (-20°C to +65°C)
Communication	2-way hands-free communication
Digital Capacity	Up to 18 digits, including pauses, for each of two (2) phone numbers
Dialing Speed	Minimum 10 tones per second
Power Source	Phone line powered or PBX
Connection	Parallel tip and ring connected to RJ11 connector for quick installation
Memory	EPROM
Circuit Protection	Lightening suppressed and full wave polarity guarded
Programming	Non-volatile EEPROM programming can be done from any telephone.
	No battery back-up needed
Wiring Requirements	1 twisted-shielded pair (gauge depends on distance)

5. Security Intercom Technical Characteristics:

Camera	Option for pin-hole color camera or
	Integration with existing CCTV
LED	Call confirmation
Activation	1.5 in. (38.1mm) minimum piezoelectric button
Labeling	"Information" or "Help"

2.3 INSTALLATION KIT

- A. General: A kit shall be provided that, at a minimum, includes all connectors and terminals, labeling systems, barrier strips, wiring blocks or wire wrap terminals, heat shrink tubing, cable ties, solder, hangers, clamps, bolts, etc., required to accomplish a neat and secure installation. Unfinished or unlabeled wire connections will not be allowed. Contractor shall turn over to the Contracting Officer all unused and partially opened installation kit boxes, coaxial cable reels, conduit, cable tray, and/or cable duct bundles, wire rolls, and physical installation hardware. This is an acceptable alternate to the individual spare equipment requirement as long as the minimum spare items are provided in this count. The following installation sub-kits are required as a minimum:
- B. System Grounding:
 - The grounding kit shall include all cable in accordance with UL 444 Communications Cables, and installation hardware required. All grounding will be according to the NEC.
 - 2. This includes, but is not limited to:
 - a. Coaxial Cable Shields
 - b. Control Cable Shields
 - c. Data Cable Shields
 - d. Conduits
 - e. Cable Duct
 - f. Cable Trays
 - g. Power Panels
 - h. Connector Panels
- C. Coaxial Cable: The coaxial cable kit shall include all coaxial connectors, cable tying straps, heat shrink tabbing, hangers, clamps, etc., required to accomplish a neat and secure installation.

- D. Wire And Cable: The wire and cable kit shall include all connectors and terminals, barrier straps, wiring blocks, wire wrap strips, heat shrink tubing, tie wraps, solder, hangers, clamps, labels etc., required to accomplish a neat and orderly installation.
- E. Equipment Interface: The equipment interface kit shall include any item or quantity of equipment, cable, mounting hardware and materials needed to interface Systems and Subsystems according to the OEM requirements and this specification.
- F. Labels: The labeling kit shall include any item or quantity of labels, tools, stencils, and materials needed to label each subsystem according to the OEM requirements, as-installed drawings, and this specification.
- G. Documentation: The documentation kit shall include any item or quantity of items, computer discs, as installed drawings, equipment, maintenance, and operation manuals, and OEM materials needed to correctly provide the system documentation as required by this document and explained herein.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. System installation shall be installed in accordance with NFPA 731 Standards for the Installation of Electric Premises Security Systems and appropriate installation manual for each type of subsystem designed, engineered, and installed.
- B. The location and type of duress, intercom, or call-box to be installed will be in accordance with physical security requirements unique to each VA facility.
- C. For EPPS systems (i.e. use current panic/duress and emergency call boxes) that can operate through existing VA facility telephone system lines, software programming and hardware, refer to Section 27 51 23, INTERCOMMUNICATIONS AND PROGRAM SYSTEMS to integrate additional EPPS equipment.
- D. Concealed duress/panic devices shall be mounted in such a way that their location is only known by the person having knowledge of the activating device location. No wiring shall be exposed to identify the location of the activation device.

- E. Floor mounted duress alarms shall be attached to millwork on floor. When mounted under millwork, wiring shall be routed in millwork to conduit system via flexible conduit.
- F. Hard-wired switches shall be wired to individual alarm points within the Advanced Processing Controller (apC).
- G. Wall and post mounted stations shall be mounted to meet UFAS/ADA requirements and use tamper proof bolts and screws. Testing will be finished before installation of fasteners.
- H. Cleaning: Subsequent to installation, clean each system component of dust, dirt, grease, or oil incurred during installation in accordance to manufacture instructions.
- Provisions shall be made for systems in high-noise areas or areas with electrical interference environments.
- J. Adjustment/Alignment/Synchronization: Contractor shall prepare for system activation by following manufacturer's recommended procedures for adjustment, alignment, or programming. Prepare each component in accordance with appropriate provisions of the component's installation, operations, and maintenance instructions.

3.2 WIRELINE DATA TRANSMISSION

- A. Installation: The Contractor shall install all system components including Owner furnished equipment, and appurtenances in accordance with the manufacturer's instructions, ANSI C2 and as shown, and shall furnish all necessary connectors, terminators, interconnections, services, and adjustments required for a complete and operable data transmission system.
- B. Identification and Labeling: The Contractor shall supply permanent identification labels for each cable at each end that will appear on the as-built drawings. The labeling format shall be identified and a complete record shall be provided to the Owner with the final documentation. Each cable shall be identified by type or signal being carried and termination points. The labels shall be printed on letter size label sheets that are self laminated vinyl that can be printed from a computer data base or spread sheet. The labels shall be E-Z code WES12112 or equivalent.
- C. The Contractor shall provide all personnel, equipment, instrumentation, and supplies necessary to perform all testing.

- D. Transient Voltage Surge Suppressors (TVSS): The Contractor shall mount TVSS within 3 m (118 in) of equipment to be protected inside terminal cabinets or suitable NEMA 1 enclosures. Terminate off-premise conductors on input side of device. Connect the output side of the device to the equipment to be protected. Connect ground lug to a low impedance earth ground (less than 10 ohms) via Number 12 AWG insulated, stranded copper conductor.
- E. Contractor's Field Test: The Contractor shall verify the complete operation of the data transmission system during the Contractor's Field Testing. Field test shall include a bit error rate test. The Contractor shall perform the test by sending a minimum of 1,000,000 bits of data on each DTM circuit and measuring the bit error rate. The bit error rate shall not be greater than one (1) bit out of each 100,000 bits sent for each dial-up DTM circuit, and one (1) bit out of 1,000,000 bits sent for each leased or private DTM circuit. The Contractor shall submit a report containing results of the field test.
- F. Acceptance Test and Endurance Test: The wire line data transmission system shall be tested as a part of the completed IDS and EECS during the Acceptance test and Endurance Test as specified.
- G. Identification and Labeling: The Contractor shall supply identification tags or labels for each cable. Cable shall be labeled at both end points and at intermediate hand holes, manholes, and junction boxes. The labeling format shall be identified and a complete record shall be provided to the Owner with the final documentation. Each cable shall be identified with type of signal being carried and termination points.

3.3 WIRING

- A. Wiring Method: Install cables concealed in accessible ceilings, walls, and floors where possible.
- B. Wiring within Enclosures: Bundle, lace, and train conductors to terminal points with no excess and without exceeding manufacturer's limitations on bending radii. Provide and use lacing bars and distribution spools.
- C. Splices, Taps, and Terminations: For power and control wiring, use numbered terminal strips in junction, pull, and outlet boxes; terminal cabinets; and equipment enclosures. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening

values. If manufacturer's torque values are not indicated, use those specified in UL 486A and UL 486B.

D. Grounding: Provide independent-signal circuit grounding recommended in writing by manufacturer.

3.4 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect field-assembled components and equipment installation and supervise pretesting, testing, and adjusting of video surveillance equipment.
- B. Inspection: Verify that units and controls are properly installed, connected, and labeled, and that interconnecting wires and terminals are identified.
- C. Test Schedule: Schedule tests after pretesting has been successfully completed and system has been in normal functional operation for at least 14 days. Provide a minimum of 10 days' notice of test schedule.
- D. Operational Tests: Perform operational system tests to verify that system complies with Specifications. Include all modes of system operation. Test equipment for proper operation in all functional modes.
- E. Remove and replace malfunctioning items and retest as specified above.
- F. Record test results for each piece of equipment.
- G. Retest: Correct deficiencies identified by tests and observations and retest until specified requirements are met.

3.5 ADJUSTING

- A. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions and to optimize performance of the installed equipment. Tasks shall include, but are not limited to, the following:
 - 1. Check cable connections.
 - 2. Check proper operation of detectors.
 - Recommend changes to walk trough detectors, X-ray machines, and associated equipment to improve Owner' utilization of security access detection system.
 - 4. Provide a written report of adjustments and recommendations.

3.6 CLEANING

A. Clean installed items using methods and materials recommended in writing by manufacturer.

3.7 DEMONSTRATION

- A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain electronic personal protection system (EPSS) equipment.
 - 1. Train Owner's maintenance personnel on procedures and schedules for troubleshooting, servicing, and maintaining equipment.
 - Demonstrate methods of determining optimum alignment and adjustment of components and settings for system controls.
 - 3. Review equipment list and data in maintenance manuals.
 - 4. Conduct a minimum of [four] < Insert number> hours' training.

3.8 COMMISIONING

- A. Provide commissioning documentation in accordance with the requirements of Section 28 08 00 - COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS for all inspection, start up, and contractor testing required above and required by the System Readiness Checklist provided by the Commissioning Agent.
- B. Components provided under this section of the specification will be tested as part of a larger system. Refer to Section 28 08 00 -COMMISSIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS and related sections for contractor responsibilities for system commissioning.

3.9 TESTS AND TRAINING

A. All testing and training shall be compliant with the VA General Requirements, Section 01 00 00, GENERAL REQUIREMENTS and Section 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY.

----END----

SECTION 28 31 00 FIRE DETECTION AND ALARM

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section of the specifications includes the furnishing, installation, and connection of the fire alarm and mass notification equipment to form a complete coordinated system ready for operation, as related to the work of this project. It shall include, but not be limited to, alarm initiating devices, alarm notification appliances, control units, fire safety control devices, annunciators, power supplies, and wiring as shown on the drawings and specified. The fire alarm system shall not be combined with other systems such as building automation, energy management, security, etc.
- B. Fire alarm and mass notification systems shall comply with requirements of the most recent VA FIRE PROTECTION DESIGN MANUAL and NFPA 72 unless variations to NFPA 72 are specifically identified within these contract documents by the following notation: "variation". The design, system layout, document submittal preparation, and supervision of installation and testing shall be provided by a technician that is certified NICET level III or a registered fire protection engineer. The NICET certified technician shall be on site for the supervision and testing of the system. Factory engineers from the equipment manufacturer, thoroughly familiar and knowledgeable with all equipment utilized, shall provide additional technical support at the site as required by the Resident Engineer, COTR, COR, or their authorized representative(s). Installers shall have a minimum of 2 years experience installing fire alarm systems.
- C. Fire alarm signals:

1. Fire alarm system signals and programming shall match existing.

- D. Alarm signals (by device), supervisory signals (by device) and system trouble signals (by device not reporting) shall be distinctly transmitted to the main fire alarm system control unit.
- E. The main fire alarm control unit shall automatically transmit alarm signals to a listed central station using a digital alarm communicator transmitter in accordance with NFPA 72.

1.2 SCOPE

- A. Modification of the existing fully addressable fire alarm system and mass notification system shall be designed and installed in accordance with the specifications and drawings. Device location and wiring runs shown on the drawings are for reference only. Actual locations shall be in accordance with NFPA 72 and this specification. Contractor shall fully coordinate device locations during shop drawing development.
- B. All existing fire alarm conduit not reused shall be removed.
- C. Existing fire alarm bells, chimes, door holders, 120VAC duct smoke detectors, valve tamper switches and waterflow/pressure switches may be reused only as specifically indicated on the drawings and provided the equipment:
 - 1. Meets this specification section
 - 2. Is UL listed or FM approved
 - 3. Is compatible with new equipment being installed
 - 4. Is verified as operable through contractor testing and inspection
 - 5. Is warranted as new by the contractor.
- D. Existing 120 VAC duct smoke detectors, waterflow/pressure switches, and valve tamper switches reused by the Contractor shall be equipped with an addressable interface device compatible with the new equipment being installed.
- E. Existing reused equipment shall be covered as new equipment under the Warranty specified herein.
- F. Basic Performance:
 - Alarm and trouble signals from each building fire alarm control panel shall be digitally encoded by UL listed electronic devices onto a multiplexed communication system.
 - Response time between alarm initiation (contact closure) and recording at the main fire alarm control unit (appearance on alphanumeric read out) shall not exceed 5 seconds.
 - 3. The signaling line circuits (SLC) between building fire alarm control units shall be wired Style 7 in accordance with NFPA 72. Isolation shall be provided so that no more than one building can be lost due to a short circuit fault.

- 4. Initiating device circuits (IDC) shall be wired Style C in accordance with NFPA 72.
- 5. Signaling line circuits (SLC) within buildings shall be wired Style 4 in accordance with NFPA 72. Individual signaling line circuits shall be limited to covering 22,500 square feet (2,090 square meters) of floor space or 3 floors whichever is less.
- 6. Notification appliance circuits (NAC) shall be wired Style Y in accordance with NFPA 72.

1.3 RELATED WORK

- A. Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES. Requirements for procedures for submittals.
- B. Section 07 84 00 FIRESTOPPING. Requirements for fire proofing wall penetrations.
- C. Section 08 71 00 DOOR HARDWARE. For combination Closer-Holders.
- D. Section 21 13 13 WET-PIPE SPRINKLER SYSTEMS. Requirements for sprinkler systems.
- E. Section 28 05 00 COMMON WORK RESULTS FOR ELECTRONIC SAFETY AND SECURITY. Requirements for general requirements that are common to more than one section in Division 28.
- F. Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for conductors and cables.
- G. Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY. Requirements for grounding of equipment.
- H. Section 28 05 28.33 CONDUITS AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for infrastructure.
- I. Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY. Requirements for conductors and cables.
- J. Section 28 08 00, COMMISIONING OF ELECTRONIC SAFETY AND SECURITY SYSTEMS. Requirements for commissioning - systems readiness checklists, and training.
- K. Section 28 13 00, PHYSICAL ACCESS CONTROL SYSTEMS (PACS). Requirements for integration with physical access control system.

1.4 SUBMITTALS

A. General: Submit 5 copies in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, and Section 26 05 11, REQUIREMENTS FOR ELECTRICAL INSTALLATIONS. All submittal documents (including drawings) shall be submitted in searchable PDF format; scanned or

digitally "flattened" submittal documents will be returned without review. AutoCAD files may also be requested.

- B. Drawings:
 - 1. Prepare drawings using the current version of AutoCAD and include all contractors information. Layering shall be by VA criteria as provided by the Contracting Officer's Technical Representative (COTR). The contractor shall be responsible for verifying all critical dimensions shown on the drawings provided by VA and Engineer. The designer's NICET seal shall be affixed to each shop drawing sheet.
 - 2. Floor plans: Provide locations of all devices (with device number at each addressable device corresponding to control unit programming), appliances, panels, equipment, junction/terminal cabinets/boxes, risers, electrical power connections, individual circuits and raceway routing, system zoning; number, size, and type of raceways and conductors in each raceway; conduit fill calculations with cross section area percent fill for each type and size of conductor and raceway. Only those devices connected and incorporated into the final system shall be on these floor plans. Do not show any removed devices on the floor plans. Show all interfaces for all fire safety functions.
 - 3. Riser diagrams: Provide, for the circuits impacted by the renovation, the number, size and type of riser raceways and conductors in each riser raceway and number of each type device per floor and zone. Show door holder interface, elevator control interface, HVAC shutdown interface, fire extinguishing system interface, and all other fire safety interfaces. Show wiring Styles on the riser diagram for all circuits. Provide diagrams both on a per building and campus wide basis.
 - 4. Detailed wiring diagrams: Provide for control panels, modules, power supplies, electrical power connections, auxiliary relays and annunciators showing termination identifications, size and type conductors, circuit boards, LED lamps, indicators, adjustable controls, switches, ribbon connectors, wiring harnesses, terminal strips and connectors, spare zones/circuits. Diagrams shall be drawn to a scale sufficient to show spatial relationships between components, enclosures and equipment configuration.

- 5. Two weeks prior to final inspection, the Contractor shall deliver to the COTR 3 sets of as-built drawings and one set of the as-built drawing computer files in AutoCAD format. As-built drawings (floor plans) shall show all new and/or existing conduit used for the fire alarm system.
- C. Manuals:
 - Submit simultaneously with the shop drawings, companion copies of complete maintenance and operating manuals including technical data sheets for all items used in the system, power requirements, device wiring diagrams, dimensions, and information for ordering replacement parts.
 - a. Wiring diagrams shall have their terminals identified to facilitate installation, operation, expansion and maintenance.
 - b. Wiring diagrams shall indicate internal wiring for each item of equipment and the interconnections between the items of equipment.
 - c. Include complete listing of all software used and installation and operation instructions including the input/output matrix chart.
 - d. Provide a clear and concise description of operation that gives, in detail, the information required to properly operate, inspect, test and maintain the equipment and system. Provide all manufacturer's installation limitations including but not limited to circuit length limitations.
 - e. Complete listing of all digitized voice messages.
 - f. Provide standby battery calculations under normal operating and alarm modes. Battery calculations shall include the magnets for holding the doors open for one minute.
 - g. Include information indicating who will provide emergency service and perform post contract maintenance.
 - h. Provide a replacement parts list with current prices. Include a list of recommended spare parts, tools, and instruments for testing and maintenance purposes.
 - i. A computerized preventive maintenance schedule for all equipment. The schedule shall be provided on disk in a computer format acceptable to the VAMC and shall describe the protocol for preventive maintenance of all equipment. The schedule shall

include the required times for systematic examination, adjustment and cleaning of all equipment. A print out of the schedule shall also be provided in the manual. Provide the disk in a pocket within the manual.

- j. Furnish manuals in 3 ring loose-leaf binder or manufacturer's standard binder.
- k. A print out for all devices proposed on each signaling line circuit with spare capacity indicated.
- 2. Two weeks prior to final inspection, deliver 4 copies of the final updated maintenance and operating manual to the COTR.
 - a. The manual shall be updated to include any information necessitated by the maintenance and operating manual approval.
 - b. Complete "As installed" wiring and schematic diagrams shall be included that shows all items of equipment and their interconnecting wiring. Show all final terminal identifications.
 - c. Complete listing of all programming information, including all control events per device including an updated input/output matrix.
 - d. Certificate of Installation as required by NFPA 72 for each building. The certificate shall identify any variations from the National Fire Alarm Code.
 - e. Certificate from equipment manufacturer assuring compliance with all manufacturers installation requirements and satisfactory system operation.
- D. Certifications:
 - 1. Together with the shop drawing submittal, submit the technician's NICET level III fire alarm certification as well as certification from the control unit manufacturer that the proposed performer of contract maintenance is an authorized representative of the major equipment manufacturer. Include in the certification the names and addresses of the proposed supervisor of installation and the proposed performer of contract maintenance. Also include the name and title of the manufacturer's representative who makes the certification.
 - 2. Together with the shop drawing submittal, submit a certification from either the control unit manufacturer or the manufacturer of

each component (e.g., smoke detector) that the components being furnished are compatible with the control unit.

3. Together with the shop drawing submittal, submit a certification from the major equipment manufacturer that the wiring and connection diagrams meet this specification, UL and NFPA 72 requirements.

1.5 WARRANTY

All work performed and all material and equipment furnished under this contract shall be free from defects and shall remain so for a period of one year from the date of acceptance of the entire installation by the Contracting Officer.

1.6 APPLICABLE PUBLICATIONS

- A. The publications listed below (including amendments, addenda, revisions, supplements and errata) form a part of this specification to the extent referenced. The publications are referenced in text by the basic designation only and the latest editions of these publications shall be applicable.
- B. National Fire Protection Association (NFPA):
 - NFPA 13 Standard for the Installation of Sprinkler Systems, 2019 edition
 - NFPA 14 Standard for the Installation of Standpipes and Hose Systems, 2019 edition
 - NFPA 20 Standard for the Installation of Stationary Pumps for Fire Protection, 2019 edition
 - NFPA 70.....National Electrical Code (NEC), 2020 edition
 - NFPA 72.....National Fire Alarm Code, 2019 edition
 - NFPA 90A..... Standard for the Installation of Air Conditioning and Ventilating Systems, 2021

edition

NFPA 101.....Life Safety Code, 2021 edition

- C. Underwriters Laboratories, Inc. (UL): Fire Protection Equipment Directory, Current Edition Online
- D. Factory Mutual Research Corp (FM): Approval Guide, Current Edition Online
- E. American National Standards Institute (ANSI): S3.41.....Audible Emergency Evacuation Signal, Current

Edition

F. International Code Council, International Building Code (IBC), 2021 edition

PART 2 - PRODUCTS

2.1 EQUIPMENT AND MATERIALS, GENERAL

A. All equipment and components shall be new and the manufacturer's current model, to the extent possible such that all new equipment is compatible with all existing equipment. All equipment shall be tested and listed by Underwriters Laboratories, Inc. or Factory Mutual Research Corporation for use as part of a fire alarm system. The authorized representative of the manufacturer of the major equipment shall certify that the installation complies with all manufacturers' requirements and that satisfactory total system operation has been achieved.

2.2 CONDUIT, BOXES, AND WIRE

- A. Conduit shall be in accordance with Section 28 05 28.33 CONDUIT AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY and as follows:
 - 1. All new conduits shall be installed in accordance with NFPA 70.
 - 2. Conduit fill shall not exceed 40 percent of interior cross sectional area.
 - 3. All new conduits shall be 3/4 inch (19 mm) minimum.
- B. Wire:
 - Wiring shall be in accordance with NEC article 760, Section 28 05

 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY, and as
 recommended by the manufacturer of the fire alarm system. All wires
 shall be color coded. Number and size of conductors shall be as
 recommended by the fire alarm system manufacturer, but not less than
 18 AWG for initiating device circuits and 14 AWG for notification
 device circuits.
 - Addressable circuits and wiring used for the multiplex communication loop shall be twisted and shielded unless specifically excepted by the fire alarm equipment manufacturer in writing.
 - 3. Any fire alarm system wiring that extends outside of a building shall have additional power surge protection to protect equipment from physical damage and false signals due to lightning, voltage and current induced transients. Protection devices shall be shown on the submittal drawings and shall be UL listed or in accordance with written manufacturer's requirements.

- 4. All wire or cable used in underground conduits including those in concrete shall be listed for wet locations.
- C. Terminal Boxes, Junction Boxes, and Cabinets:
 - 1. Shall be galvanized steel in accordance with UL requirements.
 - 2. All boxes shall be sized and installed in accordance with NFPA 70.
 - 3. covers shall be repainted red in accordance with Section 09 91 00, PAINTING and shall be identified with white markings as "FA" for junction boxes and as "FIRE ALARM SYSTEM" for cabinets and terminal boxes. Lettering shall be a minimum of 3/4 inch (19 mm) high.
 - Terminal boxes and cabinets shall have a volume 50 percent greater than required by the NFPA 70. Minimum sized wire shall be considered as 14 AWG for calculation purposes.
 - Terminal boxes and cabinets shall have identified pressure type terminal strips and shall be located at the base of each riser. Terminal strips shall be labeled as specified or as approved by the COTR.

2.3 FIRE ALARM CONTROL UNIT

- A. General:
 - The existing fire alarm control unit is existing to remain and shall be re-used to support the renovation project. A new NAC panel and SLC expander shall be provided. Provide additional head-end and supporting equipment and panels to support the planned renovations.

2.5 ANNUNCIATION

- A. Annunciator, Alphanumeric Type (System):
 - 1. Annunciation shall match existing.

2.6 VOICE COMMUNICATION SYSTEM (VCS)

- A. General:
 - 1. Voice communication shall match existing.

2.7 ALARM NOTIFICATION APPLIANCES

- B. Speakers:
 - Shall be white in color match existing to the extent possible (using the newest version available from the manufacturer) and shall operate on either 25 VRMS or 70.7 VRMS with field selectable output taps from 0.5 to 2.0W and originally installed at the 1/2 watt tap. Speakers shall provide a minimum sound output of 80 dBA at 10 feet (3,000 mm) with the 1/2 watt tap.

- 2. Frequency response shall be a minimum of 400 HZ to 4,000 HZ.
- 3. Four inches (100 mm) or 8 inches (200 mm) cone type speakers ceiling mounted with white colored baffles in areas with suspended ceilings and wall mounted in areas without ceilings.
- C. Strobes:
 - Xenon flash tube type minimum 15 candela in toilet rooms and 75 candela in all other areas with a flash rate of 1 HZ. Strobes shall be synchronized where required by the National Fire Alarm Code (NFPA 72).
 - Backplate shall be white with 1/2 inch (13 mm) permanent red letters. Lettering shall match existing and be oriented on the wall or ceiling properly and be visible from all viewing directions.
 - 3. Each strobe circuit shall have a minimum of 20 percent spare capacity.
 - 4. Strobes may be combined with the audible notification appliances specified herein.
 - 5. Shall be white in color match existing to the extent possible (using the newest version available from the manufacturer)

2.8 ALARM INITIATING DEVICES

- A. Manual Fire Alarm Stations:
 - 1. Shall be non-breakglass, address reporting type.
 - Station front shall be constructed of a durable material such as cast or extruded metal or high impact plastic. Stations shall be semi-flush type.
 - 3. Stations shall be of single action pull down type with suitable operating instructions provided on front in raised or depressed letters, and clearly labeled "FIRE."
 - 4. Operating handles shall be constructed of a durable material. On operation, the lever shall lock in alarm position and remain so until reset. A key shall be required to gain front access for resetting, or conducting tests and drills.
 - 5. Unless otherwise specified, all exposed parts shall be red in color and have a smooth, hard, durable finish.
- B. Smoke Detectors:
 - Smoke detectors shall be photoelectric type and UL listed for use with the fire alarm control unit being furnished.

- 2. Smoke detectors shall be addressable type complying with applicable UL Standards for system type detectors. Smoke detectors shall be installed in accordance with the manufacturer's recommendations and NFPA 72.
- 3. Detectors shall have an indication lamp to denote an alarm condition. Provide remote indicator lamps and identification plates where detectors are concealed from view. Locate the remote indicator lamps and identification plates flush mounted on walls so they can be observed from a normal standing position.
- 4. All spot type and duct type detectors installed shall be of the photoelectric type.
- 5. Photoelectric detectors shall be factory calibrated and readily field adjustable. The sensitivity of any photoelectric detector shall be factory set at 3.0 plus or minus 0.25 percent obscuration per foot.
- 6. Detectors shall provide a visual trouble indication if they drift out of sensitivity range or fail internal diagnostics. Detectors shall also provide visual indication of sensitivity level upon testing. Detectors, along with the fire alarm control units shall be UL listed for testing the sensitivity of the detectors.
- C. Heat Detectors:
 - 1. Heat detectors shall be of the addressable restorable rate compensated fixed-temperature spot type.
 - 2. Detectors shall have a minimum smooth ceiling rating of 2,500 square feet (230 square meters).
 - 3. Ordinary temperature (135 degrees F (57 degrees C)) heat detectors shall be utilized in elevator shafts and elevator mechanical rooms. Intermediate temperature rated (200 degrees F (93 degrees C)) heat detectors shall be utilized in all other areas.
 - 4. Provide a remote indicator lamp, key test station and identification nameplate (e.g. "Heat Detector - Elevator P-) for each elevator group. Locate key test station in plain view on elevator machine room wall.
- D. Water Flow and Pressure Switches:
 - 1. Wet pipe water flow switches and dry pipe alarm pressure switches for sprinkler systems shall be connected to the fire alarm system by way of an address reporting interface device.

- 2. All new water flow switches shall be of a single manufacturer and series and non-accumulative retard type. See Section 21 13 13, WET-PIPE SPRINKLER SYSTEMS and Section 21 13 16, DRY-PIPE SPRINKLER SYSTEMS for new switches added. Connect all switches shown on the approved shop drawings and as required based on coordination with sprinkler contractor.
- 3. All new switches shall have an alarm transmission delay time that is conveniently adjustable from 0 to 60 seconds. Initial settings shall be 30-45 seconds. Timing shall be recorded and documented during testing.

2.9 SUPERVISORY DEVICES

- A. Duct Smoke Detectors:
 - Duct smoke detectors shall be provided and connected by way of an address reporting interface device. Detectors shall be provided with an approved duct housing mounted exterior to the duct, and shall have perforated sampling tubes extending across the full width of the duct (wall to wall). Detector placement shall be such that there is uniform airflow in the cross section of the duct.
 - 2. Interlocking with fans shall be provided in accordance with NFPA 90A and as specified hereinafter under Part 3.2, "TYPICAL OPERATION".
 - 3. Provide remote indicator lamps, key test stations and identification nameplates (e.g. "DUCT SMOKE DETECTOR AHU-X") for all duct detectors. Locate key test stations in plain view on walls or ceilings so that they can be observed and operated from a normal standing position.
- B. Sprinkler and Standpipe System Supervisory Switches:
 - Each sprinkler system water supply control valve, riser valve or zone control valve, and each standpipe system riser control valve shall be equipped with a supervisory switch. Standpipe hose valves, and test and drain valves shall not be equipped with supervisory switches.
 - 3. Valve supervisory switches shall be connected to the fire alarm system by way of address reporting interface device. See Section 21 13 13, WET-PIPE SPRINKLER SYSTEMS for new switches to be added. Connect tamper switches for all control valves shown on the approved shop drawings.

- 4. The mechanism shall be contained in a weatherproof die-cast aluminum housing that shall provide a 3/4 inch (19 mm) tapped conduit entrance and incorporate the necessary facilities for attachment to the valves.
- 5. The entire installed assembly shall be tamper-proof and arranged to cause a switch operation if the housing cover is removed or if the unit is removed from its mounting.
- 6. Where dry-pipe sprinkler systems are installed, high and low air pressure switches shall be provided and monitored by way of an address reporting interface devices.

2.10 ADDRESS REPORTING INTERFACE DEVICE

- A. Shall have unique addresses that reports directly to the building fire alarm panel.
- B. Shall be configurable to monitor normally open or normally closed devices for both alarm and trouble conditions.
- C. Shall have terminal designations clearly differentiating between the circuit to which they are reporting from and the device that they are monitoring.
- D. Shall be UL listed for fire alarm use and compatibility with the panel to which they are connected.
- E. Shall be mounted in weatherproof housings if mounted exterior to a building.

2.11 SMOKE BARRIER DOOR CONTROL

- A. Electromagnetic Door Holders:
 - New Door Holders shall be standard wall mounted electromagnetic type. In locations where doors do not come in contact with the wall when in the full open position, an extension post shall be added to the door bracket.
 - 2. Operation shall be by 24 volt DC supplied from a battery located at the fire alarm control unit. Door holders shall be coordinated as to voltage, ampere drain, and voltage drop with the battery, battery charger, wiring and fire alarm system for operation as specified.
- B. A maximum of twelve door holders shall be provided for each circuit. Door holders shall be wired to allow releasing doors by smoke zone.
- C. Door holder control circuits shall be electrically supervised.
- D. Smoke detectors shall not be incorporated as an integral part of door holders.

VA Project No. 595-668 AE Works Project No. VLEB-010

2.12 UTILITY LOCKS AND KEYS:

- A. All key operated test switches, control units, annunciator panels and lockable cabinets shall be provided with a single standardized utility lock and key.
- B. Key-operated manual fire alarm stations shall have a single standardized lock and key separate from the control equipment.
- C. All keys shall be delivered to the COTR.

2.13 SPARE AND REPLACEMENT PARTS

- A. Provide spare and replacement parts as follows:
 - 1. Manual pull stations 5
 - 3. Heat detectors 2 of each type
 - 4. Fire alarm strobes 2
 - 6. Fire alarm speakers 2
 - 7. Smoke detectors 2
 - 8. Duct smoke detectors with all appurtenances 1
 - 9. Sprinkler system water flow switch 1 of each size
 - 10. Sprinkler system water pressure switch 1 of each type
 - 11. Sprinkler valve tamper switch 1 of each type
 - 12. Control equipment utility locksets 2
 - 13. Control equipment keys 5
 - 15. 2.5 oz containers aerosol smoke 5
 - 16. Printer paper 3 boxes
 - 18. Monitor modules 2
 - 19. Control modules 3
 - 20. Fire alarm SLC cable (same as installed) 200 feet (61 m)
- C. Spare and replacement parts shall be in original packaging and submitted to the COTR.
- E. Provide to the VA, all hardware, software, programming tools, license and documentation necessary to permanently modify the fire alarm system_ <u>on site</u>. The minimum level of modification includes addition and deletion of devices, circuits, zones and changes to system description, system operation, and digitized evacuation and instructional messages.

2.14 INSTRUCTION CHART:

Provide typewritten instruction card mounted behind a Lexan plastic or glass cover in a stainless steel or aluminum frame with a backplate. Install the frame in a conspicuous location observable from each control unit where operations are performed. The card shall show those

steps to be taken by an operator when a signal is received under all conditions, normal, alarm, supervisory, and trouble. Provide an additional copy with the binder for the input output matrix for the sequence of operation. The instructions shall be approved by the COTR before being posted.

PART 3 - EXECUTION

3.1 INSTALLATION:

- A. Installation shall be in accordance with NFPA 70, 72, 90A, and 101 as shown on the drawings, and as recommended by the major equipment manufacturer. Fire alarm wiring shall be installed in conduit. All conduit and wire shall be installed in accordance with, Section 28 05 13 CONDUCTORS AND CABLES FOR ELECTRONIC SAFETY AND SECURITY, Section 28 05 26 GROUNDING AND BONDING FOR ELECTRONIC SAFETY AND SECURITY, Section 28 05 28.33 CONDUIT AND BACKBOXES FOR ELECTRONIC SAFETY AND SECURITY, and all penetrations of smoke and fire barriers shall be protected as required by Section 07 84 00, FIRESTOPPING.
- B. All conduits, junction boxes, conduit supports and hangers shall be concealed in finished areas and may be exposed in unfinished areas.
- C. All new and reused exposed conduits shall be painted in accordance with Section 09 91 00, PAINTING to match surrounding finished areas and red in unfinished areas.
- D. All existing accessible fire alarm conduit not reused shall be removed.
- E. Existing devices that are reused shall be properly mounted and installed. Where devices are installed on existing shallow backboxes, extension rings of the same material, color and texture of the new fire alarm devices shall be used. Mounting surfaces shall be cut and patched in accordance with Section 01 00 00, GENERAL REQUIREMENTS, Restoration, and be re-painted in accordance with Section 09 91 00, PAINTING as necessary to match existing.
- F. All fire detection and alarm system devices, control units and remote annunciators shall be flush mounted when located in finished areas and may be surface mounted when located in unfinished areas. Exact locations are to be approved by the COTR.
- G. Speakers shall be ceiling mounted and fully recessed in areas with suspended ceilings. Speakers shall be wall mounted and recessed in

finished areas without suspended ceilings. Speakers may be surface mounted in unfinished areas.

- H. Strobes shall be flush wall mounted with the bottom of the unit located 80 inches (2,000 mm) above the floor or 6 inches (150 mm) below ceiling, whichever is lower. Locate and mount to maintain a minimum 36 inches (900 mm) clearance from side obstructions.
- I. Manual pull stations shall be installed not less than 42 inches (1,050 mm) or more than 48 inches (1,200 mm) from finished floor to bottom of device and within 60 inches (1,500 mm) of a stairway or an exit door.
- J. Where possible, locate water flow and pressure switches a minimum of 12 inches (300 mm) from a fitting that changes the direction of the flow and a minimum of 36 inches (900 mm) from a valve.
- K. Mount value tamper switches so as not to interfere with the normal operation of the value and adjust to operate within 2 revolutions toward the closed position of the value control, or when the stem has moved no more than 1/5 of the distance from its normal position.
- L. Connect flow and tamper switches installed under Section 21 13 13, WET-PIPE SPRINKLER SYSTEMS.
- M. Connect combination closer-holders installed under Section 08 71 00, DOOR HARDWARE.

3.2 TYPICAL OPERATION

- A. Activation of any manual pull station, water flow or pressure switch, heat detector, kitchen hood suppression system, gaseous suppression system, or smoke detector shall cause the following operations to occur:
 - Operate the emergency voice communication system in the Buildings. For sprinkler protected buildings, flash strobes continuously only in the zone of alarm. For buildings without sprinkler protection throughout, flash strobes continuously only on the floor of alarm.
 - Continuously sound a temporal pattern general alarm and flash all strobes in the building in alarm until reset at the local fire alarm control unit in the Building.
 - Release only the magnetic door holders in the smoke zone after the alert signal.
 - 4. Transmit a separate alarm signal, via the main fire alarm control unit to the fire department and constantly attended location.
 - 5. Unlock the electrically locked exit doors within the zone of alarm.

- E. Operation of a smoke detector at a corridor door used for automatic closing shall also release only the magnetic door holders in that smoke zone.
- F. Operation of duct smoke detectors shall cause a system supervisory condition and shut down the ventilation system and close the associated smoke dampers as appropriate.
- G. Operation of any sprinkler or standpipe system valve supervisory switch, high/low air pressure switch, or fire pump alarm switch shall cause a system supervisory condition.
- H. Alarm verification shall not be used for smoke detectors installed for the purpose of early warning.

3.3 TESTS

- A. Provide the service of a NICET level III, competent, factory-trained engineer or technician authorized by the manufacturer of the fire alarm equipment to technically supervise and participate during all of the adjustments and tests for the system. Make all adjustments and tests in the presence of the COTR.
- B. When the systems have been completed and prior to the scheduling of the final inspection, furnish testing equipment and perform the following tests in the presence of the COTR. When any defects are detected, make repairs or install replacement components, and repeat the tests until such time that the complete fire alarm systems meets all contract requirements. After the system has passed the initial test and been approved by the COTR, the contractor may request a final inspection.
 - Before energizing the cables and wires, check for correct connections and test for short circuits, ground faults, continuity, and insulation.
 - 2. Test the insulation on all installed cable and wiring by standard methods as recommended by the equipment manufacturer.
 - Run water through all flow switches. Check time delay on water flow switches. Submit a report listing all water flow switch operations and their retard time in seconds.
 - 4. Open each alarm initiating and notification circuit to see if trouble signal actuates.
 - 5. Ground each alarm initiation and notification circuit and verify response of trouble signals.

VA Project No. 595-668 AE Works Project No. VLEB-010

3.4 FINAL INSPECTION AND ACCEPTANCE

- A. Prior to final acceptance a minimum 30 day "burn-in" period shall be provided. The purpose shall be to allow equipment to stabilize and potential installation and software problems and equipment malfunctions to be identified and corrected. During this diagnostic period, all system operations and malfunctions shall be recorded. Final acceptance will be made upon successful completion of the "burn-in" period and where the last 14 days is without a system or equipment malfunction.
- B. At the final inspection a factory trained representative of the manufacturer of the major equipment shall repeat the tests in Article 3.3 TESTS and those required by NFPA 72. In addition the representative shall demonstrate that the systems function properly in every respect. The demonstration shall be made in the presence of a VA representative.

3.5 INSTRUCTION

- A. The manufacturer's authorized representative shall provide instruction and training to the VA as follows:
 - One 1-hour session to engineering staff, security police and central attendant personnel for simple operation of the system after the completion of installation.
 - 2. Two 2-hour sessions to engineering staff for detailed operation of the system at the completion of installation.
 - 3. One 8-hour session to electrical technicians for maintaining, programming, modifying, and repairing the system at the completion of installation and one 8-hour refresher session 3 months after the completion of installation.
- B. The Contractor and/or the Systems Manufacturer's representative shall provide a typewritten "Sequence of Operation" including a trouble shooting guide of the entire system for submittal to the VA. The sequence of operation will be shown for each input in the system in a matrix format and provided in a loose leaf binder. When reading the sequence of operation, the reader will be able to quickly and easily determine what output will occur upon activation of any input in the system. The INPUT/OUTPUT matrix format shall be as shown in Appendix A to NFPA 72.
- C. Furnish the services of a competent instructor for instructing personnel in the programming requirements necessary for system

expansion. Such programming shall include addition or deletion of devices, zones, indicating circuits and printer/display text.

PART 4 - SCHEDULES

4.2 DIGITIZED VOICE MESSAGES:

A. Digitized voice messages shall match existing.

4.3 LOCATION OF VOICE MESSAGES:

Upon receipt of an alarm signal from the building fire alarm system, the voice communication system shall perform as existing.

- - END - -

SECTION 31 20 00

EARTH MOVING

PART 1 - GENERAL

1.1 DESCRIPTION OF WORK:

- A. This section specifies the requirements for furnishing all equipment, materials, labor, tools, and techniques for earthwork including, but not limited to, the following:
 - 1. Site preparation.
 - 2. Excavation.
 - 3. Underpinning.
 - 4. Filling and backfilling.
 - 5. Grading.
 - 6. Soil Disposal.
 - 7. Clean Up.

1.2 DEFINITIONS:

- A. Unsuitable Materials:
 - 1. Fills: Topsoil; frozen materials; construction materials and materials subject to decomposition; clods of clay and stones larger than 75 mm (3 inches); organic material, including silts, which are unstable; and inorganic materials, including silts, too wet to be stable and any material with a liquid limit and plasticity index exceeding 40 and 15 respectively. Unsatisfactory soils also include satisfactory soils not maintained within 2 percent of optimum moisture content at time of compaction, as defined by ASTM 1557.
 - 2. Existing Subgrade (Except Footing Subgrade): Same materials as 1.2.A.1, that are not capable of direct support of slabs, pavement, and similar items with possible exception of improvement by compaction, proofrolling, or similar methods.
 - 3. Existing Subgrade (Footings Only): Same as paragraph 1, but no fill or backfill. If materials differ from design requirements, excavate to acceptable strata subject to Resident Engineer's approval.
- B. Building Earthwork: Earthwork operations required in area enclosed by a line located 1500 mm (5 feet) outside of principal building perimeter. It also includes earthwork required for auxiliary structures and buildings.
- C. Trench Earthwork: Trenchwork required for utility lines.
- D. Site Earthwork: Earthwork operations required in area outside of a line located 1500 mm (5 feet) outside of principal building perimeter and within new construction area with exceptions noted above.
- E. Degree of compaction: Degree of compaction is expressed as a percentage of maximum density obtained by laboratory test procedure. This percentage of maximum density is obtained through use of data provided from results of field test procedures presented in ASTM D1556, ASTM D2167, and ASTM D2922.

- F. Fill: Satisfactory soil materials used to raise existing grades. In the Construction Documents, the term "fill" means fill or backfill as appropriate.
- G. Backfill: Soil materials or controlled low strength material used to fill an excavation.
- H. Unauthorized excavation: Removal of materials beyond indicated subgrade elevations or indicated lines and dimensions without written authorization by the Resident Engineer. No payment will be made for unauthorized excavation or remedial work required to correct unauthorized excavation.
- I. Authorized additional excavation: Removal of additional material authorized by the Resident Engineer based on the determination by the Government's soils testing agency that unsuitable bearing materials are encountered at required sub-grade elevations. Removal of unsuitable material and its replacement as directed will be paid on basis of Conditions of the Contract relative to changes in work.
- J. Subgrade: The undisturbed earth or the compacted soil layer immediately below granular sub-base, drainage fill, or topsoil materials.
- K. Structure: Buildings, foundations, slabs, tanks, curbs, mechanical and electrical appurtenances, or other man-made stationary features constructed above or below the ground surface.
- L. Borrow: Satisfactory soil imported from off-site for use as fill or backfill.
- M. Drainage course: Layer supporting slab-on-grade used to minimize capillary flow of pore water.
- N. Bedding course: Layer placed over the excavated sub-grade in a trench before laying pipe. Bedding course shall extend up to the springline of the pipe.
- O. Sub-base Course: Layer placed between the sub-grade and base course for asphalt paving or layer placed between the sub-grade and a concrete pavement or walk.
- P. Utilities include on-site underground pipes, conduits, ducts, and cables.
- Q. Debris: Debris includes all materials located within the designated work area not covered in the other definitions and shall include but not be limited to items like vehicles, equipment, appliances, building materials or remains thereof, tires, any solid or liquid chemicals or products stored or found in containers or spilled on the ground.
- R. Contaminated soils: Soil that contains contaminates as defined and determined by the Resident Engineer or the Government's testing agency.

1.3 RELATED WORK:

- A. Materials testing and inspection during construction: Section 01 45 29, TESTING LABORATORY SERVICES.
- B. Safety requirements Section 00 72 00, GENERAL CONDITIONS, Article, ACCIDENT PREVENTION.
- C. Protection of existing utilities, fire protection services, existing equipment, roads, and pavements: Section 01 00 00, GENERAL REQUIREMENTS.
 - D. Erosion Control: Section 01 57 19, TEMPORARY ENVIRONMENTAL CONTROLS, and Section 32 90 00, PLANTING.
 - E. Site preparation: Section 31 23 19, DEWATERING, and Section 02 41 00, DEMOLITION.
 - F. Paving sub-grade requirements: Section 32 12 16, ASPHALT PAVING.

1.4 CLASSIFICATION OF EXCAVATION:

- A. Unclassified Excavation: Removal and disposal of pavements and other man-made obstructions visible on surface; utilities, and other items including underground structures indicated to be demolished and removed; together with any type of materials regardless of character of material and obstructions encountered.
- B. Rock Excavation:
 - 1. Trenches and Pits: Removal and disposal of solid, homogenous, interlocking crystalline material with firmly cemented, laminated, or foliated masses or conglomerate deposits that cannot be excavated with a late-model, track-mounted hydraulic excavator; equipped with a 1050 mm (42 inch) wide, short-tip-radius rock bucket; rated at not less than 103 kW (138 hp) flywheel power with bucket-curling force of not less than 125 kN (28,090 lbf) and stick-crowd force of not less than 84.5 kN (19,000 lbf); measured according to SAE J-1179. Trenches in excess of 3000 mm (10 feet) wide and pits in excess of 9000 mm (30 feet) in either length or width are classified as open excavation.
 - 2. Open Excavation: Removal and disposal of solid, homogenous, interlocking crystalline material firmly cemented, laminated, or foliated masses or conglomerate deposits that cannot be dislodged and excavated with a late-model, track-mounted loader; rated at not less than 157 kW (210 hp) flywheel power and developing a minimum of 216 kN (48,510 lbf) breakout force; measured according to SAE J-732.
 - 3. Other types of materials classified as rock are unstratified masses, conglomerated deposits and boulders of rock material exceeding 0.76 m3 (1 cubic yard) for open excavation, or 0.57 m3 (3/4 cubic yard) for footing and trench excavation that cannot be removed by rock excavating equipment equivalent to the above in size and performance ratings, without systematic drilling, ram hammering, ripping, or blasting, when permitted.
 - 4. Blasting: Not Permitted
 - 5. Definitions of rock and guidelines for equipment are presented for general information purposes only. The Contractor is expected to use the information presented in the Geotechnical Engineering Report to evaluate the extent and competency of the rock and to determine both quantity estimations and removal equipment and efforts.

1.5 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Rock Excavation Report:
 - 1. Certification of rock quantities excavated.
 - 2. Excavation method.
 - 3. Labor.
 - 4. Equipment.
 - 5. Land Surveyor's or Civil Engineer's name and official registration stamp.
 - 6. Plot plan showing elevation.

- C. Furnish to Resident Engineer:
 - Contactor shall furnish resumes with all personnel involved in the project including Project Manager, Superintendent, and on-site Engineer. Project Manager and Superintendent should have at least 3 years of experience on projects of similar size.
 - 2. Soil samples.
 - a. Classification in accordance with ASTM D2487 for each on-site or borrow soil material proposed for fill, backfill, engineered fill, or structural fill.
 - b. Laboratory compaction curve in accordance with ASTM for each on site or borrow soil material proposed for fill, backfill, engineered fill, or structural fill.
 - c. Test reports for compliance with ASTM D 2940 requirements for subbase material.
 - d. Pre-excavation photographs and videotape in the vicinity of the existing structures to document existing site features, including surfaces finishes, cracks, or other structural blemishes that might be misconstrued as damage caused by earthwork operations.
 - e. The Contractor shall submit a scale plan daily that defines the location, limits, and depths of the area excavated.

1.6 APPLICABLE PUBLICATIONS:

- A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only.
- B. American Association of State Highway and Transportation Officials (AASHTO):

T99-01(2004).....Moisture-Density Relations of Soils Using a 2.5 kg (5.5 lb) Rammer and a 305 mm (12 inch) Drop T180-01(2004)....Moisture-Density Relations of Soils using a 4.54 kg (10 lb) Rammer and a 457 mm (18 inch) Drop

C. American Society for Testing and Materials (ASTM):

D448-03a of Aggregate
for Road and Bridge Construction
D698-00ae1Compaction
Characteristics of Soil Using Standard Effort
(12,400 ft. lbf/ft ³ (600 kN m/m ³))
D1556-00Standard Test Method for Density and Unit
Weight of Soil in Place by the Sand-Cone Method
D1557-02e1Standard Test Methods for Laboratory Compaction
Characteristics of Soil Using Modified Effort
(56,000 ft-lbf/ft ³ (2700 kN m/m ³))
D2167-94 (2001)Standard Test Method for Density and Unit
Weight of Soil in Place by the Rubber Balloon
Method
D2487-06 Standard Classification of Soil for Engineering
Purposes (Unified Soil Classification System)

D2922-05.....Standard Test Methods for Density of Soil and Soil-Aggregate in Place by Nuclear Methods (Shallow Depth) D2940-03.....Standard Specifications for Graded Aggregate Material for Bases or Subbases for Highways or Airports

D. Society of Automotive Engineers (SAE):

J732-92..... Specification Definitions - Loaders J1179-02......Hydraulic Excavator and Backhoe Digging Forces PART 2 - PRODUCTS

2.1 MATERIALS:

- A. General: Provide borrow soil material when sufficient satisfactory soil materials are not available from excavations.
- B. Fills: Material in compliance with ASTM D2487 Soil Classification Groups GW, GP, GM, SW, SP, SM, SC, and ML, or any combination of these groups; free of rock or gravel larger than 75 mm (3 inches) in any dimension, debris, waste, frozen materials, vegetation, and other deleterious matter. Material approved from on site or off site sources having a minimum dry density of 1760 kg/m3 (110 pcf), a maximum Plasticity Index of 15, and a maximum Liquid Limit of 40.
- C. Engineered Fill: Naturally or artificially graded mixture of compliance with ASTM D2487 Soil Classification Groups GW, GP, GM, SW, SP, SM, SC, and ML, or any combination of these groups, or as approved by the Engineer or material with at least 90 percent passing a 37.5-mm (1 1/2inch) sieve and not more than 12 percent passing a 75-µm (No. 200) sieve, per ASTM D2940;.
- D. Bedding: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D2940; except with 100 percent passing a 25 mm (1 inch) sieve and not more than 8 percent passing a 75-µm (No. 200) sieve.
- E. Drainage Fill: Washed, narrowly graded mixture of crushed stone, or crushed or uncrushed gravel; ASTM D448; coarse-aggregate grading Size 57; with 100 percent passing a 37.5 mm (1 1/2-inch) sieve and 0 to 5 percent passing a 2.36 mm (No. 8) sieve.
- F. Granular Fill:
 - 1. Under concrete slab, crushed stone or gravel graded from 25 mm (1 inch) to 4.75 mm (No. 4), per ASTM D 2940.
 - 2. Bedding for sanitary and storm sewer pipe, crushed stone or gravel graded from 13 mm (1/2 inch) to 4.75 mm (No 4), per ASTM D 2940.

PART 3 - EXECUTION

3.1 SITE PREPARATION:

A. Clearing: Clear within limits of earthwork operations as shown. Work includes removal of trees, shrubs, fences, foundations, incidental structures, paving, debris, trash, and other obstructions. Remove materials from Medical Center.

- B. Grubbing: Remove stumps and roots 75 mm (3 inch) and larger diameter. Undisturbed sound stumps, roots up to 75 mm (3 inch) diameter, and nonperishable solid objects a minimum of 900 mm (3 feet) below subgrade or finished embankment may be left.
- C. Trees and Shrubs: Trees and shrubs, not shown for removal, may be removed from areas within 4500 mm (15 feet) of new construction and 2250 mm (7.5 feet) of utility lines when removal is approved in advance by Resident Engineer. Remove materials from Medical Center. Box, and otherwise protect from damage, existing trees and shrubs which are not shown to be removed in construction area. Immediately repair damage to existing trees and shrubs by trimming, cleaning and painting damaged areas, including roots, in accordance with standard industry horticultural practice for the geographic area and plant species. Do not store building materials closer to trees and shrubs, that are to remain, than farthest extension of their limbs.
- D. Stripping Topsoil: Strip topsoil from within limits of earthwork operations as specified. Topsoil shall be a fertile, friable, natural topsoil of loamy character and characteristic of locality. Topsoil shall be capable of growing healthy horticultural crops of grasses. Stockpile topsoil and protect as directed by Resident Engineer. Eliminate foreign materials, such as weeds, roots, stones, subsoil, frozen clods, and similar foreign materials larger than 0.014 m3 (1/2 cubic foot) in volume, from soil as it is stockpiled. Retain topsoil on station. Remove foreign materials larger than 50 mm (2 inches) in any dimension from topsoil used in final grading. Topsoil work, such as stripping, stockpiling, and similar topsoil work shall not, under any circumstances, be carried out when soil is wet so that the composition of the soil will be destroyed.
- E. Concrete Slabs and Paving: Score deeply or saw cut to insure a neat, straight cut, sections of existing concrete slabs and paving to be removed where excavation or trenching occurs. Extend pavement section to be removed a minimum of 300 mm (12 inches) on each side of widest part of trench excavation and insure final score lines are approximately parallel unless otherwise indicated. Remove material from Medical Center.
- F. Lines and Grades: Registered Professional Land Surveyor or Registered Civil Engineer, specified in Section 01 00 00, GENERAL REQUIREMENTS, shall establish lines and grades.
 - 1. Grades shall conform to elevations indicated on plans within the tolerances herein specified. Generally grades shall be established to provide a smooth surface, free from irregular surface changes. Grading shall comply with compaction requirements and grade cross sections, lines, and elevations indicated. Where spot grades are indicated the grade shall be established based on interpolation of the elevations between the spot grades while maintaining appropriate transition at structures and paving and uninterrupted drainage flow into inlets.
 - 2. Locations of existing elevations indicated on plans are from a site survey that measured spot elevations and subsequently generated existing contours and spot elevations. Proposed spot elevations and contour lines have been developed utilizing the existing conditions survey and developed contour lines and may be approximate. Contractor is responsible to notify Resident Engineer of any differences between existing elevations shown on plans and those encountered on site by Surveyor/Engineer described above. Notify

Resident Engineer of any differences between existing or constructed grades, as compared to those shown on the plans.

- 3. Subsequent to establishment of lines and grades, Contractor will be responsible for any additional cut and/or fill required to ensure that site is graded to conform to elevations indicated on plans.
- 4. Finish grading is specified in Section 32 90 00, PLANTING.
- G. Disposal: All materials removed from the property shall be disposed of at a legally approved site, for the specific materials, and all removals shall be in accordance with all applicable Federal, State and local regulations. No burning of materials is permitted onsite.

EXCAVATION: 3.2

- A. Shoring, Sheeting and Bracing: Shore, brace, or slope, its angle of repose or to an angle considered acceptable by the Resident Engineer, banks of excavations to protect workmen, banks, adjacent paving, structures, and utilities.
 - 1. Design of the temporary support of excavation system is the responsibility of the Contractor.
 - 2. Construction of the support of excavation system shall not interfere with the permanent structure and may begin only after a review by the Resident Engineer.
 - 3. Extend shoring and bracing to a minimum of 1500 mm (5 feet) below the bottom of excavation. Shore excavations that are carried below elevations of adjacent existing foundations.
 - 4. If bearing material of any foundation is disturbed by excavating, improper shoring or removal of existing or temporary shoring, placing of backfill, and similar operations, the Contractor shall underpin the existing foundation, per Section 3.3 under disturbed foundations, as directed by Resident Engineer, at no additional cost to the Government. Do not remove shoring until permanent work in excavation has been inspected and approved by Resident Engineer.
- B. Excavation Drainage: Operate pumping equipment, and/or provide other materials, means and equipment as required to keep excavation free of water and subgrade dry, firm, and undisturbed until approval of permanent work has been received from Resident Engineer. Approval by Resident Engineer is also required before placement of the permanent work on all subgrades.
- C. Subgrade Protection: Protect subgrades from softening, undermining, washout, or damage by rain or water accumulation. Reroute surface water runoff from excavated areas and not allow water to accumulate in excavations. Do not use excavated trenches as temporary drainage ditches. When subgrade for foundations has been disturbed by water, remove disturbed material to firm undisturbed material after water is brought under control. Replace disturbed subgrade in trenches with concrete or material approved by the Resident Engineer.
- D. Blasting: Not Allowed
- E. Proofrolling:
 - 1. After rough grade has been established in cut areas and prior to placement of fill in fill areas under building and pavements,

proofroll exposed subgrade with a fully loaded dump truck to check for pockets of soft material.

- 2. Proofrolling shall consist of at least two complete passes with one pass being in a direction perpendicular to preceding one. Remove any areas that deflect, rut, or pump excessively during proofrolling, or that fail to consolidate after successive passes to suitable soils and replaced with compacted fill. Maintain subgrade until succeeding operation has been accomplished.
- F. Building Earthwork:
 - 1. Excavation shall be accomplished as required by drawings and specifications.
 - 2. Excavate foundation excavations to solid undisturbed subgrade.
 - 3. Remove loose or soft materials to a solid bottom.
 - 4. Fill excess cut under footings or foundations with 25 MPa (3000 psi) concrete poured separately from the footings.
 - 5. Do not tamp earth for backfilling in footing bottoms, except as specified.
 - 6. Slope grades to direct water away from excavations and to prevent ponding.
- G. Trench Earthwork:
 - 1. Utility trenches (except sanitary and storm sewer):
 - a. Excavate to a width as necessary for sheeting and bracing and proper performance of the work.
 - b. Grade bottom of trenches with bell holes scooped out to provide a uniform bearing.
 - c. Support piping on undisturbed earth unless a mechanical support is shown.
 - d. Length of open trench in advance of piping laying shall not be greater than is authorized by Resident Engineer.
 - 2. Sanitary and storm sewer trenches:
 - a. Trench width below a point 150 mm (6 inches) above top of pipe shall be 600 mm (24 inches) maximum for pipe up to and including 300 mm (12 inches) diameter, and four-thirds diameter of pipe plus 200 mm (8 inches) for pipe larger than 300 mm (12 inches). Width of trench above that level shall be as necessary for sheeting and bracing and proper performance of the work.
 - b. Bed bottom quadrant of pipe on undisturbed soil or granular fill.
 - 1) Undisturbed: Bell holes shall be no larger than necessary for jointing. Backfill up to a point 300 mm (12 inches) above top of pipe shall be clean earth placed and tamped by hand.
 - 2) Granular Fill: Depth of fill shall be a minimum of 75 mm (3 inches) plus one sixth of pipe diameter below pipe to 300 mm (12 inches) above top of pipe. Place and tamp fill material by hand.

- c. Place and compact as specified remainder of backfill using acceptable excavated materials. Do not use unsuitable materials.
- d. Use granular fill for bedding where rock or rocky materials are excavated.
- H. Site Earthwork: Earth excavation includes excavating pavements and obstructions visible on surface; underground structures, utilities, and other items indicated to be removed; together with soil, boulders, and other materials not classified as rock or unauthorized excavation. Excavation shall be accomplished as required by drawings and specifications. Excavate to indicated elevations and dimensions within a tolerance of plus or minus 25 mm (1 inch). Extend excavations a sufficient distance from structures for placing and removing concrete formwork, for installing services and other construction, complying with OSHA requirements, and for inspections. Remove subgrade materials that are determined by Resident Engineer as unsuitable, and replace with acceptable material. If there is a question as to whether material is unsuitable or not, the contractor shall obtain samples of the material, under the direction of the Resident Engineer, and the materials shall be examined by an independent testing laboratory for soil classification to determine whether it is unsuitable or not.
 - 1. Site Grading:
 - a. Provide a smooth transition between adjacent existing grades and new grades.
 - b. Cut out soft spots, fill low spots, and trim high spots to comply with required surface tolerances.
 - c. Slope grades to direct water away from buildings and to prevent ponds from forming where not designed. Finish subgrades to required elevations within the following tolerances:
 - 1) Lawn or Unpaved Areas: Plus or minus 25 mm (1 inch).
 - 2) Walks: Plus or minus 25 mm (1 inch).
 - 3) Pavements: Plus or minus 13 mm (1 inch).

3.3 UNDERPINNING:

- A. Design of the underpinning system is the responsibility of the Contractor and is subject to review and approval by the Resident Engineer. Underpinning of existing building foundations, as indicated on structural drawings, or where excavation undermines existing foundations, shall be accomplished in the following manner:
 - 1. Make general excavation for new construction, where new foundations are to be below existing foundations, to elevation of new foundations (or sized stone subbase), maintaining a 45 degree sloped berm.
 - For underpinning pits, underpin existing wall foundations by excavating 1200 mm (4 feet) wide pits to depth shown on drawings skipping 3 sections at any one time so as to maintain support for wall at all times.
 - 3. Underpin intervening sections one at a time; no adjacent sections shall be underpinned until concrete in adjacent sections shall have

reached 20 MPa (2500 psi) strength and have been dry packed with non-shrink grout to obtain positive bearing. Sheet and brace underpinning pits if soil will not stand on a vertical cut during this operation, or as required for safety of workmen. Repack any voids behind sheeting to prevent sloughing which could cause settlement of existing foundations. Contractor performing this portion of work shall have been prequalified by Resident Engineer as having previously performed successfully this type of work or will demonstrate his capability for successfully performing this work. It shall be sole responsibility of the Contractor to guard against objectionable movement or settlement and to preserve integrity of existing structures.

- 4. The tip elevation of the underpinning pits shall be a minimum of 900 mm (3 feet) below the adjacent excavation elevation.
- 5. Subgrades at the tip of the underpinning pit shall be clean, dry, and free of debris and shall be observed by the Resident Engineer prior to concrete placement.
- 6. Concrete shall not be free fall greater than 3000 mm (10 feet) into the pit.

3.4 FILLING AND BACKFILLING:

- A. General: Do not fill or backfill until all debris, water, unsatisfactory soil materials, obstructions, and deleterious materials have been removed from excavation. For fill and backfill, use excavated materials and borrow meeting the criteria specified herein, as applicable. Borrow will be supplied at no additional cost to the Government. Do not use unsuitable excavated materials.
- B. Placing: Place materials in horizontal layers not exceeding 200 mm (8 inches) in loose depth for material compacted by heavy compaction equipment, and not more than 100 mm (4 inches) in loose depth for material compacted by hand-operated tampers and then compacted. Place backfill and fill materials evenly on all sides of structures to required elevations, and uniformly along the full length of each structure. Place no material on surfaces that are muddy, frozen, or contain frost.
- C. Compaction: Compact with approved tamping rollers, sheepsfoot rollers, pneumatic tired rollers, steel wheeled rollers, vibrator compactors, or other approved equipment (hand or mechanized) well suited to soil being compacted. Do not operate mechanized vibratory compaction equipment within 3000 mm (10 feet) of new or existing building walls without prior approval of Resident Engineer. Moisten or aerate material as necessary to provide moisture content that will readily facilitate obtaining specified compaction with equipment used. Compact soil to not less than the following percentages of maximum dry density, according to ASTM D698 or ASTM D1557 as specified below:
 - 1. Fills, Embankments, and Backfill
 - a. Under proposed structures, steps, and paved areas, scarify and recompact top 300 mm (12 inches) of existing subgrade and each layer of backfill or fill material to 95 percent.
 - b. Curbs, curbs and gutters, 95 percent.

- c. Under Sidewalks, scarify and recompact top 150 mm (6 inches) below subgrade and compact each layer of backfill or fill material, 95 percent.
- d. Landscaped areas, top 400 mm (16 inches),85 percent.

GRADING: 3.5

- A. General: Uniformly grade the areas within the limits of this section, including adjacent transition areas. Smooth the finished surface within specified tolerance. Provide uniform levels or slopes between points where elevations are indicated, or between such points and existing finished grades. Provide a smooth transition between abrupt changes in slope.
- B. Cut rough or sloping rock to level beds for foundations. In pipe spaces or other unfinished areas, fill low spots and level off with coarse sand or fine gravel.
- C. Slope backfill outside building away from building walls for a minimum distance of 1800 mm (6 feet).
- D. Finish grade earth floors in pipe basements as shown to a level, uniform slope and leave clean.
- E. Finished grade shall be at least 150 mm (6 inches) below bottom line of window or other building wall openings unless greater depth is shown.
- F. Place crushed stone or gravel fill under concrete slabs on grade, tamped, and leveled. Thickness of fill shall be 150 mm (6 inches) unless otherwise shown.
- G. Finish subgrade in a condition acceptable to Resident Engineer at least one day in advance of paving operations. Maintain finished subgrade in a smooth and compacted condition until succeeding operation has been accomplished. Scarify, compact, and grade subgrade prior to further construction when approved compacted subgrade is disturbed by Contractor's subsequent operations or adverse weather.
- H. Grading for Paved Areas: Provide final grades for both subgrade and base course to +/- 6 mm (0.25 inches) of indicated grades.

DISPOSAL OF UNSUITABLE AND EXCESS EXCAVATED MATERIAL: 3.6

- A. Disposal: Remove surplus satisfactory soil and waste material, including unsatisfactory soil, trash, and debris, and legally dispose of it off property.
- B. Disposal: Transport surplus satisfactory soil to designated storage areas on property. Stockpile or spread soil as directed by Resident Engineer.
 - 1. Remove waste material, including unsatisfactory soil, trash, and debris, and legally dispose of it off property.
- C. Place excess excavated materials suitable for fill and/or backfill on site where directed.
- D. Remove from site and dispose of any excess excavated materials after all fill and backfill operations have been completed.
- E. Segregate all excavated contaminated soil designated by the Resident Engineer from all other excavated soils, and stockpile on site on two 0.15 mm (6 mil) polyethylene sheets with a polyethylene cover. A designated area shall be selected for this purpose. Dispose of

excavated contaminated material in accordance with State and Local requirements.

3.7 CLEAN UP:

Upon completion of earthwork operations, clean areas within contract limits, remove tools, and equipment. Provide site clear, clean, free of debris, and suitable for subsequent construction operations. Remove all debris, rubbish, and excess material from Medical Center.

END OF SECTION

SECTION 32 05 23

CEMENT AND CONCRETE FOR EXTERIOR IMPROVEMENTS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. This section shall cover site work concrete constructed upon the prepared subgrade and in conformance with the lines, grades, thickness, and cross sections shown. Construction shall include the following:
- B. Curb
- C. Pedestrian Pavement: Walks, wheelchair curb ramps, steps.
- D. Equipment Pads: Signage and light standard foundations.

1.2 RELATED WORK

- A. Laboratory and Field Testing Requirements: Section 01 45 29, TESTING LABORATORY SERVICES.
- B. Subgrade Preparation: Section 31 20 00, EARTH MOVING.

1.3 DESIGN REQUIREMENTS

Design all elements with the latest published version of applicable codes.

WEATHER LIMITATIONS 1.4

- A. Hot Weather: Follow the recommendations of ACI 305 or as specified to prevent problems in the manufacturing, placing, and curing of concrete that can adversely affect the properties and serviceability of the hardened concrete. Methods proposed for cooling materials and arrangements for protecting concrete shall be made in advance of concrete placement and approved by Resident Engineer.
- B. Cold Weather: Follow the recommendations of ACI 306 or as specified to prevent freezing of concrete and to permit concrete to gain strength properly. Use only the specified non-corrosive, non-chloride accelerator. Do not use calcium chloride, thiocyantes or admixtures containing more than 0.05 percent chloride ions. Methods proposed for heating materials and arrangements for protecting concrete shall be made in advance of concrete placement and approved by Resident Engineer.

SELECT SUBBASE MATERIAL JOB-MIX 1.5

The Contractor shall retain and reimburse a testing laboratory to design a select subbase material mixture and submit a job-mix formula to the Resident Engineer, in writing, for approval. The formula shall include the source of materials, gradation, plasticity index, liquid limit, and laboratory compaction curves indicating maximum density at optimum moisture.

1.6 SUBMITTALS

- A. In accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, furnish the following:
- B. Manufacturers' Certificates and Data certifying that the following materials conform to the requirements specified.
 - 1. Expansion joint filler
 - 2. Hot poured sealing compound
 - 3. Reinforcement
 - 4. Curing materials
 - 5. Concrete protective coating
- C. Data and Test Reports: Select subbase material.
 - 1. Job-mix formula.
 - 2. Source, gradation, liquid limit, plasticity index, percentage of wear, and other tests as specified and in referenced publications.

1.7 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only. Refer to the latest edition of all referenced Standards and codes.
- B. American Association of State Highway and Transportation Officials (AASHTO):

	formed and Plain Billet Steel Bars for oncrete Reinforcement (ASTM A615/A615M-96A)
M55M/55MWe	elded Steel Wire Fabric for Concrete einforcement (ASTM A185)
	terials for Aggregate and Soil-Aggregate bbase, Base and Surface Courses (R 1996)
	quid Membrane-Forming Compounds for Curing
M171Sh	eet Materials for Curing Concrete (ASTM C171
M182Bu	urlap Cloth Made from Jute or Kenaf
Pa (N	reformed Expansion Joint Fillers for Concrete aving and Structural Construction Jon-extruding and Resilient Bituminous Type) ASTM D1751)
	oiled Linseed Oil Mixture for Treatment of ortland Cement Concrete
	isture-Density Relations of Soils Using a 2.5 (. (5.5 lb) Rammer and a 305 mm (12 in.) Drop
T180Mc	Sisture-Density Relations of Soils Using a 54 kg (10 lb.) Rammer and a 457 mm (18 in.)

C. American Society for Testing and Materials (ASTM):

C94/C94M.....Ready-Mixed Concrete C143/C143M....Slump of Hydraulic Cement Concrete

PART 2 - PRODUCTS

2.1 GENERAL

Concrete shall be Type C, air-entrained as with the following exceptions:

TYPE	MAXIMUM SLUMP*
Curb & Gutter	75 mm (3")
Pedestrian Pavement	75 mm (3")
Vehicular Pavement	50 mm (2") (Machine Finished)
	100 mm (4") (Hand Finished)
Equipment Pad 75 to 100 mm (3" to 4")	
* For concrete to be vibrated: Slump as determined by ASTM C143.	
Tolerances as established by ASTM C94.	

2.2 REINFORCEMENT

- A. The type, amount, and locations of steel reinforcement shall be as shown on the drawings and in the specifications.
- B. Welded wire-fabric shall conform to AASHTO M55.
- C. Dowels shall be plain steel bars conforming to AASHTO M31 or M42. Tie bars shall be deformed steel bars conforming to AASHTO M31 or M42.

2.3 SELECT SUBBASE (WHERE REQUIRED)

- A. Subbase material shall consist of select granular material composed of sand, sand-gravel, crushed stone, crushed or granulated slag, with or without soil binder, or combinations of these materials conforming to AASHTO M147, Grading E or F.
- B. Materials meeting other gradations than that noted will be acceptable whenever the gradations are within a tolerance of three to five percent, plus or minus, of the single gradation established by the job-mix formula.
- C. Subbase material shall produce a compacted, dense-graded course, meeting the density requirement specified herein.

2.4 FORMS

- A. Use metal or wood forms that are straight and suitable in cross-section, depth, and strength to resist springing during depositing and consolidating the concrete, for the work involved.
- B. Do not use forms if they vary from a straight line more than 3 mm (1/8 inch) in any 3000 mm (ten foot) long section, in either a horizontal or vertical direction.
- C. Wood forms should be at least 50 mm (2 inches) thick (nominal). Wood forms shall also be free from warp, twist, loose knots, splits, or other defects. Use approved flexible or curved forms for forming radii.

2.5 CONCRETE CURING MATERIALS

- A. Concrete curing materials shall conform to one of the following:
 - 1. Burlap conforming to AASHTO M182 having a weight of 233 grams (seven ounces) or more per square meter (yard) when dry.
 - 2. Impervious Sheeting conforming to AASHTO M171.
 - 3. Liquid Membrane Curing Compound conforming to AASHTO M148 (ASTM C309), // Type 1 and shall be free of paraffin or petroleum.

2.6 EXPANSION JOINT FILLERS

Material shall conform to AASHTO M213.

2.7 CONCRETE PROTECTION MATERIAL

Linseed Oil Mixture shall conform to AASHTO M233.

PART 3 - EXECUTION

3.1 SUBGRADE PENETRATION

- A. Prepare, construct, and finish the subgrade as specified in Section 31 20 00, EARTH MOVING.
- B. Maintain the subgrade in a smooth, compacted condition, in conformance with the required section and established grade until the succeeding operation has been accomplished.

3.2 SELECT SUBBASE (WHERE REQUIRED)

- A. Mixing: Proportion the select subbase by weight or by volume in quantities so that the final approved job-mixed formula gradation, liquid limit, and plasticity index requirements will be met after subbase course has been placed and compacted. Add water in approved quantities, measured by weight or volume, in such a manner to produce a uniform blend.
- B. Placing:
 - 1. Place the mixed material on the prepared subgrade in a uniform layer to the required contour and grades, and to a loose depth not to exceed 200 mm (8 inches), and that when compacted, will produce a layer of the designated thickness.
 - 2. When the designated compacted thickness exceeds 150 mm (6 inches), place the material in layers of equal thickness. Remove unsatisfactory areas and replace with satisfactory mixture, or mix the material in the area.
 - 3. In no case will the addition of thin layers of material be added to the top layer in order to meet grade.
 - 4. If the elevation of the top layer is 13 mm (1/2 inch) or more below the grade, excavate the top layer and replace with new material to a depth of at least 75 mm (3 inches) in compacted thickness.
- C. Compaction:

- 1. Perform compaction with approved equipment (hand or mechanical) well suited to the material being compacted.
- 2. Moisten or aerate the material as necessary to provide the moisture content that will readily facilitate obtaining the specified compaction with the equipment used.
- 3. Compact each layer to at least 95 percent or 100 percent of maximum density as determined by AASHTO T180 or AASHTO T99 respectively.
- D. Smoothness Test and Thickness Control:

Test the completed subbase for grade and cross section with a straight edge.

- 1. The surface of each layer shall not show any deviations in excess of 10 mm (3/8 inch).
- 2. The completed thickness shall be within 13 mm (1/2 inch) of the thickness as shown.
- E. Protection:
 - 1. Maintain the finished subbase in a smooth and compacted condition until the concrete has been placed.
 - 2. When Contractor's subsequent operations or adverse weather disturbs the approved compacted subbase, excavate, and reconstruct it with new material meeting the requirements herein specified, at no additional cost to the VA.

3.3 SETTING FORMS

- A. Base Support:
 - 1. Compact the base material under the forms true to grade so that, when set, they will be uniformly supported for their entire length at the grade as shown.
 - 2. Correct imperfections or variations in the base material grade by cutting or filling and compacting.
- B. Form Setting:
 - 1. Set forms sufficiently in advance of the placing of the concrete to permit the performance and approval of all operations required with and adjacent to the form lines.
 - 2. Set forms to true line and grade and use stakes, clamps, spreaders, and braces to hold them rigidly in place so that the forms and joints are free from play or movement in any direction.
 - 3. Forms shall conform to line and grade with an allowable tolerance of 3 mm (1/8 inch) when checked with a straightedge and shall not deviate from true line by more than 6 mm (1/4 inch) at any point.
 - 4. Do not remove forms until removal will not result in damaged concrete or at such time to facilitate finishing.
 - 5. Clean and oil forms each time they are used.
- C. The Contractor's Registered Professional Land Surveyor, specified in Section 00 72 00, GENERAL CONDITIONS, shall establish and control the

alignment and the grade elevations of the forms or concrete slipforming machine operations.

- 1. Make necessary corrections to forms immediately before placing concrete.
- 2. When any form has been disturbed or any subgrade or subbase has become unstable, reset and recheck the form before placing concrete.

3.4 EQUIPMENT

- A. The Resident Engineer shall approve equipment and tools necessary for handling materials and performing all parts of the work prior to commencement of work.
- B. Maintain equipment and tools in satisfactory working condition at all times.

3.5 PLACING REINFORCEMENT

- A. Reinforcement shall be free from dirt, oil, rust, scale or other substances that prevent the bonding of the concrete to the reinforcement.
- B. Before the concrete is placed, the Resident Engineer shall approve the reinforcement, which shall be accurately and securely fastened in place with suitable supports and ties. The type, amount, and position of the reinforcement shall be as shown.

3.6 PLACING CONCRETE - GENERAL

- A. Obtain approval of the Resident Engineer before placing concrete.
- B. Remove debris and other foreign material from between the forms before placing concrete. Obtain approval of the Resident Engineer before placing concrete.
- C. Before the concrete is placed, uniformly moisten the subgrade, base, or subbase appropriately, avoiding puddles of water.
- D. Convey concrete from mixer to final place of deposit by a method which will prevent segregation or loss of ingredients. Deposit concrete so that it requires as little handling as possible.
- E. While being placed, spade or vibrate and compact the concrete with suitable tools to prevent the formation of voids or honeycomb pockets. Vibrate concrete well against forms and along joints. Over-vibration or manipulation causing segregation will not be permitted. Place concrete continuously between joints without bulkheads.
- F. Install a construction joint whenever the placing of concrete is suspended for more than 30 minutes and at the end of each day's work.
- G. Workmen or construction equipment coated with foreign material shall not be permitted to walk or operate in the concrete during placement and finishing operations.

3.7 PLACING CONCRETE FOR CURB AND GUTTER, PEDESTRIAN PAVEMENT, AND EQUIPMENT PADS

A. Place concrete in the forms in one layer of such thickness that, when compacted and finished, it will conform to the cross section as shown.

- B. Deposit concrete as near to joints as possible without disturbing them but do not dump onto a joint assembly.
- C. After the concrete has been placed in the forms, use a strike-off guided by the side forms to bring the surface to the proper section to be compacted.
- D. Consolidate the concrete thoroughly by tamping and spading, or with approved mechanical finishing equipment.
- E. Finish the surface to grade with a wood or metal float.
- F. All Concrete pads and pavements shall be constructed with sufficient slope to drain properly.

3.8 PLACING CONCRETE FOR VEHICULAR PAVEMENT (NOT USED)

3.9 CONCRETE FINISHING - GENERAL

- A. The sequence of operations, unless otherwise indicated, shall be as follows:
 - 1. Consolidating, floating, straight-edging, troweling, texturing, and edging of joints.
 - 2. Maintain finishing equipment and tools in a clean and approved condition.

3.10 CONCRETE FINISHING CURB

- A. Round the edges of the gutter and top of the curb with an edging tool to a radius of 6mm (1/4 inch) or as otherwise detailed.
- B. Float the surfaces and finish with a smooth wood or metal float until true to grade and section and uniform in textures.
- C. Finish the surfaces, while still wet, with a bristle type brush with longitudinal strokes.
- D. Immediately after removing the front curb form, rub the face of the curb with a wood or concrete rubbing block and water until blemishes, form marks, and tool marks have been removed. Brush the surface, while still wet, in the same manner as the gutter and curb top.
- E. Except at grade changes or curves, finished surfaces shall not vary more than 3 mm (1/8 inch) for gutter and 6 mm (1/4 inch) for top and face of curb, when tested with a 3000 mm (10 foot) straightedge.
- F. Remove and reconstruct irregularities exceeding the above for the full length between regularly scheduled joints.
- G. Correct any depressions which will not drain.
- H. Visible surfaces and edges of finished curb, gutter, and combination curb and gutter shall be free of blemishes, form marks, and tool marks, and shall be uniform in color, shape, and appearance.

3.11 CONCRETE FINISHING PEDESTRIAN PAVEMENT

- A. Walks and Wheelchair Curb Ramps:
 - 1. Finish the surfaces to grade and cross section with a metal float, trowled smooth and finished with a broom moistened with clear water.
 - 2. Brooming shall be transverse to the line of traffic.
 - 3. Finish all slab edges, including those at formed joints, carefully with an edger having a radius as shown on the Drawings.

- 4. Unless otherwise indicated, edge the transverse joints before brooming. The brooming shall eliminate the flat surface left by the surface face of the edger. Execute the brooming so that the corrugation, thus produced, will be uniform in appearance and not more than 2 mm (1/16 inch) in depth.
- 5. The completed surface shall be uniform in color and free of surface blemishes, form marks, and tool marks. The finished surface of the pavement shall not vary more than 5 mm (3/16 inch) when tested with a 3000 mm (10 foot) straightedge.
- 6. The thickness of the pavement shall not vary more than 6 mm (1/4)inch).
- 7. Remove and reconstruct irregularities exceeding the above for the full length between regularly scheduled joints.
- B. Steps: The method of finishing the steps and the sidewalls is similar to above except as herein noted.
 - 1. Remove the riser forms one at a time, starting with the top riser.
 - 2. After removing the riser form, rub the face of the riser with a wood or concrete rubbing block and water until blemishes, form marks, and tool marks have been removed. Use an outside edger to round the corner of the tread; use an inside edger to finish the corner at the bottom of the riser.
 - 3. Give the risers and sidewall a final brush finish. The treads shall have a final finish with a stiff brush to provide a non-slip surface.
 - 4. The texture of the completed steps shall present a neat and uniform appearance and shall not deviate from a straightedge test more than 5 mm (3/16 inch).
 - 5. Core drill concrete to secure stainless steel pipe railing.

3.12 CONCRETE FINISHING FOR VEHICULAR PAVEMENT (NOT USED)

3.13 CONCRETE FINISHING EQUIPMENT PADS

- A. After the surface has been struck off and screeded to the proper elevation, give it a smooth dense float finish, free from depressions or irregularities.
- B. Carefully finish all slab edges with an edger having a radius as shown in the Drawings.
- C. After removing the forms, rub the faces of the pad with a wood or concrete rubbing block and water until blemishes, form marks, and tool marks have been removed. The finish surface of the pad shall not vary more than 3 mm (1/8 inch) when tested with a 3000 mm (10 foot)straightedge.
- D. Correct irregularities exceeding the above.

3.14 JOINTS - GENERAL

- A. Place joints, where shown, conforming to the details as shown, and perpendicular to the finished grade of the concrete surface.
- B. Joints shall be straight and continuous from edge to edge of the pavement.

3.15 CONTRACTION JOINTS

- A. Cut joints to depth as shown with a grooving tool or jointer of a radius as shown or by sawing with a blade producing the required width and depth.
- B. Construct joints in curbs by inserting 3 mm (1/8 inch) steel plates conforming to the cross sections of the curb.
- C. Plates shall remain in place until concrete has set sufficiently to hold its shape and shall then be removed.
- D. Finish edges of all joints with an edging tool having the radius as shown.
- E. Score pedestrian pavement with a standard grooving tool or jointer.

3.16 EXPANSION JOINTS

- A. Use a preformed expansion joint filler material of the thickness as shown to form expansion joints.
- B. Material shall extend the full depth of concrete, cut and shaped to the cross section as shown, except that top edges of joint filler shall be below the finished concrete surface where shown to allow for sealing.
- C. Anchor with approved devices to prevent displacing during placing and finishing operations.
- D. Round the edges of joints with an edging tool.
- E. Form expansion joints as follows:
 - 1. Without dowels, about structures and features that project through, into, or against any site work concrete construction.
 - 2. Using joint filler of the type, thickness, and width as shown.
 - 3. Installed in such a manner as to form a complete, uniform separation between the structure and the site work concrete item.

3.17 CONSTRUCTION JOINTS

- A. Locate longitudinal and transverse construction joints between slabs of vehicular pavement as shown.
- B. Place transverse construction joints of the type shown, where indicated and whenever the placing of concrete is suspended for more than 30 minutes.
- C. Use a butt-type joint with dowels in curb if the joint occurs at the location of a planned joint.
- D. Use keyed joints with tiebars if the joint occurs in the middle third of the normal curb joint interval.

3.18 FORM REMOVAL

- A. Forms shall remain in place at least 12 hours after the concrete has been placed. Remove forms without injuring the concrete.
- B. Do not use bars or heavy tools against the concrete in removing the forms. Promptly repair any concrete found defective after form removal.

3.19 CURING OF CONCRETE

- A. Cure concrete by one of the following methods appropriate to the weather conditions and local construction practices, against loss of moisture, and rapid temperature changes for at least seven days from the beginning of the curing operation. Protect unhardened concrete from rain and flowing water. All equipment needed for adequate curing and protection of the concrete shall be on hand and ready to install before actual concrete placement begins. Provide protection as necessary to prevent cracking of the pavement due to temperature changes during the curing period. If any selected method of curing does not afford the proper curing and protection against concrete cracking, remove and replace the damaged pavement and employ another method of curing as directed by the Resident Engineer.
- B. Burlap Mat: Provide a minimum of two layers kept saturated with water for the curing period. Mats shall overlap each other at least 150 mm (6 inches).
- C. Impervious Sheeting: Use waterproof paper, polyethylene-coated burlap, or polyethylene sheeting. Polyethylene shall be at lease 0.1 mm (4 mils) in thickness. Wet the entire exposed concrete surface with a fine spray of water and then cover with the sheeting material. Sheets shall overlap each other at least 300 mm (12 inches). Securely anchor sheeting.
- D. Liquid Membrane Curing:
 - 1. Apply pigmented membrane-forming curing compound in two coats at right angles to each other at a rate of 5 m^2/L (200 square feet per gallon) for both coats.
 - 2. Do not allow the concrete to dry before the application of the membrane.
 - 3. Cure joints designated to be sealed by inserting moistened paper or fiber rope or covering with waterproof paper prior to application of the curing compound, in a manner to prevent the curing compound entering the joint.
 - 4. Immediately re-spray any area covered with curing compound and damaged during the curing period.
 - 5. Protective Coating apply protective coating of linseed oil mixture to expose-to-view concrete surfaces, drainage structures, and features that project through, into, or against the items constructed under this section to protect the concrete against the action of deicing materials.
 - a. Application: Complete backfilling and curing operation prior to applying protective coating. Concrete shall be surface dry and thoroughly clean before each application. Give the concrete surface at least two applications. Coverage shall not be more than 11 m2/L (50 square yards per gallon) for first application, and not more than 16 m2/L (70 square yards per gallon) for the second application, except when the number of applications and coverage for each application for commercially prepared mixture shall be in accordance with the manufacturer's instructions. Protect coated surfaces from vehicular and pedestrian traffic until dry.

b. Precautions: Do not heat protective coating, and do not expose the protective coating to open flame, sparks, or fire adjacent to open containers or applicators. Do not apply material at temperatures lower than $10^{\circ}C$ ($50^{\circ}F$).

3.20 CLEANING

- A. After completion of the curing period:
 - 1. Remove the curing material (other than liquid membrane).
 - 2. Sweep the concrete clean.
 - 3. After removal of all foreign matter from the joints, seal joints as herein specified.
 - 4. Clean the entire concrete of all debris and construction equipment as soon as curing and sealing of joints has been completed.

3.21 PROTECTION

The contractor shall protect the concrete against all damage prior to final acceptance by the Government. Remove concrete containing excessive cracking, fractures, spalling, or other defects and reconstruct the entire section between regularly scheduled joints, when directed by the Resident Engineer, and at no additional cost to the Government. Exclude traffic from vehicular pavement until the concrete is at least seven days old, or for a longer period of time if so directed by the Resident Engineer.

3.22 FINAL CLEAN-UP

Remove all debris, rubbish and excess material from the Station.

END OF SECTION

SECTION 32 12 16

ASPHALT PAVING

PART 1 - GENERAL

1.1 DESCRIPTION

This work shall cover the composition, mixing, construction upon the prepared subgrade, and the protection of hot asphalt concrete pavement. The hot asphalt concrete pavement shall consist of an aggregate or asphalt base course and asphalt surface course constructed in conformity with the lines, grades, thickness, and cross sections as shown. Each course shall be constructed to the depth, section, or elevation required by the drawings and shall be rolled, finished, and approved before the placement of the next course.

1.2 RELATED WORK

- A. Laboratory and field testing requirements: Section 01 45 29, TESTING LABORATORY SERVICES.
- B. Subgrade Preparation: Paragraph 3.3 and Section 31 20 00, EARTH MOVING.
- C. Pavement Markings: Section 32 17 23, PAVEMENT MARKINGS.

1.3 INSPECTION OF PLANT AND EQUIPMENT

The Resident Engineer shall have access at all times to all parts of the material producing plants for checking the mixing operations and materials and the adequacy of the equipment in use.

1.4 ALIGNMENT AND GRADE CONTROL

The Contractor's Registered Professional Land Surveyor specified in Section 00 72 00, GENERAL CONDITIONS shall establish and control the pavement (aggregate or asphalt base course and asphalt surface course) alignments, grades, elevations, and cross sections as shown on the Drawings.

1.5 SUBMITTALS

- A. In accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, furnish the following:
- B. Data and Test Reports:
 - 1. Aggregate Base Course: Sources, gradation, liquid limit, plasticity index, percentage of wear, and other tests required by the Pennsylvania Department of Transportation.
 - Asphalt Base/Surface Course: Aggregate source, gradation, soundness loss, percentage of wear, and other tests required by the Pennsylvania Department of Transportation.
 - 3. Job-mix formula.
- C. Certifications:
 - 1. Asphalt prime and tack coat material certificate of conformance to the Pennsylvania Department of Transportation requirements.

- 2. Asphalt cement certificate of conformance to the Pennsylvania Department of Transportation requirements.
- 3. Job-mix certification Submit plant mix certification that mix equals or exceeds the Pennsylvania Department of Transportation requirements.
- D. Provide MSDS (Material Safety Data Sheets) for all chemicals used on ground.

PART 2 - PRODUCTS

2.1 GENERAL

A. Aggregate base and asphalt concrete materials shall conform to the requirements of the following and other appropriate sections of the latest version of the Pennsylvania Department of Transportation publication 408, including amendments, addenda and errata.

Where the term "Engineer" or "Commission" is referenced in the State Highway Specifications, it shall mean the VA Resident Engineer or VA Contracting Officer.

2.2 AGGREGATES

- A. Provide aggregates consisting of crushed stone, gravel, sand, or other sound, durable mineral materials processed and blended, and naturally combined.
- B. Subbase aggregate (where required) maximum size: 38mm(1-1/2").
- C. Base aggregate maximum size:
 - 1. Base course over 152mm(6") thick: 38mm(1-1/2");
 - 2. Other base courses: 19mm(3/4").
- D. Asphaltic base course:
 - 1. Maximum particle size not to exceed 25.4mm(1").
 - 2. Where conflicts arise between this specification and the requirements in the latest version of the State Highway Specifications, the State Specifications shall control.
- E. Aggregates for asphaltic concrete paving: Provide a mixture of sand, mineral aggregate, and liquid asphalt mixed in such proportions that the percentage by weight will be within:

Sieve Sizes	Percentage Passing
19mm(3/4")	100
9.5mm(3/8")	67 to 85
6.4mm(1/4")	50 to 65
2.4mm(No. 8 mesh)	37 to 50
600µm(No. 30 mesh)	15 to 25
75µm(No. 200 mesh)	3 to 8
Plus 50/60 penetration	liquid asphalt at 5 percent to 6-1/2 percent of
the combined dry aggree	gates.

2.3 ASPHALTS

A. Comply with provisions of Asphalt Institute Specification SS2:

1.	Asphalt cement:	Penetration grade 50/60
2.	Prime coat:	Cut-back type, grade MC-250
~		

3. Tack coat: Uniformly emulsified, grade SS-1H

2.4 SEALER

- A. Provide a sealer consisting of suitable fibrated chemical type asphalt base binders and fillers having a container consistency suitable for troweling after thorough stirring, and containing no clay or other deleterious substance.
- B. Where conflicts arise between this specification and the requirements in the latest version of the State Highway Specifications, the State Specifications shall control.

PART 3 - EXECUTION

3.1 GENERAL

The Asphalt Concrete Paving equipment, weather limitations, job-mix formula, mixing, construction methods, compaction, finishing, tolerance, and protection shall conform to the requirements of the appropriate sections of the PennDOT Publication 408 for the type of material specified.

3.2 MIXING ASPHALTIC CONCRETE MATERIALS

- A. Provide hot plant-mixed asphaltic concrete paving materials.
 - 1. Temperature leaving the plant: 143 degrees C(290 degrees F) minimum, 160 degrees C(320 degrees F) maximum.
 - 2. Temperature at time of placing: 138 degrees C(280 degrees F) minimum.

3.3 SUBGRADE

- A. Shape to line and grade and compact with self-propelled rollers.
- B. All depressions that develop under rolling shall be filled with acceptable material and the area re-rolled.
- C. Soft areas shall be removed and filled with acceptable materials and the area re-rolled.
- D. Should the subgrade become rutted or displaced prior to the placing of the subbase, it shall be reworked to bring to line and grade.
- E. Proof-roll the subgrade with maximum 45 tonne (50 ton) gross weight dump truck as directed by VA Resident Engineer or VA Contracting Officer. If pumping, pushing, or other movement is observed, rework the area to provide a stable and compacted subgrade.

3.4 BASE COURSES

- A. Subbase (when required)
 - 1. Spread and compact to the thickness shown on the drawings.

- 2. Rolling shall begin at the sides and continue toward the center and shall continue until there is no movement ahead of the roller.
- 3. After completion of the subbase rolling there shall be no hauling over the subbase other than the delivery of material for the top course.

B. Base

- 1. Spread and compact to the thickness shown on the drawings.
- 2. Rolling shall begin at the sides and continue toward the center and shall continue until there is no movement ahead of the roller.
- 3. After completion of the base rolling there shall be no hauling over the base other than the delivery of material for the top course.
- C. Thickness tolerance: Provide the compacted thicknesses shown on the Drawings within a tolerance of minus 0.0mm (0.0") to plus 12.7mm (0.5").
- D. Smoothness tolerance: Provide the lines and grades shown on the Drawings within a tolerance of 5mm in 3m (3/16 inch in ten feet).
- E. Moisture content: Use only the amount of moisture needed to achieve the specified compaction.

3.5 PLACEMENT OF ASPHALTIC CONCRETE PAVING

- A. Remove all loose materials from the compacted base.
- B. Apply the specified prime coat, and tack coat where required, and allow to dry in accordance with the manufacturer's recommendations as approved by the Architect or Engineer.
- C. Receipt of asphaltic concrete materials:
 - Do not accept material unless it is covered with a tarpaulin until unloaded, and unless the material has a temperature of not less than 130 degrees C(280 degrees F).
 - Do not commence placement of asphaltic concrete materials when the atmospheric temperature is below 10 degrees C (50 degrees F), not during fog, rain, or other unsuitable conditions.

D. Spreading:

- 1. Spread material in a manner that requires the least handling.
- 2. Where thickness of finished paving will be 76mm (3") or less, spread in one layer.

E. Rolling:

- 1. After the material has been spread to the proper depth, roll until the surface is hard, smooth, unyielding, and true to the thickness and elevations shown own the drawings.
- 2. Roll in at least two directions until no roller marks are visible.
- 3. Finished paving smoothness tolerance:
 - a. No depressions which will retain standing water.
 - b. No deviation greater than 3mm in 1.8m (1/8" in six feet).

3.6 APPLICATION OF SEAL COAT

- A. Prepare the surfaces, mix the seal coat material, and apply in accordance with the manufacturer's recommendations as approved by the Architect or Engineer.
- B. Apply one coat of the specified sealer.
- C. Achieve a finished surface seal which, when dry and thoroughly set, is smooth, tough, resilient, of uniform black color, and free from coarse textured areas, lap marks, ridges, and other surface irregularities.

3.7 PROTECTION

Protect the asphaltic concrete paved areas from traffic until the sealer is set and cured and does not pick up under foot or wheeled traffic.

3.8 FINAL CLEAN-UP

Remove all debris, rubbish, and excess material from the work area.

END OF SECTION

SECTION 32 17 23

PAVEMENT MARKINGS

PART 1 - GENERAL

1.1 DESCRIPTION

This work shall consist of furnishing and applying paint and reflective glass beads on pavement surfaces, in the form of traffic lanes, parking bays, areas restricted to handicapped persons, crosswalks, and other detail pavement markings, in accordance with the details as shown or as prescribed by the Resident Engineer. Conform to the Manual on Uniform Traffic Control Devices for Streets and Highways, published by the U.S. Department of Transportation, Federal Highway Administration, for details not shown.

1.2 SUBMITTALS

- A. In accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES, furnish Manufacturer's Certificates and Data certifying that the following materials conform to the requirements specified.
 B. Paint.
- B. Paint.

1.3 APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Federal Specifications (Fed. Spec.):

TT-B-1325C.....Beads (Glass Spheres); Retro-Reflective TT-P-1952D....Paint, Traffic Black, and Airfield Marking, Waterborne

C. Master Painters Institute (MPI):

No. 97-2007.....Latex Traffic Marking Paint

PART 2 - PRODUCTS

2.1 PAINT

Paint for marking pavement (parking lot and zone marking) shall conform to MPI No. 97, color as shown. Paint for obliterating existing markings shall conform to Fed. Spec. TT-P-1952D. Paint shall be in containers of at least 18 L (5 gallons). A certificate shall accompany each batch of paint stating compliance with the applicable publication.

2.2 PAINT APPLICATOR

Apply all marking by approved mechanical equipment. The equipment shall provide constant agitation of paint and travel at controlled speeds. Synchronize one or more paint "guns" to automatically begin and cut off paint flow in the case of skip lines. The equipment shall have manual control to apply continuous lines of varying length and marking widths

32 17 23 - 1

as shown. Provide pneumatic spray guns for hand application of paint in areas where a mobile paint applicator cannot be used. An experienced technician that is thoroughly familiar with equipment, materials, and marking layouts shall control all painting equipment and operations.

SANDBLASTING EQUIPMENT 2.3

Sandblasting equipment shall include an air compressor, hoses, and nozzles of proper size and capacity as required for cleaning surfaces to be painted. The compressor shall furnish not less than 0.08 m^3/s (150 cfm) of air at a pressure of not less than 625 kPa (90 psi) at each nozzle used.

PART 3 - EXECUTION

SURFACE PREPARATION 3.1

- A. Allow new pavement surfaces to cure for a period of not less than 14 days before application of marking materials.
- B. Thoroughly clean all surfaces to be marked before application of paint. Remove dust, dirt, and other granular surface deposits by sweeping, blowing with compressed air, rinsing with water, or a combination of these methods. Completely remove rubber deposits, existing paint markings, and other coatings adhering to the pavement with scrapers, wire brushings, sandblasting, mechanical abrasion, or approved chemicals as directed by the Resident Engineer. The application of paint conforming to Fed. Spec. TT-P-1952 is an option to removal of existing paint markings on asphalt pavement. Apply the black paint in as many coats as necessary to completely obliterate the existing markings. Where oil or grease are present on old pavements to be marked, scrub affected areas with several applications of trisodium phosphate solution or other approved detergent or degreaser, and rinse thoroughly after each application. After cleaning, seal oil-soaked areas with cut shellac to prevent bleeding through the new paint. Pavement marking shall follow as closely as practicable after the surface has been cleaned and dried, but do not begin any marking until the Resident Engineer has inspected the surface and gives permission to proceed. The Contractor shall establish control points for marking and provide templates to control paint application by type and color at necessary intervals. The Contractor is responsible to preserve and apply marking in conformance with the established control points.

3.2 APPLICATION

Apply uniformly painted and reflective pavement marking of required color(s), length, and width with true, sharp edges and ends on properly cured, prepared, and dried surfaces in conformance with the details as shown and established control points. The length and width of lines shall conform within a tolerance of plus or minus 75 mm (3 inches) and plus or minus 3 mm (1/8 inch), respectively, in the case of skip markings. The length of intervals shall not exceed the line length tolerance. Temperature of the surface to be painted and the atmosphere shall be above 10°C (50°F) and less than 35°C (95°F). Apply the paint at a wet film thickness of 0.4 mm (0.015 inch). Disperse reflective glass beads evenly on the wet paint at a rate of 720 g/L (6 pounds per gallon) of paint. Apply paint in one coat. At the direction of the

Resident Engineer, markings showing light spots may receive additional coats. The maximum drying time requirements of the paint specifications will be strictly enforced, to prevent undue softening of asphalt, and pick-up, displacement, or discoloration by tires of traffic. If there is a deficiency in drying of the marking, discontinue paint operations until cause of the slow drying is determined and corrected. Remove and replace marking that is applied at less than minimum material rates; deviates from true alignment; exceeds stipulated length and width tolerances; or shows light spots, faulty distribution of beads, smears, or other deficiencies or irregularities. Use carefully controlled sand blasting, approved grinding equipment, or other approved method to remove marking so that the surface to which the marking was applied will not be damaged.

PROTECTION 3.3

Conduct operations in such a manner that necessary traffic can move without hindrance. Protect the newly painted markings so that, insofar as possible, the tires of passing vehicles will not pick up paint. Place warning signs at the beginning of the wet line, and at points well in advance of the marking equipment for alerting approaching traffic from both directions. Place small flags or other similarly effective small objects near freshly applied markings at frequent intervals to reduce crossing by traffic. Efface and replace damaged portions of markings at no additional cost to the Government.

DETAIL PAVEMENT MARKING 3.4

Use Detail Pavement Markings, exclusive of actual traffic lane marking, at exit and entrance islands and turnouts, on curbs, at crosswalks, at parking bays, and at such other locations as shown. Show the International Handicapped Symbol at indicated parking spaces. Color shall be as shown. Apply paint for the symbol using a suitable template that will provide a pavement marking with true, sharp edges and ends. Place detail pavement markings of the color(s), width(s) and length(s), and design pattern at the locations shown.

TEMPORARY PAVEMENT MARKING 3.5

When shown or directed by the Resident Engineer, apply Temporary Pavement Markings of the color(s), width(s) and length(s) shown or directed. After the temporary marking has served its purpose and when so ordered by the Resident Engineer, remove temporary marking by carefully controlled sandblasting, approved grinding equipment, or other approved method so that the surface to which the marking was applied will not be damaged. As an option, an approved preformed pressure sensitive, reflective, adhesive tape type of temporary pavement marking of the required color(s), width(s) and length(s) may be furnished and used in lieu of temporary painted and reflective marking. The Contractor shall be fully responsible for the continued durability and effectiveness of such marking during the period for which its use is required. Remove any unsatisfactory tape type marking and replace with painted and reflective markings at no additional cost to the Government.

3.6 FINAL CLEAN-UP

Remove all debris, rubbish and excess material from the Station.

END OF SECTION

SECTION 32 31 00

EQUIPMENT SCREEN

PART 1 GENERAL

- 1.01 SUMMARY
 - A. Products supplied but not installed under this section as applicable
 - 1. Steel fixed louver screen.

1.02 PERFORMANCE REQUIREMENTS

- A. Loading
 - Design and size components to withstand dead loads and live loads caused by positive and negative wind loads acting normal to the plane of enclosure including building corners in accordance with ASCE 7, BOCA and OSHA code requirements. Components are also sized in consideration of regional geographic wind characteristics.

B. TGIC Polyester Powder Coat Finish System

 Epoxy pre-coat / Color Coat / TGIC Polyester Powder Coat Finish 20-Year Warranty System.

TGIC Polyester Powder Coat Finish System

Test Methods	Powder Properties	Requirement
	Final	TGIC
	Coatin	g
(Prime coat)	DuPont # ELH503	S5 (Gray Morning)
(Test color coat)	DuPont # PFB	-603-S9 (Bike Black)
(ASTM D5965-96, C Speci	fic Gravity	1.29 +/- 0.05
	etical Coverage	
	2	
ASTM D3451-92, 13 Mass	Loss During Cure	less than 1%
Max.	Storage Temp.	75 degrees F.
	5 1	2
Test Methods	Coating Properties	Requirement
ASTM D523-89	Gloss at 60 percen	t 85+
DPC TM 10.219	PCI Powder Smoothn	ess 8
ASTM D2454-95	Overbake Resistanc	e, Time 100%
ASTM D3363-92a	Pencil Hardness	2н
ASTM D2794-93	Dir/Rev Impact, Ga	rdner 160/160in/lbs

EQUIPMENT SCREEN 32 31 00 - 1

ASTM D3359-97 Adhesion, Cross Hatch 5Bpass ASTM D522-93a Flexibility, Mandrel 1/8" dia. no fracture ASTM B117-97 Salt Spray 4,000 hours UL DTOV20rg.Coatings Steel Enclosures, Electrical Equipment Recognized

Application

Electrostatic Spray, 300 degrees F. Cure Schedule (Time at substrate temp.) Pretreatment: White Metal Blast (2mil. Min. Etch) Substrate: 0.032 in. CRS 10 Min. @ 400f.

Film Thickness

8.0-10.0 Mils

1.03 SUBMITTALS

- A. Product Data. Supply printed materials indicating specified infill pattern design, spacing and component material sizes.
- B. Drawings. Erection and detail shop drawings will be provided showing layout and location of all component parts. Panel sizes, clips, gates, gate hardware, attachment details, base requirements and panel installation bolts will be enumerated on the drawings. Installation bolts will be supplied by the installer (not by manufacturer). Drawings will need to be approved by customer prior to fabrication.
- C. Samples. A sample will be provided for each panel type selected (additional samples available if needed). Each sample approximately 10" x 10" to be coated with the specified 20-year warranty TGIC polyester powder coat finish system. (Sample will be in specified color, if available).
- D. Warranty document. Provide complete manufacturer's finish and workmanship documents.

1.04 QUALITY ASSURANCE

- A. Fabricator qualifications. A firm experienced in producing fencing/infill/gate products similar to those indicated for the Project and with a record of successful in-service performance.
- B. Metal Bar Grating Standards. Comply with applicable requirements as listed below.
 - Non-Heavy-Duty Metal Bar Gratings Comply with NAAMM MBG 531, "Metal Bar Grating Manual for Steel, Stainless Steel, and Aluminum Gratings and Stair Treads
- C. Welding. Manufacturer to utilize quality shop welding procedures according to AWS Structural Welding Code guidelines.

1.05 PROJECT CONDITIONS

- A. Field Measurements. Verification of dimensions and layout information for fencing/infill/gates shown on drawings.
- 1.06 WARRANTY SUMMARY
 - A. Materials and workmanship. Manufacturer to warrant the original purchaser of fencing/infill/gate systems to be free from defects in material and workmanship and all fabrications to be in accordance with NAAMM steel fabrication industry tolerances and standards.

Manufacturer to supply written warranty information in accordance with specification requirements.

B. 20-Year Finish Warranty. When supplied with "BB-20", 20-year warranty TGIC polyester powder coat finish system applied over hot-dip galvanizing, manufacturer guarantees supplied components will not rust, peel or blister for a period of Twenty (20) years from the date of purchase. Damage from accident, improper transport, improper installation, normal finish wear, vandalism or abuse and certain additional items listed on warranty documents are not covered. Warranty is limited to pro-rated value of the coating only, not to exceed original cost of coating. Manufacturer to supply written warranty information in accordance with specification requirements.

PART 2 PRODUCTS

- 2.01 MANUFACTURER
 - A. BarnettBates Orsogril® 800-541-3912 (<u>www.barnettbates.com</u>) custom fabrication of required components, or equal as approved by architect.

2.02 MATERIALS

- A. Steel Bar Stock ASTM A36
- B. Steel Tubing ASTM A500, Grade B
- C. Orsogril® Pattern Style pattern as indicated below.

D. Louver Pattern

BarnettBates Orsogril® Talia-100 100% view-blocking louver. 1/16" (2mm) thickness overlapping formed sheet metal louvers (may be positioned horizontally, vertically or inverted in horizontal position to effectively block sight lines from below). Louvers positioned and held in place by 5/32" round crossbars at 5 7/32" centers. Custom engineered panel system banding/framing/mounting clips per fabrication detail.

2.03 FABRICATION

- A. Electro-forge welding Infill panels electro-forge welded for complete weld penetration of crossbar.
- B. Fabrication per shop drawings All supplied components will be fabricated per detail shop drawings supplied by manufacturer.
- B. NAAMM Prior to shipment, all fabricated components will be analyzed and meet standard NAAMM steel fabrication requirements and tolerances.
- C. OSHA / BOCA Fabricated components, when installed properly will meet applicable OSHA, and/or BOCA loading requirements.

2.04 FINISH

- A. BarnettBates Orsogril® 20-year Warranty Finish System.
 All supplied components will be finished with this system (or equal if approved by architect).
 - 1) All fabricated product to be 100% sandblasted to white metal for removal of scale, oil and debris to create a minimum 2mil etching for proper adhesion.
 - Electrostatic application of DuPont Gray Morning epoxy powder primer with 375f. minimum
 15-minute duration heat cure for maximum corrosion protection.
 - 3) Immediate electrostatic application of DuPont TGIC polyester powder color coat while metal temperature is minimum of 300f. and heat cure for minimum 10 minutes at 400f.

This process provides an average of 8-10 mils total coating thickness. Coating to withstand more than 4,000 hours salt spray. (Complete testing results available from manufacturer. See PERFORMANCE REQUIREMENTS 1.02,B)

B. Colors; To be selected from list below.

ALMON	1D	PFT500S8
AERO	YELLOW	PFY601S9

RED BARON	PFR400S9
BLUE STREAK II	PFK604S9
EVERGREEN	PFG500S9
SAFETY ORANGE	PFS500S8
GRAY ASA-70	PFH502S8
BIKE BLACK	PFB603S9
SKY WHITE	PFW510S9
STATUARY BRONZE	pfj407A5
CHOCOLATE BROWN	PFJ403S9

PART 3 - EXECUTION

- 3.01 EXAMINATION
 - A. Examine areas and conditions with installer present, examine area and conditions for a verified survey of property lines and legal boundaries, site clearing, concrete work, steel frame and support structure work (as necessary) earthwork, pavement work and other conditions affecting performance.
 - B. Proceed with installation Proceed with installation only after unsatisfactory conditions have been corrected.

3.02 INSTALLATION, GENERAL

A. Panels and major components will be numbered per shop drawings. Review numbering system and then properly distribute and stack components (with protective padding between panels) on site for convenient access prior to beginning installation/erection.

1. Typical Fabricated Panel. Loose-assemble clip-angle attachment hardware to corner mounting tabs on fabricated panel. Place panel in position at lower-left corner of first installation area. Align and tighten clip-angles to support bottom of panel, positioned level and plumb. Work around panel sides to affix clip angles and gradually tighten bolts to complete first panel installation. Mark and remove clip angles in order to install concrete anchors as necessary prior to reassembly for final panel attachment. Adjust for final positioning by moving bolts within slotted holes. Move to adjoining panel areas and install remaining panels. Re-tighten bolts with panels in final position.

END OF SECTION

EQUIPMENT SCREEN 32 31 00 - 5

SECTION 32 90 00

PLANTING

PART 1 - GENERAL

1.1 DESCRIPTION

This work consists of furnishing and installing all planting materials required for landscaping hereinafter specified in locations as shown.

1.2 EQUIPMENT

Maintain all equipment, tools and machinery while on the project in sufficient quantities and capacity for proper execution of the work.

1.3 RELATED WORK

- A. Section 31 20 00, EARTH MOVING, Topsoil Materials.
- B. Section 01 45 29, TESTING LABORATORY SERVICES, Topsoil Testing.
- C. Section 01 57 19, TEMPORARY ENVIRONMENTAL CONTROLS.

1.4 SUBMITTALS

A. Samples: Submit the following samples for approval before work is started:

Inert Mulch	2.3 kg (5 pounds) of each type
	to be used.
Organic Mulch	2.3 kg (5 pounds) of each type
	to be used.
Pre-Emergent	2.3 kg (5 pounds) of each type
Herbicide	to be used.

- B. Certificates of Conformance or Compliance: Before delivery, notarized certificates attesting that the following materials meet the requirements specified shall be submitted to the Resident Engineer for approval:
 - Plant Materials (Department of Agriculture certification by State Nursery Inspector declaring material to be free from insects and disease).
 - 2. Fertilizers.
 - 3. Lime
 - 4. Peat
 - 5. Seed
 - 6. Sod
 - 7. Membranes
 - 8. Asphalt Adhesive
- C. Manufacturer's Literature and Data:
 - 1. Antidesiccant
 - 2. Erosion control materials
 - 3. Hydro mulch
 - 4. Pre-emergent herbicide

- D. Licenses: Licenses of Arborist shall be submitted (one copy), to the Resident Engineer.
- E. Soil laboratory testing results and any soil amendment recommendations from the Contractor.

1.5 DELIVERY AND STORAGE

A. Delivery:

- Notify the Resident Engineer of the delivery schedule in advance so the plant material may be inspected upon arrival at the job site. Remove unacceptable plant material from the job site immediately.
- Protect plants during delivery to prevent damage to root balls or desiccation of leaves. Protect trees during transport by tying in the branches and covering all exposed branches.
- 3. The use of equipment such as "tree spades" is permitted provided the plant balls are sized in accordance with ANSI Z60.1 and tops are protected from damage.
- 4. Deliver fertilizer to the site in the original, unopened containers bearing the manufacturer's warranteed chemical analysis, name, trade name or trademark, and in conformance to state and federal law. In lieu of containers, fertilizer may be furnished in bulk and a certificate indicating the above information shall accompany each delivery.
- 5. During delivery: Protect sod, from drying out and seed from contamination.
- B. Storage:
 - 1. Sprinkle sod with water and cover with moist burlap, straw or other approved covering, and protect from exposure to wind and direct sunlight. Covering should permit air circulation to alleviate heat development.
 - 2. Keep seed, lime, and fertilizer in dry storage away from contaminants.
 - 3. Store plants not installed on the day of arrival at the site as follows:
 - a. Shade and protect plants from the wind when stored outside.
 - b. Heel in bare root plants.
 - c. Protect plants stored on the project from drying out at all times by covering the balls or roots with moist sawdust, wood chips, shredded bark, peat moss, or other similar mulching material.
 - d. Keep plants, including those in containers, in a moist condition until planted, by watering with fine mist spray.

1.6 PLANTING AND TURF INSTALLATION SEASONS AND CONDITIONS

- A. Perform operations within the following dates: From April 1 to June 30 for spring and from Sept 1st to November 15th for fall.
- B. No work shall be done when the ground is frozen, snow covered, too wet or in an otherwise unsuitable condition for planting. Special conditions may exist that warrants a variance in the specified planting dates or conditions. Submit a written request to the Resident Engineer stating the special conditions and proposal variance.

1.7 PLANT AND TURF ESTABLISHMENT PERIOD

- A. The Establishment Period for plants and turf shall begin immediately after installation, with the approval of the Resident Engineer, and continue until the date that the Government accepts the project or phase for beneficial use and occupancy. During the Plant and Turf Establishment Period the Contractor shall:
 - 1. Water all plants and turf to maintain an adequate supply of moisture within the root zone. An adequate supply of moisture is the equivalent of 25 mm (1 inch) of absorbed water per week either through natural rainfall or augmented by periodic watering. Apply water at a moderate rate so as not to displace the mulch or flood the plants and turf.
 - 2. Prune plants and replace mulch as required.
 - 3. Replace and restore stakes, guy wires, and eroded plant saucers as required.
 - In plant beds and saucers, remove grass, weeds, and other undesired vegetation, including the root growth, before they reach a height of 75 mm (3 inches).
 - 5. Spray with approved insecticides and fungicides to control pests and ensure plant survival in a healthy growing condition, as directed by the Resident Engineer.
 - 6. Provide the following turf establishment:
 - a. Eradicate all weeds. Water, fertilize, overseed, and perform any other operation necessary to promote the growth of grass.
 - b. Replant areas void of turf 0.1 $\ensuremath{\text{m}}^2$ (one square foot) and larger in area.
 - c. Mow the new lawn at least three times prior to the final inspection. Begin mowing when grass is 100 mm (4 inches) high. Mow to a 65 mm (2-1/2 inch) height.
 - 7. Remove plants that die during this period and replace each plant with one of the same size and species.

1.8 PLANT AND TURF WARRANTY

- A. All work shall be in accordance with the terms of the Paragraph, "Warranty" of FAR clause 52.246-21, including the following supplements:
 - 1. A One Year Plant and Turf Warranty will begin on the date that the Government accepts the project or phase for beneficial use and occupancy. The Contractor shall have completed, located, and installed all plants and turf according to the plans and specifications. All plants and turf are expected to be living and in a healthy condition at the time of final inspection.
 - 2. The Contractor will replace any dead plant material and any areas void of turf immediately. A one year warranty for the plants and turf that was replaced, will begin on the day the work is completed.
 - 3. Replacement of relocated plants, that the Contractor did not supply, is not required unless they die from improper handling and care during transplanting. Loss through Contractor negligence requires replacement in kind and size.

- 4. The Government will reinspect all plants and turf at the end of the One Year Warranty. The Contractor will replace any dead, missing, or defective plant material and turf immediately. The Warranty will end on the date of this inspection provided the Contractor has complied with the work required by this specification. The Contractor shall also comply with the following requirements:
 - a. Replace dead, missing or defective plant material prior to final inspection.
 - b. Mulch and weed plant beds and saucers. Just prior to this inspection, treat these areas to a second application of approved pre-emergent herbicide.
 - c. From plants having been installed for one year, remove stakes, guy wires and any required tree wrappings.
 - d. Complete remedial measures directed by the Resident Engineer to ensure plant and turf survival.
 - e. Repair damage caused while making plant or turf replacements.

1.9 APPLICABLE PUBLICATIONS

- A. The publications listed below, form a part of this specification to the extent referenced. The publications are referenced in the text by basic designation only.
- B. American National Standards Institute (ANSI) Publications:

ANSI Z60.1-04.....Nursery Stock ANSI Z133.1-06.....Tree Care Operations-Pruning, Trimming, Repairing, Maintaining, and Removing Trees and Cutting Brush- Safety Requirements

- C. Hortus Third, A Concise Dictionary of Plants Cultivated in the U.S. and Canada.
- D. American Society for Testing and Materials (ASTM) Publications:

C136-06.....Sieve Analysis of Fine and Coarse Aggregates C516-02.....Vermiculite Loose Fill Thermal Insulation C549-06.....Perlite Loose Fill Insulation D977-05.....Emulsified Asphalt (AASTHO M140) D2028-97 (Rev. 2004)...Cutback Asphalt (Rapid-curing Type) D2103-05.....Polyethylene Film and Sheeting

- E. Turfgrass Producers International: Turfgrass Sodding.
- F. U. S. Department of Agriculture Federal Seed Act.

1998.....Rules and Regulations

G. American Wood Protection Association (AWPA):

C2-02.....Lumber, Timbers, Bridge Ties and Mine Ties, Pressure Treatment

PART 2 - PRODUCTS

2.1 GENERAL

All plant and turf material will conform to the varieties specified or shown in the plant list and be true to botanical name as listed in Hortus Third.

2.2 PLANTS

- A. Plants shall be in accordance with ANSI Z60.1, except as otherwise stated in the specifications or shown on the plans. Where the drawings or specifications are in conflict with ANSI Z60.1, the drawings and specification shall prevail.
- B. Provide well-branched and formed planting stock, sound, vigorous, and free from disease, sunscald, windburn, abrasion, harmful insects or insect eggs with healthy, normal, and unbroken root systems. Provide trees, deciduous and evergreen, that are single trunked with a single leader, unless otherwise indicated, display no weak crotches. Provide symmetrically developed deciduous trees and shrubs of uniform habit of growth, with straight boles or stems and free from objectionable disfigurements, and evergreen trees and shrubs with well developed symmetrical tops with typical spread of branches for each particular species or variety. Provide ground cover and vine plants with the number and length of runners for the size specified, and the proper age for the grade of plants specified. Provide vines and ground cover plants well established in removable containers, integral containers, or formed homogeneous soil sections. Plants shall have been grown under climatic conditions similar to those in the locality of the project. Spray all plants budding into leaf or having soft growth with an anti-desiccant at the nursery before digging.
- C. The minimum acceptable sizes of all plants, measured before pruning with branches in normal position, shall conform to the measurements designated. Plants larger in size than specified may be used with the approval of the Resident Engineer, with no change in the contract price. When larger plants are used, increase the ball of earth or spread of roots in accordance with ANSI Z60.1.
- D. Provide nursery grown plant material conforming to the requirements and recommendations of ANSI Z60.1. Dig and prepare plants for shipment in a manner that will not cause damage to branches, shape, and future development after planting.
- E. Balled and burlapped (B&B) plant ball sizes and ratios will conform to ANSI Z60.1, consisting of firm, natural balls of soil wrapped firmly with burlap or strong cloth and tied.
- F. Bare-root (BR) plants shall have the root system substantially intact, but with the earth carefully removed. Cover roots with a thick coating of mud by "puddling" after the plants are dug.
- G. Container grown plants shall have sufficient root growth to hold the earth intact when removed from containers, but shall not be root bound.
- H. Make substitutions only when a plant (or its alternates as specified) is not obtainable and the Resident Engineer authorizes a change order providing for use of the nearest equivalent obtainable size or variety of plant having the same essential characteristics with an equitable adjustment of the contract price.
- I. When existing plants are to be relocated, ball sizes shall conform to requirements for collected plants in ANSI Z60.1, and plants shall be

dug, handled, and replanted in accordance with applicable sections of these specifications.

2.3 LABELS

Each plant, or group and bundles or containers of the same species, variety, and size of plant, shall be legibly tagged with a durable, waterproof and weather-resistant label indicating the correct plant name and size specified in the plant list. Labels shall be securely attached and not be removed.

TOPSOIL 2.4

- A. Topsoil shall be a well-graded soil of good uniform quality. It shall be a natural, friable soil representative of productive soils in the vicinity. Topsoil shall be free of admixture of subsoil, foreign matter, objects larger than 25 mm (one inch) in any dimension, toxic substances, weeds and any material or substances that may be harmful to plant growth and shall have a pH value of not less than 5.0 nor more than 7.5.
- B. Obtain material from stockpiles established under Section 31 20 00, EARTH MOVING, subparagraph, Stripping Topsoil, that meet the general requirements as stated above. Amend topsoil not meeting the pH range specified by the addition of pH Adjusters.
- C. If sufficient topsoil is not available on the site to meet the depth as specified herein, the Contractor shall furnish additional topsoil. At least 10 calendar days prior to topsoil delivery, notify the Resident Engineer of the source(s) from which topsoil is to be furnished. Obtain topsoil from well drained areas. Additional topsoil shall meet the general requirements as stated above and comply with the requirements specified in Section 01 45 29, TESTING LABORATORY SERVICES. Amend topsoil not meeting the pH range specified by the addition of pH adjusters.

2.5 LIME

Lime shall be agricultural limestone containing not less than 90 percent calcium and magnesium carbonates. Lime must be ground to such a fineness that not less than 90% must pass No. 8 mesh and not less than 25% must pass No. 100 mesh. Moisture is not to exceed 10%.

2.6 SOIL CONDITIONERS

- A. Peat shall be a natural product of sphagnum moss peat derived from a fresh-water site conforming to Fed. Spec. Q-P-166, except as otherwise specified.
- B. Coarse Sand Coarse concrete sand, ASTM C-33 Fine Aggregate, shall be clean, sharp, free of limestone, shale and slate particles and of toxic materials.
- C. Perlite shall conform to ASTM C549.
- D. Vermiculite shall be horticultural grade and free of any toxic materials and conform to ASTM C516.
- E. Pine Bark shall be horticultural-grade milled pine bark, with 80 percent of the material by volume sized between 0.1 and 15.0 mm.(.004in. and .59in.).

- 1. Pine bark shall be aged sufficiently to break down all woody material. Pine bark shall be screened
- 2. pH shall range between 4.0 and 7.0.
- 3. Submit manufacturer's literature for approval.
- F. Organic Matter shall be commercially prepared compost, composted sufficiently to be free of all woody fibers, seeds, and leaf structures, and free of toxic and nonorganic matter.
- G. Fertilizer: Agricultural fertilizer of a formula indicated by the soil test. Fertilizers shall be organic, slow-release compositions whenever applicable

2.7 PLANTING SOIL MIXTURE

The planting soil mixture shall be composed of 70% topsoil, 10% coarse sand and 20% peat moss.

2.8 **BIOSTIMULANTS**

Biostimulants shall contain soil conditioners, VAM fungi, and endomycorrhizal and ectomycorrhizal fungi spores and soil bacteria appropriate for existing soil conditions

2.9 PLANT FERTILIZER

- A. Provide plant fertilizer that is commercial grade and uniform in composition and conforms to applicable state and federal regulations.
- B. For new plant material, provide packet, table, or pellet forms of slow release fertilizers, bearing the manufacturer's warranteed statement of analysis. Slow release fertilizers shall contain a minimum percentage by weight of 20% nitrogen (10% available phosphoric acid, and 5% potash).
- C. For existing trees, provide granular fertilizer bearing the manufacturer's warranteed statement of analysis.

2.10 TURF FERTILIZER

Provide turf fertilizer that is commercial grade, free flowing, uniform in composition, and conforms to applicable state and federal regulations. Granular fertilizer shall bear the manufacturer's warranteed statement of analysis. Granular fertilizer shall contain a minimum percentage by weight of 10% nitrogen (of which 50 percent shall be organic), 20% available phosphoric acid, and 10% potash. Liquid starter fertilizer for use in the hydro seed slurry will be commercial type with 50 percent of the nitrogen in slow release form.

2.11 MEMBRANES

- A. Polyethylene shall conform to ASTM D2103 and shall be 0.1 mm (four mils) thick and clear in color.
- B. Fiberglass mat shall be of lime borosilicate glass fibers with an average fiber diameter of 0.3 mm (8 to 12 microns) and 50 to 100 mm (2 to 4 inch) strands of fiber bonded with phenol formaldehyde resin. The mat shall be 100 percent textile glass fiber. Mat shall be roll type, water permeable, and a minimum of 6 mm (1/4 inch) and maximum of 13 mm

(1/2 inch) thick with a density of not less than 12 kg/m3 (3/4 pound per cubic foot).

Landscape Fabric shall be a spunbonded polyester fabric weighing 18 grams per square meter (34 oz per sq. yd) and with a 9,000 liter per minute flow rate per sq. meter (225 gal. per minute flow rate per sq. ft.)

2.12 MULCH

- A. Mulch shall be free from deleterious materials and shall be stored as to prevent inclusion of foreign material.
- B. Organic mulch materials shall be shredded hardwood bark
 - 1. Straw for lawn seed bed mulch shall be stalks from oats, wheat, rye, barley, or rice that are free from noxious weeds, mold or other objectionable material. Straw shall be in an air-dry condition and suitable for placing with blower equipment.
 - 2. Wood cellulose fiber for use with hydraulic application of grass seed and fertilizer shall consist of specially prepared wood fiber, processed to contain no growth or cellulose germination-inhibiting factors, and dyed an appropriate color to facilitate visual metering of the application of materials. On an air-dry weight basis, the wood cellulose fiber shall contain a maximum of 12 percent moisture, plus or minus three percent at the time of manufacture. The pH range shall be from 3.5 to 5.0. The wood cellulose fiber shall be manufactured so that:
 - a. After addition and agitation in slurry tanks with fertilizers, grass seeds, water, and other approved additives, the fibers in the material will become uniformly suspended to form a homogeneous slurry.
 - b. When hydraulically sprayed on the ground, the material will form a blotter like cover impregnated uniformly with grass seed.
 - c. The cover will allow the absorption of moisture and allow rainfall or applied water to percolate to the underlaying soil.

2.13 ASPHALT ADHESIVE

Asphalt adhesive for application with straw mulch shall be liquid asphalt conforming to ASTM D2028, designation RC-70, or emulsified asphalt conforming to ASTM D977, Grade RS-1.

2.14 EROSION CONTROL

DS75 Agricultural straw matrix stitch bonded with degradable thread to a single UV accelerated photodegradable polypropylene netting as manufactured by North American Green or approved equal.

2.15 STAKES AND GUYING WIRES

A. Provide stakes for tree support of rough sawn wood, free from knots, rot, cross grain, or other defects that would impair the strength. Stakes shall be a minimum of 50 mm by 50 mm (2 inches by 2 inches), or 65 mm (2-1/2 inches) in diameter, by 2400 mm (8 feet) long and pointed at one end Galvanized steel pipe 32 mm (1 1/4 in.) x 3000 mm (10') with cap, primed with 2 coats flat black exterior enamel.

- B. Guying wire shall be 2.7 mm (12 gage) annealed galvanized steel.
- C. Hose chafing guards shall be new or used 2-ply reinforced rubber or plastic hose of all the same color on the project.
- D. Flags to be fastened to guys shall be surveyor's plastic tape, white in color and 150 mm (6 inches) in length.
- E. Guying cable shall be a minimum of five strand twisted, 5 mm (3/16 inch) diameter steel cable.
- F. Turnbuckles shall be galvanized or cadmium plated and have a 75 mm (3 inch) minimum lengthwise opening fitted with screw eyes.
- G. Eye bolts shall be galvanized or cadmium plated having a 50 mm (one inch) diameter eye with a minimum screw length of 40 mm (1-1/2 inches).
- H. Deadmen shall be 100 mm by 200 mm (4 inch by 8 inch) rectangular, or 200 mm (8 inch) diameter by 900 mm (36 inch) long sound wood.
- I. Arrow shaped or auger iron anchors shall be noncorrosive, and sized according to the manufacturer's recommendation.

2.16 WATER

Water shall not contain elements toxic to plant life.

2.17 ANTIDESICCANT

Antidesiccant shall be an emulsion specifically manufactured for agricultural use that will provide a protective film over plant surfaces permeable enough to permit transpiration.

2.18 SEED

Seed shall be state-certified seed of the latest season's crop and shall be delivered in original sealed packages bearing the producer's warrantied analysis for percentages of mixtures, purity, germination, weed seed content, and inert material. Seed shall be labeled in conformance with U. S. Department of Agriculture rules and regulations under the Federal Seed Act and applicable state seed laws. Seed that has become wet, moldy, or otherwise damaged will not be acceptable. Onsite seed mixing shall be done only in the presence of the Resident Engineer. Seed mixtures shall be as indicated on the drawings.

2.19 HERBICIDES

All herbicides shall be properly labeled and registered with the U.S. Department of Agriculture. Keep all herbicides in the original labeled containers indicating the analysis and method of use.

PART 3 - EXECUTION

3.1 LAYOUT

Stake plant material locations and bed outlines on project site for approval by the Resident Engineer before any plant pits or beds are dug. The Resident Engineer may approve adjustments to plant material locations to meet field conditions.

3.2 EXCAVATION FOR PLANTING

- A. Prior to excavating for plant pits and bed, verify the location of any underground utilities. Damage to utility lines will be repaired at the Contractor's expense. Where lawns have been established prior to planting operation, cover the surrounding turf before excavations are made in a manner that will protect turf areas. Barricade existing trees, shrubbery, and beds that are to be preserved in a manner that will effectively protect them during the project construction.
- B. Remove rocks and other underground obstructions to a depth necessary to permit proper planting according to plans and specifications. Where underground utilities, construction, or solid rock ledges are encountered, the Resident Engineer may select other locations for plant material.
- C. Dig plant pits by any approved method so that they have vertical sides and flat bottoms. When pits are dug with an auger and the sides of the pits become glazed, scarify the glazed surface. Size the plant pits as shown, otherwise, the minimum allowable dimensions of plant pits shall be regardless of width, 150 mm (6 inches) deeper for shrubs and 225 mm (9 inches) deeper for trees than the depth of ball or root spread; for ball or root spread up to 600 mm (2 feet), pit diameters shall be twice the ball or root spread; for ball or root spread from 600 to 1200 mm (2 to 4 feet), pit diameters shall be 600 mm (2 feet) greater; for ball or root spread over 1200 mm (4 feet), pit diameters shall be 1-1/2 times the ball or root spread.
- D. Where ground cover and planting beds occur in existing turf areas, remove turf to a depth that will ensure the removal of the entire root system, with additional bed preparation as specified in the next paragraph.
- E. Where existing soil is to be used in place, till new ground cover and plant beds to a depth of 100 mm (4 inches). Spread soil amendment uniformly over the bed to depth of 50 mm (2 inches) and thoroughly incorporate it into the existing soil to a depth of 100 mm (4 inches) using a roto-tiller or similar type of equipment to obtain a uniform and well pulverized soil mix. Where existing soil is compacted (former roadways, parking lots, etc.) till the soil down to a depth necessary to support the growth of new planting. During tillage operations, remove all sticks, stones, roots, and other objectionable materials. Bring plant beds to a smooth and even surface conforming to established grades.
- F. In areas of new grading where existing soil is being replaced for the construction of new ground cover and plant beds, remove 100 mm (4 inches) of existing soil and replace with topsoil. Plant beds shall be brought to a smooth and even surface conforming to established grades. Till 50 mm (2 inches) of soil amendment into the topsoil as specified.
- G. Using topsoil, form earth saucers or water basins for watering around plants. Basins to be 2" high for shrubs and 4" high for trees.
- H. Treat plant saucers, shrub, and ground cover bed areas, prior to mulching, with an approved pre-emergent herbicide. Plant ground cover in areas to receive erosion control material through the material after material is in place.

3.3 SETTING PLANTS

A. Handle balled and burlapped and container-grown plants only by the ball or container. Remove container-grown plants in such a way to prevent

damage to plants or root system. Set plants plumb and hold in position until sufficient soil has been firmly placed around the roots or ball. Set plants so that the root crown is 1" higher than the surrounding grade. Plant ground cover plants after the mulch is in place. Avoid contaminating the mulch with the planting soil. Add slow release packet, tablet or pellet fertilizer as each plant is installed as per manufacturer's recommendation for method of installation and quantity.

- B. Backfill balled and burlapped and container-grown plants with planting soil mixture as specified to approximately half the depth of the ball and then tamp and water. For balled and burlapped plants, carefully remove excess burlap and tying materials and fold back. Where plastic wrap or treated burlap is used in lieu of burlap, completely remove these materials before backfilling. Tamp and water remainder of backfill Planting Soil Mixture; then form earth saucers or water basins around isolated plants with topsoil.
- C. Plant bare-root stock arranging the roots in a natural position. Remove damaged roots with a clean cut. Carefully work Planting Soil Mixture in among the roots. Tamp and water the remainder of Planting Soil Mixture; then form earth saucers or water basins around isolated plants with topsoil.

3.4 STAKING AND GUYING

- A. Stake and guy plants as shown on the drawings and as specified.
- B. Remove stakes and guy wires after one year.

3.5 EDGING PLANT BEDS

- A. Uniformly edge beds using a sharp tool to provide a clear cut division line between the planted area and the adjacent lawn.
- B. Install metal edging materials in accordance with manufacturer's recommendations and as shown on the plans.

3.6 MULCHING PLANTS

- A. Mulch within 48 hours after planting and applying a pre-emergent herbicide. Do not mulch in ground cover areas that shall have organic material placed before planting.
- B. Placing Inert Material: Place polyethylene sheet with edges lapped 150 mm to 300 mm (6 inches to 12 inches) to receive inert mulch material. Punch a grid of 6 mm (1/4 inch) holes for drainage in the polyethylene sheet 300 mm (one foot) on centers over the entire area. Spread inert mulch to a uniform thickness over the membrane as shown.
- C. Placing Organic Material: Spread a mulch of shredded hardwood bark to a uniform minimum thickness of 50 mm (2 inches).
- D. Keep mulch out of the crowns of shrubs and off buildings, sidewalks, light standards, and other structures.

3.7 PRUNING

A. Prune new plant material and indicated existing plant material in the following manner: Remove dead, broken and crossing branches. Prune deciduous trees and shrubs to reduce total amount of anticipated foliage by 1/4 to 1/3 while retaining typical growth habit of individual plants with as much height and spread as is practicable. Make cuts with sharp instruments as close as possible to the branch

collar. Do not make flush cuts. Do not make "Headback" cuts at right angles to line of growth. Do not pole trees or remove the leader. Remove trimmings from the site. Paint cuts 13 mm (1/2 inch) in diameter and larger with the specified tree wound dressing.

B. Existing trees to be pruned are shown on the drawings. Perform tree pruning and cavity work by a licensed arborist in accordance with ANSI Z 133.1. Remove dead wood 13 mm (1/2 inch) or more in diameter, branches interfering with or hindering the healthy growth of the trees, and diseased branches with a clean cut made flush with the parent trunk. Cut back or remove branches as necessary to give the trees proper shape and balance. In removing large limbs, make the initial cut on the underside at a safe distance from the trunk or lateral, to prevent ripping of bark. Ensure branches and trimmings do not endanger traffic or cause damage to property during removal. Section large branches or limbs that cannot be removed in one piece without endangering traffic or property. Lower sections by ropes. Repair any damage resulting from the Contractor's negligence during pruning. Workmen are not permitted to climb trees with climbing spurs. To promote proper healing, cut off flush stubs or limbs that have resulted from improper cuts or broken as a result of former pruning. Remove girdling roots. Clean cuts or wounds measuring 13 mm (1/2 inches) or more in diameter, and exposed wood and scars resulting from previous work or damage. Remove decayed wood to expose healthy tissue. Shape cavities to provide drainage. Manufacturer's recommendations.

TILLAGE FOR TURF AREAS 3.8

Thoroughly till the soil to a depth of at least 100 mm (4 inches) by scarifying, disking, harrowing, or other approved methods. This is particularly important in areas where heavy equipment has been used, and especially under wet soil conditions. Remove all debris and stones larger than 25 mm (one inch) remaining on the surface after tillage in preparation for finish grading. To minimize erosion, do not till areas of 3:1 slope ratio or greater. Scarify these areas to a 50 mm (one inch) depth and remove debris and stones.

3.9 FINISH GRADING

After tilling the soil for bonding of topsoil with the subsoil, spread the topsoil evenly to a minimum depth of 150 mm (6 inches). Incorporate topsoil at least 50 to 75 mm (2 to 3 inches) into the subsoil to avoid soil layering. Do not spread topsoil when frozen or excessively wet or dry. Correct irregularities in finished surfaces to eliminate depressions. Protect finished topsoil areas from damage by vehicular or pedestrian traffic. Complete lawn work only after areas are brought to finished grade.

3.10 APPLICATION OF FERTILIZER AND LIME FOR TURF AREAS

A. Apply turf fertilizer per manufacturer specifications, in addition, adjust soil acidity and add soil conditioners as required herein for suitable topsoil under PART 2, Paragraph 2.4, TOPSOIL.

3.11 MECHANICAL SEEDING

- A. Broadcast seed by approved sowing equipment per manufacturer specifications. Sow one half of the seed in one direction, and the remainder sown at right angles to the first sowing. Cover seed to an average depth of 6 mm (1/4 inch) by means of spike-tooth harrow, cultipacker, or other approved device.
- B. Immediately after seeding, firm up the entire area with a roller not exceeding 225 kg/m (150 pounds per foot) of roller width. Where seeding is performed with a cultipacker-type seeder or where seed is applied in combination with hydro-mulching, no rolling is required.
- C. Immediately after preparing the seeded area, evenly spread an organic mulch of straw by hand or by approved mechanical blowers at the rate of 0.5 kg/m^2 (2 tons per acre). Application shall allow some sunlight to penetrate and air to circulate but also reduce soil and seed erosion and conserve soil moisture. Anchor mulch by either a mulch tiller, asphalt emulsion, twine, or netting. When asphalt emulsion is used, apply either simultaneously or in a separate application. Take precautionary measures to prevent asphalt materials from marking or defacing structures, pavements, utilities, or plantings.

3.12 HYDROSEEDING

When hydroseeding, mix the seed and slow release starter fertilizer, or the seed, fertilizer, lime when required and approved wood cellulose mulch material in the required amount of water to produce a homogeneous slurry and then uniformly apply slurry under pressure per the manufacturer's specifications. When using wood cellulose mulch, incorporate it as an integral part of the slurry mix after the seed and fertilizer have been thoroughly mixed. Apply the slurry mix per the manufacturer's specifications for the specified seed mix

3.13 WATERING

Apply water to the turf areas immediately following installation at a rate sufficient to ensure thorough wetting of the soil to a depth of at least 100 mm (4 inches). Supervise watering operation to prevent run-off. Supply all pumps, hoses, pipelines, and sprinkling equipment. Repair all areas damaged by water operations.

3.14 PROTECTION OF TURF AREAS

Immediately after installation of the turf areas, protect against traffic or other use by erecting barricades, as required, and placing approved signs at appropriate intervals until final acceptance.

3.15 EROSION CONTROL MATERIAL

A. Install and maintain erosion control material meeting the requirements of this specification on the designated areas as shown and specified. Prepare, fertilize and vegetate the area(s) to be covered, as specified, before the erosion material is placed. Immediately following the planting operations, lay the material evenly and smoothly and in contact with the soil throughout. Omit the straw mulch from all seeded areas receiving the erosion control material.

- B. For waterways, unroll the material in the direction of waterflow. When two or more strips are required to cover a ditch area, they shall overlap at least 100 mm (4 inches). In case a strip is to be spliced lengthwise, the ends of the strips shall overlap at least 150 mm (6 inches) with the upgrade section on top.
- C. When using erosion control material on slopes, place the material either horizontally or vertically to the slope with the edges and ends of adjacent strips butted tightly against each other.
- D. Staple each strip in three rows (each edge and center with the center row alternately spaced) with staples spaced not more than 1200 mm (4 feet) longitudinally. When using two or more strips side by side on slopes, use a common row of staples on the adjoining strips. Staple all end strips at 300 mm (one foot) intervals at the end. Firmly embed staples in the underlying soil.
- E. Maintenance shall consist of repairs made necessary by erosion, wind, or any other cause. Maintain, protect, repair, or replace the erosion control material until the Termination of the Plant and Warranty Period.

3.16 RESTORATION AND CLEAN-UP

Where existing or new turf areas have been damaged or scarred during planting and construction operations, restore disturbed area to their original condition. Keep at least one paved pedestrian access route and one paved vehicular access route to each building clean at all times. In areas where planting and turf work have been completed, clear the area of all debris, spoil piles, and containers. Clear all other paved areas when work in adjacent areas is completed. Remove all debris, rubbish and excess material from the station.

3.17 ENVIRONMENTAL PROTECTION

All work and Contractor operations shall comply with the requirements of Section 01 57 19, TEMPORARY ENVIRONMENTAL CONTROLS.

END OF SECTION

SECTION 33 40 00

STORM DRAINAGE UTILITIES

PART 1 - GENERAL

1.1 DESCRIPTION:

This section specifies construction of outside, underground storm sewer systems. The storm sewer systems shall be complete and ready for operation, including all drainage structures, frames, grate and covers, connections to new buildings, structure service lines, existing storm sewer lines and existing drainage structures and all required incidentals.

1.2 RELATED WORK:

- A. Maintenance of Existing Utilities: Section 01 00 00, GENERAL REQUIREMENTS.
- B. Excavation, Trench Widths, Pipe Bedding, Backfill, Shoring, Sheeting, Bracing: Section 31 20 00, EARTH MOVING.

1.3 QUALITY ASSURANCE:

- A. Products Criteria:
 - Multiple Units: When two or more units of the same type or class of materials or equipment are required, these units shall be products of one manufacturer.
 - Nameplates: Nameplate bearing manufacturer's name, or identifiable trademark, securely affixed in a conspicuous place on equipment, or name or trademark cast integrally with equipment, stamped, or otherwise permanently marked on each item of equipment.
- B. Comply with the rules and regulations of the Public Utility having jurisdiction over the connection to public storm sewer lines and the extension, and/or modifications to Public Utility systems.

1.4 SUBMITTALS:

- A. Submit in accordance with Section 01 33 23, SHOP DRAWINGS, PRODUCT DATA, AND SAMPLES.
- B. Manufacturers' Literature and Data: Submit the following as one package:
 - 1. Piping.
 - 2. Jointing material.
 - 3. Manhole, inlet and catch basin material.
 - 4. Frames and covers.
 - 5. Steps.
 - 6. Resilient connectors and downspout boots.
- C. One copy of Pennsylvania Department of Transportation standard details of MANHOLES, INLETS and catch basins.
- D. One copy of Pennsylvania Department of Transportation specification.

1.5 APPLICABLE PUBLICATIONS:

extent referenced. The publications are referenced in the text by the basic designation only.	е
B. American Society for Testing and Materials (ASTM):	
A48-03/A48M-03Gray Iron Castings A536-84(2004)Ductile Iron Castings A615-05/A615M-05Deformed and Plain-Billet Steel Bars for Concrete Reinforcement	r
A655-04e1/A655M-04e1 Reinforced Concrete D-Load Culvert, Storm Drain	
and Sewer Pipe C76-05a/C76M-05aReinforced Concrete Culvert, Storm Drain and Sewer Pipe	
C139-03Concrete Masonry Units for Construction or Catch Basins and Manholes	f
C150-04ae1Portland Cement C443-05/C443M-05Joints for Concrete Pipe and Manholes, Using Rubber Gaskets	g
C478-03a/C478M-03aPrecast Reinforced Concrete Manhole Sections C506-05/C506M-05Reinforced Concrete Arch Culvert, Storm Drain and Sewer Pipe	n
C1433-04e1/C1433M-04e1Precast Reinforced Concrete Box Sections for Culverts, Storm Drains and Sewers	r
C828-03Low-Pressure Air Test of Vitrified Clay Pipe	е
C857-95(2001)Minimum Structural Design Loading for Underground Precast Concrete Utility Structures	r
C923-02/C923M-02Resilient Connectors between Reinforced Concrete Manhole Structures, Pipes and Materials	d
C924-02/C924M-02Testing Concrete Pipe Sewer Lines by Low Pressure Air Test Method	W
C1103-03/C1103M-03Joint Acceptance Testing of Installed Precast Concrete Pipe Sewer Lines	t
D698-00ae1Laboratory Compaction Characteristics of Soi Using Standard Effort (12,400 ft-lbf/ft ³ (600 kN-m/m ³))	0
D1056-00Flexible Cellular Materials-Sponge or Expanded Rubber	d
D2412-02Determination of External Loading Characteristics of Plastic Pipe by Paralle Plate Loading	
D2321-04e1Underground Installation of Thermoplastic Pipe for Sewers and Other Gravity Flow Applications	
D3034-04aType PSM Poly (Vinyl Chloride) (PVC) Sewer Pipe and Fittings	е
D3212-96a(2003)e1Joints for Drain and Sewer Plastic Pipes Using Flexible Elastomeric Seals	g
D3350-04Polyethylene Plastics Pipe and Fittings Materials	S
D4101-05aPolypropylene Injection and Extrusion Materials	

A. The publications listed below form a part of this specification to the

F477-02e1.....Elastomeric Seals (Gaskets) for Joining Plastic Pipe
F679-03.....Poly (Vinyl Chloride) (PVC) Large-Diameter Plastic Gravity Sewer Pipe and Fittings
F714-05.....Polyethylene (PE) Plastic Pipe (SDR-PR) Based on Outside Diameter
F794-03....Poly (Vinyl Chloride) (PVC) Profile Gravity Sewer Pipe and Fittings Based on Controlled Inside Diameter
F894-98a....Polyethylene (PE) Large Diameter Profile Wall Sewer and Drain Pipe
F949-03....Poly (Vinyl Chloride) (PVC) Corrugated Sewer Pipe with Smooth Interior
F1417-92 (2005)....Installation Acceptance of Plastic Gravity Sewer Lines Using Low-Pressure Air

- NOTE: ASTM test methods shall be the current version as of the date of advertisement of the project.
- C. American Association of State Highway and Transportation Officials (AASHTO):

HB17.....Standard Specifications for Highway Bridges M190-04....Bituminous Coated Corrugated Metal Culvert Pipe and Pipe Arches M198-05....Joints for Circular Concrete Sewer and Culvert Pipe Using Flexible Watertight Gaskets M294-04....Corrugated Polyethylene Pipe, 300-1500 mm (12 to 60 inches) Diameter

PART 2 - PRODUCTS

2.1 PIPING:

- A. Gravity Lines (Pipe and Appurtenances):
 - 1. Concrete:
 - a. Reinforced pipe, ASTM C76. Class III, or ASTM C655. Joints shall be watertight flexible joints made with rubber-type gaskets conforming to ASTM C443.
 - 2. High Density Polyethylene (HDPE):
 - a. Smooth Wall PE Pipe: Shall comply with ASTM F714, DR 21 for pipes 75 to 600 mm (3 to 24 inches), and SDR 26 for pipes 650 to 1200 mm (26 to 48 inches). Pipe shall be produced from PE certified by the resin producer as meeting the requirements of ASTM D3350, minimum cell class 335434C.

b. Corrugated PE Pipe: Shall comply with AASHTO M294, for pipes 300 to 1500 mm (12 to 60 inches). Pipe walls shall have following minimum properties:

Nominal Size	<u>Minimum Wall Area</u>	Min. Moment of Inertia mm ⁴ /mm (in ⁴ /in)
300 mm (12 in)	3200 mm ² /m (1.50 in ² /ft)	390 (.024)
375 mm (15 in)	4000 mm²/m (1.91 in²/ft)	870 (.053)
450 mm (18 in)	4900 mm²/m (2.34 in²/ft)	1020 (.062)
600 mm (24 in)	6600 mm²/m (3.14 in²/ft)	1900 (.116)
750 mm (30 in)	8300 mm²/m (3.92 in²/ft)	2670 (.163)
900 mm (36 in)	9500 mm²/m (4.50 in²/ft)	3640 (.222)
1050 mm (42 in)	9900 mm²/m (4.69 in²/ft)	8900 (.543)
1200 mm (48 in)	10900 mm²/m (5.15 in²/ft)	8900 (.543)
1350 mm (54 in)	12000 mm²/m (5.67 in²/ft)	13110 (.800)
1500 mm (60 in)	13650 mm²/m (6.45 in²/ft)	13110 (.800)

c. Profile Wall PE Pipe: Shall comply with ASTM F894, Class 160, produced from PE certified by the resin producer as meeting the requirements of ASTM D3350, Minimum cell class 334433C. Pipe walls shall have following minimum properties:

Nominal Size	<u>Minimum Wall Area</u>	Min. Moment of Inertia mm ⁴ /mm (in ⁴ /in)
450 mm (18 in)	6300 mm²/m (2.96 in²/ft)	850 (.052)
525 mm (21 in)	8800 mm²/m (4.15 in²/ft)	1150 (.070)
600 mm (24 in)	9900 mm²/m (4.66 in²/ft)	1330 (.081)
675 mm (27 in)	12500 mm²/m (5.91 in²/ft)	2050 (.125)
750 mm (30 in)	12500 mm²/m (5.91 in²/ft)	2050 (.125)
825 mm (33 in)	14800 mm²/m (6.99 in²/ft)	2640 (.161)
900 mm (36 in)	17100 mm²/m (8.08 in²/ft)	3310 (.202)
1050 mm (42 in)	16500 mm²/m (7.81 in²/ft)	4540 (.277)
1200 mm (48 in)	18700 mm²/m (8.82 in²/ft)	5540 (.338)

2.2 JOINTING MATERIAL:

- A. Concrete Pipe: Rubber gasket ASTM C443.
- B. Ductile Iron Pipe (DIP):
- C. PE Plastic Pipe:
 - 1. Smooth Wall PE Plastic Pipe: Pipe shall be joined using butt fusion as recommended by the manufacturer.
 - 2. Corrugated PE Plastic Pipe: Water tight joints shall be made using a PVC or PE coupling and rubber gaskets as recommended by the pipe manufacturer. Rubber gaskets shall conform to ASTM F477. Soil tight joints shall conform to requirements in AASHTO HB-17, Division II, for soil tightness and shall be as recommended by the manufacturer.
 - 3. Profile Wall PE Plastic Pipe: Joints shall be gasket or thermal weld type with integral bell in accordance with ASTM F894.

MANHOLES, INLETS AND CATCH BASINS: 2.3

- A. Manholes, inlets and catch basins shall be constructed of precast concrete segmental blocks, precast reinforced concrete rings, precast reinforced sections, or cast-in-place concrete. Manholes, inlets and catch basins shall be in accordance with Pennsylvania Department of Transportation standard details, and the following VA requirements, in case of variance, VA requirements supersede:
 - 1. Precast Concrete Segmental Blocks: Blocks shall conform to ASTM C139 and shall not be less than 150 mm (6 inches) thick for manholes to a depth of 3.6 m (12 feet); not less than 200 mm (8 inches) thick for manholes deeper than 3.6 m (12 feet) deep. Blocks shall be not less than 200 mm (8 inches) in length. Blocks shall be shaped so that joints seal and bond effectively with cement mortar. Parge structure interior and exterior with 15 mm (1/2 inch) of cement mortar applied with a trowel and finished to an even glazed surface.
 - 2. Precast Reinforced Concrete Rings: Rings or sections shall have an inside diameter as indicated on the drawings, and shall be not less than 1200 mm (48 inches) in diameter. Wall thickness shall conform to requirements of ASTM C76, except that lengths of the sections may be shorter as conditions require. Tops shall conform to ASTM C478. Top section shall be eccentric cone type. Steps on inside wall shall be in the same plane from bottom of structure to manhole cover.
 - 3. Precast Reinforced Concrete Manhole Risers and Tops: Design, material and installation shall conform to requirements of ASTM C478. Top sections shall be eccentric. Steps on inside wall shall be in the same plane from bottom of structure to manhole cover.
 - 4. Flat top manhole tops shall be reinforced concrete as detailed on the drawings.
 - 5. Precast Catch Basins: Concrete for precast sections shall have a minimum compressive strength of 35 MPa (5,000 psi) at 28 days, ASTM A615, Grade 60 reinforcing steel, rated for AASHTO HS20-44 loading with 30 percent impact, and conform to ASTM C-857.
 - 6. Mortar:
 - a. Precast Concrete Segmental Block Structures: By volume, 1 part of Portland cement, 1/4 part lime hydrate, and 3 parts sand.
 - b. Precast Reinforced Concrete Ring and Riser Structures: By volume, 1 part of Portland cement and 2 parts sand. Water in mixture shall produce a stiff, workable mortar, but shall not exceed 21L (5-1/2 gallons) per sack of cement.
 - 7. Flexible sealing compound shall be packaged in extruded preformed shape, sized to completely fill the joint between precast sections, and form permanently flexible watertight seal. The sealing compound shall be non-shrink and meet AASHTO M-198B.
 - 8. Frames and covers shall be gray cast iron conforming to ASTM A48. The frame and cover shall be rated for HS20-44 loading, have a studded pattern on the cover, and the words "storm sewer". The studs and the lettering shall be raised 8 mm (5/16 inch). The cover shall be a minimum of 600 mm (24 inches) in diameter and shall have four 19 mm (3/4 inch) vent holes and two lifting slots. The bearing surface of the frame and cover shall be machine finished. The cover

shall fit firmly on the frame without movement when subject to traffic.

- 9. Manhole steps shall be polypropylene plastic coated on a No. 4 deformed rebar conforming to ASTM C478, Polypropylene shall conform to ASTM D4101. Steps shall be a minimum of 250 mm (10 inches) wide and project a minimum of 125 mm (5 inches) away from the mall. The top surface of the step shall have a studded non-slip surface. Steps shall be placed at 300 mm (12 inch) centers.
- 10. Ladders, brackets and hardware shall be constructed of welded aluminum, rails shall be 9 mm (3/8 inch) by 63 mm (2-1/2 inches) spaced a minimum of 400 mm (16 inches) apart. Rungs shall be 35 mm (1-3/8 inches) in diameter and have a non-slip surface. Standoffs shall offset the ladder 180 mm (7 inches) from the wall. The ladder assembly shall be rated for a minimum of 2200 N (500 pounds).
- B. Prefabricated Corrugated Metal Manholes: Manholes shall be the type and design as indicated on the drawings and as recommended by the manufacturer.
- C. Prefabricated Plastic Manholes and Drain Basins: Plastic manholes and drain basins shall be as indicated on the drawings.
- D. Frame and Cover for Gratings: Frame and cover for gratings shall be in accordance with Pennsylvania Department of Transportation standard details. Weight, shape, size, and waterway openings for grates and curb inlets shall be as indicated on the drawings.

2.4 CONCRETE:

Concrete shall be in accordance with Pennsylvania Department of Transportation publication 408. For concrete not specified in above standards, concrete shall have a minimum compressive strength of 20 MPa (3000 psi) at 28 days. The cement shall be Type III conforming to ASTM C150. Concrete shall conform to the provisions of Division 03 of these specifications.

2.5 REINFORCING STEEL:

Reinforcing steel shall be deformed bars, ASTM A615, Grade 40 unless otherwise noted.

2.6 PRECAST REINFORCED CONCRETE BOX.

Precast Reinforced Concrete Box: For highway loadings with 600 mm (2 feet) of cover or more subjected to dead load only, conform to ASTM C1433; For less than 600 mm (2 feet) of cover subjected to highway loading, conform to ASTM C1433.

2.7 RESILIENT CONNECTORS AND DOWNSPOUT BOOTS:

- A. Resilient Connectors: Flexible, watertight connectors used for connecting pipe to manholes and inlets shall conform to ASTM C923.
- B. Downspout Boots: Boots used to connect exterior downspouts to the storm drainage system shall be of gray cast iron conforming to ASTM A48, Class 30B or 35B.

PART 3 - EXECUTION

3.1 EXCAVATION FOR STORM DRAINS AND DRAINAGE STRUCTURES:

Excavation of trenches and for appurtenances and backfilling for storm drains, shall be in accordance with all applicable portions of Section 31 20 00, EARTH MOVING.

3.2 PIPE BEDDING:

The bedding surface of the pipe shall provide a firm foundation of uniform density throughout the entire length of pipe. Concrete pipe requirements are such that when no bedding class is specified, concrete pipe shall be bedded in a soil foundation accurately shaped and rounded to conform with the lowest one-fourth of the outside portion of circular pipe. When necessary, the bedding shall be tamped. Bell holes and depressions for joints shall not be more than the length, depth, and width required for properly making the particular type of joint. Plastic pipe bedding requirements shall meet the requirements of ASTM D2321. Bedding, haunching and initial backfill shall be either Class IB or Class II material. Corrugated metal pipe bedding requirements shall conform to ASTM A798.

3.3 GENERAL PIPING INSTALLATION:

- A. Lay pipes true to line and grade. Gravity flow sewer shall be laid with bells facing upgrade.
- B. Do not lay pipe on unstable material, in wet trench or when trench and weather conditions are unsuitable for the work.
- C. Support pipe on compacted bedding material. Excavate bell holes only large enough to properly make the joint.
- D. Inspect pipes and fittings, for defects before installation. Defective materials shall be plainly marked and removed from the site. Cut pipe shall have smooth regular ends at right angles to axis of pipe.
- E. Clean interior of all pipe thoroughly before installation. When work is not in progress, open ends of pipe shall be closed securely to prevent entrance of storm water, dirt or other substances.
- F. Lower pipe into trench carefully and bring to proper line, grade, and joint. After jointing, interior of each pipe shall be thoroughly wiped or swabbed to remove any dirt, trash or excess jointing materials.
- G. Do not lay sewer pipe in same trench with another pipe or other utility.
- H. Do not walk on pipe in trenches until covered by layers of shading to a depth of 300 mm (12 inches) over the crown of the pipe.
- I. Install gravity sewer line in accordance with the provisions of these specifications and the following standards:
 - 1. Reinforced Concrete Pipe: Comply with manufacturer's recommendations with gasketed joints.
 - 2. Polyvinyl Chloride (PVC) Piping: ASTM D2321.
 - 3. High Density Polyethylene (HDPE) Piping: Comply with manufacturer's recommendations with gasketed joints.

3.4 **REGRADING:**

- A. Raise or lower existing manholes and structures frames and covers in regraded areas to finish grade. Carefully remove, clean and salvage cast iron frames and covers. Adjust the elevation of the top of the manhole or structure as detailed on the drawings. Reset cast iron frame and cover, grouting below and around the frame. Install concrete collar around reset frame and cover as specified for new construction.
- B. During periods when work is progressing on adjusting manholes or structures cover elevations, the Contractor shall install a temporary cover above the bench of the structure or manhole. The temporary cover shall be installed above the high flow elevation within the structure, and shall prevent debris from entering the wastewater stream.
- C. The Contractor shall comply with all OSHA confined space requirements when working within existing structures.

3.5 CONNECTIONS TO EXISTING VA-OWNED MANHOLES:

Make pipe connections and alterations to existing manholes so that finished work will conform as nearly as practicable to the applicable requirements specified for new manholes, including concrete and masonry work, cutting, and shaping.

3.6 MANHOLES, INLETS AND CATCH BASINS:

- A. General:
 - 1. Circular Structures:
 - a. Precast concrete segmental blocks shall lay true and plumb. All horizontal and vertical joints shall be completely filled with mortar. Parge interior and exterior of structure with 15 mm (1/2 inch) or cement mortar applied with a trowel and finished to an even glazed surface.
 - b. Precast reinforced concrete rings shall be installed true and plumb. The joints between rings and between rings and the base and top shall be sealed with a preform flexible gasket material specifically manufactured for this type of application. Adjust the length of the rings so that the eccentric conical top section will be at the required elevation. Cutting the conical top section is not acceptable.
 - c. Precast reinforced concrete manhole risers and tops. Install as specified for precast reinforced concrete rings.
 - 2. Rectangular Structures:
 - a. Precast concrete structures shall be placed on a 200 mm (8 inch) reinforced concrete pad, or be provided with a precast concrete base section. Structures provided with a base section shall be set on a 200 mm (8 inches) thick aggregate base course compacted to a minimum of 95 percent of the maximum density as determined by ASTM D 698. Set precast section true and plumb. Seal all joints with preform flexible gasket material.
 - 3. Do not build structures when air temperature is 0 degrees C (32 degrees F), or below.

4. Invert channels shall be smooth and semicircular in shape conforming to inside of adjacent sewer section. Make changes in direction of flow with a smooth curve of as large a radius as size of structure will permit. Make changes in size and grade of channels gradually and evenly. Construct invert channels by one of the listed methods:

a. Forming directly in concrete base of structure.b. Building up with brick and mortar.

- 5. Floor of structure outside the channels shall be smooth and slope toward channels not less than 1:12 (25mm per 300mm, 1-inch per foot) nor more than 1:6 (50mm per 300mm, 2 inches per foot). Bottom slab and benches shall be concrete.
- 6. The wall that supports access rungs or ladder shall be 90 degrees vertical from the floor of structure to manhole cover.
- 7. Install steps and ladders per the manufacturer's recommendations. Steps and ladders shall not move or flex when used. All loose steps and ladders shall be replaced by the Contractor.
- 8. Install manhole frames and covers on a mortar bed, and flush with the finish pavement. Frames and covers shall not move when subject to vehicular traffic. Install a concrete collar around the frame to protect the frame from moving until the adjacent pavement is placed. In unpaved areas, the rim elevation shall be 50 mm (2 inches) above the adjacent finish grade. Install a 200 mm (8 inches) thick, by 300 mm (12 inches) concrete collar around the perimeter of the frame. Slope the top of the collar away from the frame.

3.7 CURB INLETS, CATCH BASINS, AND AREA DRAINS:

Reinforced concrete as shown or precast concrete.

3.8 INSPECTION OF SEWERS:

Inspect and obtain the Resident Engineer's approval. Thoroughly flush out before inspection. Lamp between structures and show full bore indicating sewer is true to line and grade. Lip at joints on inside of sewer is prohibited.

3.9 TESTING OF STORM SEWERS:

- A. Gravity Sewers (Select one of the following):
 - 1. Air Test: Concrete Pipes conform to ASTM C924, Plastic Pipes conform to ASTM F1417, all other pipe material conform to ASTM C828 or C924, after consulting with pipe manufacturer. Testing of individual joints shall conform to ASTM C1103.
 - 2. Exfiltration Test:
 - a. Subject pipe to hydrostatic pressure produced by head of water at depth of 900 mm (3 feet) above invert of sewer at upper manhole under test. In areas where ground water exists, head of water shall be 900 mm (3 feet) above existing water table. Maintain head of water for one hour for full absorption by pipe body before testing. During 1 hour test period, measured maximum allowable rate of exfiltration for any section of sewer shall be 11L (3.0 gallons) per hour per 30 m (100 feet).

b. If measurements indicate exfiltration is greater than maximum allowable leakage, take additional measurements until leaks are located. Repair and retest.

END OF SECTION